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ABSTRACT

Most existing safe reinforcement learning (RL) benchmarks focus on robotics
and control tasks, offering limited relevance to high-stakes domains that involve
structured constraints, mixed-integer decisions, and industrial complexity. This gap
hinders the advancement and deployment of safe RL in critical areas such as energy
systems, manufacturing, and supply chains. To address this limitation, we present
SafeOR-Gym, a benchmark suite of nine operations research (OR) environments
tailored for safe RL under complex constraints. Each environment captures a
realistic planning, scheduling, or control problems characterized by cost-based
constraint violations, planning horizons, and hybrid discrete-continuous action
spaces. The suite integrates seamlessly with the Constrained Markov Decision
Process (CMDP) interface provided by OmniSafe. We evaluate several state-of-
the-art safe RL algorithms across these environments, revealing a wide range of
performance: while some tasks are tractable, others expose fundamental limitations
in current approaches. SafeOR-Gym provides a challenging and practical testbed
that aims to catalyze future research in safe RL for real-world decision-making
problems.

1 INTRODUCTION

Real-world reinforcement learning (RL) applications often demand that agents respect strict safety
requirements at all times. Safe reinforcement learning (Garcia & Fernandez, 2015} |Gu et al., 2022)
addresses this need by maximizing long-term rewards while satisfying safety constraints. In contrast
to standard RL, which might treat safety violations as mere negative rewards, safe RL explicitly
enforces constraints throughout training and deployment. This capability is vital in safety-critical
domains such as autonomous driving, robotics, and power systems, where an agent’s actions can lead
to irreversible damage or hazards if constraints such as speed limits, stability margins, or resource
capacities are violated. The formalism of constrained Markov decision processes (CMDPs) (Altman)
2021)) provides a natural framework for such problems, requiring the learned policy to remain within a
set of safe outcomes at all times. In practice, safe RL algorithms incorporate cost signals or penalties
for unsafe behavior and aim to ensure constraint satisfaction during both learning and execution. This
paradigm has gained traction as a cornerstone for deploying RL in high-stakes environments.

Progress in safe RL has been accelerated by the development of specialized libraries and benchmark
suites. A prominent example is OmniSafe (Ji et al.,|2024), an open-source infrastructure designed
specifically for safe RL research. OmniSafe offers a unified, modular framework with built-in support
for constraint handling and a comprehensive collection of constrained RL algorithms. Notably, it
extends the standard OpenAl Gym interface by supporting constrained Markov decision processes
(CMDPs), enabling explicit modeling of safety constraints through cost signals. These capabilities
make OmniSafe and similar frameworks highly valuable for evaluating safe RL. methods in a stan-
dardized and extensible setting. However, despite advances in algorithms and software infrastructure,
the diversity and realism of benchmark environments tailored for safe RL remain limited.

Most existing RL benchmarks were not designed with safety constraints in mind. Classic control
tasks and popular continuous control domains such as CartPole, Pendulum, and MuJoCo locomotion
simulations (Todorov et al., 2012 |Brockman et al., 2016) offer simple dynamics with no explicit



safety constraints. Crucially, these environments rarely involve the mixed discrete—continuous
decision-making or constraints that characterize real operational problems. Even specialized safe RL
environment suites focus primarily on robotic control and do not capture the structured complexity of
industrial decision problems. This gap in benchmarks makes it challenging to rigorously evaluate
how well safe RL algorithms would perform on realistic, safety-critical tasks that involve complex
constraints and decision structures.

Operations research (OR) problems (Rardin & Rardin, |1998) present an appealing opportunity to fill
this gap. OR encompasses a broad class of decision-making tasks with rich combinatorial structure,
explicit constraints, and often long planning horizons. These problems inherently require balancing
long-term objectives with immediate feasibility and safety. For instance, planning the operation of an
energy storage system demands making multi-year investments and dispatch decisions that remain
robust to short-term operational constraints and rare events(Ramanujam & Li} 2025} L1 et al., 2022).
In general, OR formulations like scheduling, resource allocation, and supply chain management
force agents to respect resource capacities, timing deadlines, and logical constraints at every step,
exactly the kind of requirements safe RL is meant to handle. Moreover, OR problems frequently
arise in safety-critical domains such as energy systems, transportation, supply chains, and chemical
process operations. In these settings, violating a constraint such as overloading a network, missing
a maintenance schedule, running a process outside safe limits, etc., can lead to severe real-world
consequences. The structured nature and practical relevance of OR tasks make them well-suited as
benchmark environments to stress-test safe RL algorithms on realistic problems that go beyond the
toy examples commonly used.

We introduce SafeOR-Gym, a benchmark suite for safe reinforcement learning that features a diverse
set of operations research environments spanning industrial planning and real-time control. The suite
includes nine environments with varying structures, time horizons, and decision complexities.

In summary, this work makes the following contributions:

1. We develop a suite of nine OR-based benchmark environments tailored for safe RL, address-
ing the need for more realistic and structured evaluation tasks.

2. We release Gym-compatible implementations of these environments with native integra-
tion into the OmniSafe framework, enabling out-of-the-box use of constraint-handling
algorithms.

3. We evaluate the environments using several on-policy algorithms in OminiSafe and discuss
the current limitations of existing safe RL algorithms in solving highly constrained OR
problems.

2 RELATED WORK

Standard RL benchmarks, such as the OpenAl Gym toolkit (Brockman et al., 2016)) with classic
control and MuJoCo-based continuous control tasks, have been foundational for evaluating reinforce-
ment learning algorithms. However, they typically lack built-in safety constraints or the structured
decision-making found in operations research (OR) problems. Most environments are designed as
simplified tasks with minimal realism or constraints.

To address the need for safety-aware evaluation, specialized benchmark libraries have emerged.
OpenAl’s Safety Gym (Ray et al.,|2019) introduced a set of environments that simulate continuous
control tasks with hazards, cost signals, and explicit safety constraints. More recently, the Safety
Gymnasium (Ji et al., |2023) suite has extended this idea to include both single- and multi-agent
safety-critical environments. The OmniSafe (J1 et al.| 2024)) framework further consolidates these
contributions by integrating a variety of safe RL environments and algorithms into a unified and
modular platform. It supports constraint-handling algorithms, constrained policy optimization
methods, and provides compatibility with Gym-style APIs.

In parallel, a growing body of work has focused on bringing OR and classical control problems into
Gym-compatible environments. OR-Gym (Hubbs et al., [2020) provides a library of OR formulations,
such as knapsack, bin packing, and supply chain management, as RL tasks, enabling comparison
between RL policies and traditional optimization techniques. PC-Gym (Bloor et al.| 2024)) and
(Park et al., 2025} introduce environments that model realistic chemical process dynamics, control



disturbances, and enforce operational safety. SustainGym (Yeh et al.l 2023) contributes several
sustainability-focused environments such as electric vehicle charging and data center scheduling,
which feature complex operational constraints, distribution shifts, and hybrid discrete-continuous
action spaces.

Despite these efforts, existing benchmarks for operations research problems exhibit important limita-
tions. Existing works are only compatible with standard Gymnasium environments, rather than the
CMDP interface required by frameworks like OmniSafe. They typically handle constraint violations
by penalizing the reward function, rather than modeling them as explicit cost signals. Furthermore,
many environments simplify or abstract away industrial complexity, limiting their utility for evalu-
ating algorithms in realistic, safety-critical scenarios. OR-Gym, for example, primarily consists of
toy problems such as knapsack and bin packing, which lack the structural and constraint richness
of real-world applications. SustainGym centers on sustainability-oriented problems, but does not
incorporate the nonlinear nonconvex constraints in many OR applications, such as those found in
the blending problem. These gaps motivate the development of a benchmark suite featuring rich,
constrained, and practically relevant OR problems that can serve as a rigorous testbed for safe RL
algorithms. These comparisons are summarized in Table[I] A more detailed comparison of the
environments is show in Appendix

Table 1: Comparison of Gym environments with operations research applications

(a) Environment class, constraints, and SafeRL compatibility

Work Env. Class Constraint Handling SafeRL
OR-Gym Gymnasium truncation, reward penalties X
SustainGym  Gymnasium truncation, reward penalties X

SafeOR-Gym Gymnasium + CMDP truncation, reward penalties, explicit costs v

(b) problem size, constraint complexity, and application domains

Work Obs / Action (mean, max) Nonconvex Domain

OR-Gym (242, 2501) / (57, 200) X classical OR

SustainGym (79, 150) / (33, 72) X sustainable energy

SafeOR-Gym (86, 4280) / (32, 272) v planning, power, chemical, scheduling

3 ENVIRONMENTS

This section provides an overview of two illustrative examples of the environments in SafeOR-Gym.
The detailed descriptions of all the environments including the mathematical details, explanations,
and illustrative figures can be found in Appendix [A]

3.1 MULTIPERIOD BLENDING PROBLEM (BLENDINGENV)

Problem Description The multiperiod blending problem arises in industries such as refining and
chemical processing, where raw materials with different properties must be blended over time
to produce saleable products meeting strict quality constraints (Chen & Maravelias, [2020). In
BlendingEnv, the agent decides how much of each source stream to purchase, how to route flows
through a network of blenders, and how much product to sell at each time step. Safety constraints
include property bounds on final products and storage limits on inventories. The environment reflects
operational complexities such as nonlinear blending effects, capacity limits, and quality enforcement.

State Space The state includes current inventory levels of sources, blenders, and demand nodes;
material properties of blender; future availability of sources and product demand over a lookahead
window, and the current time step.



Action Space The action specifies: source stream purchase quantities; product sale quantities; flow
rates from source inventories to blenders, between blenders, and from blenders to product inventories.

Transition Dynamics Updates inventories using material balances; clips values to inventory bounds;
updates material properties in blenders based on flow composition; rolls forward source availability
and demand forecasts. The dynamics of mixing material properties involve nonlinear nonconvex
constraints.

Cost The environment penalizes: violating inventory bounds; violating the no simultaneous “in-out”
flow rule for blenders; and producing out-of-spec blends.

Reward The reward includes: revenue from product sales; minus cost of purchasing source streams;
minus variable and fixed costs for flow operations.

3.2 INTEGRATED SCHEDULING AND MAINTENANCE (SCHEDMAINTENV)

Problem Description The Integrated Scheduling and Maintenance environment models the daily
operation of compressors in an Air Separation Unit (ASU), where gaseous product demand must
be met without inventory buffers (Xenos et al.,|2016). The agent must coordinate production and
maintenance actions for each compressor while optionally procuring external supply to satisfy
demand. At each time step, the agent decides the fraction of each compressor’s capacity to operate,
whether to initiate maintenance, and how much external product to purchase. Maintenance policies
are constrained by compressor-specific conditions, such as mean time to failure (MTTF), maintenance
duration, and cooldown periods. Note that the machine failures can also be uncertain. Safety arises
from the need to avoid compressor breakdowns due to delayed maintenance, premature maintenance
interventions, or ramping during repair periods.

State Space The state includes: forecasted product demand and electricity prices over a fixed horizon;
compressor-level indicators for time since last maintenance, time remaining to complete maintenance,
and eligibility to enter maintenance.

Action Space The action at each time step consists of: a binary vector for maintenance decisions
(schedule or not); a continuous vector for compressor production rates; and a continuous external
purchase action representing the fraction of a predefined maximum external capacity.

Transition Dynamics Compressor state evolves based on maintenance initiation, progress, and
cooldown periods. Upate electricity prices and product demand follow forecasts. Maintenance
eligibility resets once a cooldown period has elapsed. The environment enforces repair continuity
and halts production during repair.

Cost The environment penalizes: early maintenance actions; failure to perform maintenance before
MTTF; ramping while under maintenance; and disruption of ongoing maintenance. Additionally,
unmet or overmet demand incurs a penalty proportional to the deviation from forecast.

Reward The agent receives a negative reward equal to the total cost incurred: production cost (based
on power price and compressor load), external purchase cost.

4 IMPLEMENTATION, COMPATIBILITY, AND EXTENSIBILITY

All environments are implemented on top of the Gymnasium API (Brockman et al., 2016), with an
additional Constrained Markov Decision Process (CMDP) wrapper (Ji et al.,2024). This wrapper
consists of fewer than 50 lines of code but provides compatibility with Safe RL algorithms that
explicitly handle constraints. While OmniSafe is used as the primary reference implementation due to
its breadth and active development, SafeOR-Gym can be adapted to other Safe RL libraries with only
minimal modifications, since most Safe RL algorithms are CMDP-based and rely on Gymnasium as
the base environment class.

Each environment in SafeOR-Gym is initialized with a small illustrative instance, but the underlying
data structures are independent of any specific problem setup. Instance-specific parameters such as
network topologies, renewable generation profiles, or equipment characteristics are stored in external
JSON files. This separation of code and data makes it straightforward to create new problem instances
or modify existing ones by editing the JSON inputs, without altering the environment code. As a



result, stochastic elements such as randomized demand realizations or sampled renewable generation
profiles can be introduced naturally by providing alternative data inputs.

Although the present work focuses on deterministic environments, SafeOR-Gym is designed to
accommodate stochasticity and non-stationarity. This is particularly important for real-world OR
problems, which often involve renewable generation variability, equipment failures, or evolving
market conditions. As a demonstration, we extended the maintenance scheduling environment
to incorporate random machine failures, producing SchedMaintEnv-v1, a stochastic variant
of the original deterministic environment (SchedMaintEnv-v0). Importantly, this extension
was achieved by inheriting the original environment rather than reimplementing it from scratch,
underscoring the ease of extending SafeOR-Gym to uncertainty-aware benchmarks. In this work, we
focus primarily on deterministic environments because most existing safe RL algorithms already face
substantial challenges in solving even deterministic OR problems with complex constraints, which
will be shown in section[5] Demonstrating these limitations in a controlled deterministic setting helps
establish a clear baseline before introducing additional sources of uncertainty.

5 EXPERIMENTS

We evaluate a suite of safe reinforcement learning (RL) algorithms across multiple environments sub-
ject to safety constraints. Each experiment involves one or more deterministic case studies, designed to
test algorithmic robustness and generalization. In addition, we also include SchedMaintEnv-v1l,
a stochastic variant of the original deterministic environment (SchedMaintEnv-v0). We adopt the
CMDP formulation used in the OmniSafe package (Ji et al.l 2024). We adapt the safe RL algorithms
in OmniSafe, which supports parallelized training and evaluation via its Experimental Grid
feature. The safe RL algorithms tested include Constrained Policy Optimization (CPO) (Achiam
et al., |2017), the Lagrangian version of trust regions policy optimization (TRPOLag) (Ray et al.|
2019), Penalized Proximal Policy Optimization (P30) (Zhang et al.| [2022)), Constraint Rectified
Policy Optimization (OnCRPO) (Xu et al.| 2021)), the Lagrangian version of Deep Deterministic
Policy Gradient (DDPGLag) (Lillicrap et al., 2019)), First Order Constrained Optimization in Policy
Space (FOCOPS) (Zhang et al.| [2020), PID version of SACLag (SACPID) (Stooke et al., [2020),
and the Lagrangian version of Soft Actor-Critic (SAC) algorithm (SACLag) (Haarnoja et al., [2018)).
All the experiments were conducted on AWS servers using g4dn.xlarge instances equipped with
NVIDIA T4 GPUs, providing sufficient computational resources for training and evaluation of all the
algorithms. The training times for the various algorithms across different experiments are provided in
the supplementary material.

5.1 RESULTS AND DISCUSSION

We benchmark each algorithm’s performance across environments during both training and evaluation.
Figure [I0] presents the average reward and cost per training epoch, with shaded regions indicating
one standard deviation around the mean. Table E] summarizes evaluation results, averaged over 10
episodes, for a representative subset of experiments and environments. The standard deviation of
the evaluation rewards and costs is generally small in the deterministic environments, indicating
consistent performance in the deterministic environments.

Optimal reward of the environments: One of the advantages of benchmarking safe RL algorithms
using environments based on deterministic opeartions research problems is that state-of-the-art
optimization solvers such as Gurobi (Gurobi Optimization, LLC| 2025) can be used to solve the
nonconvex problems to global optimality while strictly enforcing all the constraints. The optimal
reward from the optimization solvers can be seen as the “ground truth” of the envrionments, shown in
the first column of Table 2] The optimal reward of SchedMaintEnv—-v1 is obtained by assuming
a “perfect information” lookahead using the Gurobi solver, which provide a theoretical upper bound
of the optimal expected reward.

