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Abstract

In this paper, Spectral Bridges, a novel clustering algorithm, is introduced. This algorithm
builds upon the traditional k-means and spectral clustering frameworks by subdividing data
into small Voronoï regions, which are subsequently merged according to a connectivity measure.
Drawing inspiration from Support Vector Machine’s margin concept, a non-parametric clustering
approach is proposed, building an affinity margin between each pair of Voronoï regions. This
approach is characterized by minimal hyperparameters and delineation of intricate, non-convex
cluster structures.

The numerical experiments underscore Spectral Bridges as a fast, robust, and versatile tool
for sophisticated clustering tasks spanning diverse domains. Its efficacy extends to large-scale
scenarios encompassing both real-world and synthetic datasets.

The Spectral Bridge algorithm is implemented both in Python (https://pypi.org/project/spect
ral-bridges) and R https://github.com/cambroise/spectral-bridges-Rpackage).
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1 Introduction27

Clustering is a fundamental technique for exploratory data analysis, organizing a set of objects into28

distinct homogeneous groups known as clusters. It is extensively utilized across various fields, such29

as biology for gene expression analysis (Eisen et al. 1998), social sciences for community detection in30

social networks (Latouche, Birmelé, and Ambroise 2011), and psychology for identifying behavioral31

patterns. Clustering is often employed alongside supervised learning as a pre-processing step, helping32

to structure and simplify data, thus enhancing the performance and interpretability of subsequent33

predictive models (Verhaak et al. 2010). Additionally, clustering can be integrated into supervised34

learning algorithms, such as mixture of experts (Jacobs et al. 1991), as part of a multi-objective35

strategy.36

There are various approaches to clustering, and the quality of the results is largely determined by37

how the similarity between objects is defined, either through a similarity measure or a distance38

metric. Clustering techniques originate from diverse fields of research, such as genetics, psychometry,39

statistics, and computer science. Some methods are entirely heuristic, while others aim to optimize40

specific criteria and can be related to statistical models.41

Density-based methods identify regions within the data with a high concentration of points, corre-42

sponding to the modes of the joint density. A notable non-parametric example of this approach is43

DBSCAN (Ester et al. 1996). In contrast, model-based clustering, such as Gaussian mixture models,44

represents a parametric approach to density-based methods. Model-based clustering assumes that45

the data is generated from a mixture of underlying probability distributions, typically Gaussian46

distributions. Each cluster is viewed as a component of this mixture model, and the Expectation-47

Maximization (EM) algorithm is often used to estimate the parameters. This approach provides a48

probabilistic framework for clustering, allowing for the incorporation of prior knowledge and the49
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ability to handle more complex cluster shapes and distributions (McLachlan and Peel 2000).50

Geometric approaches, such as k-means (MacQueen et al. 1967), are distance-based methods that aim51

to partition data by optimizing a criterion reflecting group homogeneity. The k-means++ algorithm52

(Arthur and Vassilvitskii 2006) enhances this approach by providing faster and more reliable results.53

However, a key limitation of these methods is the assumption of linear boundaries between clusters,54

implying that clusters are convex. To address non-convex clusters, the kernel trick can be applied,55

allowing for a more flexible k-means algorithm. This approach is comparable to spectral clustering in56

handling complex cluster boundaries (Dhillon, Guan, and Kulis 2004). The k-means algorithm can also57

be interpreted within the framework of model-based clustering under specific assumptions (Govaert58

and Nadif 2003), revealing that it is essentially a special case of the more general Gaussian mixture59

models, where clusters are assumed to be spherical Gaussian distributions with equal variance.60

Graph-based methods represent data as a graph, with vertices symbolizing data points and edges61

weighted to indicate the affinity between these points. Spectral clustering can be seen as a relaxed62

version of the graph cut algorithm (Shi and Malik 2000). However, traditional spectral clustering faces63

significant limitations due to its high time and space complexity, greatly hindering its applicability64

to large-scale problems (Von Luxburg 2007).65

The method we propose aims to find non-convex clusters in large datasets, without relying on a66

parametric model, by using spectral clustering based on an affinity that characterizes the local density67

of the data. The algorithm described in this paper draws from numerous clustering approaches. The68

initial intuition is to detect high-density areas. To this end, vector quantization is used to divide the69

space into a Voronoï tessellation. An original geometric criterion is then employed to detect pairs70

of Voronoï regions that are either distant from each other or separated by a low-density boundary.71

