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Abstract

Attribute Value Extraction (AVE) aims to re-
trieve the values of attributes from the product
profiles. The state-of-the-art methods tackle the
AVE task through a question-answering (QA)
paradigm, where the value is predicted from the
context (i.e. product profile) given a query (i.e.
attributes). Despite of the substantial advance-
ments that have been made, the performance
of existing methods on rare attributes is still
far from satisfaction, and they cannot be easily
extended to unseen attributes due to the poor
generalization ability. In this work, we pro-
pose to leverage pretraining and transfer learn-
ing to address the aforementioned weaknesses.
We design a Knowledge-Selective Framework
(KSelF) based on query expansion that can be
closely combined with a pretraining corpus to
boost the performance. Meanwhile, consider-
ing the public AE-pub dataset contains consid-
erable noise, we construct a larger benchmark
EC-AVE collected from E-commerce websites.
We conduct evaluation on both of these datasets.
The experimental results demonstrate that our
proposed KSelF achieves new state-of-the-art
performance without pretraining. When incor-
porated with the pretraining corpus, the per-
formance of KSelF can be further improved,
particularly on the attributes with limited train-
ing resources.

1 Introduction

With the fast expansion of E-commerce systems,
Attribute Value Extraction (AVE), which aims to
retrieve the values of attributes from the product
profiles, has attracted significantly more research
attention since it can be used to supplement prod-
uct information and hence serve better product
search (Xiao et al., 2021; Luo et al., 2022), recom-
mendations (Hwangbo et al., 2018), and other E-
commerce tasks. As shown in Figure 1, the goal of
AVE is to extract values of different attributes, e.g.,
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Profile
Zebco Slingshot Spincasting Reel and Fishing Rod 
Combo, 5-Foot 6-Inch 2-Piece Fishing Pole

(Attribute, Value)
(Brand, Zebco) (Length, 5-foot 6-inch)
(Color, None) (Weight, None)

Figure 1: Example of (attribute, value) pairs of a prod-
uct. For the attributes that are not presented in the
profile, the values are “None”.

“Zebco” from the profile for the attribute Brand.
Automating this process can considerably enrich
the product information with fewer human efforts,
which has become a hot research topic for many
E-commerce stores (Xu et al., 2019).

Existing research on AVE mainly falls into two
paradigms: (1) sequence-tagging, and (2) question
answering (QA). The sequence-tagging paradigm
formulates AVE as a named entity recognition prob-
lem, where the model is built to identify the at-
tribute types of the tokens in product profiles (Put-
thividhya and Hu, 2011; More, 2016; Zheng et al.,
2018; Xu et al., 2019; Liang et al., 2020; Zhu et al.,
2020; Jiang et al., 2021; Wang et al., 2022). How-
ever, the sequence-tagging methods suffer from the
limitations that they do not scale to cope with a
large number of attributes and cannot be extended
to unseen attributes (Wang et al., 2020). Hence,
recent works have proposed to formulate AVE as a
QA task, where the product profile and attribute are
taken as the context and query, respectively (Wang
et al., 2020; Shinzato et al., 2022; Ding et al., 2022;
Yang et al., 2022), and the model is trained to ex-
tract the attribute value span from the context. The
QA paradigm has shown to be more flexible and
scalable than sequence-tagging methods, achieving
state-of-the-art performance on the AVE task.

While the QA paradigm has yielded improved re-
sults, they still face significant limitations that need
to be addressed. Previous research demonstrates
that the QA-based methods do not perform well on



the attributes with limited training resources (Wang
et al., 2020; Shinzato et al., 2022), even though
Shinzato et al. (2022) propose to build better repre-
sentations by expanding the query with values of
the same attribute from the training set and accord-
ingly achieves promising overall performance. The
sub-optimal performance on attributes with limited
training resources hinders the practical application
of QA-based AVE methods to E-commerce, be-
cause new and unseen attributes continue to arise
with the introduction of new products.

To overcome the aforementioned problems, we
develop a task-specific pretraining method for the
QA-based AVE, which provides the model strong
generalization capabilities, allowing the model to
quickly adapt to rare and unseen attributes. Inspired
by the recent popularity of pretrained language
models (Devlin et al., 2019; Liu et al., 2019; Chen
et al., 2020; He et al., 2021) that leverage large-
scale unlabeled corpora from the Web to perform
pretraining, we collect product profiles as well as
the corresponding product attributes from various
public E-commerce websites. To automatically and
efficiently construct data for pretraining, we con-
duct string match in the collected product informa-
tion, and obtain the large-scale corpus consisting of
(profile, attribute, value) triples. Using these data,
we further pretrain a public language model for an
AVE task employing the QA paradigm.

