
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NAVIGATION WITH QPHIL: QUANTIZING PLANNER
FOR HIERARCHICAL IMPLICIT Q-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Reinforcement Learning (RL) has emerged as a powerful alternative to
imitation learning for behavior modeling in various domains, particularly in com-
plex navigation tasks. An existing challenge with Offline RL is the signal-to-noise
ratio, i.e. how to mitigate incorrect policy updates due to errors in value estimates.
Towards this, multiple works have demonstrated the advantage of hierarchical of-
fline RL methods, which decouples high-level path planning from low-level path
following. In this work, we present a novel hierarchical transformer-based ap-
proach leveraging a learned quantizer of the space. This quantization enables the
training of a simpler zone-conditioned low-level policy and simplifies planning,
which is reduced to discrete autoregressive prediction. Among other benefits,
zone-level reasoning in planning enables explicit trajectory stitching rather than
implicit stitching based on noisy value function estimates. By combining this
transformer-based planner with recent advancements in offline RL, our proposed
approach achieves state-of-the-art results in complex long-distance navigation en-
vironments.

1 INTRODUCTION

Navigation and locomotion in complex, embodied environments is a long-standing challenge within
Machine Learning (Kaelbling et al., 1996; Sutton & Barto, 2018). Operating non-trivial agents in
complex spaces is critical in a wide range of real-world applications, such as in robotics or in the
video game industry. A core difficulty of navigation lies in solving long-horizon tasks that require
intricate path planning (Hoang et al., 2021; Park et al., 2024). In the Reinforcement Learning (RL)
setting (Sutton & Barto, 2018), traditional online Goal-Conditioned deep Reinforcement Learning
(GCRL) methods often struggle with such long-horizon tasks because of the sparse nature of the
reward signal, leading to hard exploration problems. Offline GCRL circumvents this exploration
problem by leveraging large amounts of unlabeled and diverse demonstration data to learn policies
through passive learning (Prudencio et al., 2023). A core advantage of offline RL compared to
other forms of behavior extraction from datasets – for instance imitation learning – is the ability to
improve over suboptimal datasets, e.g. by learning state value functions to bias the learned policy
towards rewarding actions (Kostrikov et al., 2021). However, offline RL is not trivial to apply for
long-horizon goal-reaching tasks, which often provide sparse reward signals, leading to a noisy value
function which consequently hinders the performance of the policy. Part of this issue comes from
low ”signal-to-noise” ratio to learn the value function (Park et al., 2024). Because a suboptimal
action can be corrected quickly in subsequent steps of a trajectory, its impact on the real value
for faraway goals can be covered by the value prediction noise, which can lead to the learning of
suboptimal behaviors for the policy.

Hierarchical architectures have shown considerable advantages in goal-conditioned navigation to
solve such issues (Vezhnevets et al., 2017; Pertsch et al., 2021; Park et al., 2024). These approaches
effectively decompose the problem into two distinct components: high-level path planning and low-
level path following. Among these, Hierarchical Implicit Q-Learning (HIQL) (Park et al., 2024) has
recently emerged as the state-of-the-art method. HIQL leverages a hierarchical structure to learn
both a high-level policy for generating subgoals and a low-level policy for achieving these subgoals,
all within an offline reinforcement learning framework.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

g

s0

sk

Figure 1: QPHIL relies on learn-
ing discrete landmarks (zones) to re-
duce navigation to high-level land-
mark sequence generation and low-level
landmark-conditioned path-following.

Although introducing a hierarchical structure enhances
performance by improving the signal-to-noise ratio at
each level, it only partially alleviates the issue. For long-
distance tasks, the signal-to-noise ratio still degrades dur-
ing subgoal generation, which can result in a noisy high-
level policy and, consequently, reduced performance. In
this paper, we propose to shift the learning paradigm of
the high-policy towards discrete space planning. Towards
this, we first train a Vector Quantized Variational Autoen-
coder (VQ-VAE) (Van Den Oord et al., 2017) on the state-
space from which we extract its quantized representation,
namely leading to a clustering of the state space into what
we propose to refer to as landmarks. We ensure the tem-
poral consistency of the obtained landmarks through a
contrastive regularization of the VQ-VAE loss. Then, we
leverage a transformer architecture (Vaswani et al., 2017)
to extract a discrete high-level policy, enabling consistent
landmark-level planning in the discrete space representa-

tion (see Figure 1). Finally, we train a combination of a low-level landmark-conditioned policy and
a low-level goal conditioned policy to solve the subgoal and last-goal navigation tasks respectively.

Our main contribution is to introduce Quantizing Planner for Hierarchical Implicit Learning
(QPHIL), a novel approach that addresses long-range navigation by combining the strengths of
VQ-VAE, transformers, and offline reinforcement learning. We first evaluate QPHIL on the estab-
lished AntMaze navigation tasks Fu et al. (2020), then introduce a novel, more challenging variant,
AntMaze-Extreme, along with two associated datasets, better suited to study long-distance navi-
gation. In both settings, we demonstrate that QPHIL significantly outperforms prior offline goal-
conditioned RL methods, particularly in large-scale settings.

2 RELATED WORK

VQ-VAEs for reinforcement learning Vector Quantized Variational Autoencoders (Van
Den Oord et al., 2017) have demonstrated their utility in reinforcement learning., particularly for
offline setups. Jiang et al. (2022) and Luo et al. (2023) use a VQ-VAE to discretize continuous ac-
tion spaces, mitigating the curse of dimensionality. In contrast, QPHIL uses a VQ-VAE to quantize
states, simplifying waypoint generation in long-horizon tasks. These two approaches are comple-
mentary: action quantization focuses on simplifying policy search, while state quantization helps in
task decomposition such as in Hamed et al. (2024) where a VQ-VAE is used to define landmarks as
states like in QPHIL but without a contrastive loss and in the online setting. Within goal-conditioned
reinforcement learning, several works used VQ-VAE to encode observations into discrete (sub)goals.
Lee et al. (2024a) learn quantized goals to simplify curriculum learning. Islam et al. (2022) also use
quantization to map (sub)goals into discrete and factorized representations to efficiently handle novel
goals at test time. Both these works focus on online goal-conditioned reinforcement learning while
QPHIL tackles the offline learning setting. Kujanpää et al. (2023) also uses VQ-VAE to generate
discrete subgoals, but while they rely on a finite subgoal set derived from offline learning, QPHIL
identifies subgoals directly through the VQ-VAE. To the best of our knowledge, VQ-VAE has never
been applied for discrete planning in offline GCRL settings.

Hierarchical offline learning Leveraging a hierarchical structure to decompose and simplify se-
quential decision-making problems is a long-standing idea and subject of research within machine
learning (Schmidhuber, 1991; Sutton et al., 1999). Recently, multiple successful works renewed
the interest of the research community to these models, both for online (Vezhnevets et al., 2017;
Pertsch et al., 2021; Kim et al., 2021; Fang et al., 2022) and offline reinforcement learning (Nachum
et al., 2018b; Ajay et al., 2020; Rao et al., 2021; Rosete-Beas et al., 2023; Yang et al., 2023; Shin
& Kim, 2023). Among these, Hierarchical Implicit Q-Learning (HIQL) from Park et al. (2024) has
emerged as the state-of-the-art method for offline goal-conditioned RL. Most methods differ in how
they represent and use subgoals; for instance, Nachum et al. (2018a) compare different subgoal rep-
resentations, while Ajay et al. (2020) focus on detecting and combining primitive behaviors. While

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

all aforementioned works focus on continuous state representations, QPHIL leverages the advantage
of discrete state representations to simplify long-distance navigation.

Planning Hierarchical planning methods are a natural complement to RL. For instance, HIPS (Ku-
janpää et al., 2023) learns to segment trajectories, generating subgoals of varying lengths to facilitate
adaptive planning. HIPS-ε (Jiang et al., 2023; Kujanpää et al., 2024) introduces hybrid hierarchical
methods and offers completeness guarantees, but their method is only usable with a discrete state
space. Li et al. (2022) proposes a method combining a high-level planner, based on a VAE, with
a low-level offline RL policy. The VAE serves as the planner by leveraging the low-level policy’s
value function. QPHIL, on the other hand, utilizes a simpler subgoal planning approach directly tied
to a discrete state-space via VQ-VAE.

Transformers for (hierarchical) offline RL Transformers have recently found application in hi-
erarchical setups to solve RL problems. In Correia & Alexandre (2023), transformers are used for
hierarchical subgoal sampling, where a high-level transformer generates subgoals for a low-level
transformer responsible for action selection. Similarly, Badrinath et al. (2024) combine a Decision
Transformer (DT) from Chen et al. (2021) with a waypoint-generation network. Ma et al. (2024)
present a hierarchical transformer-based approach outperforming both aforementioned methods. Li
et al. (2022); Ma et al. (2024) are extensions of DT that allows stitching, a known issue with De-
cision Transformer (Fujimoto & Gu, 2021; Emmons et al., 2021; Kostrikov et al., 2021; Yamagata
et al., 2023; Xiao et al., 2023). Their approach, Goal-prompted Autotuned Decision Transformer
(G-ADT) (Ma et al., 2024), is able to efficiently integrate an offline RL learning scheme similar to
HIQL. G-ADT uses a low-level transformer and a simple high level subgoal policy, while we focus
on the opposite scenario: our transformer is used to generate a plan of subgoal, which are then fol-
lowed by a fully connected neural network. G-ADT uses an offline reinforcement learning objective
to train its high-level policy while we rely on a simpler imitation learning objective.

Sequence generation Lee et al. (2024b) explore sequence generation using tokens learned via
a VQ-VAE, much like QPHIL; but their work does not extend to reinforcement learning. In RL,
sequence models have been used for various components (Bakker, 2001; Heess et al., 2015; Chiappa
et al., 2017; Parisotto et al., 2020; Kumar et al., 2020). However, none of these approaches integrate
planning over a discrete representation, which is central to our method. Sequence generation also
plays a key role in offline RL, where it is helping to prevent out-of-distribution actions (Fujimoto
et al., 2019; Kumar et al., 2019; Ghasemipour et al., 2021). Trajectory Transformer (Janner et al.,
2021) completely treats offline RL as a sequence generation problem. They use a transformer to
perform planning using Beam-Search and an IQL-like value function. Contrary to QPHIL, they use
a simple dimension-wise uniform or quantile discretization.