Evaluation Criteria: To evalute the safe RL algorithms, for each environment, we identify the
best- and worst-performing algorithms using a systematic selection criterion. In the table, values
highlighted in green correspond to the evaluation reward and cost of the best-performing algorithms,
and values in red indicate those of the worst-performing algorithms. This subset of results is chosen
to illustrate key behavioral differences among algorithms and to highlight environment-specific



challenges that affect learning and generalization. Results for additional case studies are included in
Appendix [B] To identify the best and worst performing algorithms in each environment, we adopt a
two-step filtering strategy based on evaluation cost and reward. This approach is motivated by the
fact that reward and cost can differ significantly in scale, making it inappropriate to combine them
into a single metric without normalization or weighting. To select the best algorithm, we first filter
those with evaluation costs either within five times the lowest cost or within 25 units of the lowest
cost. If the lowest cost is zero, we instead include all algorithms with costs below a fixed threshold of
25. Among this filtered set, the algorithm with the highest evaluation reward is selected as the best.
To determine the worst algorithm, if an algorithm’s evaluation cost is at least ten times greater than
the second-highest and 100 units greater than the second-highest, it is directly selected as the worst.
Otherwise, we consider all algorithms whose costs fall within the three highest unique values and
select the one with the lowest reward.

A gap is considered significant if the absolute difference between training and evaluation results
exceeds 100, and the relative difference (calculated as the absolute gap divided by the magnitude of
the training result) exceeds 30%. When the magnitude of the training result is less than 0.1, only the
absolute difference is considered. The training result refers to the average episode reward from the
final epoch. Additionally, we say an algorithm solves an environment to reasonable-optimality if it
consistently achieves reasonably high rewards (less than 35% gap with the optimal reward) while
maintaining low costs, allowing for a small number of constraint violations. All the calculations are
done based on the average evaluation reward and cost.

5.1.1 ENVIRONMENTS WITH REASONABLE PERFORMANCE

The following environments illustrate scenarios in which at least one algorithm successfully trains a
policy that yields a reasonably high rewards with low associated cost:

e InvMgmtEnv: This case study involves a multi-echelon inventory network comprising
one market, one retailer, two distributors, three producers, and two raw-material suppliers,
connected via eleven reorder routes and governed by one-period lead times. Each episode
spans 30 days, and training is performed with 10 episodes per epoch. P30 exhibits a
significant gap between training and evaluation costs and SACPID exhibits a significant gap
between training and evaluation rewards.

* SchedMaintEnv-v0: We consider an air separation unit with three compressors and optional
external product purchases to compensate for maintenance downtime. The planning horizon
is 30 days, and each episode is 31 days long. Training is conducted using 25 episodes per
epoch. A significant gap between training and evaluation costs is observed for P30 and
FOCOPS.

* SchedMaintEnv-vl: We consider a similar setup to the SchedMaintEnv-v(. We include
uncertainty in the environment by incorporating random machine failures. Training is
conducted using 25 episodes per epoch. We observe a significant gap between training and
evaluation costs for P30 and FOCOPS. We also find that the performance of most algorithms
in this stochastic environment closely matches their behavior in the deterministic counterpart,
likely due to the underlying physics of the environment. However, a subset of algorithms
shows elevated evaluation standard deviations, reflecting the inherent stochasticity of the
environment.

* UCEnv: This example considers a single-bus unit commitment power system with five
generators operating over a 24-hour horizon, with hourly updates to demand forecasts and
generator states. Training is done with 100 episodes per epoch. A significant gap between
training and evaluation costs is observed for SACLag.

* GridStorageEnv: This case study includes a three-bus network with transmission limits
of SOMW, 120MW (de-energized under wildfire risk), and 90MW; one generator per bus
rated at I00MW, 90MW, and 80MW; and batteries sized 1.0, 1.2, and 0.8 p.u. respectively.
The horizon spans 24 hours, with perfect charging, discharging, and carry-over efficiency.
Experiments were run with 10 episodes per epoch. We observe a significant gap between
training and evaluation costs for SACPID and SACLag.
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Figure 1: Training curves showing the average reward and cost per episode over training epochs
across all case studies.

5.1.2 ENVIRONMENTS NOT TRAINED TO REASONABLE OPTIMALITY

The following environments presented significant challenges during training, preventing the agents
from learning reasonably optimal policies.

* BlendingEnv: The case study includes 2 input streams, 2 output streams, 2 quality properties,
4 blenders, and 6 time periods per episode with the prop strategy used to handle infeasible
actions. No flow is allowed between 2 of the blenders. Experiments were run with 100
episodes per epoch. A significant gap is observed between training and evaluation for costs
in P30 and FOCOPS, and for rewards in P30, DDPGLag and SACLag. As shown in
Figure[Tf} some algorithms exhibit considerable oscillations in both reward and cost over
training epochs. This instability may be attributed to the highly non-convex nature of the
underlying optimization problem and the resulting non-smooth feasible action space, which
makes consistent policy improvement more difficult.

e RTNEnv: This case study includes 3 raw materials, 2 intermediates, 2 products, 3 tasks,
3 pieces of equipment, and 2 utilities. The planning horizon spans 30 time periods with
fixed product demands. Training used 128 episodes per epoch. As shown in Figure[Tg} both
reward and cost exhibit slow learning across all algorithms. This sluggish progress may be



Table 2: Evaluation results for 10 episodes

Optimal CPO DDPGLag
Environment Reward Reward Cost Reward Cost
InvMgmtEnv 1126597 7303.2 0 -4858.26 0

SchedMaintEnv-v0 -1221.85 -1283.96 29.59 -1700.98 11675.99
SchedMaintEnv-vl -1226.96 -1240.39 7.88  -1700.98 11675.99

UCEnv -197258 -236553 5.56 -337153 108
GridStorageEnv -54173 -95198.2 0.02 -118704 120440
BlendingEnv 1800 0 190 0 32763.44
RTNEnv 363.78 -31.37 71 -47.76 84
STNEnv 363.78 -36.76 71 -10.38 84
OnCRPO P30
Environment Reward Cost Reward Cost
InvMgmtEnv 7598.66 0 1499.21 0
SchedMaintEnv-v0 -1277.08 25.56 -1187.52 751.82
SchedMaintEnv-vl  -1244.074+1.49 103.21 -1178.95+£1.29 938.5+10.61
UCEnv -236989 8.55 -556101 0
GridStorageEnv -90589.6 0.02 -111255 0.02
BlendingEnv 0.03 200 0.04 270.08
RTNEnv -33.04 71 -31.7 71
STNEnv -37.01 71 -30.83 73
TRPOLag FOCOPS
Environment Reward Cost  Reward Cost
InvMgmtEnv 719826 O -6434.03 0
SchedMaintEnv-v0 -1272.61 19.85 -1142.69 616.14
SchedMaintEnv-vl -1217.24 21.35 -1188.194+4.27 962.3+37.61
UCEnv -218334  9.19 -220312 0
GridStorageEnv -90265.5 0.02 -126974 0.03
BlendingEnv 0.03 190 0.01 180.22
RTNEnv -12.16 71 -19.56 73
STNEnv -11.34 71 -28.79 73
SACPID SACLag
Environment Reward  Cost Reward Cost
InvMgmtEnv 5555.74 0 -14386.99 0
SchedMaintEnv-v0 -274.46 11461.29 -274.46 11461.29
SchedMaintEnv-vl -524.05 8600.124+31.62 -274.46 11521.294+51.64
UCEnv -221922  41.68 -298228 153.06
GridStorageEnv -100407 2122.38 -68690.5 0.03
BlendingEnv 225.31 33101.34 523.75 33596.83
RTNEnv -14.7 83 -14.7 80
STNEnv -14.7 81 -14.7 81




attributed to the combination of non-convexities introduced by integer-based constraints such
as task-equipment assignments and equipment availability and the indirect, time-coupled
linear constraints that the action space must satisfy. The presence of temporal dependencies,
material balances, and combinatorial task scheduling further compounds the difficulty of
policy learning in these environments.

* STNEnv: This case study builds on the same network as RTNEnv but includes extended task-
to-equipment mappings and product-specific processing times. To enable comparison with
RTNEnv, mappings were kept unique. The planning horizon and demand profiles remain
unchanged. Experiments were run with 128 episodes per epoch. TRPOLag performs the
best, while OnCRPO performs the worst. Similar to RTNEnv, both reward and cost exhibit
slow learning across all the algorithms in STNEnv, likely due to a similar combination of
non-convexities introduced by integer-based constraints and the indirect linear constraints
imposed on the action space.

5.1.3 DISCUSSION

Across most environments, TRPOLag perform best, while DDPGLag consistently underperforms.
Interestingly, the P30, FOCOPS, and SACLag algorithms showed a significant gap between training
and evaluation performance in several settings. While some environments allowed agents to learn
policies that achieved near-optimal rewards with minimal constraint violations, other environments
posed significant challenges. These more difficult environments highlight the limitations of current
methods and underscore the need for more sophisticated approaches to safe reinforcement learning.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We presented SafeOR-Gym, a suite of nine operations research environments tailored to benchmark
safe RL algorithms in complex, realistic settings. These environments introduce structured constraints,
mixed-integer decisions, and discrete-continuous actions, going beyond the scope of conventional safe
RL benchmarks. While existing algorithms can solve some tasks, they perform poorly on problems
involving mixed-integer variables or nonlinear, nonconvex constraints. These limitations point to
broader challenges in applying safe RL to industrial domains.

To bridge this gap, future research can pursue several promising directions. One avenue is to
broaden the benchmark environments to cover uncertainty and multiagent interactions, which are
central to many operations research applications. Another direction is to extend the benchmark
beyond traditional optimization-based solutions. For example, we have shown how the classical
base-stock reorder policy can serve as a heuristic baseline for the inventory management environment
in Appendix Developing heuristics that can observe the nontrivial constraints for operations
research problems is an ongoing research direction. In this spirit, SafeOR-Gym could be enriched
with algorithms drawn from unified framework of sequential decision-making proposed by Powell
(2022).

Finally, SafeOR-Gym highlights fundamental limitations of current safe RL approaches that require
sustained research. Safe RL methods often fail when problem structures involve nonconvex or
mixed-integer constraints, raising questions about their robustness and reliability in safety-critical
domains. Algorithms like CPO require sensitive hyperparameter tuning to balance performance and
feasibility, suggesting that automated approaches to constraint-aware parameter selection could reduce
manual overhead and improve reproducibility. Moreover, current methods often rely on penalty-based
formulations or post-hoc projection, which cannot guarantee feasibility. Recent work on action-
constrained RL (Hung et al.,|2025) points toward approaches that can enforce hard safety constraints
directly during action selection. Another promising direction lies in encoding safety constraints within
neural network architectures themselves, for instance through differentiable constraint satisfaction
layers (Chen et al.,2024) that enforce feasibility by design.
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A PROBLEM ENVIRONMENT DESCRIPTION

A.1 RESOURCE TASK NETWORK ENVIRONMENT (RTNENV)
A.1.1 OVERVIEW

The Resource Task Network (RTN) (Pantelides, |1994) is a mathematical modeling framework used
for plant scheduling problems. It optimally schedules a set of interdependent production fasks
executed on equipment, which transform reactants into products via intermediates. The full set of
reactants, intermediates, products, and equipment are collectively referred to as resources. Products
are produced to fulfill time-varying demand while minimizing operational costs. The RTNEnv
simulates this system in discrete time, where the agent chooses task batch sizes at each timestep and
observes the resulting state transitions, constraint violations, and rewards. The schematic of RTN has
been illustrated in[2]

A.1.2 PROBLEM SETUP

The RTN is defined over a finite time horizon 7'. Reactants, intermediates, products, equipment,
tasks, and utilities are defined as follows:

¢ Reactants: Consumable raw materials that can be ordered (at a cost).
* Intermediates: Internally produced and consumed materials. Cannot be ordered or sold.

* Products: Final deliverables with external demand and associated revenue and penalty
structures.

* Equipments: Units required for task execution. Each is consumed when a task starts and
returned after the task completes.

 Tasks: Tasks produce a subset of resources from another distinct subset of resources using a
subset of equipments after a specified time period.

« Utilities: Time-varying operational costs incurred per unit utility consumed by tasks.

* Demand: Defined only for products, specifying d,, ; at each timestep ?.

Sets

* R: All resources (reactants, intermediates, products, equipment)

o Rreat: Reactants

» Ri": Intermediates

o RPd: Products

+ Re4UP: Equipments

o Rpend C Rinty RProd |y ReduiP; Resources which are produced/replenished.
e 7: Tasks

» KC; C R°UP: Equipment used by task i

e U: Utilities

e U; C U: Utilities consumed by task ¢

Parameters

* T': Time horizon
* 7;: Processing time of task ¢

* Tmax = mMax7; : Maximum processing time.
7

. Vimin, V;max: Batch size bounds for task ¢

X0, Xmin X max: Initial and bounded inventories for resource 7
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Parameter

Figure 2: Schematic of RTN and STN: Solid lines in both RTN and STN represent the flow of material
through the network. Other inventory levels are included in the state vector. The dashed lines in STN
from equipments to tasks represent the choices available where the highlighted lines show the choice
taken. The actions are scaled as described in the transition dynamics subsection.

* v; i Stoichiometric coefficient of resource r in task ¢
* cost,: Unit cost of ordering reactant r

* price,,: Unit price of product p

* dp - Demand for product p at time ¢

* 1w, Cost of utility v at time ¢

* Agnit: Sanitization penalty coefficient

¢ I[-]: Indicator function

* @ : vector concatenation
A.1.3 STATE SPACE
At timestep t, the agent observes:

+ Inventory vector X; € RI®I : Inventory of all resources.

* Pending outputs p; € R7max* IR™™| . Intermediates and products which will be delivered in
upcoming timesteps.

* Future demand fd; € RT* IR™| . Demand of all products from timestep ¢ to 7', post-padded
with Os to maintain consistent shapes.

A.1.4 ACTION SPACE
The action a; € [—1, 1)1 is scaled to batch sizes via:
a;féﬂed _ ai,t;_ 1 (Ve V;min) + Vimin
For numerical stability, any |a; ;| < 1073 is set to 0.
A.1.5 TRANSITION DYNAMICS

At each step:
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1. Sanitize Action: Prevent resource violations and enforce equipment availability by calcu-
lating the maximum inventory available for a resource, maximum batch size that can be
processed based on inventory levels, and clipping between the batch size bounds accordingly.

max (0, X, — X"

Vi

bi,r,t -

bi,t = minb”yt
r

ai® = 0 if b, < V™

(3

il _ {o, if Je € K; with X, = 0

t cli
11 a; p

, otherwise

2. Inventory Update: Consumes the inputs to a task immediately.
X1 = Xt + Zmin(l/i,ra 0) - a?gal
i

3. Pending Outputs: Add outputs of a task to the pending output buffer and update inventory
of resources that are being delivered in the next timestep.

Xr,t+1 - Xrt +ptr0
Pt = Di— lrleax@ZmaX{Vzmo} ahnal (1)

%

4. Inventory Enforcement: Ensures inventory bounds are not violated. A part of the cost is
calculated based on this. Refer to

X1 = min(X™, max(XM, Xy p41))

A.1.6 CoOST FUNCTION

The total cost at each timestep ¢ is given by:
Ct _ Czlfb + C}l{lb + C;:q + )\Sﬂnilctsanit

* Bound Violation: Penalizes the resource inventory going out of bounds. (Reactants going
below lower bounds are assumed to imply ordering of reactants).

Ch= Y IX, <X

TeRimuRprod
Cub Z H > Xmax]
reR
* Equipment Feasibility Cost: Penalizes execution of tasks when any required equipment is
unavailable.
eq _ Z Z ﬁnal H[Xe,t < 1]
i e€lk;

¢ Sanitization Cost: Penalizes deviations between the raw and final actions due to constraint
handling.

Ciamt E ‘ aﬁnal scaled

A.1.7 REWARD FUNCTION
The total reward at each timestep ¢ is:

_ Tqrev util unmet order
I, = T — vt — qummet _ 710
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* Revenue: Earned by fulfilling product demand, constrained by available inventory.
I = Z min(X, ; — X;,nin,dw) - price,,
peRprod
* Unmet Demand Penalty: Penalizes unmet product demand at 1.5x product price.
e =15 > max(dy, — (Xp — Xp™),0) - price,,
peRpmd

* Reactant Ordering Cost: Charged when reactant inventory drops below zero (interpreted
as external procurement)

ngder = Z max(—X,t,0) - cost,

1 E R react

Utility Cost: Incurred from executing tasks using utilities.

util __ final .
1L —§ § Qi - Ujt

i jEU;
A.1.8 EPISODE TERMINATION

The episode ends when ¢ = T'. Truncation does not occur even under constraint violations.

A.2 STATE TASK NETWORK (STNENV)

A.2.1 OVERVIEW

The State Task Network (STN) (Pantelides,|1994)) is a mathematical modeling framework for short-
term production scheduling. It focuses on scheduling a set of production fasks on processing units,
where each task transforms material states over time. Unlike the RTN, which models resources more
abstractly, the STN emphasizes the evolution of material states through task execution and transfer
between units. The objective is to satisfy time-varying demand for final products while minimizing
operational costs. The STNEnv simulates this system in discrete time, where an agent selects task
batch sizes on specific units at each timestep and observes the resulting state transitions, constraint
violations, and rewards. The schematic of STN has been illustrated in[2]

A.2.2 PROBLEM SETUP

The STN is defined over a finite time horizon T'. Material states, processing units, tasks, and utilities
are defined as follows:

* Reactants: Consumable raw materials that can be externally procured at a cost. They serve
as initial inputs to tasks.