To further improve the performance, we adopt
the query expansion technique. Given a product
and an attribute to be filled with a value, Shinzato
et al. (2022) employs values of the same attributes
retrieved from training corpus as knowledge to ex-
pand the query, improving upon previous meth-
ods that only regard the attributes as queries. The
assumption behind their method is that such ex-
panded knowledge provides informative hints on
helping identify the correct value span of the target
attribute. However, these retrieved values consti-
tute a vast set which may include those values that
are not closely related to the current product, thus
providing little hints and even introducing unex-
pected noise. For example, the value of attribute
“material” for a “shirt” has nothing to do with that
for a “desk”. This is particularly severe in the pre-
training scenario because the pretraining data is
typically in large-scale and there will be a huge
number of helpless values from a variety of prod-
ucts for the same attribute. Ideally, a desirable
solution should be able to effectively identify the

usefulness of knowledge and employ informative
knowledge for query expansion. Therefore, on
the basis of query expansion-based AVE, we pro-
pose a Knowledge-Selective Framework (KSelF).
When performing query expansion, the proposed
method first categorizes the retrieved values into
the more-related and less-related, based on their
similarity to the current product. Then we con-
struct the expanded queries by properly exploiting
the two types of attributes during training and in-
ference. KSelF can be closely combined with the
constructed pretraining corpus, allowing for more
efficient utilization of training data, which further
improves the generalization ability of the model.

To benchmark the KSelF, we conduct experi-
ments on the AE-pub dataset (Xu et al., 2019).
However, we notice that AE-pub (Xu et al., 2019)
contains significant noise. To encourage future
research on this task, we further propose a new
benchmark EC-AVE of high quality collected from
a well-structured E-commerce website. The re-
sults demonstrate that our proposed KSelF achieves
new state-of-the-art performance on both datasets
without pretraining. When pretrained on the large-
scale corpus and then finetuned on the downstream
datasets, KSelF can further attain better perfor-
mance, particularly on the attributes with limited
training resources. We summarize our contribu-
tions as follows:

• We propose a novel pretraining method for
QA-based AVE model that improves model
performance on rare and unseen attributes.

• We propose a knowledge-selective query ex-
pansion framework that is capable of more
efficiently exploiting the training data.

• We conduct extensive experiments on the two
AVE datasets, demonstrating that our method
achieves state-of-the-art performance.

2 Related Work

2.1 Attribute Value Extraction

The goal of Attribute Value Extractive (AVE) is
to extract the values of attributes from the product
profile. Early works adopt rule-based techniques
including domain-specific dictionary or vocabu-
lary to identify the important phrases and attributes
(Gopalakrishnan et al., 2012; Vandic et al., 2012).
With the wide application of deep learning, recent
works mainly adopt two paradigms for the AVE



task: (1) sequence tagging and (2) question an-
swering. For the sequence tagging paradigm, the
main idea to is train a model to predict the attribute
types of tokens in the product profile sequentially
(Putthividhya and Hu, 2011; Shinzato and Sekine,
2013; More, 2016). To achieve this goal, differ-
ent sequence-tagging-based approaches have been
proposed. Zheng et al. (2018) build an end-to-
end BiLSTM-CRF model with separate tag sets for
different attributes, while Xu et al. (2019) adopt
BERT-CRF and propose to adopt a global set of
tags for all the attributes, which enables the model
to fit larger attribute sets. Kumar and Saladi (2022)
further use reinforcement learning to enhance the
performance of sequence-tagging models.

However, the sequence-tagging paradigm can
only be used for a fixed attribute set, and thus suf-
fers from the lack of scalability and generalizability.
To extend the model to large-scale attribute sets,
Wang et al. (2020) utilize the question-answering
paradigm where the product profile and the at-
tribute are respectively regarded as context and
question. The model AVEQA is proposed which
concatenates the profile and the attribute into a sin-
gle query string, and then predicts the value span
from the profile. To encourage the models to fully
utilize the advantage of the QA paradigm, Shinzato
et al. (2022) expand the query string with values of
the same attribute from the training set, since these
values can serve as the knowledge to learn better
query representations. Despite of the promising
performance achieved by the QA-based models,
they are shown to perform poorly on the attributes
that are not seen in the training set, demonstrating
sub-optimal generalization on the new attributes.
We hence build our method upon the QA paradigm
and propose a knowledge-selective query expan-
sion framework to encourage the model to more
efficiently exploit the training data.