Spatial zone learning and skill discovery Zone-based spatial navigation and skill discovery are
additional techniques that overlap with hierarchical RL and QPHIL. For instance in the context
of online RL, Kamienny et al. (2022) proposes to discover a set of ”easy-to-learn” short policies,
each corresponding to a given skill defined as an area of the state space, which can be eventually
composed for the task at hand. Using a VQ-VAE, Mazzaglia et al. (2022) define skills that are used
to influence exploration in online policies. In a closer context with a known state space, Gao et al.
(2023) segments space into zones and uses these segments to facilitate goal-reaching tasks, but their
method is restricted to vision environments. Similarly, Hausman et al. (2017) uses a multi-modal
imitation learning approach to discover and segment skills from unstructured demonstrations, which
is close to the discrete landmark generation in QPHIL. In skill decision transformer Sudhakaran &
Risi (2023), a transformer is used to predict actions from latent variables discovered by a VQ-VAE.
While their approach is close to QPHIL, it differs by not using contrastive loss and not planning
subgoals.

3 PRELIMINARIES

Offline Goal Conditioned Reinforcement Learning We frame our work in the context of offline
goal-conditioned Reinforcement Learning (offline GCRL), which involves training an agent to in-
teract with an environment to reach specific goals, without getting access to the environment itself
at train time. It is typically modeled as a Markov Decision Process (MDP) defined by a tuple

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(S,A, p, µ, r), a dataset of demonstration trajectories D and a given goal space G, where S is the
state space,A the action space, p(st+1|st, at) ∈ S×A → P(S) the transition dynamics, µ ∈ P(S)
the initial state distribution and r(st, g) ∈ S × G → R the goal-conditioned reward function given
the goal space G. In GCRL, the reward is sparse as r(s, g) = 1 only when s reaches g and 0 oth-
erwise. Hence, our objective is to leverage the dataset D composed of reward-free pre-recorded
trajectoires τ = (s0, a0, ..., sT−1, aT−1, sT) to learn the policy π(at|st, g) to reach given goals
g ∈ G, by maximizing the expected cumulative reward, or return, J(π), which can be expressed as:
J(π) = Eg∼dg

τ∼dπ

[∑T
t=0 γ

tr(st, g)
]
, where γ is a discount factor, dg represents the goal distribution

and dπ is the trajectory distribution defined by: dπ(τ, g) = µ(s0)
∏T

t=0 π(at|st, g)p(st+1|st, at)
and represents the trajectory distribution when the policy is used.

Hierarchical Implicit Q-Learning (HIQL) Because of the sparsity of the offline GCRL’s reward
signals, bad actions can be corrected by subsequent good actions, and good actions can be under-
mined by future bad actions in a trajectory. Hence, offline RL methods risk mislabeling bad actions
as good ones, and vice versa. This leads to the learning of a noisy goal-conditioned value function:
V̂ (st, g) = V ∗(st, g) +N(st, g) where V ∗ corresponds to the optimal value function and N corre-
sponds to a noise. As the ”signal-to-noise” ratio worsens for longer term goals, offline RL methods
such as IQL Kostrikov et al. (2021) struggle when the scale of the GCRL problem increases, leading
to noisy advantages estimates for which the noise overtakes the signal. To alleviate this issue, HIQL
(Park et al., 2024) first proposes to learn a noisy goal conditioned action-free value function, inspired
from IQL (Kostrikov et al., 2021):

LV (θV) = E(st,st+1,g)∼D

[
Lτ
2(r(st, g) + γVθ̂V

(st+1, g)− VθV (st, g))
]
, (1)

using an expectile loss Lτ
2(u) = |τ − 1(u < 0)|u2, τ ∈ [0.5, 1) on the temporal difference of

the value function, which aims at anticipating in-distribution sampling without querying the envi-
ronment. This loss is then used to learn two policies with advantage weighted regression (AWR):
πh(st+k|st, g) to generate subgoals on the path towards goal g and πl(at|st, g′), with g′ ∈ S a given
subgoal, to generate actions to reach the subgoals, in a hierarchical manner. With this division, each
policy profits from higher signal-to-noise ratios, as the low-policy only queries the value function
for nearby subgoals V (st+1, st+k) and the high policy queries the value function for more distant
goal V (st+k, g). More details about IQL and HIQL are availiable in the appendix A.

(a) Simpler high level planning (b) Smoother low level targets (c) Easier target conditioning

Figure 2: Motivations behind QPHIL (a) QPHIL aims to simplify the planning of the subgoals by
leveraging discrete tokens. (b) By doing so, QPHIL avoids the noisy high-frequency target subgoal
updates by updating the subgoal of the low-level policy after each landmark traversal only. (c) The
subgoal reaching tasks are less demanding in conditioning for the low policy as it corresponds to the
reaching of an entier subzone instead of a precise subgoal.

Quantizing Planner for Hierarchial Implicit Learning (QPHIL) If HIQL shows significant
improvements in offline GCRL problems compared to previous flat-policy methods, its performance
depends on the right choice of the subgoal step k. A high k would improve the high policy’s signal-
to-noise ratio by querying more diverse subgoals but at the cost of decreasing the signal-to-noise
ratio of the low policy. Conversely, a low k would improve the low policy’s signal-to-noise ratio by
querying values for nearby goals but at the cost of the diversity of the high subgoals. Hence, HIQL
might struggle for longer term goal reaching tasks as the low level performance imposes the choice
of a sufficiently low k, which leads to high frequency noisy high subgoal targets for the low policy

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to follow. QPHIL proposes to mitigate this issue by shifting the learning paradigm of the high policy
into planning in a discretized learned space representation (see Figure 2).

4 QUANTIZING PLANNER FOR HIERARCHICAL IMPLICIT LEARNING

In this paper, we propose a new hierarchical goal conditionned offline RL algorithm: Quantizing
Planner for Hierarchical Implicit Q-Learning (QPHIL). While current hierarchical methods rely
heavily on continuous waypoint predictions, we propose to consider discrete subgoals, allowing
to simplify the planning process. Instead of relying on precise coordinates, QPHIL identifies key
landmarks to guide trajectory planning, much like how a road trip is described by cities or highways
rather than specific geographic points. The algorithm detects these landmarks, creates landmark-
based sequences, and formulates policies to navigate between them, ultimately reaching the target
destination.

4.1 OVERALL DESIGN

QPHIL operates through four components: a state quantizer ϕ, which divides the state set into a finite
set of landmarks, a plan generator πplan, which acts as a high-level policy to generate a sequence
of landmarks to be reached given the final goal, and two low-level policy modules: πlandmark, which
targets state areas defined as landmarks, and πgoal, which targets a specific state goal.

s0g

Tokenizer

Transformer

ϕ(s0)ϕ(g)

Subgoal sequence

sk

Tokenizer

ϕ(sk)

ϕ(sk) = ϕ(g) ?

πgoal(a | sk, g)ϕ(sk) = ω?

Get next subgoal
πlandmark(a | sk, ω)

YesNo

Yes No

Start Trajectory

ω

Environment

a

Figure 3: Inference pipeline of QPHIL
(open-loop version, without replan-
ning). Subgoal tokens are consumed
from the sequence after each corre-
sponding landmark is reached.

The state quantizer ϕ : S → Ω, with Ω ≡ [[1, k]],
is used to map raw states into a set of k landmark in-
dexes (or tokens), which serve as the building blocks
for our planning strategy. These discrete representa-
tions are then processed by the plan generator, which as-
sembles them into a coherent sequence that outlines the
overall trajectory to be followed in the environment to
reach the requested goal g. Given any history of tokens
(ω0, · · · , ωs)s>0 and a targeted goal g ∈ G, the plan gen-
erator produces sequences of tokens (ωs+1, · · · , ωs+l)
auto-regressively until ωs+l = ω̇ (with ω̇ an ex-
tra end of sequence token that stops the generation),
following: πplan ((ωs+1, · · · , ωs+l) | ϕ(g), (ωi)

s
i=0) =∏l

t=1 π
plan

(
ωs+t | ϕ(g), (ωi)

s+l−1
i=0

)
. It is used from the

start token ω0 = ϕ(s0) of the episode to propose a se-
quence of landmarks to follow using πlandmark : A× S ×
Ω → [0, 1], before navigating through the final goal g
using πgoal : A × S × G → [0, 1]. Optionally, it could
also be used to re-plan after a given condition is reached
(e.g. every n steps or when the agent leaves its current
area), which is mostly useful for complex environments
with stochasticity.

Algorithm 1 (in appendix) presents the inference pseudo-
code of our QPHIL approach. For a given goal g and a
start state s0, the process first samples a new plan, which
corresponds to a sequence of landmarks to be reached se-
quentially before navigating towards g. Then, until the
first subgoal ω of this sequence is reached (which hap-
pens when ϕ(s) = ω), πlandmark is used while conditioned

on the current state and the sub-goal ω to sample actions to perform in the environment. When the
sub-goal is reached, it is removed from the list, and we move to the next one, and so on until the
list of sub-goals is empty. At that point,πgoal is used to navigate towards the requested goal g. A
graphical representation of the inference pipeline is available in Figure 3.

The remainder of this section presents our learning methodology for every component of our QPHIL
approach. Each of the following components are learned sequentially.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 TOKENIZATION

Figure 4: Tokenization example. Each
token has an associated color. The color
of each point in the background corre-
spond to the color of the associated to-
ken. It is noticeable that the tokens align
with the walls thanks to the contrastive
loss.

As defined in the previous section, the state quantizer ϕ
is used to map raw states into a set of k tokens. It is
composed of a state encoder e : S → Rd, which maps the
state space to a latent space of dimension d, and a learned
code-book z : Ω → Rd, which associates each token to
a continuous embedding. From these, ϕ is defined as:
ϕ(s) = argminω∈Ω ∆(e(s), z(ω)), with ∆ the euclidean
distance in the latent space.