Finally, this affinity measure is considered as the weight of an edge in a complete graph connecting72

the centroids of the tessellation, and a spectral clustering algorithm is used to find a partition of this73

graph. The only parameters of the algorithm are the number of Voronoï Cells and the number of74

clusters.75

The paper begins with a section dedicated to presenting the context and related algorithms, followed76

by a detailed description of the proposed algorithm. Experiments and comparisons with reference77

algorithms are then conducted on both real and synthetic data.78

2 Related Work79

Spectral clustering is a graph-based approach that computes the eigen-vectors of the graph’s Laplacian80

matrix. This technique transforms the data into a lower-dimensional space, making the clusters81

more discernible. A standard algorithm like k-means is then applied to these transformed features82

to identify the clusters (Von Luxburg 2007). Spectral clustering enables capturing complex data83

structures and discerning clusters based on the connectivity of data points in a transformed space,84

effectively treating it as a relaxed graph cut problem.85

Classical spectral clustering involves two phases: construction of the affinity matrix and eigen-86

decomposition. Constructing the affinity matrix requires 𝑂(𝑛2𝑑) time and 𝑂(𝑛2) memory, while87

eigen-decomposition demands 𝑂(𝑛3) time and 𝑂(𝑛2) memory, where 𝑛 is the data size and 𝑑 is the88

dimension. As 𝑛 increases, the computational load escalates significantly (Von Luxburg 2007).89

To mitigate this computational burden, one common approach is to sparsify the affinity matrix and90

use sparse eigen-solvers, reducing memory costs but still requiring computation of all original matrix91

entries (Von Luxburg 2007). Another strategy is sub-matrix construction. The Nyström method92

randomly selects 𝑚 representatives from the dataset to form an 𝑛 × 𝑚 affinity sub-matrix (Chen et93

al. 2010). Cai et al. extended this with the landmark-based spectral clustering method, which uses94
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k-means to determine𝑚 cluster centers as representatives (Cai and Chen 2014). Ultra-scalable spectral95

clustering (U-SPEC) employs a hybrid representative selection strategy and a fast approximation96

method for constructing a sparse affinity sub-matrix (Huang et al. 2019).97

Other approaches use the properties of the small initial clusters for the affinity computation. Cluster-98

ing Based on Graph of Intensity Topology (GIT) estimates for example a global topological graph99

(topo-graph) between local clusters (Gao et al. 2021). It then uses the Wasserstein Distance between100

predicted and prior class proportions to automatically cut noisy edges in the topo-graph and merge101

connected local clusters into final clusters.102

The issue of characterizing the affinity between two clusters to create an edge weight is central to103

the efficiency of a spectral clustering algorithm operating from a submatrix.104

Notice that the clustering robustness of many Spectral clustering algorithms heavily relies on the105

proper selection of kernel parameter, which is difficult to find without prior knowledge (Ng, Jordan,106

and Weiss 2001).107

3 Spectral Bridges108

The proposed algorithm uses k-means centroids for vector quantization defining Voronoï region, and109

a strategy is proposed to link these regions, with an “affinity” gauged in terms of minimal margin110

between pairs of classes. These affinities are considered as weight of edges defining a completely111

connected graph whose vertices are the regions. Spectral clustering on the region provide a partition112

of the input space. The sole parameters of the algorithm are the number of Voronoï region and the113

number of final cluster.114

3.1 Bridge affinity115

The basic idea involves calculating the difference in inertia achieved by projecting onto a segment116

connecting two centroids, rather than using the two centroids separately (see Figure 1). If the117

difference is small, it suggests a low density between the classes. Conversely, if this diffrence is large,118

it indicates that the two classes may reside within the same densely populated region.119

Let us consider a sample 𝑋 = (𝑥𝑖)𝑖∈{1,⋯,𝑛} of vectors 𝑥𝑖 ∈ ℝ𝑑 and a set of 𝑚 coding vectors (𝜇𝑘)𝑘∈{1,⋯,𝑚}120

defining a partition 𝑃 = {𝒱1, ⋯ , 𝒱𝑚} of ℝ𝑑 into 𝑚 Voronoï regions:121

𝒱𝑘 = {x ∈ ℝ𝑑 ∣ ‖x − 𝜇𝑘‖ ≤ ‖x − 𝜇𝑗‖ for all 𝑗 ≠ 𝑘} .

In the following a ball denotes the subset of 𝑋 in a Voronoï region. The inertia of two balls 𝒱𝑘 and122

𝒱𝑙 is123

𝐼𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘

‖𝑥𝑖 − 𝜇𝑘‖
2 + ∑

𝑥𝑖∈𝒱𝑙

‖𝑥𝑖 − 𝜇𝑙‖
2.

We define a bridge as a structure defined by a segment connecting two centroids 𝜇𝑘 and 𝜇𝑙. The124

inertia of a bridge between 𝒱𝑘 and 𝒱𝑙 is defined as125

𝐵𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘∪𝒱𝑙

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2,

where126

𝑝𝑘𝑙(𝑥𝑖) = 𝜇𝑘 + 𝑡𝑖(𝜇𝑙 − 𝜇𝑘),

with127

𝑡𝑖 = min (1,max (0,
⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩

‖𝜇𝑙 − 𝜇𝑘‖2
)) .