2.2 Pretrained Language Models

Pretrained language models have recently em-
braced great success in a variety of NLP tasks (De-
vlin et al., 2019; Radford et al., 2019; Dai et al.,
2019; Yang et al., 2019; Liu et al., 2019; Chen et al.,
2020; He et al., 2021). They are pretrained with
large-scale corpus and then adapted to different
downstream tasks or datasets from various domains,
showing good generalization ability. However, the
existing pretrained models lack the ability to pre-
dict a value span from the context conditioned on

a query, hence they cannot be directly applied to
the AVE task, In this work, we build the pretrain-
ing corpus collected from the Web and pretrain the
model with the constructed corpus, which, to the
best of our knowledge, is the first work that applies
the idea of pretraining to AVE.

3 Background

3.1 Task Definition
Given a product profile x = {x1, x2, · · · , xn} and
an attribute a = {a1, a2, · · · , am} where n and
m are the number of tokens in the profile and the
attribute respectively, the goal of AVE is to predict
the value of the current attribute, which is a single
text span in x with beginning position as Pb and
ending position as Pe (1 ≤ Pb ≤ Pe ≤ n). If x
does not contain a value span for the current at-
tribute, which we call as a negative instance in this
paper, a special value None should be predicted.

3.2 Query Expansion for QA-Based AVE
Consider the product profile x and the attribute a.
A vanilla query is constructed as:

q = [CLS;x; SEP;a] (1)

q will be fed into a pretrained BERT (Devlin et al.,
2019), and the contextualized vector representation
of [CLS] and x from the last layer will be attained
respectively as hCLS ∈ Rd and Hx ∈ Rn×d, where
d is the hidden size. Then the two vector represen-
tations will be concatenated as H = [hCLS;Hx],
and further be used to predict the starting position
and the ending position as:

Pb = argmax
i

(Softmax(WbH
i))

Pe = argmax
i≥Pb

(Softmax(We[H
i;HPb ]))

where H i is the contextual embedding of the ith

token in H . Wb and We are parameters that map
the embedding to output logits. For the negative
instances where there is no value presented in the
product profile, the ground truth of Pb and Pe is set
to be 0, which is the position of the [CLS] token.

To provide better representation of the attribute,
Shinzato et al. (2022) propose several techniques
to expand Eq. 1. Admittedly, values of an attribute
can be used for illustrating the attribute. Shinzato
et al. (2022) propose to utilize the values of a
that appear in the training data as the run-time
knowledge as va = [va,1; SEP; va,2; SEP; · · · ]



Profile

• HIGH-QUALITY MATERIAL: This dino pullover is made of high-quality 
polyester fiber, which will make you feel soft, comfortable and breathable.

• VERSATILE: The tops is very soft and comfortable for you to wear, and can be 
matched with any clothing, such as jeans, leggings, casual pants and so on.

• NICE GIFT: Fashionable and casual style, it is a good choice whether you wear 
it by yourself or give it as a gift to your family and friends.

Specifications

Material: Polyester
Size: S/M/L
Style: Casual Style

Extracted Tuples

(… is made of high-quality polyester fiber, which … , material , polyester)

(… fashionable and casual style, it is a good … , style , casual style)

string
match

Figure 2: Process of harvesting (profile, attribute, value) triples from product profile and their specifications.

where va,i is a seen value of attribute a that ap-
pears in the training data. Hence, Eq. 1 can be
expanded with the run-time knowledge as qe =
[CLS;x; SEP;a; SEP;va]. Another technique
they adopt is domain token mixing (Britz et al.,
2017) by using two special tokens SEEN and
UNSEEN to denote if run-time knowledge is pro-
vided in the query. Hence, for an example with
profile x and attribute a, two queries can be built
for model training:

qs = [CLS;x; SEP; SEEN;a; SEP;va]

qu = [CLS;x; SEP;UNSEEN;a]

During the inference stage, SEEN and UNSEEN
tokens are adopted for seen attributes and unseen
attributes, respectively.

4 Method

4.1 Pretraining Data Construction
Here, we introduce how to build the pretraining
corpus, of which the overall construction process
is shown in Figure 2. In general, we collect the pre-
training corpus from various E-commerce websites.
The construction process contains two-stages: (1)
product profile collection and (2) triples extraction.

Product Profile Collection When presenting a
product, an E-commerce website often includes
both the product descriptions and the correspond-
ing product specifications. The product descrip-
tions are some sentences that describe the details or
features of a product, while the specifications con-
sist of some product attributes and the correspond-
ing values, as shown in the examples in Figure 4 of
Appendix D. We visit multiple E-commerce web-
sites and for each product, we crawl its descriptions
and specifications, if any. As such, we obtain 22M
products with their corresponding descriptions and
specifications from various product categories in-
cluding clothing, books, among others.