As depicted in Figure 8, three losses are considered to
train these components. First, the VQ-VAE learns a
meaningful representation by considering a reconstruc-
tion loss, which ensures that states can be decoded from
tokens they are projected into:

Lrecon = Es∼D||f(z(ϕ(s)))− s||22,
where D is the dataset and f : Rd → S is a decoder net-
work trained together with the code-book of token em-
beddings.

As the gradient flow stops in the previous loss due to the discrete projection performed by ϕ, we
need to consider an additional commitment loss to learn the encoder parameters:

Lcommit = Es∼D||e(s)− sg(z(ϕ(s))||22 + β||sg(e(s))− z(ϕ(s))||22,
where sg is the stop-gradient operator. The first term of this loss aims at attracting encoder outputs
close to the code of the token states project into. As explained by authors of the VQ-VAE archi-
tecture (Van Den Oord et al., 2017), the embedding space grows arbitrarily if the token embedding
does not train as fast as the encoder parameters. The second term, weighted by a hyperparameter β,
aims to prevent this issue by forcing the encodings to commit to a code-book’s embedding.

To introduce dynamics of the environment in the representation learned, we consider a third con-
trastive loss that incentivize temporally close states to be assigned the same tokens, while temporally
distant states receive different tokens. To achieve this, we use the triplet margin loss (Balntas et al.,
2016) applied to our setting:

Lcontrastive = E st∼D
k∼[[−δ,δ]]

k′∼Z\[[−δ,δ]]

max {∆(e(st), e(st+k))−∆(e(st), e(st+k′)), 0} ,

where δ is the time window used to specify temporal closeness of states in demonstration trajectories.
This loss is of crucial importance in navigation, for instance in settings with thin walls, where two
states can be close in the input space while corresponding to very different situations.

The tokenizer loss, used in training is then a linear combination of the three previous losses:

Ltokenizer = αreconLrecon + αcommitLcommit + αcontrastiveLcontrastive.

4.3 SEQUENCE GENERATION

Once the tokenizer has been trained, each state from dataset trajectories can be discretized leading to
sequences of tokens. Temporal consistency induces sub-sequences of repeated tokens corresponding
to positions within a given region. By applying a simple post-processing step ηϕ(τ) that removes
consecutive repetitions of tokens in a trajectory τ , we obtain more concise sequences that succinctly
represent key zones to traverse in the correct order. For instance, a tokenized sequence such as “1 1
1 2 2 3 3 3 4 4” is simplified to “1 2 3 4”, reflecting the core structure of the trajectory. This process
is illustrated in Figure 9.

Then, the planner πplan is trained following a teacher forcing approach on trajectories from D, con-
sidering any future token of τ ∈ D as the associated training goal:

Lplan = −Eτ∼D Et<|τ |,
ϕ(τt) ̸=ϕ(τt+1)

E g∈G,
ϕ(g)∈ηϕτ>t

log πplan(ϕ(τt+1) | ϕ(g), ηϕ(τ≤t)),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

with |τ | the number of states in τ , τt the t-th state in τ , and τ≤t (resp. τ>t) the history (resp.
future) of τ at step t. We implement πplan using a transformer architecture (Vaswani et al., 2017)
hθ, where πplan(. | ϕ(g), ηϕ(τ≤t)) is defined for any ω ∈ Ω using a softmax on the outputs of
hθ(ϕ(g), η

ϕ(τ≤t)). While an alternative would be to consider a markov assumption stating that
πplan(. | ϕ(g), ηϕ(τ≤t)) ≈ πplan(. | ϕ(g), ϕ(st)), we claim that dependency on the full history of the
sequence is useful to anticipate the next token to be reached, as it can be leveraged to deduce the
precise location of the agent in large landmark areas (which is unknown during plan generation).

We note that this behavioral cloning way for training the planner could be complemented by an
offline RL finetuning, following a goal-conditionned IQL algorithm for instance. Rather, we pro-
pose to consider in our experiments a data augmentation process on top of our behavioral cloning
approach, which allowed us to obtain similar results, with greatly lower computational cost. Our
data augmentation process relies on the opportunity of accurate trajectory stiching that our quan-
tized space offers. Assuming that it is easy for our low-level policy πlandmark to reach, from any
state s ∈ S, any state s′ such that ϕ(s′) = ϕ(s), we propose to augment D with all possible
mix of trajectories that pass through the same landmark and own a similar future quantized state.
That is, ∀(τ, τ ′) ∈ D2, t ∈ [[0, |τ |]], t′ ∈ [[0, |τ ′|]], l ∈ [[t + 1, |τ |]], l′ ∈ [[t′ + 1, |τ ′|]], we have:
ϕ(st) = ϕ(s′t′)∧ ϕ(sl) = ϕ(s′l′) =⇒ ((si)

t
i=0, (s

′
i)

l′

i=t′+1) ∈ D ∧ ((s′i)
t′

i=0, (si)
l
i=t+1) ∈ D. This

technique is illustrated in Figure 10.

4.4 LOW-LEVEL POLICIES

As described above, two low-level policies πlandmark and πgoal have to be trained to perform actions in
the environment. Both of these policies are trained via IQL, whose principle is described in section
A. As πgoal works with initial (non tokenized) goals to allow final precise navigation in the final area
of the task, we consider a classical V network V goal trained using equation 7 on raw states and goals,
independently from all other components, from which the policy is extracted using AWR:

Lπgoal = E(st,st+1,g)∼D[exp(β · (V goal(st+1, g)− VθV (st, g))) log π
goal(st+1|st, g)] (2)

Our policy πlandmark uses the same principle, but replaces the distant goal g by sub-goals defined as
the next landmark to be reached from quantized trajectories in the buffer of training transitions. That
is, given any training trajectory τ = ((st, at, st+1, g))

|τ |−1
t=0 , we consider a sequence of relabelled

transitions τ̃ = ((st, at, st+1, next(τ, t))|τ |−1
t=0 , where next(τ, t) = ϕ

(
smin({l∈[[t+1,|τ |]]:ϕ(sl)̸=ϕ(st)})

)
corresponds to the next different subgoal in the sequence of quantized states (ϕ(st))

|τ |−1
t=0 of the

trajectory τ . V landmark is then trained on that set of relabelled transitions D̃. Then, the policy is
extracted similarly as for πgoal using equation 2 on D̃ rather than D, in order to obtain πlandmark via a
relabelled IQL from V landmark.

5 EXPERIMENTS

Our experiments aim to address the following questions:

1. Does QPHIL architecture enable efficient long-term navigation?

2. Can QPHIL handle sparse data scenarios using token-level stitching?

3. Does QPHIL still performs in diverse state-target initialization?

4. What is the impact of the contrastive loss used for landmark learning?

Additional results on the impact of re-plannification or the use of RL at the higher policy level are
given in appendix D.

5.1 EXPERIMENTAL SETUP

The following section provides details on environments, datasets and baselines used to study QPHIL.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Antmaze We measure QPHIL performance through a set of AntMaze environments of increasing
sizes, providing challenging long-term navigation problems. In AntMaze the agent controls an 8-
DoF ant-shaped robot. Observations consist in a 29-dimension state vector (e.g. positions, torso
coordinates and velocity, angles between leg parts). For original AntMaze environments we use
datasets provided in the D4RL library (Fu et al., 2020) as well as two additional datasets for even
larger mazes, namely Antmaze-Ultra provided by Jiang et al. (2022) and Antmaze-Extreme which
we created (Appendix C.2). For each maze type (medium, large, ultra and extreme), we train on two
types of datasets: ”play” and ”diverse”, each containing 1000 trajectories of 1000 steps. The ”play”
variant has been generated using hand-picked locations for the goal and starting positions while the
”diverse” variant has been generated using random goal and starting positions.

Baselines We compare QPHIL (open-loop planning version) to 8 previous methods ranging from
model-free behavior cloning and offline RL methods as well as model-based methods. For model-
free methods, we include in our baselines the flat Goal-Conditioned Behavior Cloning (GCBC)
(Ghosh et al., 2019) and the Hierarchical Goal-Conditioned Behavior Cloning (HGCBC) (Gupta
et al., 2019). For offline RL, we include a goal-conditioned variant of Implicit Q-Learning (GC-
IQL) (Kostrikov et al., 2021), a goal-conditioned variant of Policy-Guided Imitation (GC-POR) (Xu
et al., 2022) as well as Hierarchical Implicit Q-Learning (HIQL) (Park et al., 2024). For model-based
methods, we include Trajectory Transformer (TT) (Janner et al., 2021) which leverages a trans-
former architecture to model the entire flattened state-action sequence, Trajectory Autoencoding
Planner (TAP) (Jiang et al., 2022) which performs model-based planning over discrete latent actions
quantized by a VQ-VAE as well as Goal-prompted Autotuned Decision Transformer (G-ADT) (Ma
et al., 2024), which generates sequences of subgoals in continuous space. We also include results
from the very recent Planning Transformer (PT) method (Clinton & Lieck, 2024), which leverages
the use of a decision transformer as an agent, that consumes a sequence of imagined next states of
the agent (i.e., a plan) as input. As HIQL baselines and QPHIL ran on 8 seeded runs, results are
provided with the mean ± std format.

5.2 DOES QPHIL ARCHITECTURE ENABLE EFFICIENT LONG-TERM NAVIGATION ?

Table 1: Evaluating QPHIL on AntMaze environments. We see that QPHIL scales well with
the length of the navigation range, competing with SOTA performance on the smaller mazes and
improving significantly on the SOTA on the larger settings.

Dataset GCBC IQL G-ADT TAP TT PT HGCBC
HIQL

w/
repr.

HIQL
w/o
repr.

QPHIL
w/

aug.