* Intermediates: Internally produced and consumed materials. They are used to link tasks
within the network. Intermediates cannot be purchased or sold externally.

* Products: Final deliverables for which external demand is specified. Products may generate
revenue if delivered on time and incur penalties if demand is unmet.

* Units: Processing equipment on which tasks are scheduled. Each unit can process at most
one task at a time and becomes available again after the task’s processing duration.

» Tasks: Operations that transform a subset of input states into a subset of output states on
a designated unit. Each task has a fixed processing time, specific unit assignment, defined
stoichiometry, and utility consumption profile.

« Utilities: Operational resources (e.g., electricity, steam) with time-varying costs. Each
task consumes a fixed amount of utilities per unit batch size, incurring operational costs
accordingly.

* Demand: Defined only for product states, specifying d; ; for state s at time ¢. Demand
fulfillment yields revenue, while shortages incur penalties.
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Sets

* S: All material states (reactants, intermediates, products, equipments)

o Sreact  S: Reactants (raw materials)

» St — S: Intermediates (internal materials)

SProd St Products (deliverables)

» &: Equipment units

o Spend it Sprod ) £: States that are produced (i.e., replenished by tasks)
e 7: Tasks

e IC; C &: Set of units on which task 7 can be scheduled

» U: Utilities

U; C U: Utilities consumed by task ¢

Parameters

e T Time horizon
* 7;: Processing time of task ¢

* Tmax = Max 7;: Maximum processing time
K3

. Vi’f;in, V2. Batch size bounds for task ¢ by using equipment e.
o XU, Xmin X'max: Initial and bounded inventories for state s

* v; ¢: Stoichiometric coefficient of state s in task ¢ (negative if consumed, positive if pro-
duced)

* cost,: Unit cost of ordering reactant s € S™

* price,,: Unit price of product p € Sprod

* dy,+: Demand for product p at time ¢

* U, Cost of utility v at time ¢

* Agnit: Sanitization penalty coefficient (for equipment reuse)
* I[-]: Indicator function

e @ : vector concatenation

A.2.3 STATE SPACE
At timestep ¢, the agent observes:

S|

* Inventory vector X; € RI°!: Inventory of all material states.

* Pending outputs p; € R7max* IS . Intermediates and products scheduled to be produced
in future timesteps due to ongoing tasks.

* Future demand fd; € RTX 5™ . Demand for all product states from timestep ¢ to 7T,

post-padded with Os to maintain consistent shapes.

A.2.4 ACTION SPACE

The action a; € [—1, 1] 1>l represents a normalized matrix over task-equipment pairs and is scaled
to batch sizes via:

scaled _ Qi,e,t +1 max min min
Qjet = 2 ! (Vi,e - ‘/i,e ) + Vi,e

<1073 is set to 0.

For numerical stability, any |a; ¢ ;
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A.2.5 TRANSITION DYNAMICS

At each step:

1. Sanitize Action: Prevent state violations and enforce unit availability by calculating the
maximum available inventory for each input state, the maximum feasible batch size given
current inventories, and clipping between the allowed batch size bounds accordingly.

max(0, X, — X

bi,s,t =
|Vi,s
biy = min b,y
’ s€ESw; <0 ’
clip __ . min
i ey = 0 if bi,t < Vi,e
final __ 0’1‘ ife ¢ ICZ or Xe,t =0
et T clip .
e ;. Otherwise

2. Inventory Update: Immediately consumes the input states required by the activated tasks.
Ks+1 = Xst + Z Zmin(%‘,a 0) - af",
e i
3. Pending Outputs: Add the output states of tasks to the pending output buffer and update
inventories of materials delivered at the current timestep.

Xst+1 = Xt + D50
Pt+1,s = Pts,liTmax O Z Z max (v;s,0) - a?,nea,]t @

4. Inventory Enforcement: Enforces inventory bounds to prevent overflow or underflow.
Violations of these bounds contribute to the constraint cost.

X 1+1 = min( X', maX(X;ni“7 Xsi41))

A.2.6 CoST FUNCTION
The total cost at each timestep ¢ is given by:

Ct C]b Clltlb 4 ng =+ )\sanitozamt

* Bound Violation: Penalizes material inventory going out of bounds. (Reactants going below
their lower bounds are interpreted as triggering procurement costs.)

Ch= ) IXe< XM

s Esinl Uspmd

Ci° = T[X,y > X
seS
* Equipment Feasibility Cost: Penalizes task executions on unavailable units.

Z Z ?nea]t H[Xe,t < ”

i eek;

» Sanitization Cost: Penalizes deviation between scaled and final actions due to sanitization
(inventory or equipment infeasibility).

sanit __ 2 final s(,dled
O |a’t et z ,e,t
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A.2.7 REWARD FUNCTION

The total reward at each timestep ¢ is:

Ht _ H;ev _ H;\til _ H;mmet _ H(t)rder
* Revenue: Earned by fulfilling product demand, constrained by available inventory.

rev __ . min .
I = E min(X,, — X", dp ) - price,,
pespmd

* Unmet Demand Penalty: Penalizes unmet product demand at 1.5x the product price.

H;mmet =15. Z maX(dp,t _ (Xp,t _ le)nin),o) . pricep
pESprod

* Reactant Ordering Cost: Incurred when reactant inventory falls below zero (interpreted as
external procurement).

Tqgrder — E max(—Xg 4, 0) - costs
SESYEG]C[

« Utility Cost: Accrued from task executions that consume utilities, priced per unit usage and

per unit batch size.
util __ final .
;" = § § et Ujt

i,e JEU;
A.2.8 EPISODE TERMINATION

The episode ends when ¢ = T'. Truncation does not occur even under constraint violations.

A.3 UNIT COMMITMENT (UCENV)
A.3.1 OVERVIEW

The unit commitment problem is one of the most widely used optimization problems in power
systems, aiming to minimize the operational costs of power generation over a specified planning
horizon by determining optimal decisions for switching power units on or off and managing power
dispatch (Knueven et al.,|2020). These decisions must comply with safety requirements and fulfill
various operational goals. In practice, the unit commitment problem is solved in advance on a
rolling basis, as future electricity demand is uncertain and must be forecasted continually once new
information becomes available. The growth of renewable energy sources and fluctuations in the
electricity markets further increase the uncertainties in demand forecasts. Due to the size of power
systems in the real world, solving the resulting MILP or MIQCP problem on time can be prohibitively
difficult. Therefore, the development of efficient solution methods that can respond to frequent
forecast updates is of significant interest. In this study, we formulate the unit commitment problem as
a CMDP and implement it as the environment UCEnv. To support safe sequential decision making in
power scheduling and dispatch, practical constraints, such as minimum up and down time, ramping
constraints, and reserve requirements, are incorporated into the environment. Given the complexity
of unit commitment problem, the environment is provided in two versions. The UCEnv-vO0 version
assumes a single-bus system, while UCEnv—v1 requires an agent to take into account distributed
power demands and power flows within a transmission network.

A.3.2 PROBLEM SETUP
Sets

* G: the set of generators.
» A: the set of buses.
e IC: the set of transmission lines.
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Ps¢, us¢

single-bus system 4-bus system

Figure 3: Schematic of UC in a single-bus system and 4-bus system at the time point ¢: Red lines
indicate power inflow and outflow. Black lines denote transmission lines. At each time point, forecast
demands, current power output, current voltage angle, current and previous on-off status (state) are
used to infer the power output, voltage angle, on-off status at the next time point (action).

* G, the set of generators that is connected to the n bus.

k(n): the from-bus for the kth transmission line.

* k(m): the to-bus for the kth transmission line.

¢ 07 (n): the set of transmission line for the to-bus n.
5 (

n): the set of transmission line for the from-bus n.

Parameters

* (a4, b;, ¢;): quadratic, linear, and constant cost coefficients of power generation.
o (7 startup cost coefficients.

» C}": shutdown cost coefficients.

* UT;: minimum up time.

e DT;: minimum down time.

* RU;: ramp-up rate.

* RD;: ramp-down rate.

e SU;: start-up rate.

¢ SD;: shut-down rate.

* Ppax s maximum power output.

* Ppin: minimum power output.

* Onaxn: Maximum voltage angle.

* Opin ' Minimum voltage angle.

* Fiaxk: Maximum transmission capacity.

* Fluin k: minimum transmission capacity.

* D, ;; time-varying power demand.

+ C9: ]oad shedding cost coefficient for failure to meet load.

» CT: reserve shortfall cost coefficient for failure to meet the reserve requirement.

* R: system-wide reserve requirement
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A.3.3 STATE SPACE

The state s; includes the following components:

o up = [ug g, uf] € {0, 1}max(UTEDTIFL: 3 sequence of binary indicators about the on-off

status of the generator i € G, where u"'d records the history in the most recent time periods
before ¢, used to track compliance w1th the up/down time. The dimension of this variable is
Y icg(max(UT;, DT;) + 1).

* Pit € [Pmini> Pmaxi]: power output of the generator ¢ € G. The dimension of this variable
is |G|

* Ot € [Ominns Omaxn]: voltage angle of the bus n € N. The dimension of this variable

is |[\]. In the simpler version, UCEnv—-v0, the environment is assumed to be a single-bus
system where the voltage angle is not considered.

* Dy yr1:44+w € R;VO: forecast demand of the bus n € A/ with a window length of W. The
dimension of this variable is |[N| x TW. When the window extends beyond the episode
horizon, it uses the forecast demand from the following steps.

The full observation is flattened into a continuous vector space for reinforcement learning (RL)
training.

A.3.4 ACTION SPACE
At each time step t, the agent takes the following actions a;:

* u; 41 € {0, 1}: on/off status of the generator ¢ € G. The dimension of this variable is |G|.

* Dit+1 € [Puinis Pmaxi]: power output of the generator ¢ € G. The dimension of this
variable is |G|.

* Ont+1 € [Ominn, Omaxn]: voltage angle of the bus n € N, where 61 ;11 = 0 is always
fixed as reference. The dimension of this variable is |JN| — 1.

These decision variables are initially normalized to a continuous action space a; € [—1, 1] and then
mapped to their actual values within their bounds.

A.3.5 TRANSITION DYNAMICS

Given the action ay, the next state sy is computed as follows.

Intermeidate state, turn-on and turn-off status and sequence First, we compute the intermediate
states v; ¢1+1, Wi ++1 as well as the sequences v t +1 and wl P +1 These intermediate states serve as a
practlcal representation of whether a generator has recently been activated or deactivated, facilitating
the subsequent computation of costs, violations, and rewards.

Vi1 = max(0, w1 — Uiyg)

Wi 41 = *min(o,ui t+1 — Ujt)
’U:e?Jr] - [Ut t+1,V [ _1]]
wigyr = [Wierr, wiy [ —1]]

Check and repair on-off status Next, we check the feasibility of the on-off status. The first
inequality evaluates the minimum up-time constraint, ensuring the ith generator remains on for
a specified number of time periods, UT;, before shutdown. The second inequality evaluates the
minimum down-time constraint, which requires the ith generator to have a minimum off duration,
DT;, before restart. These constraints prevent excessive wear-and-tear resulting from frequent cycling.
The violation indicates the power generator that must be kept on and off, respectively. The values of

u;,¢+1 of the must-on generators (must-off generators) are then corrected to 1 (0).
1, if Z U:e;lH > Ui p+1
U1 =40, elif Do widl ) > 1=t

Ui 41, otherwise
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Update sequence of on-off status : After checking and repairing the on-off status, their sequence
is updated:

Wi = [Uf g, udy [ —1]]

Check and repair power output We proceed to check the violations of the ramping constraints. The
first inequality evaluates the ramp-up constraint, and the second inequality evaluates the ramp-down
constraint. These constraints impose limits on the rate at which a generator increases or decreases
its output between consecutive time steps, reflecting the physical capabilities of generators. The
violation indicates the power generation that must be kept within a tighter bound based on the repaired
on-off status.

pit + RU; iy + SU; - v 44 g, if pity1 —pit > RU; - uie + SU; - v) 4
Dity1 = { Pit — BRD; - Ui pp1 — SDi-wi g, elifpiy —pir1 > RD;-uj g +SD; - wiy iy
Dit+15 otherwise

Update power output : The power output is then updated by multiplying it with its on-off status.
Pit+1 = Uri,t+1 ‘Pﬁ,t-s-l
Update voltage angle

0n,t+1 = en,t—i-l

Intermeidate state, load unfulfillment and power reserve We compute the following intermediate
states to ease the computation of rewards.

Jrtr1 = Br(Ok(n),t+1 — Ok(m),t+1)
fli,t-t,-l = max (min(Fmaxk7 fk,t+1)7 Enin k)

Sn,t+1 = INax (Dn,t+1 - Z Dijt+1 — Z f}i;,t+1 + Z flrc,tJrla 0)
i€Gn kedt(n) ked—(n)
741 = max (min(Puaxi - Uir1 — Pije+1, RU; - wig + SU; - v3441),0)

Although the power flow f, ;1 is clipped for subsequent computation, the voltage angles 6,, ;11 are
not repaired accordingly because future states are independent of ,, ;1 and they will not accumulate
further violations.

Demand forecast
Dy t42:44w1 = forecast(Dy, ¢41:44w)

A.3.6 CoST FUNCTION

Minimum up-time & down-time violations : The penalty for correcting invalid on-off status
decisions is the number of minimum up-time and down-time violations multiplied by a penalty factor.
The violations represent that the agent attempted to turn off a power unit that must be kept on or turn
on a power unit that must be kept off at the current time step.

CUTDT _ ZP . H(vafﬂ > Uipy1 V waﬂrl >1—uigq1)
i

Ramp-up & ramp-down violations : The penalty for correcting invalid power output decisions is
the magnitude of ramp-up and ramp-down violations multiplied by a penalty factor. The violations
represent that the agent attempted to increase or decrease a power output too aggressively, which
exceeds the generator’s allowable ramping limits between consecutive time steps.

Cfamp = PZ max (pi,t+1_pi,t_RUi'ui,t_SUi'U£7t+1;pi,t_pi,t+1_RDi'u;‘,t+1_SDi'w§’t+1a 0)
%
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Transmission capacity violations : The penalty for correcting invalid volatage angle decisions
is the magnitude of transmission capacity violations multiplied by a penalty factor. The violations
represent that the agent attempted to allocate an excessive or insufficient amount of power to other
buses, exceeding or falling short of the transmission capacity.

;=P Zmax (frt+1 = Fmaxks Fuink — fr,e41,0)
%

Total Cost
Cy = CY™PT 4 ™ 4 O

A.3.7 REWARD FUNCTION

The agent receives a reward equal to the negative of the production generation cost, startup cost,
shutdown cost, load shedding cost and reserve shortfall cost.

Production generation reward:

0% = = “(a; -}y + bi - pis + i)

%

Startup reward:

Iy = =) (Cf - viy)

i

Shutdown reward:

M = = 3 (- wi)

%

Load shedding reward:
Hfs = —CLS . an,t

where s, ; represents the load unfulfillment at bus n.

Reserve shortfall reward:

nE = —C® . max(R — Zrm,O),

where r; ; represents the power that can be reserved at generator 4.
Total reward:
I, = I1P8 + 110 4 1129 + IR

A.3.8 EPISODE DYNAMICS

The episode commences with the known sequence of the on-off status and power output from the
preceding time step, and terminates after 7" time steps.

A.4 GENERATION AND TRANSMISSION EXPANSION PLANNING(GTEPENV)

A.4.1 OVERVIEW

The generation and transmission expansion problem is a critical planning task in power systems,
aiming to determine when and where to install new generators and transmission lines to ensure
adequate power supply amidst growing and spatially distributed demand. This problem is inherently
combinatorial and must satisfy constraints such as the maximum number of generators in a region
and overall demand satisfaction (L1 et al., 2022).

Because electricity demand varies over time and across regions, expansion decisions must be made
periodically, turning the problem into a sequential decision-making process. Moreover, future
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Figure 4: Schematic of GTEPEnv: This is a representation of a network of 3 regions where we install
solar panels and transmission lines to deal with the demand for power. The solar panels with blue
borders represent those already installed (state), and the one with the red border represents the one
being installed in this time period (action)

demand is typically forecasted and therefore uncertain, necessitating a rolling planning framework
in which decisions are continually updated as new information becomes available. This need
is further heightened by the increasing integration of renewable energy sources and the growing
volatility in energy consumption patterns, both of which introduce greater uncertainty into power
system operations. As such, effective solutions must explicitly account for these uncertainties and
remain flexible enough to adapt to frequent forecast revisions. Keeping these considerations in
mind, reinforcement learning (RL) offers a promising approach for addressing the generation and
transmission expansion problem (Pesantez et al.| 2024). In particular, safe reinforcement learning
techniques enable agents to learn actions that are more likely to be both feasible and near-optimal.
To this end, we model the problem as a CMDP and implement it as the environment GTEPEnv,
which supports decision-making regarding the installation of generators and transmission lines across
different time periods and regions. We assume generators operate at full capacity and the cost for
curtailment is negligible. A schematic of the environment is shown in figure 4]

A.4.2 PROBLEM SETUP

We consider a multi-period generator and transmission expansion planning problem. The sets and
known parameters used in the model are described below.