#Triple Length #Attributes #Pos. #Neg.
4M 47.75 5270 2.75M 1.25M

Table 1: Statistics of pretraining corpus. Pos. and
Neg. denote positive instances and negative instances
respectively. Length denotes the average length of the
profiles in the triples.

Triple Extraction This step aims to retrieve (pro-
file, attribute, value) triples from the product de-
scriptions and specifications collected in the last
step. We denote D = {di|i ∈ [1, 2, · · · , |D|]} as
the descriptions of a product that contain |D| sen-
tences, and S = {aj : vj |j ∈ [1, 2, · · · , |S|]}
as the specifications that contain |S| attribute-
value pairs. We conduct string match between
the descriptions and the specifications. If a value
vj appears in a description sentence di, a triple
(di, aj , vj) will be retrieved where di, aj , vj are the
profile, attribute, and value, respectively, and will
be used for pretraining our AVE model.

The triple set collected through the foremen-
tioned two steps contains a total of 5,270 attributes,
while the attributes exhibit an apparent long-tail
distribution which is common in many datasets
(Zhang et al., 2021). In order to mitigate the nega-
tive effects brought by the extreme long-tail distri-
bution, we keep the maximum instance number of
one attribute to 10K and perform down-sampling
accordingly. Meanwhile, the triples collected with
the two steps are all positive instances, while an
AVE dataset may also include negative instances
as discussed in Section 3.1. Hence, we randomly
combine some product descriptions and attributes
from the product profiles, and use the special value
None to form a negative instance. In this way, we
finally obtain a pretraining corpus of 4M triples
with 5270 attributes. Table 1 presents a detailed
statistics of the collected pretrain corpus.



Current product – [Shoes]

Profile: Nike Men‘s Running Shoes
Attribute: Brand

Value: ___ (Nike)

Training Data

!!, #!, $! ,
!", #", $" ,

⋯ ,
(!#, ##, $#)

[Shoes]

Adidas
Nike

[Electronic]

Samsung

[Fishing]

Zebco

Values of “Brand”

Query
Training data

Retrieve
Values

More-related
knowledge

Less-related
knowledge

Product

Information
Expanded Queries for Training

[CLS] Nike Men‘s Running shoes [SEP] [SEEN] Brand [SEP] Adidas [SEP] Nike
[CLS] Nike Men‘s Running shoes [SEP] [SEEN] Brand [SEP] Samsung [SEP] Zebco
[CLS] Nike Men‘s Running shoes [SEP] [SEEN] Brand [SEP] Adidas [SEP] Samsung [SEP] Nike [SEP] Zebco
[CLS] Nike Men‘s Running shoes [SEP] [UNSEEN] Brand

Build
Query

Expanded Queries for Inference

(1) For SEEN attribute:
[CLS] Nike Men‘s Running shoes [SEP] [SEEN] Brand [SEP] Adidas [SEP] Nike [SEP] Samsung [SEP] Zebco

(2) For UNSEEN attribute:
[CLS] Nike Men‘s Running shoes [SEP] [UNSEEN] Brand

Figure 3: Overall illustration of our proposed knowledge-selective query expansion framework. Given the current
product information, the goal is to predict the value of “Brand”. As a first step, the values of “Brand” are retrieved
from the training data as run-time knowledge, which is further separated into two subsets, more-related knowledge
and less-related knowledge. Then the two subsets, together with the product information, will form different queries
which are used during the training stage and the inference stage.

4.2 Knowledge-Selective Framework
Despite of the performance achieved by Shinzato
et al. (2022) briefed in Section 3.2, there are short-
comings in their proposed method.

• First, the proposed run-time knowledge con-
tains all the seen values of an attribute, while
some of the values may be less related to the
current profile x, and hence provide limited
information in explaining the current attribute
a. As shown in the example in Figure 3, given
the current product profile “Nike Men’s Run-
ning Shoes”, we can retrieve various values
of attribute “Brand” from the training data,
including values of the Shoes category like
“Adidas” and “Nike”, and values from other
categories including Electronic and Fishing.
However, only the values from the Shoes cate-
gory are highly related to the current profile
and can help to explain the current attribute,
while the values of Electronic and Fishing
may contribute little or even become noise in
the run-time knowledge.

• Second, pretrained models limit the length of
the input query. The values in the run-time
knowledge are ranked in descending order of
frequency, which may result in the truncation
of the more-related values if the query is long.

The above problems will become even more severe
when the method is combined with the pretrain-
ing corpus since one attribute may contain large
number of values from different product categories.

To overcome the aforementioned weaknesses,
we propose a Knowledge-Selective Framework
(KSelF) based on query expansion. KSelF first
measures the similarity score between profiles,

which is used to categorize the knowledge (i.e. at-
tribute values) into more-related and less-related
ones. KSelF then constructs the expanded queries
by properly exploiting these two types of attributes
during training and inference. Figure 3 shows the
overview of the proposed framework.