QPHIL
w/o
aug.

medium
play 71.9±16 70.9±11 82±1.7 78.0 93.3 66.3±9.2 84.1±11 87.0±8.4 92.0±3.9 86.8±3.6

medium
diverse 67.3±10 63.5±15 83.4±1.7 85.0 100 85.4±2.1 76.6±8.9 86.8±4.6 89.9±3.5 90.8±1.8 87.8±2.3

large
play 23.1±3.5 56.5±14 71.0±1.3 74.0 66.7 64.7±14 86.1±7.5 81.2±6.6 82.25±6.4 88.0±5.5

large
diverse 20.2±9.1 50.7±19 65.4±4.9 82.0 60.0 82.3±5.8 63.9±10 88.2±5.3 87.3±3.7 80.25±3.3 80.5±7.4

ultra
play 20.7±9.7 29.8±12 22.0 20.0 38.2±18 39.2±15 56.0±12 64.5±6.8 61.5±6.2

ultra
diverse 14.4±9.7 21.6±15 26.0 33.3 34.9±7.1 39.4±21 52.9±17 52.6±8.7 61.8±3.7 70.3±6.9

We first analyze the performance in success rate of the different baselines on the state-based
AntMaze-{Medium,Large,Ultra} settings. As usual in D4RL Antmaze benchmarks (Park et al.,
2024), starting state and target goals are sampled near two reference points, forcing the agent to
walk across the entire maze.Figure 5 showcases examples of tokenizations obtained by our VQ-
VAE model. One can observe a tendency for learned clusters to decrease in size in the middle of all
mazes, which can be explained by the higher number of demonstration data in those areas.Table 1
shows the results of our experiment on the set of AntMaze map where we denote ”w/aug.” in the
case of stitching data augmentation and ”w/o aug” otherwise. Also, we remind that for HIQL, ”w/
repr.” means the use of reprensentations for subgoals and goals, in opposite of ”w/o repr.” that takes
raw values (see Park et al. (2024)). We see that our method is near the state-of-the art on smaller
maps, only beaten by TT on the AntMaze-Medium maps. QPHIL outperforms all other methods on
the larger maps, reaching 70% success-rate on AntMaze-ultra which is the best to our knowledge

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

on this benchmark, beating HIQL by at least 10% on average on top of having a lower standard
deviation.

(a) Antmaze Medium Diverse

0
1

2 3

4

5
6

7
8

9
10 11 1213 14 15

16 17

18
19

20 21

22

23
24

25 26

27
28 2930 31

(b) Antmaze Large Diverse

0 1 2 3 4 5 6 7 8

9
10

11
1213 14

15 1617
18

19
20 2122 23 24 2526

27 28 29

3031
32

33

34

35

36 3738
39

4041

42

43

44 45
46

47

(c) Antmaze Ultra Diverse

Figure 5: Example of tokenizations using antmaze environements. Each token has an associated
color. The color of each point in the background corresponds to the color of the associated token.

5.3 CAN QPHIL HANDLE SPARSE DATA SCENARIOS USING TOKEN-LEVEL STITCHING ?

To test QPHIL’s scaling ability in more difficult settings, we created a larger AntMaze environment
called AntMaze-Extreme (figure 6a), along with two datasets variants ”diverse” and ”play”. As
shown in Figure 6, in AntMaze-Extreme QPHIL attains up to 50% success rate, which is signif-
icantly above baseline results, e.g. HIQL scores 21.9% and 22.8% in diverse and play datasets,
respectively. While QPHIL remains competitive in short-term settings, our approach is especially
well suited for long-distance goal reaching navigation, in which the explicit stitching strategy af-
forded by our space discretization is crucial.

Medium
Large
Ultra

(a) AntMaze-Extreme topview.

(b) Performances on Antmaze-Extreme.

Method Diverse Play

GCBC 13.5 ±9.5 12.3 ±2.1

GC-IQL 6.5 ±6.1 8.0 ±4.8

HGCBC 18.5 ±6.9 14.5 ±7.0

HIQL w/repres. 13.7 ±5.6 14.2 ±7.4

HIQL w/o repres. 21.9 ±6.6 22.8 ±7.9

QPHIL w/aug. 39.5 ±13 50.0 ±6.9

QPHIL w/o aug. 12.5 ±8.5 40.5 ±9.4

Figure 6: Evaluating QPHIL on AntMaze-Extreme. (left) A top view of the AntMaze-Extreme
map with size comparison. (right) QPHIL is outperforming all tested benchmarks in larger settings.

5.4 WHAT IS THE IMPACT OF THE CONTRASTIVE LOSS USED FOR LANDMARK LEARNING ?

0

100

200

D
is

ta
nc

e Max
Min

0

100

200

D
is

ta
nc

e

(a) Performances on Antmaze-Extreme.

Method Diverse Play

QPHIL (non-cont) w/aug. 16.5 ±0.9 26.2 ±1.5

QPHIL (non-cont) w/o aug. 8.3 ±4.7 16.0 ±9.3

QPHIL w/aug. 39.5 ±13 50.0 ±6.9

QPHIL w/o aug. 12.5 ±8.5 40.5 ±9.4

Figure 7: Non-contrastive (top) and contrastive (bottom) intertoken distance histograms. We
see that the non-contrastive tokenization (green) results in higher extreme sized tokens while the
contrastive tokenization (blue) yields a soother repartition.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The use of a contrastive loss is essential in the context of high dimensional data, where the VQ-
VAE reconstruction loss is not enough to learn temporally consistent latent encodings (meaning that
temporally nearby states share spatially nearby encodings).

To assess the impact of the contrastive loss on the learned landmarks, we compute, for each token,
the minimum and maximum distances between states position and their corresponding codebook’s
decoded position. This is represented as histograms in Figure 7. While the unconstrained VQ-VAE
tends to allocate higher token density in areas of higher data density, we observe that the contrastive
loss results in a smoother repartition of the tokens, which in consequence increases the performance
of our model. This allows to stabilize conditonning in areas of high data density. Further analysis is
provided in appendix D.8.

5.5 DOES QPHIL STILL PERFORMS IN DIVERSE STATE-TARGET INITIALIZATIONS ?

Table 2: Performance in long-range
Random-AntMaze environments. QPHIL
is robust to random start and goal initializa-
tions, maintaining high success rates.

Dataset
HIQL

w/
repr.

HIQL
w/o
repr.

QPHIL
w/

aug.

QPHIL
w/o
aug.

r-ultra
play 47.8 ±6.7 52.8 ±4.9 62.5 ±4.2 62.8 ±7.5

r-ultra
diverse 45.8 ±6.2 49.6 ±4.7 58.0 ±6.6 62.2 ±4.8

r-extreme
play 19.0 ±3.3 21.3 ±5.9 41.5 ±7.2 34.8 ±7.2

r-extreme
diverse 23.8 ±5.8 23.1 ±3.7 45.0 ±4.5 31.2 ±6.9

Previous sections relied on evaluating performance
in AntMaze environments by classically sampling
initial states s0 and goals g from narrow distribu-
tions near two fixed points, requiring the agent to
cross the entire maze. Regarding QPHIL, given such
state and goal distributions do not span across multi-
ple learned landmarks, each sampled navigation sce-
nario leads to the similar landmark-based condition-
ing for our low-level policy, which is not convenient
to conduct a comprehensive performance evaluation.
Consequently, we designed Random-AntMaze eval-
uation environments, which cycles through a diverse
set of 50 couples of (s0, g) allowing a more rigorous
test of the generalization capabilities of our model.

We refer the reader to Figure 11 in appendix for visualizations.

Table 2 showcases the performance of HIQL and QPHIL on Random-AntMaze-Ultra and Random-
AntMaze-Extreme. In the random initialization setting QPHIL still performs significantly better
than HIQL, reaching up to 20% improvement in success rate, which is the previous best method to
our knowledge.

6 CONCLUSION

We proposed QPHIL, a hierarchical offline goal-conditioned reinforcement learning method that
leverages pre-recorded demonstration to learn a discrete representation and temporally consistent
representation of the state space. QPHIL utilizes those discrete state representations to plan sub-
goals in a discretized space and guide a low policy towards its final goal in a human-inspired man-
ner. QPHIL reaches as a result top performance in challenging long-term navigation benchmarks,
showing promising next steps for discretization and planning in continous offline RL settings.

Limitations and next directions QPHIL is a method aimed at navigation as it aims to solve tasks
where a low amount of landmarks is sufficient. An interesting direction would be to analyse how to
leverage such discrete representation in more intricate planning settings, such as multi-task robotics
scenarios. Also, while leveraging the planning capabilities of QPHIL for model predictive control
usecases could be an interesting follow up, enhancing the learning of the landmarks to adapt their
size or spread regrading the uncertainty or the importance that characterize each area also constitute
very promising next steps.

7 REPRODUCIBILITY STATEMENT

To ensure the reproductibility of our experiments, we provided all needed implementation details
and hyperparameter values in the appendix. All our training have been seeded with the same 8
seeds: 0, 1, 2, 3, 4, 6 and 7. Also, we provide QPHIL’s codebase along with the pretrained models
ready to be evaluated on our test environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline prim-
itive discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611,
2020.

Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer:
Reinforcement learning via supervised learning with intermediate targets. Advances in Neural
Information Processing Systems, 36, 2024.

Bram Bakker. Reinforcement learning with long short-term memory. Advances in neural informa-
tion processing systems, 14, 2001.

Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning local feature
descriptors with triplets and shallow convolutional neural networks. In Bmvc, volume 1, pp. 3,
2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. arXiv preprint arXiv:1704.02254, 2017.

Joseph Clinton and Robert Lieck. Planning transformer: Long-horizon offline reinforcement learn-
ing with planning tokens. arXiv preprint arXiv:2409.09513, 2024.

André Correia and Luı́s A. Alexandre. Hierarchical decision transformer. In IROS, pp. 1661–
1666, 2023. doi: 10.1109/IROS55552.2023.10342230. URL https://doi.org/10.1109/
IROS55552.2023.10342230.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to practice: Efficient online
fine-tuning by composing goals in latent space. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4076–4083. IEEE, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Chen Gao, Xingyu Peng, Mi Yan, He Wang, Lirong Yang, Haibing Ren, Hongsheng Li, and Si Liu.
Adaptive zone-aware hierarchical planner for vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14911–14920, 2023.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

11

https://doi.org/10.1109/IROS55552.2023.10342230
https://doi.org/10.1109/IROS55552.2023.10342230

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hany Hamed, Subin Kim, Dongyeong Kim, Jaesik Yoon, and Sungjin Ahn. Dr. strategy: Model-
based generalist agents with strategic dreaming. arXiv preprint arXiv:2402.18866, 2024.