Sets

T ={1,...,T}: Set of discrete time periods.
* R: Set of regions.
* G: Set of generator types.

* L C R x R: Set of candidate transmission lines, where each line is represented by a single
directed pair (r1,r2) with 7y # 5. For any unordered pair {r1, r2}, only one direction (e.g.,
(r1,72)) is included in L.

Parameters

* Dem, ;: Electricity demand in region r € R attime t € 7.
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* Cap{™: Capacity of a single unit of generator type i € G.

R Ci_nsl,gen .

s Installation cost of generator type .

. CapE': Transmission capacity of line [ € L.

« O}™Y; Installation cost of transmission line .

* M; ,: Maximum number of generators of type ¢ that can be installed in region .
* )\o: Fixed penalty term (analogous to an ¢y-style penalty to encourage sparsity).

* )\o: Quadratic penalty coefficient (analogous to an ¢5-style penalty to discourage overuse or
smooth solutions).

* k: Window length for demand forecast

* ¢: A small threshold used to ignore negligible power flows

A.4.3 STATE SPACE

The state at each time step ¢ € T, denoted s;, includes the following components:

* n; ¢ € Z>o, bounded by [0, M; ,.]: Number of generators of type ¢ € G installed in region
r € R attime ¢ € 7. This component contributes a state dimension of |G| x |R]|.

* nt;, € {0,1}: Binary indicator for whether transmission line [ € L is installed at time ¢.
This contributes a dimension of |L|.

* Demy +41:4+k: Forecasted demand in region r € R from time ¢ 4 1 to ¢t 4+ k, where & is the
forecasting window. This has a dimension of |R| x k. Entries are padded with zeros for
time periods beyond the episode horizon.

e t: Current time index, optionally included to provide temporal context.

All components are concatenated and flattened into a continuous vector for use in reinforcement
learning.

A.4.4 ACTION SPACE

At each time step ¢ € T, the agent selects the following actions:

. n‘;‘d,‘,i ¢ € 10, M; ,]: Number of generators of type ¢ € G to install in region r € R at time ¢.
This defines a decision space of dimension |G| x |R]|.

* P, € [~Cap!, Cap!']: Power flow along transmission line | = (r1,72) € £ at time ¢, where
the direction of flow is from 7 to ro. This defines a space of dimension |L].

The bounds of the action space are given by the physical constraints on installation limits and
transmission capacities.

For reinforcement learning, actions are normalized to [—1, 1] and then scaled back to their original
ranges using:
(anormalized + 1)

Gactual = f ' (ahigh - alow) + Qlow

A.4.5 TRANSITION DYNAMICS

After scaling, we denote the set of actions by

add,action action
e, )

7,1,

We first further process the actions by rounding the number of generators added to the nearest integer
and setting negligible power flows to 0.

add,prebound

add,action)
@7t

= round(n;’.;
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P 0 if u)laition‘ S €
It = acti .
pton otherwise

We then increment ¢ to ¢t + 1.

Checking action for generator bounds: Next, we proceed to check for violations of bounds in the
state. The main focus is on checking for violations related to the number of generators in each region,
as everything else has been accounted for in the scaling process. If the action results in a violation of
the constraint, we adjust the action to ensure the state reaches the maximum possible configuration
within the bounds.

add,prebound
add,preboun >Mi,r

add Mir —nigi—1 01 +n;,%

n; ot T add,prebound

it otherwise

After sanitizing the actions and ensuring the state satisfies its bounds, the state is updated as follows:

Generator Updates:

_ add
Nirt = Nirt—1 T Ny

Transmission Line Installation:

1 ifnt; ;-1 =0and |P ;| >0
’I’Ltl t — . ’
’ nt;—1 otherwise

We then proceed to calculate the cost and reward. Finally, we shift the demand forecast by one step
to Demr,t-i—l:t—i—k'

A.4.6 CoST FUNCTION

The total cost at each time step consists of penalties for constraint violations, including those for the
bounds of the state, and demand satisfaction violations. The components of the cost are defined as
follows:

Generator Bound Violations:  We apply a combination of Ly and Ly penalties for generating an
action before sanitization that violates the maximum number of generators in a region:

add,prebound 2 add,prebound
(bound.gen _ Ao + Az - (nm,’t +Nipt—1 — Mi,r) ifn; . + N1 > M,
7,7 .
0 otherwise

avail

Demand Violations: The available power Pow:.}" in region r at time ¢ is calculated as:

r,t
il gen
POW?«?] = Znimt - Cap; + Z Py — Z Pyt
i r'|(r,r)EL r'|(r',r)EL

Note: The power flow obtained from the agent is only in one direction. The power flow along the
reverse direction can be interpreted simply the negative of the power flow in the original direction.
Specifically, for any transmission line (r1,72) € L, the power flow from region r; to region ry is
denoted by P(;., ,,),;» and the reverse flow from region rz to region 71 is Py 1)t = =Py o).t

We apply a combination of L and Ls penalties for unmet demand:

. 2 . .
(Cdemand _ ) Ao+ Az (Dem,.; — Pow?3")™ if Dem,.; > Pow®}!
d -

0 otherwise
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Total cost: The total cost is the sum of the penalties for all violations, as follows:
Ct = Z C?)(;und,gen + Z Cgemand
1,7 T

The total cost is used to guide the agent toward optimal decision-making.

A.4.7 REWARD FUNCTION

The reward function consists of:

Contribution to reward from installation of generators

gen __ add inst,gen
m = g n C;
7,7

it

Contribution to reward from installation of transmission lines

mil ==Y O Aty =0 A |P| > 0]
el

Total reward

en tl
T = 7r;5q + 7y

A.5 MULTIPERIOD BLENDING PROBLEM(BLENDINGENV)
A.5.1 OVERVIEW

The multiperiod blending problem, a core challenge in chemical engineering, involves optimally
blending multiple input streams to produce outputs with desired quality attributes over a series
of time periods. Input streams, characterized by specific properties, are procured and stored in
inventory vessels. These streams are then transferred to blenders, where they are mixed according to
specified blending rules. The resulting output streams must meet property constraints (e.g., quality
specifications) and are subsequently stored in output inventory vessels before being sold, subject to
upper bounds on product quantities.

The goal is typically to maximize profit while satisfying constraints on inventory levels, property
ranges, and operational rules—such as prohibiting simultaneous inflow and outflow in the same
blender. These requirements lead to a highly nonlinear and constrained formulation, commonly
modeled as a non-convex mixed-integer quadratically constrained program (MIQCP) (Chen &
Maravelias), [2020).

Due to the sequential decision-making structure of the problem and the uncertainty in demands or
property variations over time, reinforcement learning (RL) emerges as a promising approach. In
particular, safe RL techniques can guide agents to learn actions that are not only near-optimal but
also likely to satisfy complex constraints. To that end, we model the problem as a Constrained
Markov Decision Process (CMDP) and implement it as the environment BlendingEnv, which
supports dynamic decisions on stream flows, purchasing, and selling over time. A schematic of the
environment is shown in figure 5]

A.5.2 PROBLEM SETUP

The sets and known parameters used to describe the environment are shown below:

Sets

T ={1,...,T}: Set of discrete time periods.
* S: Set of source streams.

J: Set of blenders.

P: Set of demand streams.
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Figure 5: Schematic of BlendingEnv: This is a representation of a blending system with the blue
arrows representing the flows between different components (action) and the red variables representing
the different inventories and properties of the blender (state)

Q: Set of stream properties (e.g., chemical or physical characteristics).
F%J: Set of tuples representing possible directed flows from source streams to blenders.

F7+3: Set of tuples representing possible directed flows between blenders. Flows are defined
in such a way that only one way is possible.

FIP: Set of tuples representing possible directed flows from blenders to demand streams.

Parameters

Fmax: Upper bound for any flow between nodes.

0s,q: Value of property ¢ € Q for source stream s € S.

[s1 sU]: Lower and upper bounds on inventory of source s € S.

$7Ys

Tso’ti Availability of source stream s € S attime ¢ € 7.

[b;b, b‘j‘-b]: Lower and upper inventory bounds for blender j € J.

1b o”bq]: Lower and upper bounds on property g € Q for demand stream p € P.

[op.4) 7,

[dg’, d;b]: Lower and upper bounds on inventory of demand stream p € P.
627,5: Maximum amount of demand stream p € P that can be fulfilled at time ¢t € 7.
6g: Unit selling price for demand stream p € P.

B2 Unit purchase cost of source stream s € S.

B: Unit cost of intermediate flows (e.g., between nodes).

a: Fixed cost of activating an intermediate flow.

k: Window length for source and demand forecast

strategy: The strategy used in the environment to handle illegal actions caused by constraint
violations. We support three options: prop, disable, and none. In the prop strategy, we
adjust a subset of actions when they violate the relevant constraints, with actions scaled or
clipped depending on the specific constraint. In the disable strategy, a subset of actions is
set directly to zero . The none strategy applies no correction, allowing actions to remain
unchanged regardless of constraint violations.

Ao,B: a fixed cost for violating bound constraint (analogous to ¢, regularization).
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* Ap: prefactor to the sum of ¢, and ¢; violations for inventory bound constraint (analogous
to {o regularization).

* Xo,n: a fixed cost for violating in-out rule constraint (analogous to ¢, regularization).
* \o,q: afixed cost for violating property specifications (analogous to ¢, regularization).

* e A small positive threshold used to disregard negligible violations of constraints.

A.5.3 STATE SPACE

The state s; at time ¢ € 7 includes the following components, with dimensionality expressed using
the sets defined previously:

Ib Lub

* Source inventories: I3, € [sy, s¥’], for all s € S. This has dimension |S|.

* Blender inventories: 1%, € [b!, b4°], for all j € J. This has dimension |.7|.

* Demand inventories: I, € [d, d], for all p € P. This has dimension |P|.
* Blender properties: Cj 4+ € R, forall j € J,q € Q. This has dimension | 7| x |Q|.
. TS,t 41:04 %+ Forecasted source availability for all s € S from time t+1 to t+k where k is the

forecasting window. This component has a dimension of |S| x k. Entries are padded with
zeros for time periods beyond the episode horizon.

. 527t 1 1.4+ Porecasted demand availability, for all p € P from time t+1 to t+k where k is the

forecasting window. This component has a dimension of |P| x k. Entries are padded with
zeros for time periods beyond the episode horizon.

* Time step: ¢t € 7. This is a scalar.
A.5.4 ACTION SPACE
At each time step ¢ € T, the agent selects the following actions:

* Source purchases: 7, € [0,72,], for all s € S. This has dimension |S|.

* Demand sales: 8, ; € [0,67 ], for all p € P. This has dimension |P|.

* Source-to-blender flows: F”, € [0, F™], for all (s,j) € F*J. This has dimension

| Fd].

* Blender-to-blender flows: FJ“J,t € [0, Fmax], for all (4, ') € F7. This has dimension
| F7d].

* Blender-to-demand flows: Ff,’;,t € [0, F™ax], for all (j,p) € F7P. This has dimension
| ].‘Jl,p|.

Each action is initially normalized to the interval [—1, 1] and mapped to its actual value using affine
transformation based on the lower and upper bounds of the corresponding action:

(anormalized + 1)
2

actual __

a . (ahigh _ alow) + alow

Here, a!° and a"¢" are the lower and upper bounds for each action dimension as specified above.

A.5.5 TRANSITION DYNAMICS
After scaling the actions, we increment ¢ to ¢t + 1. Let us denote the set of actions at this point as

prebound prebound
{7’ Oyt

pre ’ st,prebound Fj'j,preinoul Fjp,preinout

’ 8.5t ’ Ja't Jipyt } )

respectively.
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Checking action for source inventory bounds: We next proceed to check if the actions provide a

source inventory that violates the bounds. If there is a violation, we adjust the actions based on the
strategy chosen.

Igew .= ;t - Z Fsz,;;rebound gzebound
(s,5)€F=d
prebound b
) FsS]fIZTEbound (2?( - l+: tFSJ preboind> if Ifey sl — ¢, strategy = prop
FSJ. . = 5,J)EFS:T sy, )
8,35t (s,5)€F 0 if Iy, s < slsb — €, strategy = disable
j}jj’gmbound otherwise

. b sj,prebound 0 b —
mln(s;‘ + Z(Sﬁj)e]:s'j Fs,j,t - :,t—lv Ts,t) if Itfew s > 85 + €, strategy = prop
Tst =40 if I, o > st + ¢, strategy = disable

bound
prevoun otherwise

Source inventory updates We then update the source inventory as follows:

Be=elplliy— Y F b s st
(s,5)€F=d

Checking action for in-out rule violations: We now check if the actions follow the in-out rule for
blenders. That is, blenders should not have simultaneous inflow and outflow of streams. If there is
such a case, we set all corresponding outflows to 0. The value of other flows are not changed.

IIlﬂOWj = Z FSJ r + Z Fjj ,preinout

J’ast
(s,5)EF =3 (4",5)€FI-I
L Jjj,preinout Jp,preinout
Outflow; = g F + Z Fi o
(j.4')eFi (G.p)EFi
jpprebound  _ 0 if Inflow; > €, Outflow; > €, strategy # no
3t (4,p) EFIP Fjg’fre”‘o“t otherwise
jjprebound  _ 0 if Inflow; > ¢, Outflow; > ¢, strategy # no
32475t (4,47) EF I Fj”J’,ptT”""“t otherwise

Checking action for blender inventory lower bound: We next proceed to check if the actions
provide a blender inventory that violates the lower bounds.

b b jj,prebound
IHCWJ It 1t Z 7J7t+ Z F,Jt

(s,4)€F=d (47,9)€FI3
_ jj,prebound Jjp,prebound
>, F > b
(4,5")€F I3 (4,p)eFIP

If there is a violation, we adjust the actions based on the strategy chosen. We keep the same actions
otherwise.

bound
ij;f’re oun FJ PrOPGf b J <bth —¢,
strategy = prop
Jp — b 1b
Fiptimersr =40 if Loy ; < by’ — €
strategy = dzsable

Fjp,prebound

ipit otherwise
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jj,prebound 1~j, prop b b
Fr F?, if 12, < b ¢,

strategy = prop

7 _ b b _
Fj’j"ﬂ(ﬂ'sj’)E]:j’j =40 if Inew; < b

strategy = dzsable

Fj_] ,prebound

pa otherwise

b Ji,prebound 1b
Fiprop _ Ij,t—l + Z (s,J)EF=I 7] ¢t Z (§',5)€FII F bj

J,t Jjj,prebound jp,prebound
Z(JJ erii Figr +ZJP)GF““F,p,

Blender inventory updates: After making the adjustments described above, we update the blender
inventory.

b (b s b gub
Domelioiot 2, Rt 2, Ffwm 2. T 2 B B0

(s,J)€F=I (5",5)eFiI "eFid (4, p)EFI-P

Checking action for demand inventory lower bound: We now check if the actions provide a
demand inventory that violates the lower bounds.

d d ]p prebound
Lewp =Tt D, Flpi—o)
(d:p)eFP
If there is a violation, we adjust the actions based on the strategy chosen.
I+ 2o (jp)eFip FY L~ dit i IL, < d? — e, strategy = prop

dpt =140 if 14, p < dé,b — ¢, strategy = disable
gorebound otherwise

Demand inventory updates: ~After making the adjustments described above, we update the demand
inventory.