Knowledge Categorization Given a product pro-
file x and an attribute a, we first retrieve all the
triples from training data of which the attribute is
a as T = {(xi,a,vi)|i ∈ [1, 2, · · · , |T|]}. For
a triple (xi,a,vi) ∈ T, we calculate the simi-
larity between two profiles x and xi, where the
calculation method is differently designed for the
pretraining stage and fine-tuning stage.

• For the fine-tuning stage, we conduct entity
retrieval (De Cao et al., 2021) on both x and
xi. The similarity is defined as the number of
common entities of the two profiles.

• For the pretraining stage, the similarity is de-
fined as the bag-of-word similarity of the two
profiles for the consideration of both precision
and computation efficiency.

More details of similarity measurements can be
found in Appendix A. After obtaining the simi-
larities between x and each profile in T, we can
separate T into two sub-sets Tm and Tl according
to a predefined threshold on the profile similarity
socres. The values in Tm are from the triples where
the profiles are more similar to x, which we call
more-related knowledge, while the values in Tl are
less-related knowledge.

Query Expansion with Selected Knowledge
We expand queries with the run-time knowledge



according to the knowledge categorization. Specif-
ically, we have two types of expansions:

qms = [CLS;x; SEP; SEEN;a; SEP;vm
a ]

qls = [CLS;x; SEP; SEEN;a; SEP;vl
a]

where vm
a and vl

a are the values from Tm and Tl,
respectively. Following Shinzato et al. (2022), the
values in vm

a or vl
a are sorted in descending order

according to their frequency.
Our proposed KSelF can efficiently reduce the

size of the run-time knowledge exposed during
the instance training, and can be applied with or
without the pretraining corpus. During the training
stage, KSelF inherits the advantage of Shinzato
et al. (2022) by constructing all the four queries
qs, qu, qms and qls, which can exploit the run-time
knowledge more efficiently to explain the meaning
of the attribute, while reduce the dependence on
the values in the run-time knowledge. During the
inference stage, for a seen attribute, the run-time
knowledge is a combination of the more-related
knowledge and the less-related knowledge, and the
query is built as:

qs,test = [CLS;x; SEP; SEEN;a; SEP;vm
a ;vl

a];

while for an unseen attribute, the query is con-
structed as:

qu,test = [CLS;x; SEP;UNSEEN;a].

4.3 Pretraining with KSelF

In the pretraining stage, we first initialize KSelF
with the a public pretrained model, e.g., BERT (De-
vlin et al., 2019), and then continue pretrain for the
QA-based AVE task using the generated pretrain-
ing corpus introduced in Section 4.1. During the
finetuning stage, the model is further tuned with
any available downtream datasets.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets
A widely adopted benchmark for the task of AVE
is AE-pub (Xu et al., 2019). However, this dataset
contains many noisy annotations and some dull at-
tributes (e.g. “feature 1”, “type”). These problems
bring extra challenges for fairly evaluating an AVE
system. To mitigate this problem, we propose a new
dataset EC-AVE collected from a well-structured

AE-pub EC-AVE

split Train Dev Test Train Dev Test

Total # 76823 10975 21950 105625 15817 31876
Pos. # 59954 8518 17154 72719 10772 21897
Neg. # 16869 2457 4796 32906 5045 9979
Attr. # 1800 635 872 347 394 422

Unseen. # - 154 246 - 58 75

Table 2: Statistics of the two datasets adopted in this
work. “Pos.”, “Neg.”, “Attr.”, and “Unseen.” denote pos-
itive instance, negative instance, attribute, and unseen
attribute, respectively.

E-commerce website. During the collection pro-
cess, we guarantee that the EC-AVE dataset has no
overlaps with the pretraining corpus to avoid data
leakage. Table 2 shows statistics of two datasets.

5.1.2 Implementation Details
Following Shinzato et al. (2022), we build our
model upon a pretrained BERT in the uncased base
version for fair comparisons. We first pretrain the
model with the pretraining corpus for 5 epochs,
with the maximum profile length as 64 and the
maximum query length as 192. During the finetun-
ing stage, we continuely train from the pretrained
model for 20 epochs on downstream datasets with
the maximum profile length as 32 and maximum
query length as 192. We follow the settings in Shin-
zato et al. (2022) for the rest hyper-parameters.

5.1.3 Evaluation Metrics
We adopt precision, recall and F1 score as met-
rics. We follow Exact Match criteria (Rajpurkar
et al., 2016) to compute the scores, where the full
sequence of extracted value needs to be correct.