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim. Multi-modal
imitation learning from unstructured demonstrations using generative adversarial nets. Advances
in neural information processing systems, 30, 2017.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances in neural
information processing systems, 34:26963–26975, 2021.

Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex Lamb, Kenji Kawaguchi, Xin Li, Romain
Laroche, Yoshua Bengio, and Remi Tachet Des Combes. Discrete factorial representations as
an abstraction for goal conditioned reinforcement learning. arXiv preprint arXiv:2211.00247,
2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. arXiv preprint
arXiv:2208.10291, 2022.

Zhengyao Jiang, Yingchen Xu, Nolan Wagener, Yicheng Luo, Michael Janner, Edward Grefenstette,
Tim Rocktäschel, and Yuandong Tian. H-gap: Humanoid control with a generalist planner. arXiv
preprint arXiv:2312.02682, 2023.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Pierre-Alexandre Kamienny, Jean Tarbouriech, Sylvain Lamprier, Alessandro Lazaric, and Ludovic
Denoyer. Direct then diffuse: Incremental unsupervised skill discovery for state covering and
goal reaching. In ICLR 2022, 2022.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in neural information processing systems, 34:28336–28349,
2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hierarchical imitation learning with vector
quantized models. In International Conference on Machine Learning, pp. 17896–17919. PMLR,
2023.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hierarchical imitation learning with vec-
tor quantized models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 17896–17919. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/kujanpaa23a.html.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hybrid search for efficient planning with com-
pleteness guarantees. Advances in Neural Information Processing Systems, 36, 2024.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Shakti Kumar, Jerrod Parker, and Panteha Naderian. Adaptive transformers in rl. arXiv preprint
arXiv:2004.03761, 2020.

12

https://proceedings.mlr.press/v202/kujanpaa23a.html
https://proceedings.mlr.press/v202/kujanpaa23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Seungjae Lee, Daesol Cho, Jonghae Park, and H Jin Kim. Cqm: curriculum reinforcement learning
with a quantized world model. Advances in Neural Information Processing Systems, 36, 2024a.

Yoonhyung Lee, Younhyung Chae, and Kyomin Jung. Leveraging vq-vae tokenization for autore-
gressive modeling of medical time series. Artificial Intelligence in Medicine, pp. 102925, 2024b.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022. doi: 10.1109/LRA.2022.3190100.

Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
quantized offline reinforcement learning for robotic skill learning. In Conference on Robot Learn-
ing, pp. 1348–1361. PMLR, 2023.

Yi Ma, Jianye HAO, Hebin Liang, and Chenjun Xiao. Rethinking decision transformer via hier-
archical reinforcement learning. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=WsM4TVsZpJ.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreographer:
Learning and adapting skills in imagination. arXiv preprint arXiv:2211.13350, 2022.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018a.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018b.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. arXiv preprint arXiv:2107.10253, 2021.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli,
Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, et al. Learning trans-
ferable motor skills with hierarchical latent mixture policies. arXiv preprint arXiv:2112.05062,
2021.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp.
1838–1849. PMLR, 2023.

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural
networks, pp. 967–972, 1991.

Wonchul Shin and Yusung Kim. Guide to control: Offline hierarchical reinforcement learning using
subgoal generation for long-horizon and sparse-reward tasks. In IJCAI, pp. 4217–4225, 2023.

13

https://openreview.net/forum?id=WsM4TVsZpJ
https://arxiv.org/abs/1912.01703

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shyam Sudhakaran and Sebastian Risi. Skill decision transformer. arXiv preprint arXiv:2301.13573,
2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press, 2
edition, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample softmax
for offline reinforcement learning. arXiv preprint arXiv:2302.14372, 2023.

Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach for
offline reinforcement learning. Advances in Neural Information Processing Systems, 35:4085–
4098, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Yiqin Yang, Hao Hu, Wenzhe Li, Siyuan Li, Jun Yang, Qianchuan Zhao, and Chongjie Zhang. Flow
to control: Offline reinforcement learning with lossless primitive discovery. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 10843–10851, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS ABOUT BASELINES

Implicit Q-Learning (IQL) The main issue of offline RL is the overestimation of the value of
out-of-distribution actions when minimizing the temporal difference error, leading the policy to
favor overestimated actions:

LTD = E(st,at,st+1)∼D

[
(r(st, at) + γ max

at+1

Qθ̂Q
(st+1, at+1)−QθQ(st, at))

2

]
(3)

with r(st, at) the task reward, θ̂Q the parameters of a target network. Without further interactions
with the environment, those over-estimations cannot be corrected. While other work propose to
regularize the loss function to avoid sampling out-of-distribution actions, Kostrikov et al. (2021)
proposes IQL which estimates the in-distribution maxQ operator with expectile regression. To do
so, it learns a state value function VθV (st) along a state-action value function QθQ(st, at):

LV (θV) = E(st,at)∼D

[
Lτ
2(Qθ̂Q

(st, at)− VθV (st))
]

(4)

LQ(θQ) = E(st,at,st+1)∼D[r(st, at) + γ VθV (st+1)−QθQ(st, at))
2] (5)

with Lτ
2(u) = |τ−1(u < 0)|u2, τ ∈ [0.5, 1) the expectile loss, which corresponds to an asymmetric

square loss which penalises positive values more than negative ones the more τ tends to 1, conse-
quently leading VθV (st) to lean towards max at+1∈A, st. πβ(at|st)>0 Qθ̂Q

(st, at) with πβ the datasets
behavior policy. The use of two different networks is justified to train the value function only on the
dataset action distribution without incorporating environment dynamics in the TD-error loss, which
avoids the overestimation induced by lucky transitions. Then, the trained VθV (st) and QθQ(st, at)
are used to compute advantages to extract a policy πθπ with advantage weighted regression (AWR):

Lπ(θπ) = −E(st,at)∼D

[
exp

(
β(Qθ̂Q

(st, at)− VθV (st)
)
log πθπ (at|st)

]
, (6)

with β ∈ (0,+∞] an inverse temperature. This corresponds to the cloning of the demonstrations
with a bias towards actions that present a higher Q-value.

Hierarchical Implicit Q-Learning (HIQL) In the offline GCRL setting, the rewards are sparse,
only giving signals for states where the goal is reached. Hence, as bad actions can be corrected by
good actions and good actions can be polluted by bad actions in the future of the trajectory, offline
RL methods are at risk of wrongly label bad actions as good one, and conversely good actions
as bad ones. This leads to the learning of a noisy goal-conditioned value function: V̂ (st, g) =
V ∗(st, g) + N(st, g) where V ∗ corresponds to the optimal value function and N corresponds to a
noise. As the ’signal-to-noise’ ratio worsens for longer term goals, offline RL methods such as IQL
struggle when the scale of the GCRL problem increases, leading to noisy advantages in IQL’s AWR
weights for which the noise overtakes the signal. To alleviate this issue, Park et al. (2024) propose
HIQL which leverages a learned noisy goal conditioned action-free value function inspired by IQL:

LV (θV) = E(st,st+1)∼D,g∼p(g|τ)

[
Lτ
2(r(st, g) + γVθ̂V

(st+1, g)− VθV (st, g))
]

(7)

by using it to train two policies, πh(st+k|st, g) to generate subgoals from the goal and πl(at|st, g)
to generate actions to reach the subgoals:

Lπh(θh) = E(st,st+k,g)[exp(β · (VθV (st+k, g)− VθV (st, g))) log π
h
θh
(st+k|st, g)] (8)

Lπl(θl) = E(st,at,st+1,st+k)[exp(β · (VθV (st+1, st+k)− VθV (st, st+k)) log π
l
θl
(at|st, st+k)] (9)

With this division, each policy benefits from higher signal-to-noise ratios as the low-policy only
queries the value function for nearby subgoals V (st+1, st+k) and the high policy queries the value
function for more diverse states leading to dissimilar values V (st+k, g). For high-dimensional states
like images, HIQL proposes to learn states and goal representations ϕ(s) to reduce the dimension,
allowing consequently easier subgoal generation. “w/ repr.” and “w/o repr.” refer to the variants of
the HIQL with and without representations respectively. With representations, the writing of the
policies become πh

θh
(ϕ(st+k)|st, g) and πlow

θl
(at|st, ϕ(st+k)). We display the two in our tables for

a better comparison.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Flat-policies ”signal-to-noise” issues The usual policy learning strategy in offline RL and as such
goal-conditioned offline RL is to learn the policy by weighting its updates by a function of is goal-
conditioned advantage. In the case of HIQL, low-level and high-level policy updates are performed
using a learned action-free advantage function: Â(st, st+1, g) = V̂ (st+1, g) − V̂ (st, g), where V̂
itself is a neural network learned through action-free IQL updates. As high values corresponds to
an expectation on the discounted cumulative sum of rewards, given a state and a goal, they indicate
a notion of temporal proximity in the goal-conditioned sparse rewards case. The advantage gives
consequently an indication of an approach of the goal g allowing the policy to learn directions.
However, as the goal moves away from the current state, the learned value function may provide
noisy estimates. We can write the learned value function in the from: V̂ (s, g) = V ∗(s, g)+N(s, g)
where V ∗(s, g) corresponds to the minimal (in-distribution) distance between s and g and N(s, g)
a random noise. Borrowing from the HIQL paper, we could assume N(s, g) = σzs,gV

∗(s, g),
where σ is the standard deviation and zs,g is the a random variable that follows a standard normal
distribution. This corresponds to a gaussian noise proportional to the temporal distance between s
and g. If we rewrite the advantage:

Â(st, st+1, g) = V̂ (st+1, g)− V̂ (st, g) (10)
= V ∗(st+1, g) + σzst+1,gV

∗(st+1, g)− V ∗(st, g) + σzst,gV
∗(st, g) (11)

= V ∗(st+1, g)− V ∗(st, g) + σzst+1,gV
∗(st+1, g)− σzst,gV

∗(st, g) (12)
d
= A∗(st+1, st, g)︸ ︷︷ ︸

signal

+ z
√
σ2
1V

∗(st+1, g)2 + σ2
2V

∗(st, g)2︸ ︷︷ ︸
noise

(13)