4



Figure 1: Balls (left) versus Bridge (right). The inertia of each structure is the sum of the squared
distances represented by grey lines.

Considering two centroïds, the normalized average of the difference betweenn Bridge and balls128

inertia (See Appendix) constitutes the basis of our affinity measure between two regions:129

𝐵𝑘𝑙 − 𝐼𝑘𝑙
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

=
∑𝑥𝑖∈𝒱𝑘

⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩
2
+∑𝑥𝑖∈𝒱𝑙

⟨𝑥𝑖 − 𝜇𝑙|𝜇𝑘 − 𝜇𝑙⟩
2
+

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖4
,

=
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘 + 𝑛𝑙

,

where130

𝛼𝑖 = {
𝑡𝑖, if 𝑡𝑖 ∈ [0, 1/2],
1 − 𝑡𝑖, if 𝑡𝑖 ∈]1/2, 1].

The basic intuition behind this affinity is that 𝑡𝑖 represents the relative position of the projection of 𝑥𝑖131

on the segment [𝜇𝑘, 𝜇𝑙]. 𝛼𝑖 represents the relative position on the segment, with the centroid of the132

class to which 𝑥𝑖 belongs as the reference point.133

The boundary that separates the two clusters defined by centroids 𝜇𝑘 and 𝜇𝑙 is a hyperplane. This134

hyperplane is orthogonal to the line segment connecting the centroids and intersects this segment at135

its midpoint.136

If we consider all points 𝑥𝑖 ∈ 𝒱𝑘 ∪ 𝒱𝑙 which are not projected on centroids but somewhere on the137

segment, the distance from a point to the hyperplane is138

‖𝑝𝑘𝑙(𝑥𝑖) − 𝜇𝑘𝑙‖ = (1/2 − 𝛼𝑖)‖𝜇𝑘 − 𝜇𝑙‖.

This distance is similar to the concept of margin in Support Vector Machine (Cortes and Vapnik 1995).139

When the 𝛼𝑖 values are small (close to zero since 𝛼𝑖 ∈ [0, 1/2]), the margins to the hyperplane are140

large, indicating a low density between the classes. Conversely, if the margins are small, it suggests141

that the two classes may reside within the same densely populated region. Consequently, the sum of142

the 𝛼𝑖 or 𝛼2𝑖 increases with the density of the region between the classes.143
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Note that the criterion is local and indicates the relative difference in densities between the balls and144

the bridge, rather than evaluating a global score for the densities of the structures.145

Eventually, we define the bridge affinity between centroids 𝑘 and 𝑙 as:146

𝑎𝑘𝑙 = {
0, if 𝑘 = 𝑙,
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘+𝑛𝑙

, otherwise.

To allow points with large margin to dominate and make the algorithm more robust to noise and147

outliers we consider the following exponential transformation:148

�̃�𝑘𝑙 = 𝑔(𝑎𝑘𝑙) = exp(𝛾√𝑎𝑘𝑙).

where 𝛾 is a scaling factor. This factor is set to ensure a large enough separation between the final149

coefficients. This factor is determined by the equation:150

𝛾 =
𝑙𝑜𝑔(𝑀)

√𝑞90 − √𝑞10

where 𝑞10 and 𝑞90 are respectively the 10th and 90th percentiles of the original affinity matrix151

and 𝑀 > 1. Thus, since the transformation is order-preserving, the 90th percentile of the newly152

constructed matrix is 𝑀 times greater than the 10th percentile. By default, 𝑀 is arbitrarily set to a153

large value of 104.154

The inclusion of the square root can be understood as redefining the affinity measure. Instead of155

considering the variance and the squared Euclidean norm, we interpret the affinity as the ratio156

between the standard deviation and the length of the segment connecting two centroids. This157

reinterpretation greatly enhances numerical stability, contributing to more reliable clustering results.158

3.2 Algorithm159

The Spectral Bridges algorithm first identifies local clusters to define Voronoï regions, computes160

edges with affinity weights between these regions, and ultimately cuts edges between regions with161

low inter-region density to determine the final clusters (See Algorithm 1 and Figure 2).162

In spectral clustering, the time complexity is usually dominated by the eigen-decomposition step,163

which is 𝑂(𝑛3). However, in the case of Spectral Bridges, the k-means algorithm has a time complexity164

of 𝑂(𝑛 ×𝑚 × 𝑑). For datasets with large 𝑛, this can be more significant than the 𝑂(𝑚3) time complexity165

of the Spectral Bridges eigen-decomposition. As for the affinity matrix construction, there are 𝑚2
166

coefficients to be calculated. Each 𝑎𝑘𝑙 coefficient requires the computation of 𝑛𝑘 + 𝑛𝑙 dot products as167

well as the norm ‖𝜇𝑘 − 𝜇𝑙‖, the latter often being negligeable. Assuming that the Voronoï regions are168

roughly balanced in cardinality, we have 𝑛𝑘 ≈
𝑛
𝑚 . Since 𝑚 should always be less than 𝑛, therefore169