5.1.4 Baseline Methods
GPT-3.5 (Brown et al., 2020): We design a prompt
to have GPT-3.5 to predict the values in a generative
scheme. More details can be found in Appendix B.
Dictionary: We follow Shinzato et al. (2022) to
perform a simple dictionary matching by returning
the most frequent seen value included in the given
title for a given attribute.
SUOpenTag (Xu et al., 2019): This is the method
that achieves best performance under the sequence-
tagging paradigm.
BERT-QA (Shinzato et al., 2022): This is the
method that achieves the state-of-the-art perfor-
mance on the AVE task1.

1The code of BERT-QA is not publicly available, hence
we report the performance of our reproduction.



AE-pub EC-AVE

Macro Micro Macro Micro
P R F1 P R F1 P R F1 P R F1

GPT-3.5 18.89 13.14 14.37 78.85 27.68 40.97 50.28 26.47 31.51 81.4 36.3 50.21
Dictionary 30.24 29.50 28.16 82.19 70.86 76.10 48.09 62.30 50.20 73.02 58.50 64.96
SUOpenTag 39.91 35.53 36.76 95.54 83.04 88.85 76.08 63.82 67.91 96.60 82.38 88.93

BERT-QA 46.24 42.47 43.23 93.66 85.54 89.42 76.41 69.14 71.05 94.89 83.99 89.11
BERT-QA + pretrain 47.02 42.81 43.69 93.69 85.85 89.60 78.84 70.33 72.99 95.67 85.82 90.48

KSelF 47.61 44.44 45.02 93.64 86.13 89.73 76.91 69.15 71.42 95.75 84.91 90.00
KSelF + pretrain 48.30 45.49 45.93∗ 94.06 86.28 90.00∗ 80.90 71.20 74.30∗ 96.32 86.15 90.95∗

Table 3: Performance of different methods on AE-pub dataset and EC-AVE dataset. * means the gains are statistically
significant with p < 0.05 compared with KSelF.

BERT-QA+pretrain: We first pretrain the BERT-
QA model with our constructed pretraining corpus,
and finetune on downstream datasets. The pre-
training scheme and finetuning scheme follow the
settings in Shinzato et al. (2022).

5.2 Experimental Results

5.2.1 Overall Performance
The results are presented in Table 3, and we re-
port both macro and micro performance. There are
mainly four observations we can conclude from
the table. (1) Surprisingly, GPT-3.5 can achieve
Macro/Micro F1 of 14.37/40.97 and 31.51/50.21
on AE-pub and EC-AVE respectively. It is capable
of predicting the values in an unsupervised gen-
erative way to some extent, which demonstrates
the potentials of large pretrained language models
in solving the AVE task. (2) The QA-based meth-
ods significantly outperform the sequence-tagging-
based SUOpenTag, showing the advantages of QA
paradigm. (3) When the pretraining corpus is not
exploited, our proposed KSelF outperforms BERT-
QA and achieves new state-of-the-art performance
on both two datasets. Such results demonstrate that
the knowledge selection method can encourage the
model to utilize the training data more efficiently,
and can enhance the performance of the QA-based
models. (4) The pretraining method can further
boost the performance of KSelF. As shown in Ta-
ble 3, when KSelF is firstly pretrained and then
finetuned on downstream datasets, both Macro F1
and Micro F1 are improved while the improvement
on Macro F1 is much more significant because of
the long-tail distribution of the attributes. Such re-
sults consolidate the conclusion that the proposed
pretraining method brings benefits to the AVE.

To more comprehensively evaluate the effective-
ness of our constructed pretraining corpus and our
proposed KSelF, we also explore to pretrain BERT-

QA on the corpus. According to the performance
reported in the Table 3, the pretraining boosts
the performance of BERT-QA on both datasets.
However, the improvement of BERT-QA is more
marginal than that of KSelF, which further sup-
ports our motivation that the proposed knowledge-
selective query expansion framework is capable of
more efficiently exploiting the training data.

5.2.2 Results on Rare Attributes

We summarize the performance of BERT-QA and
KSelF on attributes with different frequencies in
Table 4. As reported in the table, on both AE-pub
and EC-AVE, KSelF outperforms BERT-QA on fre-
quent attributes (frequency ≥ 10), while the perfor-
mance is slightly worse than BERT-QA on unseen
attributes. The reason is that KSelF can more ef-
ficiently utilize the values in the training data as
run-time knowledge, while unseen attributes do not
appear in the training data and thus the proposed
KSelF has little effect on them since no run-time
knowledge can be retrieved for unseen attributes.