Hence, for faraway goals, the ”signal-to-noise” ratio (SNR) defined in this case by:

SNR(st+1, st, g) =
A∗(st, st+1, g)

N(st, st+1, g)
=

A∗(st, st+1, g)

z
√

σ2
1V

∗(st+1, g)2 + σ2
2V

∗(st, g)2

can be underwhelming, because the difference in advantage is too small compared to the noise
induced by the estimation. HIQL proposes to learn two different policies though the advantage
estimates of a single value function. A high policy πh(st+k|st, g) is trained to generate find subgoals
that maximizes V̂ (st+k, g) and a low policy πl(at|st, g) is trained to maximize V̂ (st+1, g). Hence,
we can write the SNR for each level:

SNRh(st, st+k, g) =
A∗(st, st+k, g)

N(st, st+k, g)
=

A∗(st, st+k, g)

z
√
σ2
1V

∗(st+k, g)2 + σ2
2V

∗(st, g)2

SNRl(st, st+1, st+k) =
A∗(st, st+1, st+k)

N(st, st+1, st+k)
=

A∗(st, st+1, st+k)

z
√
σ2
1V

∗(st+1, st+k)2 + σ2
2V

∗(st, st+k)2

The division in two policies allows to increase the high-policy SNR by comparing values from more
distance states (higher signal) while also increasing the low-policy SNR by decreasing the distance
between state and goal (lower noise). However, as the low-policy has to generate an instant action
information and as the high-policy has to be conditioned on the real goal, HIQL seeks to find the
optimal step k that balanced both SNRh and SNRl, which might still pose scaling issues for
longer-range settings. Consequently, in very long-range scenarios, the high policy πh(st+k|st, g)
may lead to noisy subgoal estimates, varying at each timestep and as such difficult for the low policy
to follow.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

Algorithm 1 Navigation with QPHIL

Require: Goal state g, Start state s0, State quantizer ϕ, Sequence generator πplan, Navigation poli-
cies πlandmark and πgoal

τ< = (ϕ(s0)); τ> = {}; s = s0;
while Not exceeding a max number of steps do

if First step (or if re-planning is required) then ▷ Generate future landmarks
τ> ← (ω1, ω2, . . . , ω̇) ∼ πplan(. | ϕ(g), τ<)

if τ>0 ! = ω̇ then a ∼ πlandmark(. | s, τ>0)
else a ∼ πgoal(. | s, g)
Emit a in the environment and observe new state s′

s← s′;
if τ>0 ! = ω̇ then

if ϕ(s) == τ>0 then ▷ Subgoal reached, go to the next one
τ<.append(τ>.pop(0));

else
if s is in g then ▷ Final goal reached

return;

B.1 IMPLEMENTATION AND TRAININGS

Our implementation of QPHIL is based on the Pytorch (Paszke et al. (2019)) machine learning
library. It is available in the supplementary materials as a .zip file and will be next available in a
public dedicated repository. We ran our experiments on a GPU cluster composed of Nvidia V100
GPUs, each training taking approximately 10 hours in the right conditions.

B.2 HYPER-PARAMETERS

We present bellow the architectural choices and the hyper-parameters used to produce the results
presented in Table 1 and Figure 6.

VQ-VAE For the VQ-VAE, we based our implementation on the https://github.com/
lucidrains/vector-quantize-pytorch.git repository. We utilize for all AntMaze
variants as the encoder and the decoder a simple 2-layer MLP with ReLU activations and hidden
size of 16 and latent dimension of 8. For antmaze, we add a gaussian noise to the input positions
and we normalize the positions before feeding them to the encoder. Also, we vary the number of
encodings in the codebook as the map grows. We provide bellow the complete list of used hyper-
parameters in Table 3. Unless specified, the VQ-VAE hyper-parameters are the defaults ones from
the initial library’s implementation.

Transformer For the transformer, we used as described an encoder-decoder architecture inspired
by the paper Vaswani et al. (2017) provided by the torch.nn library. We use a max sequence length
of size 128, an embedding dimension of 128, a feed-forward dimension of 128, 4 layers of 4 heads
and a dropout of 0.2. We train our model with 250 epochs when we apply stitching and 2500 epochs
otherwise. We perform validation computation with a 0.95 dataset split and perform sampling with
a temperature of 0.9. We optimize our model using the Adam optimizer with a learning rate of 1e-5.
All of those results are also presented in Table 4 bellow.

Low subgoal policy For the low subgoal policy and its value function, we adapt the policy pro-
posed by HIQL. For the value function, we use a MLP policy of 3 layers with hidden size of 512
and GeLU activations. We apply layer normalization for each layers and initialize the weights with
a variance scaling initialization of scale 1. No dropout is used for the value function. For the pol-
icy, we use a two layer MLP with hidden size of 256 and ReLU activations. We don’t apply layer
norm and initialize the parameters though a variance scaling initialization of scale 0.01. Our policy

17

https://github.com/lucidrains/vector-quantize-pytorch.git
https://github.com/lucidrains/vector-quantize-pytorch.git

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: VQ-VAE hyper-parameters

Hyper-parameter Value
Epochs 1000
Batch size 16384
Contrastive coef 2e1
Commit coef 1e3
Reconstruction coef 1e5
Norm coef [22.5,22.5] (medium), [40,30] (large)

[55,40] (ultra), [90,50] (extreme)
Noise standard deviation 2.0
Quantizer window 100
Latent dim 8
Encoder and decoder hidden dims 16
Codebook size 24 (medium), 32 (large), 48 (ultra), 96 (extreme)
Learning rate 3e-4

Table 4: Transformer hyper-parameters

Hyper-parameter Value
Epochs 250 (stitching), 2500 (no stitching)
Batch size 64
Validation split 0.95
Max sequence length 128
Embedding dim 128
Num layers 4
Num heads 4
Dropout 0.2
Sampling temperature 0.9
Learning rate 1e-5

outputs the mean and standard deviation of an independent normal distribution. We clamp the log
std of the output between -5 and 2. We train both the value function and the policy at the same
time, performing 1e6 gradient steps with a batch size of 1024. For the IQL parameters, β = 3.0,
the expectile τ = 0.9, the polyak coefficient is 0.005 and the discount factor γ = 0.995. We clip
the AWR weights to 100. Also, we sample the next token with a probability of 0.8 and the current
token with probability 0.2. The targets updates are performed at each gradient step. We summarize
bellow in Table 5 the given hyper-parameters:

Table 5: Low policy and low value hyper-parameters

Hyper-parameter Value
Gradient steps 1e6
MLP num layers 3 (value function), 2 (policy)
MLP hidden sizes 512 (value function), 256 (policy)
Activations GeLU (value function), ReLU (policy)
Layer normalization True (value function), False (policy)
Variance scaling init scale 1 (value function), 0.01 (policy)
Policy log std min and max -5 and 2
Batch size 1024
β 3.0
Expectile τ 0.9
Polyak coef 0.005
Discount factor γ 0.995
Clip score 100
pfuture 0.8
pcurrent 0.2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Low goal policy For the low goal policy, we trained our GC-IQL implementation in Pytorch
with GC-IQL’s hyper-parameters taken the HIQL paper: (β, τ, γ) = (0.99, 3, 0.9) for the smaller
mazes (AntMaze-{Medium-Large}) and (β, τ, γ) = (0.995, 1, 0.7) for the larger mazes (AntMaze-
{Ultra,Extreme}).

Baselines For all the AntMaze environment except for the Extreme and Random variants, the re-
ported results are the ones provided in the HIQL paper. For the extreme variant, we performed a grid
search on the official HIQL implementation with β ∈ {1, 3, 10}, τ ∈ {0.7, 0.9}, γ ∈ {0.99, 0.995}
and k ∈ {25, 50, 75, 100} across 4 seeds (0, 1, 2, 3). We found that for extreme the best hyper-
parameter set was: (β, τ, γ, k) = (10, 0.7, 0.995, 100) for HIQL. We used this set for the training
of HIQL on the AntMaze-Extreme variants and used (β, τ, γ) = (0.995, 1, 0.7) for GC-IQL. For
GCBC, we launched or trainings with the same hyper-parameters as ultra from the HIQL paper.
For HGCBC, we performed an hyper-parameter search on k ∈ {25, 50, 75, 100} across 8 seeds and
found no significantly better set, so we took 100 which is the same as HIQL.

B.3 DATA CLEANING

Instability in some trajectories of the dataset or an indecisive tokenizer can lead to wobbliness in
sequences of the dataset. For instance, successive states that are close to two tokens could lead to
alternating tokens in the sequence. While this gives information, it would make training harder for
the sequence generator. To correct this, if a state has already been seen during the last for steps, it is
not taken into account. Cycles can appear in sequences, especially with data augmentation. Cycles
in the dataset create two problems: the model would learn to generate cycles which leads to indefinite
repetitions of cycles at inference; and cycles create longer episodes that tends to reduce the overall
performance of the model. To correct this, we remove cycles from the dataset. Finally, the finite
number of tokens leads to repeated sequences, a problem that is exacerbated by data augmentation.
To prevent the model from learning to repeat the same sequences, we remove repeated sequences
from the dataset. This is efficiently implemented using a hash table.

Algorithm 2 Sequence Cleanup: Removing Wobbly Tokens, Cycles, and Repeated Sequences

Require: Dataset of tokenized sequences D = {Si}Ni=1, where each Si = {zi1, zi2, . . . , ziTi
}

Ensure: Cleaned dataset Dclean
Initialize cleaned dataset Dclean ← ∅
Initialize a hash table H to store unique sequences
for each sequence Si in D do

Initialize Stemp ← ∅ ▷ Temporary sequence for filtering tokens
Initialize history history← ∅ ▷ Track recent tokens to prevent wobbliness
for each token zit in sequence Si do

if zit has not been seen in the last 4 steps then
Append zit to Stemp

Update history to include zit
Remove Cycles: Detect and remove any cycles in Stemp
Initialize an empty set visited
for each token zit in Stemp do

if zit is in visited then
Truncate Stemp up to the first occurrence of zit to remove the cycle
break

else
Add zit to visited

Remove Repeated Sequences:
if Stemp is not in the hash table H then

Add Stemp to the cleaned dataset Dclean
Insert Stemp into the hash table H

return Cleaned dataset Dclean

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.4 TOKENIZATION PIPELINE

State

Sampling close and far (temporally) states

Sample Positive SampleNegative Sample

Encoder

Latent

Decoder

z1 z2 · · · zK

Token sample Token positiveToken negative

Commitment loss

Contrastive loss

Reconstructive loss

Figure 8: Pipeline used to learn the tokenization.