I =clip(If, 1+ > FP, =6, dY, di)

D, J,pst
(4,p)eFi-P

Blender property updates We then update the property of the materials in each blender as follows:

— 1 . . sJ
_I}T<Ciqt v L+ e gere Foje s
33 ,
JFZ(] 1,§)EFII F "4,k Cjr g1
o 7 .
Ciat =4 =2 gnerii By Ciat-1
P ,
— 2 Gmeriv Fjp Cﬂvqat—l) if I} g1 > €
0 otherwise

We then proceed to calculate the cost and reward. Finally, we shift the future schedules forecast by

one step to T t+1 ¢4 and 5p 1tk

A.5.6 CosTS

The total cost at each time step consists of penalties for constraint violations, including those for the
violations of the bounds of the state and the in-out rule. The components of the cost are defined as
follows:

Inventory Bound Violation Costs

Inventory levels at sources, blenders, and demands are required to remain within prescribed upper
and lower bounds. Inventory levels computed with actions before the relevant upadates are used to
assess constraint violations.
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Sources:

/\B.(/\O,B+Imwg—sgb), if I8 > s e

new,s

SSEUTCE = >‘B : (A(),B + S - Ifzew s) if I’fLew ,8 < Slsb -
0, otherwise
Blenders:
ender _ AB - ()\0 B+ Iﬁew j lﬂb)7 if I'E;Lew j bz)b +e€
C =< Ap- ()\0 B+ b nmu ]) if Inpw J bj —¢
0, otherwise
Demands:
As - (Mo + 1, newp d“b), 1fI7(f€wp d;fb—ke
Cgimand = )\B ()\O B+ dlb new ]) if Igew ,D déb - ¢
0, otherwise

In-Out Rule Violation Costs

Blenders must not simultaneously receive and send flow within the same time step. If both incoming
and outgoing flows are non-zero (beyond a tolerance ¢), a penalty is applied:

(Crin—out _ Ao,m, if Inflow; > €, Outflow; > €
0, otherwise

Property Violation Costs

Each demand p requires product properties ¢ within bounds. If blender j’s content violates these
bounds and is being delivered to p, a penalty is applied:

o )Xo if(C; qf<U e\/C’j7q7t>U§f’q+e)( )EFJPF]pt>O
Ja:pst 0, otherwise

Total Cost The total penalty at time ¢ is:
N N D I D WTRRD 3 3 Do
sesS JjeJ peP JjeJ JjEJ qEQ pEP
A.5.7 REWARD FUNCTION

The reward function consists of:

Revenue from selling streams

ﬂ_tsale_E :Bg(s,t

peP

Contribution to reward from buying streams

//Tpurchase _ z :BS

ses
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Figure 6: Schematic of InvMgmtEnv. A multi-echelon supply-chain network with raw distributors,
producers, distributors, and retailers serving a market. Directed red arrows depict transportation routes
¢ € L. Red callouts indicate observation components: on-hand inventory I, ; for all main nodes
neNM; pipeline inventory Péj‘;" (time-indexed along each route ¢); demand window D p, .41k
on retail-market pairs (r,m) € RM; sales S, .; and backlog By ,, .. The blue callout marks
the action—the normalized reorder ayorm,¢+ On each route £. The shaded region highlights the

main-node set N'M

Contribution to reward from flows

l
,/th M= —a- Qbin - ﬂ . Qfloat

where , )
Quin = Z 1FY, > 0]+ Z 1[F77 > 0]
(s,5)EFsI (4,p)EFIP
Qfloat = Z Ees,jj,t + Z Fj{gvt
(s,§)EF=d (4,p)EFI-P
Total Reward

urchase low
= ﬂf“le + 7P + 7rtf

A.6 MULTI-ECHELON INVENTORY MANAGEMENT ENVIRONMENT (INVMGMTENV)

A.6.1 OVERVIEW

The multi-echelon inventory management problem involves coordinating replenishment orders
across a five-tier supply network—raw-material suppliers, producers, distributors, retailers, and end-
markets—under time-varying demand. At each period, the decision maker chooses continuous order
quantities along each transportation route, with orders subject to fixed lead times before arrival. On-
hand and in-transit inventories incur holding costs, while unmet demand is backlogged and penalized.
The objective is to maximize cumulative net profit—total sales revenue minus procurement, operating,
holding, and shortage penalty costs—over a finite planning horizon.

We adopt a centralized, single-product framework (Perez et al.l [2021)) in which all replenishment
decisions are made by a central planner, and customer demand at each retailer-to-market link is
drawn from a known stationary distribution, such as a Gaussian with specified mean and variance.
Transportation is lossless with deterministic lead times, and replenishment quantities are bounded by
per-route capacity, with any excess actions penalized. Episodes terminate after a fixed number of
periods. A schematic of the environment is shown in figure [6]
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A.6.2 PROBLEM SETUP

The sets and known parameters used to describe InvMgmt Env are shown below.

Sets

T ={1,...,T}: set of discrete time periods.

* M: set of market nodes.

* R: set of retailer nodes.

* D: set of distributor nodes.

* P: set of producer nodes.

» S: set of raw-material supplier nodes.

e N=MURUDUPUS: setof all nodes.

+ NM =R UDUP: set of main nodes.

e L: set of directed replenishment routes. Each route is written
¢ = (orig(¢), dest(?)),

an ordered pair of nodes with orig(¢) € N the origin (shipping) node and dest(¢) € N the

destination (receiving) node.

e RM: set of retailer-to-market demand links.

Parameters

e IMi* n € N initial on-hand inventory at node n.

* Cap}°"°, ¢ € L: capacity limit of route .

. C}; old:mat 'y  £: per-unit holding cost for pipeline inventory on route /.

* Oy, ¢ € L: procurement cost per unit ordered on route /.

o LTy, ¢ € L: fixed lead time (in periods) for route /.

o Choldinv ' e A% per-unit holding cost for on-hand inventory at node 7.

* CpP°, p € P: operating cost per unit of production activity at producer p.

* 7p, P € P: production yield at producer p.

* lbrm, Orm, (r,m) € RM: mean and standard deviation of demand on link (r, m).
* P, (r,m) € RM: selling price per unit on link (r, m).

* CPenaly (r,m) € RM: penalty cost per unit of unmet demand on link (r, m).
* k: look-ahead window length for demand forecast.

* ¢: small threshold below which reorder quantities are treated as zero.

* QPaction: penalty factor for action-bound violations.

* Pon_hand: penalty factor for on-hand inventory violations.

* Opipeline: penalty factor for pipeline inventory violations.

* (sales: penalty factor for sales-state violations.

* ®backlog: penalty factor for backlog-state violations.

A.6.3 STATE SPACE
The state s; at time ¢t € T is represented by the tuple

inv
St = (Imta P&t s Pr,m,ts Br,m,t; Dr,m,t:t+ka t)»

where:
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e On-hand inventory levels:
Ini €Rso, neNM,

contributing | VM| dimensions.

* Pipeline inventory: '
Péﬁv = (Pe,l,t, ce PE,LTz,t)a teLl,

contributing ) -, » LT, dimensions.

e Sales:
Sr,m,t S RZO, (7", m) S RM,

contributing |RM| dimensions.

* Backlog:
Br,m,t S RZO, (7"7 m) € RM,

contributing |[RM| dimensions.

e Demand window:
DT,'rrL,t:t-‘rk = (DT',m,ta ce 7D7',m,t+k)7 (Ta m) S RMa

where, for offsets h with ¢ + h > T, the unavailable future demand D, ,, ;4 is padded
with 0. This contributes |[RM| x k dimensions.

 Time step: (optional) the scalar ¢, contributing 1 dimension.
All components are concatenated and flattened into a continuous observation vector of total dimension

VM| + N LT, + 2|RM| + [RM| xk + 1.
el

A.6.4 ACTION SPACE
At each decision epoch ¢ € T the agent outputs a |£|-tuple of normalized actions
QAnorm,t — (anorm,é,t)geﬁ € [_1a 1} |£|7

whose components correspond one-to-one with the directed replenishment routes ¢ € L.

Scaling to Physical Reorder Quantities. Each normalized component is linearly mapped to a true
reorder quantity, respecting the capacity of its route:

Gnorm,4,t +1

5 Cap)°"*®, Le L.

Qe =

A small-order cutoff ¢ is then applied:

07 Qf,t S g,
- |

Qut, otherwise.
Collecting all routes, the environment works with the physical reorder vector
te7 Ll
Q: = (Qet) g, € [0, Capp™™]™.

Effective Action Space. After scaling and cutoff, the admissible actions lie in the |£|-dimensional
box

A = {Qt | Qe € [0,Capp®e], L€ L‘}.

A.6.5 TRANSITION DYNAMICS

At each time step t € T, after observing s; and selecting normalized actions anorm € [—1,1] I£1 the
environment updates to s, as follows:
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Action Processing, Clipping, and Penalty Recording. Each component a,orm ¢ is first mapped to
a preliminary reorder quantity

pre _ Gnorm,¢ +1 Caplette

0t T 2 14
A small-order cutoff ¢ is applied:
cut _ J 05 vt <6
LT Qb otherw1se.
Any remaining violation of the action bounds is then clipped and recorded:
0 cht
)
Qi,t — 21;1}7 0 < cht < Caproute’

Caproute cht > Caproute
)

and the action-bound violation penalty is computed as

d’action |Q2utt | ) cht

bound,action __ route t route
O@,t - ¢act10n ‘Q( t Cap ) ch > Cap

0, otherwise,

with @action the penalty factor for action violations. Finally, increment the period: ¢ <— ¢ + 1.

Pipeline Update. After incrementing the period ¢ <— ¢ + 1 at the end of previous step, the in-transit
slots are shifted and the newest order is injected:
P[,‘f‘Jrl,t*l? T:172a"~7LT£_]—7
Prrt =19 Qu 11, T = LTy,
0, otherwise.

The total in-transit inventory on route £ is

LT,

ér;v_ § P@Tta

and the arrivals at node n are
Arrivals, ; = E Py

Lel
dest(€)=n

Arrival and Inventory Update. For eachnode n € N,

I, =1I,.-1+ Arrivals, ;.

4. Demand Realization. For each (r,m) € RM,
Dr,m,t ~ N(ﬂr,mv Ur,m)'

Sales and Backlog Update. Sales are
Sr,m7t = min{Dr,m,t + Br,rmtfl; I’r‘7t}a

then
Ir,t — Ir,t - Sr,m,ty Br,m,t = Dr,m,t + Br,m,t—l - Sr,m,t~

Demand Forecast Shift.
Dr,m,t—i—l:t—i—k = (Dr,m,t+17 o aDr,m,t+k) v (’I", m) € RM.
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Observation Clipping. After constructing all next-state components, any ; ;41 outside its bounds
[L;,U;] is clipped to L; or U; as appropriate. Each such clipping is recorded as an observation-bound
violation and will incur the corresponding penalty in the Cost Function.

A.6.6 CoOST FUNCTION
The total cost at time ¢ is the sum of the penalties incurred for any state-observation violations:
Ct — C;)nfhand + Cg)ipeline + Cgales + Cloacklog

Each category cost Cy (for ¢ € {on_hand, pipeline, sales, backlog}) is computed by applying the
same piecewise linear penalty to each pre-clipped component z; ; in that category. Let Z, be the
set of component indices for category ¢, each with bounds [L;, U;] and penalty factor ¢.. For each
category ¢ € {on_hand, pipeline, sales, backlog}, let ¢. denote its penalty factor (e.g. @pipeline fOr
pipeline-inventory violations). Then

Gc (Li — wi4), @iy < L,
L= Z Gc (w30 —U;), mip > U,
€T,

0, otherwise,

so that any observation below its lower bound or above its upper bound contributes linearly to the
total cost.

Action-bound penalty. If a preliminary order Q7' violates the interval [0, Cap}”"*“] (Step 1 of
the transition dynamics), it is clipped to the nearest bound and the deviation is recorded as an

action-bound penalty C’f‘t)und’amo“, weighted by the scalar factor @,ction. The sum over all routes
yields C2°t°n js added to the total cost C; above.

A.6.7 REWARD FUNCTION
We express the per-step reward as the sum of five components, each denoted by II:
Ht _ H;ev o Hi)roc o H?Old _ Htoper _ H?acklog'

o IV = E Sr.m,t Prm, revenue from sales.
(rym)eERM

o IIY™° = E Q1.+ Cy, procurement cost for orders.

tec
o IrPold = E I, CRoldinv 4 g Péf}f’ C’;Old’mat, holding cost for on-hand and pipeline
neN el
inventories.

oper
CI)

o P = Z Z Q.+, operating cost at each producer p, proportional to the

pep P teL
orig(£)=p
total quantity ), dispatched along routes ¢ that originate at p; the factor 1/1, converts
finished-good output to required production input.

o IIpacklos — Z By m,p CP221Y  penalty for backlog.
(rym)eERM

A.6.8 EPISODE TERMINATION

An episode ends when the final time step ¢ = T is reached. It is not truncated, even if the system
encounters infeasible states.
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A.7 GRID-INTEGRATED ENERGY STORAGE (GRIDSTORAGEENV)
A.7.1 OVERVIEW

The grid-integrated energy-storage environment (GridStorageEnv) models the hourly operation
of a transmission-connected battery fleet co-located with conventional generators on a network subject
to time-varying loads and deterministic line de-energisation schedules (Piansky et al.} [2024). At
each period, the agent simultaneously chooses (i) real-power outputs for every thermal generator, (ii)
battery charge rates, (iii) battery discharge rates, (iv) deliberate load shedding, and (v) bus voltage
angles at all non-reference buses (Bus 1 is fixed at 0 rad). Given these angles, line flows are computed
through DC power-flow equations, and flows on deterministically de-energised lines are forced to
ZEero.

Batteries follow a “bucket” state-of-charge (SOC) dynamic that applies charging/discharging ineffi-
ciency and an inter-period carry-over factor.

The objective is to minimise total cost over a finite horizon of 7" hours, comprising (a) generator fuel
cost modelled as a polynomial in power output and (b) linear penalties on slack generation, unserved
load, bus-angle limits, line-loading ratio, SOC and demand violations, as well as a nodal power-
balance penalty that discourages infeasible angle choices. Physical limits on generators, transmission
lines, buses, and batteries are enforced by clipping out-of-bounds actions or state variables and
charging a proportional penalty.

We assume perfect foresight of hourly demand and line de-energisation schedules, a single central
decision maker, lossless transmission on energised lines, and a fixed k-hour demand-forecast window
embedded in the state. Episodes last exactly 7" steps and are never truncated. A schematic of the
environment is shown in figure 7}

Transmission
Lines

SO0Cy; SOCy

Figure 7: Schematic of GridStorageEnv. A power grid with buses, generators, and battery storage,
subject to time-varying demand and deterministic line de-energization. Agent actions (blue) at each
time step include generator output pg ;, battery charge c,, ¢, discharge p‘f%t, load shed ¢, +, and voltage
angles 6, ;. Observed state (red) comprises battery SOC SOC,, +, line flows f,+, voltage-angle
differences Oy, slack sy, +, and a k-period demand forecast D, ¢.¢41—1.

A.7.2 PROBLEM SETUP

The environment is defined by the following sets and parameters.

Sets

o T ={1,...,T}: discrete time periods.
 N: set of buses in the network, M| = N.
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* G: set of generators, |G| = G.
e L C N x N: setof transmission lines.
* D, C L: deterministic subset of lines de-energized at time ¢.

Parameters

* BusGeneratorLink: a mapping g — n for g € G, n € N, indicating which bus each
generator sits on.

* B;j, (i,7) € L: line susceptance.

* f; ¢ € L£: maximum power-flow on line /.

* 0,, 04, ¢ € L: bounds on voltage-angle difference.

* dyy, (n,t) € N x {1,...,T}: demand at bus n and time ¢.
. pglin7 Py, g € G: generator output limits.

o Emin pmax ¢ N battery state-of-charge (SOC) bounds.
* E,0,n € N: initial SOC.

o pomin pemax e Al battery charge-rate bounds.

o plminpdmax A battery discharge-rate bounds.

* 1) battery charge/discharge efficiency.

* ~v: SOC carry-over rate between periods.

* PolynomialDegree: number of generator-cost coefficients (the highest exponent is
PolynomialDegree — 1).

* Cy4,.9€6G,5=0,...,PolynomialDegree — 1: generator cost coefficients.
* Kack (Kslack): per-unit penalty for slack generation.

* Kjs (K1s): per-unit penalty for load-shedding.

* ©™2%: absolute bound on controllable bus voltage angle (radians).

* ¢p,1: penalty factor for nodal power-balance violations arising when injections do not match
DC power flow.

* (g ,aci: penalty factor for node-angle action clipping.

* ¢power: penalty factor for generator output bounds violations.

* Gcharge: Penalty factor for battery charge-rate bounds violations.

* (discharge: Penalty factor for battery discharge-rate bounds violations.
* Pglack: penalty factor for slack generation bounds violations.

* (Pshed: penalty factor for load-shedding bounds violations.

* (Pgoc: penalty factor for state-of-charge observation bounds violations.

* ¢g: penalty factor for voltage-angle observation-bound violations.

o §™®%: maximum slack-generation allowed at each bus.
* dgisba = Iax 7_dn.t: system-wide peak demand, used as the upper bound for all
neN, te ’

load-shedding actions.

A.7.3 STATE SPACE

The state s; at time ¢ € T is the tuple
St = (SOCn,h Gz,t, fe,u Sn,t, Dn,t:tJrkflv Tt)»

with components defined and sized as follows:

* SOC,,; = E,, ;/EM™* € [0,1] (normalized battery state of charge at bus n; dimension N).
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0i.0—05.0)—(0,+0
. @(,t _ 2(6;, g[ji)gz(,g‘i‘ )
L.

o for € [—ﬂ,ﬂ] (actual power flow on line ¢ in MW; dimension L).

(normalized voltage-angle difference for ¢ = (i, j); dimension

* Snt € [0,s™*] (slack generation at bus n; dimension N).

* Dy tavi—1 = (dnt, dnt+1, - - -, dnt+k—1) (length-k demand-forecast window; dimension
N x k).

e 1w =(t—1)/(T —1) €0, 1] (normalized time index; dimension 1).
All components combine into a flattened observation vector of length

2N + 2L + Nk + 1L

A.7.4 ACTION SPACE

At the start of each period ¢ the agent chooses the vector

T
ay = (ptv Ct, pg» eta gt) ) gl,t =0.