The goal of pretraining is to enhance the model’s
generalizability and improve its performance on
rare attributes. The results in Table 4 demonstrate
that the performance of the two QA-based meth-
ods is significantly enhanced on unseen attributes.
For the AE-pub dataset, Macro F1 and Micro F1
are lower for both methods on attributes with a
frequency between 1 and 10 when pretraining is
incorporated. The main reason is that AE-pub con-
tains many grammatically wrong attributes and dull
attributes, as shown in the examples in Appendix C.
The pretraining corpus is not able to improve the
generalizability on these attributes since the cor-
pus are collected from E-commerce websites and
the instances are well organized both literally and
semantically. Meanwhile, we can see from the ta-
ble that the improvement introduced by pretraining



AE-pub EC-AVE

Frequency High Low Unseen High Low Unseen
Metrics Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

BERT-QA 64.16 90.44 40.22 64.62 23.60 38.64 86.45 90.14 15.00 56.00 28.39 53.62
BERT-QA + pretrain 62.99 90.61 39.15 63.07 28.51 44.95 87.33 91.41 18.33 61.54 34.24 57.60

KSelF 64.89 90.73 44.48 67.28 22.57 38.10 87.25 91.05 13.33 52.17 27.75 53.25
KSelF + pretrain 65.15 90.99 42.52 65.95 28.95 45.81 87.89 91.82 21.67 64.29 37.90 60.47

Table 4: Performance on attributes with different frequencies. Ma-F1 and Mi-F1 denote Macro F1 and Micro-F1
respectively. High frequency means the number of occurrence of the attribute in the training data is greater than or
equal to 10, while low frequency means the number is less than 10 but greater than 0. Unseen means the attribute
never appear in the training data.

AE-pub EC-AVE
Ma-F1 Mi-F1 Ma-F1 Mi-F1

w/o KS 35.92 66.17 48.62 64.33
w/ KS 38.36 69.01 49.47 66.44

Table 5: Zero-shot results on the two datasets. KS
and Ma-F1/Mi-F1 denote knowledge selection and
Macro/Micro F1 respectively.

on unseen attributes of KSelF is more substantial
than that of BERT-QA, which further proves that
when large-scale dataset is available, KSelF can uti-
lize the pretraining data more efficiently and hence
strengthen the model performance.

5.2.3 Zero-shot Results
We further evaluate the performance of our pre-
trained model under an extreme zero-shot setting.
Specifically, we initialize the model with the pre-
trained checkpoints either with or without knowl-
edge selection, and evaluate the model on both
AE-pub and EC-AVE without any further finetun-
ing. The results are reported in Table 5. As we can
see, even if the model is not finetuned on the corre-
sponding downstream datasets, it still exhibits the
ability of generalization to some extent. Moreover,
when pretraining step is performed without our pro-
posed knowledge selection scheme, the zero-shot
performance is much worse than pretraining with
the proposed scheme. Such results also demon-
strate the advantages of our proposed knowledge-
selective query expansion framework.

5.3 Case Study
The primary benefit of pretraining is the improved
generalizability on attributes with limited training
resources. To have a better understanding about
the proposed method, we present some examples
in Table 6. The first example demonstrates that the
pretraining can enhance the model’s ability on pre-
dicting the rare values, e.g. “378037-623”. Further
investigations show that with pretraining, KSelF

Profile: Original official Nike Air Jordan 11 retro win like
96 men’s basketball shoes sneakers sports AJ11 classic
outdoor 378037-623
Attribute: model number Value: 378037-623

KSelF: 378037 KSelF+Pre.: 378037-623

Profile: 1pcs crankbait fishing wobbler 14g 10cm artificial
crank bait bass trout fishing lure pike trolling pesca minnow
fishing tackle
Attribute: lure length Value: 10cm

KSelF: 14g KSelF+Pre.: 10cm

Profile: running street creative funny belly pockets outdoor
sports zipper mobile phone pockets simulation butt
anti-harassment waist bag
Attribute: opening method Value: zipper

KSelF: belly pockets KSelF+Pre.: zipper

Table 6: Example predictions of KSelF and KSelF with
pretraining (Pre.) from AE-pub.

can improve its accuracy from 53.1% to 53.7% on
the attribute “model number”, of which the val-
ues are mostly rare tokens. Another advantage of
pretraining is the enhancement of performance on
unseen attributes. Here, “lure length” and “opening
method” in the second and third examples are all
unseen attributes as they do not appear in the train-
ing data. As we shown in the table, KSelF fails to
predict their values while the pretraining method
enables the model to correctly extractvalues from
the product profiles.