B.5 TOKEN SEQUENCE COMPRESSION

0 1 2 3 4 5 6 7 8

9
10

11
1213 14

15 1617
18

19
20 2122 23 24 2526

27 28 29

3031
32

33

34

35

36 3738
39

4041

42

43

44 45
46

47

(a) A trajectory.

0 1 2 3 4 5 6 7 8

9
10

11
1213 14

15 1617
18

19
20 2122 23 24 2526

27 28 29

3031
32

33

34

35

36 3738
39

4041

42

43

44 45
46

47

(b) Its compressed sequence.

Figure 9: Sequence compression process. Sequences of tokens are simplified by removing repeti-
tions of the same token, giving a minimal representation of sequences in terms of token.

B.6 TRAJECTORY STITCHING

(a) Trajectories from the dataset (b) Stitched trajectory

Figure 10: Illustration of the data augmentation process.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C DETAILS ABOUT ENVIRONMENTS AND DATASET

C.1 RANDOM-ANTMAZE VISUALISATIONS

To further test the capabilities of our planner, we tested our approach on a new version of the
Antmaze environments that include sampling circularly from a finite set of 50 random (s0, g) posi-
tions. We show bellow the (s0, g) distributions along with associated sampled planned trajectories
of our transformer for the Antmaze and Random-Antmaze variants of the environments.

Antmaze-Medium

Antmaze-Large

Antmaze-Ultra

Antmaze-Extreme

Figure 11: Initializations comparisions between AntMaze and Random-AntMaze. (left) Plots of
50 sampled starting positions s0 (in blue) and target goals g (in orange) for AntMaze and Random-
Antmaze. We see that Random-AntMaze has a broader s0, g distribution and as such is a better fit
for a comprehensive evaluation of navigation tasks. (left) Plots of 50 sampled planing paths with a
color gradient indicating the order in sequence (yellow to blue). The high policy subgoals exhibit
higher diversity in the Random-AntMaze variations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 ANTMAZE-EXTREME DATASETS

AntMaze is a very popular benchmark in offline reinforcement learning, and it is part of the D4RL Fu
et al. (2020) dataset suite, interfaced through the Gym library Brockman et al. (2016). It uses the
Mujoco physics engine Todorov et al. (2012) for its simulation.

Figure 12: Maze of Antmaze ultra

The antmaze environment consist of a maze-like struc-
ture in which a simulated ant agent must navigate from
a starting position to a goal position. Contrary to what
one might expect, the agent is not controlled by sim-
ple directional commands. Instead, the ant is controlled
through an 8-dimensional continuous action space. Due
to the complex dynamics of the ant and the intricate
structure of the maze, this environment poses a signifi-
cant challenge for both exploration and planning. Each
dimension of the action space corresponds to a torque
applied to one of the ant’s joints. Values in the ac-
tion space are bounded between -1 and 1 and are in
Nm. Hence, A = [−1, 1]9. The observation space is a
29-dimensional continuous space corresponding to the
cartesian product of the x,y ant coordinates and the ant’s
configuration space Sant. This space is unbounded in

all directions: Sant = R27. The first dimension is the height in meter of the torso. The four fol-
lowing dimensions correspond to respectively the x, y, z and w orientation in radian of the torso.
The height next dimensions are the angles between different links, in radian. Then, x, y and z ve-
locities in m.s−1 followed by their respective angular velocities and angular velocities of all links,
in rad.s−1. The goal space is a subspace of R2: goals are given in x, y coordinates. The reward is
sparse: it is equal to 0 until the ant has reach the goal, where it is equal to 1. Hence,R = {0, 1}.

Figure 13: Ant

There are three variations of this environment: medium, large and ultra; each
one consisting of a different maze structure. The ultra variant is not part of the
original dataset and has been introduced in Jiang et al. (2022). Each maze has
a different datasets, each one composed of 1000 trajectories of 1000 steps, for
a total of 106 steps. D4RL provides two variations datasets per: “play” and
“diverse”. The former is generated using hand-picked locations for the goal
and the starting position whereas the latter is generated using a random goal
position and starting position for each trajectory.

The extreme maze was designed following the same principles as the original maps. Its surface
area is approximately 166% larger than antmaze ultra and three times the size of antmaze large.
This new map is a direct extension of the original implementation, and both the implementation and
the datasets are provided. A comparison is available in Figure 7a. The two provided datasets are
“play” and “diverse”, both collected using the same methods as for the smaller maps. The maze is
structured as a grid, where trajectories are generated on the grid, and a trained policy follows these
paths to gather data.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

This sections contains additional experiments assessing the following questions:

1. Does reinforcement learning matter for the high-policy in antmaze ?
2. What is the impact of going from continuous to discrete planning ?
3. What about replanning and a closed loop format ?
4. What is the impact of the different losses when training the quantizer ?
5. How many more trajectories are generated by data augmentation ?
6. How does the coverage of the dataset (in the state space) broadly impact both the learning

of the VQ-VAE and the policy ?
7. Could we use a uniform discretization of the antmaze maps ?
8. What is the impact of the contrastive loss used for landmark learning ?

D.1 DOES RL MATTER FOR THE HIGH-POLICY IN ANTMAZE ?

As we use imitation learning in the our high-level policy, we tested the performance of HIQL with
a behavior cloning high level policy to look the potential impact of losing the RL weighting. As
such, we tested HIQL with a classical Behavioral Cloning learning of the high level policy for
the AntMaze-Ultra variants. We obtained the results provided in Table 6. We see no significant
difference in performance between the two approaches, meaning that RL in high levels does not
necessarily improve performance on AntMaze settings.

Table 6: Comparison of BC+IQL and HIQL. We see that both methods perform without signi-
ficative difference.

Dataset
BC+IQL

w/
repr.

BC+IQL
w/o
repr.

HIQL
w/

repr.

HIQL
w/o
repr.

r-ultra
play 47.4 ±15 43.2 ±19 39.2 ±15 56.0 ±12

r-ultra
diverse 50.8 ±11 51.4 ±17 52.9 ±17 52.6 ±8.7

D.2 WHAT IS THE IMPACT OF GOING FROM CONTINUOUS TO DISCRETE PLANNING ?

Planning continuous subgoals As stated in the introduction (section 1), offline reinforcement
learning methods struggle for long-distance tasks even with added hierarchy levels as the signal-to-
noise ratio still degrades during subgoal generation, which can result in a noisy high-level policy and,
consequently, reduced performance. To test the performance of the planning in a continuous space,
as simple approach is to consider an ablated HIQL which uses behavioral cloning rather than offline
reinforcement learning to learn a high-level policy (used to plan high-level goals), i.e. BC+IQL from
appendix section D.1. As such, we can reuse Table 6 results and produce the comparative Table 7:

Table 7: Comparison of BC+IQL and QPHIL. Discrete planning outperform continous planning
and the Antmaze-Ultra datasets.

Dataset
BC+IQL

w/
repr.

BC+IQL
w/o
repr.

QPHIL
w/

aug.

QPHIL
w/o
aug.

ultra
play 47.4 ±15 43.2 ±19 64.5 ±6.8 61.5 ±6.2

ultra
diverse 50.8 ±11 51.4 ±17 61.8 ±3.7 70.3 ±6.9

QPHIL displays better performance than BC+IQL and HIQL, assessing the benefits of using discrete
planning for longer range navigation scenarios.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Codebook size impact As another way to assess the importance of using a finite (and small) set
of discrete landmarks, We conducted an experiment to assess the impact of the codebook size on the
overall performance on antmaze-ultra-diverse-v0, shown in Table 10:

Table 8: Comparison of BC+IQL and QPHIL. Discrete planning outperform continous planning
and the Antmaze-Ultra datasets.

Codebook size Number of used tokens Performance of policy
1 1 (100 % used) 0
8 8 (100 % used) 6.0

24 24 (100 % used) 52.0
48 48 (100 % used) 86.1
96 96 (100 % used) 72.0
256 57 (22 % used) 88.0

1024 95 (9 % used) 88.0
2048 146 (7 % used) 82.0

The first column corresponds to the number of available codebook vectors of the VQ-VAE quan-
tizer. The second column corresponds to the number of used codebook vectors. We consider that
a codebook vector is used if there exists a state that projects its encoding on it and that the set of
states whose encodings are projected on the same codebook vector corresponds to a landmark. We
observe that after a given threshold on the number of available codebook vectors, their use per-
centage decreases, i.e. the quantizer do not benefit from additional codebooks to achieve a good
quantization. The performance of the method appears to saturate after the threshold of 48 tokens.
Regarding the antmaze ultra map, this codebook size corresponds to a good trade-off ensuring an
accurate “signal-to-noise” ratio while stabilizing high-level commands.

D.3 WHAT ABOUT REPLANNING AND A CLOSED LOOP FORMAT ?

QPHIL’s high policy allows full planning in an open-loop manner and shows great performance by
doing so. In the experiments reported in the main body of this paper, we considered this open-loop
version (as presented in figure 3), that plans the sequence of subgoals at the start of the episode and
doesn’t perform any further replanning then. The tokens from the initial plan are consumed each
after the other once they have been reached. However, if the low policy makes a mistake and goes
into an unexpected landmark, the initial can become obsolete, more optimal paths could be consider.
Moreover, it might let the agent into an out-of-distribution situation for the low level policy, target-
ing a landmark never seen for that situation during training. Then, one might wonder if replanning
a new path from this new token in a closed-loop manner would help the policy to perform better.
As such, we tested several replanning strategies and analyzed their impact on the success rate of
the agent. We tested on the AntMaze-Extreme variants the impact of replanning when the obtained
token is different from the next planned subgoal. To replan, we sample a given number of plans with
our sequence generator πplan, and finally select the shortest one among those successfully reach-
ing the goal area. We see in table 9 that re-planning at out-of-path situations doesn’t significantly
impact the overall performance of our models in the AntMaze-Extreme variants. Though, some
improvement is still observed with the best from 10-samples version (especially for extreme-play).
More advanced re-replanning strategies are left for future work (e.g., using informed Beam-Search
or MCTS decoding strategies), but this result is promising for the ability of QPHIL to deal with
more complex environments (with some distribution shifts of the dynamics or with stochasticity for
instance, where re-planning could look as crucial).