Its components obey the compact interval constraints

py € [pmin, pmax], (generator outputs, dim. G),

¢ € [pc,min’pc,max]7 (

pg c [pd,min’pchmam]7 (

b €10, dmax |V, (load shedding, V),
(

» “global
0, € [—@max @max]N-1 bus angles, N —1).

battery charge, N),
battery discharge, V),

Normalized interface. The policy operates in the cube [—1, 1] “F3N+(V=1) and outputs anerm,-
An affine map rescales it to a preliminary action

Apre,t = %(anorm,t + 1) © (amax - amin) + Gmin,
with block-wise bounds

min , c,min _.d,min max T
Amin = (p y P y P ,0n,—© 1N71>

__ (., max _cmax ,d,max jmax max T
Amax = (p » P P ) globallNa © 1N—l)

Any element that exceeds its limits after mapping is clipped to the nearest bound; the clipping distance
is multiplied by the corresponding penalty factor ¢. and accumulated into the action-bound penalty
C?ction.

A.7.5 TRANSITION DYNAMICS

At each time step ¢ € T, the environment moves from state s; to sy after receiving a normalized
action a,om ¢ € [—1, 1]¢H3NV+(N=1)_ The update proceeds through seven ordered steps:

1. Action decoding, clipping, and penalty logging. Each normalized component is mapped back
into its physical range:

a 41 . .
pre _ Ymorm,i,t max min min
ai,t - f (ai —aq ) + a;

and clipped to remain within bounds [a?®, a*#*]. Let the resulting action vector be
— d
ar = {p97t}g€g || {cn)t}ne./\/ H {p’ﬂ’t}ne,/\/’ || {K”vt}ne/\/’ || {G”xt}ne/\/\{l}’

with 6 ; = 0. Each clipping violation incurs a penalty multiplied by the corresponding ¢..

40



2. Battery state-of-charge update. The battery SOC at each bus n evolves as:

1
Entv1=7Ent +ncnt — Epi,t, neN.

3. Load-shedding enforcement. Any load shedding exceeding the global maximum is clipped:
gn,t < min(fmt, dg;(?t:;l)’
penalising excess with factor ¢gpeq.

4. Power-flow calculation. Compute power flows from voltage angles, enforcing zero flow on
de-energised lines:

Bii(0ir—054), (¢ D
f[,t: ! ! ) 6:(21.7)
0, e D,

5. Slack generation calculation. Slack generation s, ; is computed to enforce exact network
balance:

d
Sn,t = HlaX{O, dn,t - gn,t - E Dg,t + Cnt — pmt
g:BusGeneratorLink[g]=n

+ Z fanye — Z f(n,j),t}~

(i,n)eL (n,j)eL
6. Net nodal-injection and power-balance penalty. Compute net nodal injection at each bus n:

E d
Pn,t = Dg,t + Sn,t — dn,t + en,t —Cnyt + pn7t~
g:BusGeneratorLink[g]=n

The nodal power-balance residual is:

An,t = Pn,t - Z an (en,t - ej,t)7
JEN

and the network-balance penalty is:

CP™ = Bpal Z [A, ]

neN

7. Demand-forecast and observation reconstruction. Update the forecast window at each bus n:

Dn,t:t+k—1 = (dn,h dn,t+17 cee 7dn,min{t+k—1,T})a

padded with zeros beyond horizon 7. Form the next state s;y; from normalized SOC, voltage-
angle differences, loading ratios, flows, slack generation s,, ;, demand window, and normalized time
Ti41 = t/(T — 1). Components outside valid bounds are clipped, incurring penalties accordingly.

A.7.6 CoST FUNCTION

The total penalty cost at time ¢ is

Ct _ Ctsoc_i_cf _~_C§10w7ratio_~_clfslack_"_C;bal_i_cfction

Observation-bound terms. For each category ¢ € {soc, 6, flow_ratio, slack}, let Z.. be the indices
of the corresponding observation sub-vector and [L;, U;] its valid range. Then

G (Li — 44), xig < Ly,
i = Z bc(xiy —U;), x4 > U,

€T, .
‘10, otherwise.
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Network-balance term. C}?al is defined in Transition-Step 5 as ¢pa; Zn |Ay, |, penalising any
mismatch between injections and DC power flow.

Action-bound term. C2°Y°" aggregates the clipping penalties accrued in Transition-Step 1 for
generator power, charge/discharge rates, load shedding, and bus angles (the latter weighted by ¢g ac().
It ensures every action component exceeding its hard limit is penalised proportionally to its violation.

A.7.7 REWARD FUNCTION

We decompose the per-step reward II; into three components, each denoted by 1I:

Ht — H%CH 4 HilaCk + HihEd.
where

PolynomialDegree—1

gen J
Iy = - E E : Og,j Pyt
=0

g€eg
negative generator fuel cost (polynomial in output py ¢),

slack
Ht = —slack E Sn,ts
neN

negative cost of slack generation at each bus,

Hihed = — K Z En,t-
neN

negative cost of load-shedding.

A.7.8 EPISODE TERMINATION

An episode ends when the final time step t = T is reached. It is not truncated, even if the system
encounters infeasible states.

A.8 INTEGRATED SCHEDULING AND MAINTENANCE (SCHEDMAINTENV)
A.8.1 OVERVIEW

Energy-intensive chemical processes leverage Demand Response (DR) to adjust electricity usage in
response to price fluctuations, typically optimizing production on a rolling basis using forecasted
demand and electricity prices. However, optimizing production scheduling alone can be detrimental,
as it neglects the operational condition of essential equipment. Recent studies have addressed this by
integrating condition-based maintenance into production optimization, notably for Air Separation
Units (ASUs) (Xenos et al., [2016)), and natural gas plants (Huang & Zheng] 2020).

In this study, we model an Air Separation Unit (ASU) comprising three compressors tasked with
meeting aggregated gaseous nitrogen (GAN) and oxygen (GOX) demand over a 31-day episode, lever-
aging a deterministic 30-day rolling forecast of electricity prices and demands. Each day, the agent
decides for each compressor whether to operate—producing at a chosen output level—or to undergo
maintenance, incurring downtime and resetting its operational state. If total production falls short of
demand, the deficit is met through external purchases at a fixed (though inflated) price. The objective
is to minimize total operating expense—comprising electricity costs, downtime losses, and external
purchase costs—by optimally trading off short-term production gains against long-term equipment
health. The base environment, which is completely deterministic, is termed SchedMaintEnv-vO0.
To further resemble real-world operations, we introduce uncertainty in compressor failure times. We
refer to our stochastic variant of the base environment as SchedMaintEnv-v1. A schematic of
the environment is shown in figure
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| t € T: Forecast/Action Horizon |

Grid Customers Compressors (¢ € ()

ht=

et d (tslmg, tlemy, cdmy)

y

e; : Electricity Price Forecast
State d; : Demand Forecast Matrix

| h¢ : Compressor Health Info r; : Reward
[ : Production Decisions,
Action : Maintenance Decisions,
Agent/Operator : External Purchase

Figure 8: Schematic of SchedMaintEnv. At each time step t, the agent observes the day-
ahead electricity price forecast e;, the demand forecast d;, and the compressor health state
hy = (tslmy, tlemy, cdmy). It then selects compressor production rates a,, ;, maintenance schedul-
ing flags a, ;, and external purchase fraction a. ; to meet demand while managing cost and mainte-
nance constraints, receiving reward r; from the compressors.

A.8.2 PROBLEM SETUP

The sets and known parameters used to describe the environment are shown below:

Sets
o T =1{0,...,T}: Set of discrete time periods.
» C: Set of compressors.

Parameters

* n: Number of compressors.

* S: Forecast horizon.

* Cap.: Maximum daily production capacity of the compressor c.
* SPEN.: Specific energy of compressor ¢ in KWh/t.

e MTTF,.: Mean time to failure represents the maximum number of consecutive operating
days before maintenance is required for compressor c.

* MTTR.: Mean time to repair represents fixed duration (in days) of any maintenance outage
COmpressor c.

e MNRD.: Minimum no-repair duration, i.e., the time that must elapse after maintenance
before the next service can begin for compressor c.

* tleme,o: Initial time left to complete maintenance for compressor c at start of the episode.

* tslm,o: Initial time since last maintenance for compressor c at start of the episode.
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* cdmc o: Initial indicator of whether compressor c is eligible for maintenance at the start of
the episode.

* ... External purchase price of per unit of product.

* Qcrt: Maximum possible purchase quantity for any given day.

* D: Array of daily forecasted demand over the simulation horizon 7" 4 S in ton.

* E: Array of daily forecasted electricity prices over the simulation horizon 7' + S in $/KWh.

* OMD, PMF, PEM, PRP, PD: Various penalty parameters related to constraint violation.

A.8.3 STATE SPACE

The observation state at time ¢ € T is represented as a vector,

s(t) = (dy, es, tslmy, tlemy, cdmy), t € [0,T)

The state vector s(t) captures the essential operational and maintenance-related information for the
Air Separation Unit (ASU) on day ¢. It includes forecasts of production demands and electricity
prices over a fixed horizon (S days), along with detailed maintenance indicators for each compressor.
These components are defined as follows:

» Demand Forecast (d; € Rix 1): a vector of predicted demands from day (¢ 4+ 1) to (¢t + S),
expressed in tons.

* Electricity Price Forecast (e; € RS*1): a vector of corresponding day-ahead electricity

prices from day ¢ to t + .S — 1, measured in $/kWh

* Time Since Last Maintenance (tslm; € Z'}* 1): the number of days since each compressor ¢
last underwent maintenance

* Time Left to Complete Maintenance (tlcm; € Zﬁx 1): the remaining time (in days) required
to complete maintenance for each compressor c; it is strictly positive only when maintenance
is in progress.

* Can Do Maintenance Indicator (cdm; € {0, 1}™): a binary vector where cdm.; = 1 indicates
that compressor c is eligible for maintenance on day ¢

In the base SchedMaintEnv, the agent strives to learn the fixed failure time MTTF . of each
compressor c. In the stochastic variant, we assume each compressor can fail at MTTF ., MTTF, — 1,
or MTTF,. — 2 with equal probability; hence, the agent should ideally learn a robust preventive
maintenance policy. We implement the uncertainty by introducing the aforementioned stochasticity
in failure times at the beginning of each episode.

A.8.4 ACTION SPACE

Given the received observation at the start of each day ¢ € 7, the action space at time ¢ consists of
operational decisions related to maintenance scheduling, compressor utilization, and external product
procurement. The physical description is as follows:

 Compressor maintenance (@maintenance (£) € {0, 1}™): a binary vector indicating whether each
compressor is scheduled for maintenance at time ¢, with Gmaintenance,c(t) = 1 if compressor ¢
is under maintenance. We occasionally abbreviate this action as amaint. (%)

* Compressor production rate (aproduction(t) € [0, 1]™): a continuous vector representing the
fraction of the maximum capacity C'ap,. utilized by each compressor c. We occasionally
abbreviate this action as aprod.,c(%).

* External purchase apurchase(t) € [0, 1]: the fraction of the maximum external product Qext
purchased to meet demand when internal production is insufficient.

The agent’s raw actions are clipped to remain within their specified bounds. In particular, each

component of @aintenance () is first generated as a scalar in [0, 1] and then rounded to {0, 1}, while all
other actions are clipped directly to their respective intervals.

44



A.8.5 TRANSITION DYNAMICS

Here we define how the environment state evolves in response to the agent’s actions at each discrete
time step t € T. Let s(t) = (dt, e, tslmy, tlemy, cdmt) be the observation vector at time ¢,
with s(0) denoting the initial observation. The transition to s(¢ + 1) is governed by the following
procedures:

Information State Update: This update incorporates changes in demand and electricity price
signals. The updated states are retrieved from the simulated perfect-forecast arrays of demand (D)
and electricity prices (E) for the next S days as follows:

dt+1(—D[t+1,t—|—S], 6t+1(—E[t+1,t—|—S] VieT

It is worth noting that the simulated data is appropriately longer than the episode length to account
for the state horizon; therefore, no padding is used at any point.

Compressor Physical Condition Transition: The following updates track the evolution of mainte-
nance status and compressor readiness for each compressor ¢ € C', based on operational decisions.
The initial physical state at the start of the simulation is given by (tlcme o, tslmeo, cdm. ), and
future states are derived accordingly.

0, if amaintenance,c(t) =1

tslm, = .
i+l {tslmct+1, otherwise

MTTR, — ]-7 if amaintenance,c(t) =1Acdmy =1

tlcmc,t+1 = q tlemg — 1, if amaintenance,c(t) =1Acdmy =0
tlemgy, otherwise
].7 if tSlmc’t+1 > MNRDC
Cdmc}t+1 = .
0, otherwise

To ensure feasibility and consistency with compressor state constraints, a sanitization step is applied
to the raw agent actions before the state update, but after the associated violation costs are realized.
For each compressor ¢ € C, the action is adjusted as follows:

o If tslm., > MTTF, and amaintenance,c (t) 7# 1, then:

= amaintenance,c(t) <1 and aproduction,c(t) «—0

This rule enforces maintenance when it is overdue (i.e., tslm.; > MTTF.,) but the agent has
not scheduled it. Maintenance is forced, and production is halted to ensure feasibility and
update the environment state accordingly.

o If CLmaintenance,c(t) = land aproduction,c(t) > 0, then:
= aproduclion,c(t) ~0
This rule ensures that production is not allowed during maintenance.
¢ If cdm.; = 0 and tlem¢; = 0 and amaintenance,c (t) = 1, then:

= amaintenance,c(t) A 0

To ensure maintenance is not performed after the required duration or prematurely before it
is permitted.

o If tleme; > 0 and @maintenance,c () # 1, then:

= amainlenancmc(t) <1 and aproduction,c(t) +0

To make sure maintenance remains active for the required maintenance duration.
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A.8.6 CoST FUNCTION

The agent may incur various costs at each time step if system constraints are violated, encouraging it
to learn an optimal policy. We reiterate that these costs are realized before the action is sanitized. The
potential costs are as follows:

Maintenance Duration Cost:

This cost is incurred if maintenance is interrupted before it is completed or prolonged, in which case

tlem.; becomes negative. The cost is denoted by cﬁ?, where MI stands for maintenance interruption,

defined as:

if (amaint.}c(t) = 1 and tlem,; > 0)

puip - exp (|themes|)  or (@maine.(t) = 1 and tlem; = 0 and tslm,; = 0)
or (@maint.(t) = 1 and tlem,; < 0)

0 otherwise.

MI __
Cct -

Maintenance Failure Cost:

This cost occurs if the Time Since Last Maintenance (tslm.;) exceeds the Mean Time to Failure
(MTTF.,) of the compressor. The cost is denoted by CgF , where MF stands for maintenance failure,
defined as:

pmr - (tslme, — MTTE,)  if (Gmaint c(t) = 0 and tslm,, > MTTF,),
CMF = ¢ purp if (Gmaine(t) = 0 and tslm.; = MTTF,),
0 otherwise.

Early Maintenance Cost:

This cost is incurred if maintenance is performed on a compressor when it is not yet eligible
for maintenance (i.e., when cdm.; = 0, indicating that the compressor has recently undergone
maintenance, and tlem.; = 0). The cost is proportional to the Time Since Last Maintenance (tslm.;)
of the compressor. The cost is denoted by C=M, where EM stands for early maintenance, defined as:

M _ [ —pem tslme;  if (Gmaint.c(t) = 1 and cdm; = 0 and tlem, = 0)
00 otherwise.

Ramp Cost:

This cost is incurred when a compressor is ramped up while under maintenance.

CRamp _ PRP ° aprod.,c(t) : Capc if (amaint.,c(t) = land aprod.,c(t) 7& O) )
ct 0 otherwise.
Demand Cost:

This penalty is incurred if the total supply from production and external purchases does not meet
the demand on the current day. The total supply is the sum of the production and external purchase,
and if this is less than or greater than the demand, a penalty is imposed proportional to the absolute
difference between demand and supply.

C?emand =pPD " |dt - Z(aproductiomc . Capc)l

c

Total Cost:

C;otal _ Z(C%I + C%F + ng + Cftamp) + CPemand
ceC
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A.8.7 REWARD FUNCTION

The reward function represents the cost incurred by the agent for making decisions related to
production and external purchases. At each time step ¢, the reward is defined as:

H?C”O” =— (production cost, + external purchase costt)
where,
production cost, = Z (SPEN. Gproduction,c(t) Cap, E[t])
ceC

external purchase cost, = apurchase (t) Qext Cext

The production cost at time ¢ is calculated using the production rate, compressor capacity, specific
energy consumption, and electricity price. The external purchase cost is incurred when demand
exceeds production capacity, calculated by multiplying the purchase amount by the external price.

A.8.8 EPISODE TERMINATION

The episode terminates when ¢ + 1 = T', indicating the start of the day immediately after the final
one.