6 Conclusions

Our study aims to improve the performance of At-
tribute Value Extraction for rare attributes, which
is of significant importance for real-life applica-
tions. We propose a pretraining method to im-
prove the generalization ability of the QA-based
AVE model. In addition, we propose a knowledge-
selective query expansion framework that can effec-
tively exploit the training data. Our experimental
results on both the AE-pub and EC-AVE datasets
show that the proposed pretraining-based KSelF



achieves new SOTA performance.

Limitations

Though our proposed KSelF has achieved the state-
of-the-art performance and the performance is fur-
ther improved with the pretraining corpus, the
method can only tackle attributes/values appear-
ing in the textual part of the product profile. It is
often the case that some attributes and values ap-
pear in the non-text part, e.g. product image, while
our proposed method does not cover such pairs.
Although multimodal AVE also plays an important
role in E-commerce, we do not discuss it this work
and leave it for future work.

Ethics Statement

Our proposed methods do not introduce any so-
cial/ethical bias to the model, while there are po-
tentially concerns in the AE-pub dataset. We notice
that some products are unisex according to the pro-
files while the annotation for the attribute “gender”
is either “man” or “woman”. Such problems in an-
notations may introduce gender bias in the training
data, which will further influence the behaviors of
the model. To avoid such problems, cleaner and
better-formatted datasets are desired, and hence we
build the EC-AVE dataset, which can provide fairer
and more comprehensive evaluations to the AVE
task.
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A Details of Similarity Calculation

We adopt different measurements of similarity for
pretraining stage and fine-tuning stage for two rea-
sons:

1. Entity retrieval for the E-Commerce domain is
very time-consuming and model computation
cost is very high. Considering the size of
the pretraining corpus, we only apply entity
retrieval during the fine-tuning stage.

2. We conduct comprehensive analyses over the
bag-of-word (BoW) similarity. It turns out
that we can achieve acceptable performance
on the similarity calculation between different
product profiles by applying BoW similarity.
Considering the large size of the pretraining
corpus, BoW similarity is a fairly good al-
ternative to reduce the time and computation
costs during the pretraining stage.

Specifically, for the entity similarity, we regard two
profiles xi and xj and as similar profile if (1) xi

and xj contain at least one common entity for the
entity measurement, or (2) more than 1/3 of the to-
kens in xi appear in xj for the BoW measurement.

B GPT-3.5 Implementation Details

We adopt GPT-3.5, specifically the model “gpt-3.5-
turbo”, to generate the values based on the given
a product profile x and an attribute a. We design
different prompts and choose the one that achieves
the best performance on the Dev set. The prompt
we adopt is:

Q: Given the product profile x, does the profile
contain the value of the attribute a? If so, return
the answer in the format of (attribute, value); if
not, return "No".
A: ____

We have GPT-3.5 to generate the content in the
blank, and the generated content will be parsed and
the retrieved results are regarded as the correspond-
ing predicted value.

C Examples of Datasets

In this section, we will present some examples of
the two datasets we use in this work. The current
public benchmarkAE-pub contains many instances
of which the attributes are either grammatically
wrong, like Example 2 and 3, or dull, like Example
4:

Example 1
Profile: adidas men shoes originals forum lo
refined low-top men’s skateboarding shoes
cotton fabric adidas sports sneakers for men
Attribute: brand name
Value: adidas

Example 2:
Profile: handing overlength 8m-12m 13m
14m 15m high carbon super hard fishing rod
telescopic rod sea fishing rod taiwan fishing rod
Attribute: maerial (material)
Value: carbon

Example 3:
Profile: outdoor mens hiking ski jacket
camouflage thick warm assault jacket wind-
proof camping jacket men plus size
Attribute: patern (pattern)
Value: camouflage

Example 4:
Profile: catch u 5-22g m/mh spinning
casting rod carbon pole 1.8m 2 tips travel sea
spinning fishing rod
Attribute: feature 2
Value: casting rod

In contrast, our proposed EC-AVE dataset is
much better formatted and of larger size, and we
present two examples below:
Example 1
Profile: huffy frozen 2 olaf preschool scooter
, handlebar bin , three wheels & wide deck
bullet point - brake style : foot bullet point -
suspension type : rigid
Attribute: brake style
Value: foot

Example 2:
Profile: uxpro psd010bf heating only with fan
digital thermostat bullet point - digital accuracy
bullet point - battery powered only bullet point -
large led illuminated digital display
Attribute: model number
Value: psd010bf

D Examples of E-commerce

In Figure 4, we present three website examples that
contain product descriptions and the corresponding
specifications.



Product Descriptions

Product Specifications

(a) An example from Amazon

Product Descriptions

Product Specifications

(b) An example from Walmart

Product Descriptions

Product Specifications

(c) An example from Target

Figure 4: Examples from various E-commerce websites that contain product descriptions and the corresponding
specifications.