Table 9: QPHIL with re-planning.

Dataset QPHIL
1-sample

QPHIL
10-samples

extreme
play 35.5 ±7.8 44.3 ±16

extreme
diverse 38.5 ±8.9 50.3 ±9.4

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.4 WHAT IS THE IMPACT OF THE DIFFERENT LOSSES WHEN TRAINING THE QUANTIZER ?

In QPHIL, the VQ-VAE quantizer is learned using a linear composition of three losses: the commit
loss, the contrastive loss, and the reconstruction loss, which all have an associated coefficient hyper-
parameter to be tuned. In our experiments, we used the same set of coefficients for each maze shape,
which we found through a preliminary hyperparameter search to be robust across the diversity of
maze sizes we considered. In the following, we analyze the impact of the different coefficients on
the quality of the discretization.

0 1 2 3 4 5
6

7 8
9 10

11
1213

14

15
16 17 1819 20

21 2223
24

25
26 272829

3031 32 33

34 35 36 3738 39
40 41

4243 44
45 4647

0
1 2 3 4

5
6 7

8
910 11 12

13
14

1516 17

1819 20 2122 23
24

25 26

27 28
29 30 3132

3334 35 36

3738 3940 41 42

434445
4647

0 1 2 3 4 5 6

7 89
1011 12

13
14

15
16 17

18 19 20
21 22 23

24 25 26

27 282930 3132
3334 35 36

37 38 3940 41 42

434445
4647

0

1

2

3 4

5 6
78

9

10

11
12

13
14 15

16 17

Figure 14: Commit coefficient impact. From left to right αcommit ∈ {0, 1e1, 1e3, 1e6}, αcontrastive =
2e1, αrecon = 1e5. We see that a low commit coefficient leads to varying sized landmarks, while
high commit loss diminishes the number of landmarks.

Commit loss The commit loss serves the purpose of maintaining a vicinity between the continuous
encodings and the elements of the codebook in the latent space. A zero or low commit loss creates a
poor repartition of the continuous representations with regard to the codebook. This creates varying
sized areas, where some are too small and some too big (e.g. figure 14, leftmost map). On the other
hand, a high commit loss will force the encoder to match the codebook vectors too rigidly. This
leads to information loss as the encoder might struggle to represent subtle variations in the input.
Also, this increases the amount of dead codebook vectors which consequently reduces the amount
of used tokens for discretization (e.g. figure 14, rightmost map).

Figure 15: Contrastive coefficient impact with reconstruction loss With αcommit =
1e3, αcontrastive ∈ {0, 2, 2e1, 2e5}, αrecon = 1e5. We see that a low contrastive coefficient leads
to multiple piece landmarks, while high values of contrastive seem to fix this issue.

Figure 16: Contrastive coefficient impact without reconstruction loss With αcommit =
1e3, αcontrastive ∈ {0, 2, 2e1, 2e5}, αrecon = 0. We see that the reconstruction loss is not needed
to generate good tokens, however, it makes the tokenization more stable to hyperparamters.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Contrastive loss The contrastive loss serves the purpose of organizing temporally the latent space,
which is paramount to create navigable landmarks. When used jointly with the reconstruction loss
(see figure 15), it ensures that the landmarks do not span through obstacles, consequently ensuring
that landmarks are of single piece and navigable. If the contrastive coefficient is too low, multiple
piece landmarks can appear by spanning across obstacles. If it is too high, it might overshadow other
components, leading to the aforementioned failures. Used without the reconstruction loss (see figure
16), the contrastive can manage a good tokenization but the reconstruction loss helps by showing
better tokenization for a higher number of contrastive coefficient values.

Figure 17: Reconstruction coefficient impact without contrastive loss With αcommit =
1e3, αcontrastive = 0, αrecon ∈ {1e1, 1e3, 1e5, 1e9}. We see that the reconstruction loss can form
a sufficient number of landmarks as long as it is not overshadowed by the commit loss. However, it
fails to form fully navigable tokesn without the contrastive loss.

Reconstruction loss The reconstruction loss serves the purpose of helping the contrastive loss in
the learning of the tokens. Using the reconstruction loss is not necessary as shown experimentally
(see figure 16, rightmost maze). However, it can serve the purpose to make the learning of the tokens
more robust to variations of the other coefficients. If too low and with a small contrastive loss, the
commit loss is too big and we observed a low amount of token which is coherent with the commit
loss experiments (figure 14).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.5 HOW MANY MORE TRAJECTORIES ARE GENERATED BY DATA AUGMENTATION?

We share here the number of new token trajectories obtained by our stitching data augmentation on
the several dataset and compare them to the initial trajectory numbers.

Table 10: Number of token trajectories in the initial and the augmented datasets.

Dataset Initial number of token trajectories Augmented number of token trajectories
medium-diverse 999.0 ±0 3696.5 ±298.1

medium-play 999.0 ±0 4092.4 ±354.4
large-diverse 999.0 ±0 12106.4 ±1421.4

large-play 999.0 ±0 12786.6 ±2578.0
ultra-diverse 999.0 ±0 11730.9 ±895.2

ultra-play 999.0 ±0 11687.8 ±1280.9
extreme-diverse 499.0 ±0 10203.1 ±629.0

extreme-play 499.0 ±0 9400.3 ±269.0

D.6 HOW DOES THE COVERAGE OF THE DATASET (IN THE STATE SPACE) BROADLY IMPACT
BOTH THE LEARNING OF THE VQ-VAE AND THE POLICY ?

We see experimentally that areas with very low to null coverage (specifically walls here) share the
same token as one of the nearest in-distribution state, showing a certain amount of generalization of
the tokenization. Also, high coverage areas have a tendency to constrain a higher number of smaller
landmarks than the low coverage parts of the maze, due to the loss having more weight in those,
since there are more samples. Section 5.4 illustrates that this issue is mitigated by the contrastive
loss, leading to tokens of more uniform size. For the policy, as we use an offline reinforcement
learning (IQL), low coverage areas are to be avoided and IQL seeks to sample actions within training
distribution to avoid getting out-of-distribution.

Figure 18: Landmarks formed within the walls.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.7 COULD WE USE A UNIFORM DISCRETIZATION OF THE ANTMAZE MAPS ?

In the tested Antmaze environment, it is indeed possible to discretize uniformly the maze to perform
planning. However, this approach would be limited because of several points. First, it requires
the user to have previous knowledge about the shape of the maze, to choose small enough lattices to
avoid landmarks to span across obstacles, which is not necessarily the case and is a strong hypothesis
that our method doesn’t require. Also, the size of those lattices could become really small for some
environments, leading to an unnecessary increase of the number of tokens, resulting in more difficult
planning. Additionally, we ran experiments with uniform tokenization on the antmaze-ultra-diverse-
v0 dataset with a comparable amount of tokens. This resulted in a score of 53.5± 12.7, which is 10
to 20 percent lower than with the quantizer method.

Figure 19: Uniform tokenization on antmaze-ultra-diverse-v0.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.8 WHAT IS THE IMPACT OF THE CONTRASTIVE LOSS USED FOR LANDMARK LEARNING ?

The use of a contrastive loss is paramount in the context of high dimensional data, where the VQ-
VAE reconstruction loss is not sufficient to learn temporally consistent latent encodings (meaning
that temporally nearby states share spatially nearby encodings). In our specific case, as we decode
the positions, we observe experimentally an amount of consistency in our latent representations, as
shown in Figure 20.

(a) Non-contrastive tokenization (b) Contrastive tokenization

Figure 20: Contrastive and non-constrastive latents distances from the goal. We compute for
each position the euclidiean distance between its representation and the representation of the central
position. We see that the overall latents are spatially/temporally well organized, even if the non-
contrastive tokenization seem to get slightly more extreme distances on the edges.

However, the learning of the unconstrained VQ-VAE tends to increase token density in high density
data areas, allowing for a better average reconstruction loss. We represent in Figure 21 a comparison
of the obtained tokens on Antmaze-Extreme.

(a) Non-contrastive tokenization (b) Contrastive tokenization

Figure 21: Visual tokenization comparison. The contrastive loss allows the learning of more
homogenuous landmarks.

We also compute for each token the minimum and maximum distances between states position and
their corresponding codebook’s decoded position, represented as histograms in Figure 7. We see
that the contrastive loss results in a smoother spread of the tokens, which in consequence improves
the performance of our model even in the case of position decoding.

29

	Introduction
	Related work
	Preliminaries
	Quantizing Planner for Hierarchical Implicit Learning
	Overall design
	Tokenization
	Sequence generation
	Low-level policies

	Experiments
	Experimental setup
	Does QPHIL architecture enable efficient long-term navigation ?
	Can QPHIL handle sparse data scenarios using token-level stitching ?
	What is the impact of the contrastive loss used for landmark learning ?
	Does QPHIL still performs in diverse state-target initializations ?

	Conclusion
	Reproducibility Statement
	Details about baselines
	Implementation details
	Implementation and trainings
	Hyper-parameters
	Data cleaning
	Tokenization pipeline
	Token sequence compression
	Trajectory stitching

	Details about environments and dataset
	Random-Antmaze visualisations
	AntMaze-Extreme datasets

	Additional experiments
	Does RL matter for the high-policy in AntMaze ?
	What is the impact of going from continuous to discrete planning ?
	What about replanning and a closed loop format ?
	red What is the impact of the different losses when training the quantizer ?
	How many more trajectories are generated by data augmentation?
	How does the coverage of the dataset (in the state space) broadly impact both the learning of the VQ-VAE and the policy ?
	Could we use a uniform discretization of the antmaze maps ?
	What is the impact of the contrastive loss used for landmark learning ?