A.9 PRODUCTION SCHEDULING IN AIR SEPARATION UNIT (ASUENV)

A.9.1 OVERVIEW

The ASUEnv simulates a liquid air separation unit (ASU) producing liquid nitrogen, oxygen, and
argon in a Gym-compatible reinforcement learning framework. We consider the ASU to have hourly
production capacity while demand occurs only at 24-hour intervals. To that end, at each hour the
agent selects production rates based on inventory levels to minimize electricity and storage costs while
ensuring daily demand satisfaction. Production actions are restricted to the convex hull of historically
observed operating points, guaranteeing industrial feasibility. We follow the simplified dynamics
of Zhang et al. (Zhang et al., [2015)), which capture core ASU behavior without the complexity of
detailed mode-switching or maintenance constraints.

We make several key assumptions to keep the environment tractable. Only two production
modes—“Work” (active production) and “Off” (zero output)—are available each hour, and switching
between them is instantaneous and cost-free. Electricity prices and product demands over a short
rolling horizon are treated as perfectly known and error-free. Storage capacity for each product is
finite and nonnegative, with penalties applied if inventory limits are exceeded or daily demand is
unmet. Finally, we do not model any external purchasing option, assuming all demand falls within the
ASU’s inherent production capability. The simulation runs for a total of seven days with a four-day
lookahead, resulting in 24 x 7 steps per episode. A schematic of the environment is shown in figure[9]
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Figure 9: Schematic of ASUEnv. At each hour ¢, the agent observes the electricity price forecast
e¢, demand forecast D,, and inventory levels IV;. It then selects production weights \; (convex-
combination coefficients of historical patterns) to meet demand and manage inventories, and receives
reward r; from the ASU.

A.9.2 PROBLEM SETUP

The sets and known parameters used to describe the environment are shown below:

Sets
* 7 =1{0,...,T}: Set of hours in the episode.
* D={1,...,D}: Set of days in the episode.
* J: Set of liquid products: liquid nitrogen (LIN), liquid oxygen (LOX) and liquid argon
(LAR).
* X: Set of vertices of the convex hull derived from historical operational data.
Parameters

* T': Episode length in hours.
* D: Episode length in days.
» S: Lookahead days used in the forecast.

* m: Number of products in 7.

[IV3Ib | [V/3:ub]: Lower and upper bounds on the inventory level of each product j.
e N: Number of historical production data points.

* v,: Extreme points of the convex hull.

HPQ: Historical hourly production quantities.
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* k: Number of extreme points of the convex hull.

* D;: Matrix of hourly product demands used in the simulation, of dimension RTX4(S+T+1).
* E;: Array of hourly electricity prices used in the simulation, of dimension R2+4(S+T+1).

e PQ;: Array of products produced based on the actions.

* DQ4: Array of dispatched product quantities at the end of each day in the simulation.
* prv: Penalty parameter for inventory overflow.

* pp: Penalty parameter for unmet demand.

* Clixeqa: Fixed cost per hour to keep the plant operational.

¢ Cunit: Hourly unit production cost.

A.9.3 STATE SPACE

At any hour ¢, the observation state is represented by the vector

s(t) = (e, Dy, IV}), YteT

The state vector s(t) captures all relevant information needed for the agent to make production
planning decisions at hour ¢ in the Air Separation Unit (ASU). It includes deterministic forecasts
of electricity prices and product demands over a lookahead horizon of S future days; therefore,
including the current day, the total forecasting horizon becomes S + 1 days. It also includes the
current inventory levels of liquid products. The components are defined as follows:

24(S+1)x1

* Electricity Price Forecast (e; € R, ): a vector of day-ahead electricity prices for the
next S + 1 days, given at an hourly resolution (totaling 24(S + 1) elements), measured in
KWh.

24(S+1)xm

* Demand Forecast (D; € R, ): a matrix of demands for each product j over the
next S + 1 days, where j € J. Each row represents the hourly demand forecast for one
product; however, the demand is non-zero only at 24-hour intervals.

* Inventory Levels (I'V; € RT“): the current inventory levels of all m liquid products at
hour ¢. These are bounded between predefined lower and upper capacity limits.

A.9.4 ACTION SPACE

The action space at each time step ¢ is defined as:

a(t) = A(t),

where A(t) € [0, 1]* represents the weights of the extreme points in the convex hull of the possible
production quantities. We assume historical hourly production quantities are given by

HPQ={Q} @}, .... Q' e T},
where N is the number of samples available. The feasible region FR is then approximated as
convhull(HPQ), with vertices v;, for j € J, x € X, and |X'| = k. The quantity of each product
produced at time ¢ is
Pth = Z )\x(t) vj.’c-
TEX

The received actions are clipped to their bounds [0, 1] and then normalized to enforce the convex-sum
property 2221 Az (t) = 1 as described in the next section.

A.9.5 TRANSITION DYNAMICS

Here we describe how the system state evolves in response to the agent’s production decisions at each
discrete hourly time step ¢ € 7. Let the observation vector at time ¢ be s(t) = (e, Dy, [V;), with
5(0) denoting the initial observation. The transition to s(¢ 4 1) is governed by two primary updates:
the shifting of forecast windows and the physical evolution of product inventories.
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Forecast Update: The forecast arrays for electricity prices and product demand are deterministic
and span a rolling horizon of S + 1 days at hourly resolution. The environment updates the forecast
component of the state differently depending on whether a new hour or a new day has begun.

Hourly Shifting: At each non-zero hour (¢ + 1) mod 24 # 0, the environment updates the
observation by shifting the forecast vectors leftward by one hour to discard outdated information.
This is achieved via the shift_observation () routine:

Dt+1 — ShiftLeft(Dt), €ty1 ShiftLeft(et)

where ShiftLeft removes the earliest hour from the forecast vector and appends a placeholder
value—such as the average of the remaining values (for electricity) or zeros (for demand)—to preserve
the total horizon length 24(S + 1).

Daily Refresh: At the start of each new day (i.e., when (¢ + 1) mod 24 = 0), the environment
invokes update_demand_and_electricty_state () to refresh the entire forecast arrays
for electricity prices and product demands. This function populates only the end-of-day demand
values (i.e., the 24th hour of each day) while keeping the rest of the hourly entries zero, as demand is
modeled to be daily:

Diy1 < (D[t+1],D[t+2],...,D[t+24(S+1)])

Eyy1 + (Bt+1,E[t+2],...,E[t+24(S+1)])
This rolling update mechanism enables the agent to make production decisions with awareness
of upcoming price and demand trends while ensuring that outdated data does not persist in the
observation state. The simulated data exceeds the episode length to cover the lookahead horizon,
eliminating the need for padding during daily refresh.

Inventory State Transition: Before updating the inventory, action sanitization rescales the raw
weights {\;(¢)} to enforce the convex-sum constraint:

7)\I(t) i S : =
Ao(t) T Ve X, st ;)\x(t)—l

The inventory vector is then updated based on the production action PQ); at time ¢, itself computed
as a convex combination of feasible production profiles. If ¢ mod 24 = 23 (the last hour of the day),
a portion of inventory is shipped to meet daily demand; otherwise, production is simply added:

IV, + PQjy — DQj g4, iftmod24=23d= ||

1V = 24
B {Ivj,t + PQj otherwise,

where DQ; ¢ = min(IV;; + PQ,+, D[j,23]) ensures that the shipment quantity does not exceed
the sum of available inventory and production.

Finally, state sanitization corrects any inventory overflow by checking whether the inventory penalty
Civ > 0. If so, the inventory vector is clipped element-wise to its upper bounds:

IVip1 < min(IVigq, IV™),

thereby preserving feasibility by preventing storage violations.

A.9.6 CoST FUNCTION

The agent may incur several types of costs at each time step ¢ from production decisions or constraint
violations. These costs guide the agent toward learning an efficient and feasible production policy.
The individual cost components are as follows:

Inventory Overflow Cost:
This cost is incurred if the inventory of any product exceeds its maximum storage capacity:

CY =pw- Z max(IV;; — IV™,0)
JET
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Demand Shortfall Cost:
At the end of each day (i.e., every 24 hours), the environment evaluates whether the shipped quantity
meets the daily demand. A cost is imposed for any shortfall:

oD _ ) o X e, max (D[j,t] —DQ, 4,0) ift mod 24 =23,d = |4}]
¢ 0 otherwise,

where D[j, 23] is the daily non-zero demand for product j, and DQ); 4 is the quantity shipped.

Total Cost

C;otal — CiV + CtD

A.9.7 REWARD FUNCTION

The reward at time ¢ is defined as the negative of the production cost:

ducti .
[Ty otueo™ — — (production cost, )

The production cost is formally given by:

0 i A, () =0,

ducti t, =
production cost, {Cﬁxed + (Z]EJ Pth) : Cunit ' 6[ﬂ otherwise

where PQ);; is the production quantity of product j, and e[t] is the electricity price at time ¢. These
costs arise from the fixed cost Cleq, incurred if any production occurs and a variable cost, proportional
to the total production and electricity price at hour £.

A.9.8 EPISODE TERMINATION

The episode terminates when (¢ + 1) = H or (¢t + 1) = 24D, i.e., when the next starting hour is the
first hour following the final day.

B OTHER RESULTS

B.1 ADDITONAL ENVIRONMENTS AND VARIANTS

We consider results for three additional environments—ASUEnv, UNEnv-v1, and GTEP. Figure @]
presents the average reward and cost per training epoch, with shaded regions indicating one standard
deviation around the mean. Table|3|summarizes the evaluation results, averaged over 10 episodes, for
the additional environments. For the set of environments considered, the values in green correspond
to the evaluation reward and cost of the best-performing algorithms, while values in red indicate those
of the worst-performing algorithms. The optimal reward is calculated by solving an optimization
counterpart of the environment at each step. The strategy used to determine the algorithm with the best
and worst performance, as well as the criteria to segregate the environments based on performance,
remains the same as described in the main paper.
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Figure 10: Training curves of average reward and cost per episode across three additional environ-
ments and BlendingEnv variants with different strategies

B.1.1 DESCRIPTION OF ENVIRONMENTS

* GTEPEnv: This case study involves a five-region power system with two generators and
possible transmission lines between all region pairs over a 10-period planning horizon.
We train with 100 episodes per epoch. P30 shows a significant gap between training
and evaluation in both reward and cost. Notably, DDPGLag learns a policy that achieves
high rewards at the expense of significantly increased costs. To preserve clarity in visual
comparisons, we omit the training curve for DDPGLag in Figure[I0b] We see a significant
gap for training and evaluation costs in the P30 algorithm and for rewards in the P30,
FOCOPS, SACPID, and SACLag algorithms.

e UCEnv-vl: This unit commitment version models a multi-bus system with explicit power
flows, enabling realistic evaluation of policies where generation and demand locations
are critical. This example considers a multi-bus unit commitment power system with five
generators distributed across four buses, connected by five transmission lines. It operates
over a 24-hour horizon with hourly updates to demand forecasts, generator states, and
network power flows. A significant gap is observed for training and evaluation costs in the
SACPID and SACLag algorithms.

* ASUEnv: This example considers production scheduling in an air separation unit over a
one-week horizon, where the agent takes hourly steps to meet daily product demands. We
consider a planning horizon of 5 days, with each episode consisting of 168 steps, reflecting
the operation of the ASU over a week. We train using 60 episodes per epoch. A significant
gap is observed between the training and testing costs for CPO and TRPOLag.We see a
significant gap for training and evaluation costs in the CPO, DDPGLag,OnCRPO, and
TRPOLag algorithms.

B.1.2 DISCUSSION

For GTEPEnv and UCEnv-v1, we see that OnCRPO performs the best. However, for the ASUEnv, we
observe that CPO marginally outperforms ONCRPO, positioning it as the best algorithm in this setting.
DDPGLag sustains its poor performance for the additional environments as well. Furthermore, while
GTEPEnv and UCEnv-vl are trained to reasonable optimality, the evaluation costs for ASUEnv
remain high for all the algorithms, indicating the issues faced by current algorithms to get good
feasible solutions. This further underscores the persistent challenges inherent in such constrained
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settings and highlights the urgent need for more refined and robust approaches to safe reinforcement
learning in these domains.

Table 3: Evaluation results for 10 episodes

Optimal CPO DDPGLag
Environment Reward Reward Cost Reward Cost
GTEPEnv -267.7 -313 0 -19 689140
UCEnv-vl 264104  -319469 0 -575239 216
ASUEnv -6597.5 -7295.45 25563.34 -7743.56 13130.41
OnCRPO P30
Environment Reward Cost Reward Cost
GTEPEnv -298 0 -346 79.28
UCEnv-vl -313897 O -1035242 0
ASUEnv -7330.32  17706.08 -7427.55 12624.76
TRPOLag FOCOPS
Environment Reward Cost Reward Cost
GTEPEnv -352 0 -367 0
UCEnv-V1 -553465 4.21 -589754 0
ASUEnv -7337.64 16018.8 -741693 11747.68
SACPID SACLag
GTEPEnv  -403 10725.05 -475 600

UCEnv:V1 -390289  153.06 -414884 1959
ASUEnv -7870.69 16713.63 -8329.49 28864.44

B.2 CONSTRAINT-WISE VIOLATION ANALYSIS ACROSS SAFE-RL ALGORITHMS

In the following subsection we interpret the plots that report the mean episode-level constraint
breaches per epoch observed during training with eight safe-rl algorithms. To help the reader connect
each trend to its control philosophy, we first give a concise description of every algorithm and its
reward—cost balancing mechanism.

* Constrained Policy Optimization (CPO): At each update, CPO solves a small trust-region
quadratic program (QP) that maximizes expected return while ensuring the new policy
remains within a cumulative-cost constraint set. This guarantees monotonic improvement in
reward without violating the safety constraints.

* Trust-Region Policy Optimization with a Lagrange Multiplier (TRPOLag): TRPOLag
enhances standard Trust-Region Policy Optimization (TRPO) by introducing an on-policy
Lagrange multiplier, updated after each batch. This multiplier penalizes excessive costs
within the Kullback—Leibler trust region, balancing reward optimization and safety.

* On-Policy Constrained Reinforcement Policy Optimization (OnCRPO): OnCRPO al-
ternates between maximizing reward using a standard Proximal Policy Optimization (PPO)
objective when constraints are satisfied, and minimizing costs through a dedicated surrogate
objective when constraints are breached, thus explicitly balancing reward and safety.
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Penalty-based Proximal Policy Optimization (P30): P30 integrates an adaptive exterior
penalty into PPO’s clipped-surrogate objective, dynamically adjusting penalty strength based
on constraint violations. The penalty increases when cumulative cost exceeds its budget
and decreases otherwise, gradually guiding the policy towards feasibility while prioritizing
reward.

Deep Deterministic Policy Gradient with a Lagrange Multiplier (DDPGLag):
DDPGLag employs an off-policy deterministic actor—critic architecture, augmented with
stability enhancements from Twin Delayed Deep Deterministic Policy Gradients (TD3). It
concurrently learns a Lagrange multiplier, policy, and critic from replay-buffer data, effec-
tively balancing reward and constraint satisfaction through deterministic policy gradients.

Soft Actor—Critic with Lagrangian Penalty (SACLag): An off-policy actor—critic that
augments the Soft Actor—Critic (SAC) objective with a learned Lagrange multiplier, adapting
the penalty on expected cost online.

Soft Actor—Critic with PID Control (SACPID): Extends SAC with a propor-
tional—integral—derivative controller on cumulative cost, automatically tuning penalty
strength via PID updates to balance reward and safety.

First-Order Constrained Policy Optimization (FOCOPS): A trust-region method that
linearizes both reward and cost objectives and solves a first-order approximation via a closed-
form update, yielding a policy that enforces cost constraints with minimal computational
overhead.

B.2.1 RTNENV

Figure[IT]illustrates mean episode-level constraint violations per epoch for the RTNEnv. For inventory-
level constraints, projection-based algorithms—CPO, OnCRPO, and TRPOLag—consistently
reduce violations, converging swiftly to minimal violation levels. P30 achieves comparable compli-
ance more gradually, while DDPGLag consistently exhibits the highest residual violations. Both
SACLag and SACPID demonstrate strong reductions in inventory violations, reaching compliance
at rates comparable to projection-based methods, whereas FOCOPS shows slower improvement
and stabilizes with moderately higher residual violations. Equipment-usage violations are inherently
less frequent owing to the simpler nature of the constraints compared to inventory management; all
methods maintain near-baseline levels throughout training, with CPO, OnCRPO, TRPOLag, and the
SAC-based methods (SACLag, SACPID) achieving compliance earliest, followed slightly later by
P30, and with DDPGLag and FOCOPS maintaining modestly higher yet infrequent violation rates.

Number of violations: Inventory Violations Number of violations: Equipment Violation
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Figure 11: Average number of episode violations for different epochs for RTNEnv

B.2.2 STNENV

Figure [T2] presents mean episode-level constraint breaches per epoch for the STNEnv. Regarding
inventory-level safety, the projection-driven algorithms—CPO, OnCRPO, and TRPOLag—steadily
minimize violations, stabilizing at the lowest counts observed. P30 demonstrates a slower con-
vergence, while DDPGLag retains a significantly higher residual violation count. Both SACLag
and SACPID show strong reduction in inventory violations, with convergence patterns comparable
to projection-based methods, whereas FOCOPS achieves improvement but stabilizes at slightly
higher violation levels. Equipment-usage breaches are consistently low for all algorithms due to
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reasons similar to the RTN environment, with immediate practical compliance from CPO, OnCRPO,
TRPOLag, and the SAC-based methods (SACLag, SACPID), followed shortly thereafter by P30,
while DDPGLag and FOCOPS maintain modestly higher yet infrequent violation rates.
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Figure 12: Average number of episode violations for different epochs for STNEnv

B.2.3 UCENV

Single-bus system without network constraints (UCEnv-v0): Figure [[3]reports mean episode-
level constraint violations per epoch for the single-bus UCEnv problem, covering minimum up-time,
minimum down-time, and ramping-rate constraints. Projection-based algorithms—CPO, OnCRPO,
TRPOLag, and FOCOPS—rapidly reduce violations (in about 100 epochs), converging to the lowest
residual counts. P30 achieves compliance more gradually as its adaptive penalty strengthens, while
DDPGLag is the quickest to reduce violations (in less than 10 epochs) early on due to aggressive
Lagrangian penalty updates and off-policy learning but plateaus with ramp-up residual violations due
to higher variance and instability. In contrast, SAC-based methods, SACLag and SACPID, exhibit
considerably higher residual violation for the ramp-up/ramp-down constraints than other algorithms.
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Figure 13: Average number of episode violations for different epochs for UCEnv-v0

Multiple-bus system with network constraints (UCEnv-v1): Figure[T4]illustrates mean episode-
level breaches per epoch for the multi-bus UCEnv problem, incorporating minimum up-time, minimum
down-time, ramping-rate, and network feasibility constraints. The qualitative performance of the
algorithms remains the same as described for UCEnv-v0.
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Figure 14: Average number of episode violations for different epochs for UCEnv-v1

B.2.4 GTEPENV

Figure[T3]illustrates mean episode-level constraint violations per epoch for the generation and trans-
mission expansion planning task. The projection-based methods, CPO, OnCRPO, and TRPOLag,
rapidly reduce generator-bound violations while keeping demand violations low, highlighting their
effectiveness in per-update safety enforcement. P30 and FOCOPS achieve comparable compli-
ance more gradually, converging to a non-zero level of bound violations. In contrast, SACPID and
SACLag exhibit an initial reduction in generator-bound violations but persistently exceed the bounds
thereafter, though they maintain relatively few demand violations. Finally, DDPGLag sustains
non-zero bound violations and shows a persistent demand violation.
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Figure 15: Average number of episode violations for different epochs for GTEPEnv

B.2.5 BLENDINGENV

Figure [T6] shows the mean episode-level constraint violations per epoch during training for the
Blending environment. For inventory bound violations, CPO, TRPOLag, and OnCRPO rapidly
converge to zero violations. P30 and FOCOPS exhibits a gradual decline with minor oscillations
before stabilizing at a small but non-zero level. DDPGLag, SACPID and SACLag consistently
oscillates without clear convergence. In contrast, for the in-out rule violations, CPO, TRPOLag, and
OnCRPO show significant increases, stabilizing at substantial violation levels. P30 and FOCOPS
displays gradual increases with P30 showing pronounced occilations. DDPGLag maintains persistent
oscillations around a steady level. SACPID and SACLag maintain a steady level with very occasional
osccilations. Property violations slightly increase over time for P30, CPO, TRPOLag, OnCRPO
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and FOCOPS with minor fluctuations, whereas DDPGLag demonstrates clear oscillations with an
upward trend. In contrast, SACPID and SACLag osccilates around 0.
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Figure 16: Average number of episode violations for different epochs for BlendingEnv with prop
strategy

B.2.6 INVMGMTENV

Figure [I7] plots episode-level reordering-quantity bound violations per epoch in InvMgmtEnv across
several methods. InvMgmtEnv includes bounds constraints on reordering quantities, on-hand inven-
tory, pipeline inventory, backlog, and sales. The on-policy convex optimization method CPO and
primal method OnCRPO, along with the on-policy primal-dual method TRPOLag, reduce violations
rapidly and sustain low levels; the on-policy penalty function method P30 follows a similar path but
needs a few extra epochs to recover from early spikes. The off-policy primal-dual methods DDPGLag
and SACLag, the off-policy PID-based methods SACPID, and the on-policy convex optimization
method FOCOPS also trend downward over training and exhibit zero to near-zero violations. All
methods achieve near-zero violations for the on-hand inventory, pipeline inventory, sales, and backlog
bounds constraints.
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Figure 17: Average number of episode violations for different epochs for InvMgmtEnv

B.2.7 GRIDSTORAGEENV

Figure [I§]illustrates the mean episode-level violations per epoch for the GridStorageEnv, which
includes bounds constraints on generator power limits, battery charge rates, battery discharge
rates, load shedding, bus-angle bounds, battery state of charge (SOC), and the slack-bus angle.
The on-policy convex optimization method CPO, primal method OnCRPO, and primal-dual method
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TRPOLag rapidly mitigate violations and quickly stabilize compliance; the on-policy penalty function
method P30 converges more slowly, with temporary mid-training peaks before aligning with the
leading methods. Among the other methods, apart from the on-policy convex optimization method
FOCOPS, which in the initial stages shows an increasing trend in the number of violations, the
off-policy primal-dual methods DDPGLag and SACLag, along with the off-policy PID-based method
SACPID, remain consistently at (or near) zero across all violations. Violations for battery SOC
and slack-bus voltage angles remain consistently at zero across all methods, indicating complete
compliance from the outset.
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Figure 18: Average number of episode violations for different epochs for GridStorageEnv

B.2.8 SCHEDMAINTENV

Deterministic integrated scheduling and maintainence environemnt (SchedMaintEnv-v0):
Figure [T9] illustrates mean episode-level violations per epoch for the Integrated Scheduling &
Maintenance benchmark, covering constraints on maintenance-duration, maintenance-failure,
early-maintenance, ramping-in-maintenance, and demand-unsatisfaction. Projection-based meth-
0ds—CPO, OnCRPO, and TRPOLag—swiftly reduce violations across all constraints, establishing
stable and minimal breach levels. P30 follows a similar trend but exhibits transient spikes in vi-
olations for almost all constraints during mid-training, except for demand-unsatisfaction, where it
consistently fails to learn full compliance. For the other constraints, it eventually achieves violation
levels comparable to the projection-based algorithms. DDPGLag consistently displays higher resid-
ual violations, notably in duration and demand-unsatisfaction categories, highlighting variability from
its replay-buffer updates. Maintenance-failure violations remain consistently low for all methods.
Among the remaining methods, FOCOPS performs on par with P30. SACLag is only slightly better
than DDPGLag, but it persistently yields the highest rates of maintenance failures and unmet demand.
SACPID has perfomance similar to SACLag (overlapping in this case).
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Figure 19: Average number of episode violations for different epochs for SchedMaintEnv-v0
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Integrated scheduling and maintainence environemnt with stochasticity (SchedMaintEnv-
v1): Figure 20| illustrates the mean episode-level breaches per epoch for the stochastic variant
of the integrated scheduling and maintenance environment. The figure captures all maintenance-,
production-, and demand-related constraints, as in Figure [I9] The qualitative performance of the
algorithms remains consistent with that observed for SchedMaintEnv-vO0.
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Figure 20: Average number of episode violations for different epochs for SchedMaintEnv-v1

B.2.9 ASUENV

Figure 21 shows the mean episode-level constraint violations per epoch in the Air Separation Unit
environment, focusing on inventory limits and demand satisfaction. Projection-based methods—CPO,
OnCRPO, and TRPOLag—rapidly suppress inventory violations, converging to stable minimal
levels (approximately 9 episodes per epoch by around 170 epochs). P30 and FOCOPS exhibit
monotone declines but plateau with substantial residual violations (roughly 16—17) by the end of
training. Among off-policy methods, DDPGLag remains elevated (near 23) throughout, SACLag
is consistently the highest and flat (about 26-27), and SACPID holds very high counts (around 28)
until a late drop near epoch ~ 180, after which it stabilizes at roughly 18.

Demand violations emerge only in the latter half of training—after approximately 150-160
epochs—because the agent begins to encounter underproduction violations once it has learned
to avoid overproduction. Consequently, methods that tighten inventory most aggressively (CPO,
TRPOLag, OnCRPO) exhibit sub-unit average demand-violation rates with intermittent spikes,
whereas P30, FOCOPS, DDPGLag, SACLag, and SACPID remain near zero—an artifact of
maintaining slack inventories rather than superior constraint balancing. Overall, projection-based

60



methods best reconcile the inventory—demand trade-off; off-policy methods—especially SACLag
and DDPGLag—struggle to reduce inventory violations in ASUENV, and SACPID improves late
but does not match the leaders.
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Figure 21: Average number of episode violations for different epochs for ASUEnv

B.3 BENCHMARKING CLASSICAL RULE-BASED POLICIES IN INVMGMTENV

We evaluated two classical rule-based policies—(s, S) and (7, Q)—in InvMgmtEnv. Under an
(s,.5) policy, an order is placed whenever the inventory position falls to or below a reorder point
s, and the order raises the position to a target level S. Under an (r, Q) policy, a fixed lot @ is
ordered whenever the position falls to or below a threshold . We impose lower bounds s > sy,;, and
7 > Tmin on these triggers; with sp,;,, = 20 the (s, S) controller achieves a reward of 7,610.42, while
with 7, = 20 the (7, Q) controller attains 10,948.9. With the optimal reward being 11265.97493,;
(r, Q) lies within &~ 2.8% of the optimum, whereas (s, .S) is = 32% below. Relative to the learned
SafeRL policies reported for this environment (e.g., ONCRPO ~ 7,599, CPO ~ 7,303, TRPOLag
~ 7,198), the (s, .S) baseline is comparable to the best-performing RL result, and the (r, ()) baseline
exceeds all RL methods by roughly 40% —50%. In our 10-episode evaluation for InvMgmt Env
(Table[2)), SACLAG achieves a reward of —14,386.99 with cost 0, SACPID 5,555.74 with cost 0,
and FOCOPS —6,434.03 with cost 0; hence (7, ) improves upon SACPID by ~ 97% and (s, S)
exceeds SACPID by =~ 37%, while both rule-based policies obtain higher rewards than SACLAG
and FOCOPS.

B.4 COMPUTATIONAL TIME FOR TRAINING DIFFERENT ENVIRONMENTS WITH VARIOUS
ALGORITHMS

Table [ lists the wall-clock training time (hours) required by each algorithm on every environment.
All experiments were run on an AWS g4dn.xlarge instance—4 vCPUs, 16 GB RAM, and a
single NVIDIA T4 GPU.

Runtime trends across algorithms The projection—trust-region trio—TRPO-Lag, On-CRPO,
and CPO—shows virtually identical runtimes, reflecting their shared on-policy update pattern with
lightweight trust-region sub-problems. P30 matches this group closely, incurring only a modest
overhead for its adaptive penalty update. FOCOPS is also in this regime, with runtimes comparable to
the projection methods thanks to its focused update structure that avoids heavy critic—actor coupling.
By contrast, the off-policy DDPG-Lag is consistently the slowest: replay-buffer sampling, twin-
critic evaluation, and deterministic actor updates roughly double the wall-clock time relative to the
on-policy methods. SAC-Lag and SAC-PID exhibit similar off-policy behaviour, with entropy-
regularised objectives and adaptive dual updates that inflate runtime beyond DDPG-Lag in some
environments, though SAC-PID generally yields more stable trajectories at the cost of additional
computation. Overall, the results indicate that enforcing safety through on-policy projections or dual
updates delivers both strong constraint compliance and favourable computational efficiency, whereas
off-policy dual learning trades longer runtimes for greater sample reuse.
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Table 4: Wall-clock training time (hours) across environments and algorithms

(a) P30, DDPGLag, TRPOLag, OnCRPO, CPO

Environment P30 DDPGLag TRPOLag OnCRPO CPO

RTNEnv 0.13 0.26 0.12 0.12 0.12
STNEnv 0.13 0.26 0.13 0.13 0.13
UCEnv-v0 4.66 9.18 443 4.43 4.46
UCEnv-vl 4.58 3.71 4.44 4.44 4.43
GTEPEnv 0.33 1.00 0.31 0.31 0.32
BlendingEnv 1.20 3.62 1.16 1.18 1.23
InvMgmtEnv 0.93 2.60 0.82 0.83 0.88
GridStorageEnv 0.94 2.70 0.86 0.84 0.95
SchedMaintEnv-v0  0.57 1.70 0.56 0.56 0.58
SchedMaintEnv-vl  1.49 3.35 1.45 1.51 1.42
ASUEnv 2.38 8.80 2.42 2.39 2.42

(b) FOCOPS, SACLag, SACPID

Environment FOCOPS SACLag SACPID

RTNEnv 0.21 0.35 0.34
STNEnv 0.17 0.35 0.36
UCEnv-v0 3.71 7.71 7.52
UCEnv-v1 3.24 5.72 591
GTEPEnv 0.32 1.11 0.96
BlendingEnv 1.11 3.49 3.51
InvMgmtEnv 1.25 3.07 2.67
GridStorageEnv 1.03 2.60 2.50
SchedMaintEnv-v0 1.45 4.02 3.60
SchedMaintEnv-v1 1.19 2.94 2.89
ASUEnv 13.57 5.72 9.91

C COMPARISON WITH OTHER OPEN-SOURCE REPOSITORIES

Table 5: Comparison of Gym environments with constraint handling. “Mixed Space” refers to
presence of both discrete and continuous variables.

(a) Environment class, constraints, and application domains

Work Env. Class Constraint Handling Application Domain
OR Gym Gynasium Truncation, Reward Classical OR problems
SustainGym Gynasium Reward Penalties Sustainable Energy Systems
Supply Chain,
Truncation, Chemical Production,
Gynasium Reward Penalty, Network scheduling,
SafeOR Gym + CMDP wrapper Cost Power Systems

(b) Compeatibility, structural properties, and observation/action sizes

Compatible with Nonconvex Mixed state Obs / Action
Work SafeRL Algorithms constraints action space (mean, max)
OR Gym X X v (242,2501) / (57, 200)
SustainGym X X v (79, 150) / (33, 72)
SafeOR v v v (86, 4280) / (32, 272)

Gym
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Discussion. Table[5systematically evaluates four representative open-source reinforcement learning
environments that incorporate constraint management. We classify each framework by its API, en-
forcement mechanism (e.g. truncation, reward/cost penalties, or formal CMDP wrappers), application
areas, compatibility with SafeRL algorithm libraries, the dimensionality of observation and action
spaces, and support for nonconvex and mixed decision variables.

The key differences of our work compared with

1.

Constraint handling. OR-Gym and SustainGym mainly rely on simple truncation to
enforce basic constraints, such as bounds on state variables. More complex constraints are
handled indirectly by assigning negative rewards for violations. SafeOR-Gym uses a more
principled approach:
* For non-safety-critical constraints (e.g., delayed product delivery in a supply chain
problem), penalties are applied to the reward signal.
¢ For safety-critical or hard physical constraints (e.g., preventing negative inventory

levels, which are physically infeasible), SafeOR-Gym introduces explicit costs to guide
Safe RL algorithms to rigorously respect these constraints.

In contrast, the purely reward-based handling in other frameworks can lead to violations of
safety-critical constraints.

. Environment and algorithm compatibility. Both OR-Gym and SustainGym are imple-

mented in Gymnasium and are primarily compatible with standard RL algorithms (e.g.,
PPO, DDPG from Stable-Baselines), treating all problems as unconstrained Markov De-
cision Processes (MDPs). SafeOR-Gym extends Gymnasium with a Constrained MDP
(CMDP) wrapper, enabling compatibility with Safe RL algorithms such as those provided in
OmniSafe, which explicitly handle constraints.

. Type of constraints. SafeOR-Gym includes environments with nonlinear, nonconvex

constraints and more complex logical relationships between variables. SustainGym focuses
on linear and convex constraints, while OR-Gym environments are limited to relatively
simple linear constraints.

. Problem difficulty. While the problem dimensions (observation and action space sizes) are

of similar magnitude across the frameworks, SafeOR-Gym instances are significantly harder
to solve due to their more intricate and realistic constraint structures.

. Application domains. OR-Gym implements classical OR problems such as knapsack and

traveling salesman, where well-known greedy heuristics can often provide near-optimal
solutions without violating constraints. SafeOR-Gym focuses on more complex, realistic
problems where simple heuristics typically violate feasibility constraints. SustainGym
targets sustainable energy systems, whereas SafeOR-Gym spans a wider set of domains,
including supply chains, chemical production, scheduling, and power systems.
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