𝑛
𝑚 > 1 and the time complexity of the affinity matrix is 𝑂( 𝑛𝑚 × 𝑚2 × 𝑑) = 𝑂(𝑛 × 𝑚 × 𝑑) given the170

acceptable range of values for 𝑚. Nonetheless, this is rarely the bottleneck.171
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Algorithm 1 Spectral Bridges

1: procedure SpectralBridges(𝑋, 𝑘, 𝑚) ▷ 𝑋: input dataset, 𝑘: number of clusters, 𝑚: number of
Voronoï regions

2: Step 1: Vector Quantization
3: centroids, voronoiRegions ← KMeans(𝑋,𝑚) ▷ Initial centroids and Voronoi regions using

k-means++
4: Step 2: Affinity Computation
5: 𝐴 = {𝑔(𝑎𝑘𝑙)}𝑘𝑙 ← Affinity(𝑋, centroids, voronoiRegions) ▷ Compute affinity matrix 𝐴
6: Step 3: Spectral Clustering ▷ Assign each region to a cluster
7: labels ← SpectralClustering(𝐴, 𝑘)
8: Step 4: Propagate ▷ Assign each data point to the cluster of its region
9: clusters ← Propagate(𝑋, labels, voronoiRegions)
10: return clusters ▷ Return cluster labels for data points in 𝑋
11: end procedure

(a) Vector quantization (b) Affinity computation (c) Spectral clustering

Figure 2: Illustration of the Spectral bridges algorithm with the Iris dataset (first principal plane).
Vector quantization (Step 1 of Algorithm 1 ), Affinity computation (Step 2 of Algorithm 1 ), Spectral
clustering and spreading (Step 3-4 of Algorithm 1 ).

4 Numerical experiments172

In this section, the results obtained from testing the Spectral Bridges algorithm on various datasets,173

both small and large scale, including real-world and well-known synthetic datasets, are presented.174

These experiments assess the accuracy, time and space complexity, ease of use, robustness, and adapt-175

ability of our algorithm. We compare Spectral Bridges (SB) against several state-of-the-art methods,176

including k-means++ (KM) (MacQueen et al. 1967; Arthur and Vassilvitskii 2006), Expectation-177

Maximization (EM) (Dempster, Laird, and Rubin 1977), Ward Clustering (WC) (Ward Jr 1963), and178

DBSCAN (DB) (Ester et al. 1996). This comparison establishes baselines across centroid-based179

clustering algorithms, hierarchical methods, and density-based methods.180

The algorithms are evaluated on both raw and PCA-processed data with varying dimensionality.181

For synthetic datasets, Gaussian and/or uniform noise is introduced to assess the robustness of the182

algorithm.183
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4.1 Datasets184

4.1.1 Real-world data185

• MNIST: A large dataset containing 60,000 handwritten digit images in ten balanced classes,186

commonly used for image processing benchmarks. Each image consists of 28 × 28 = 784 pixels.187

• UCI ML Breast Cancer Wisconsin: A dataset featuring computed attributes from digitized188

images of fine needle aspirates (FNA) of breast masses, used to predict whether a tumor is189

malignant or benign.190

4.1.2 Synthetic data191

• Impossible: A synthetic dataset designed to challenge clustering algorithms with complex192

patterns.193

• Moons: A two-dimensional dataset with two interleaving half-circles.194

• Circles: A synthetic dataset of points arranged in two non-linearly separable circles.195

• Smile: A synthetic dataset with points arranged in the shape of a smiling face, used to test the196

separation of non-linearly separable data.197

4.1.3 Datasets Summary & Class Balance198

Table 1: Datasets Summary & Class Balance

Dataset #Dims #Samples #Classes Class Proportions

MNIST 784 60000 10 9.9%, 11.2%, 9.9%, 10.3%, 9.7%, 9%, 9.9%,
10.4%, 9.7%, 9.9%

Breast Cancer 30 569 2 37.3%, 62.7%
Impossible 2 3594 7 24.8%, 18.8%, 11.3%, 7.5%, 12.5%, 12.5%,

12.5%
Moons 2 1000 2 50%, 50%
Circles 2 1000 2 50%, 50%
Smile 2 1000 4 25%, 25%, 25%, 25%

Class proportions are presented in ascending order starting from label 0.199

4.2 Metrics200

To evaluate the performance of the clustering algorithm, the Adjusted Rand Index (ARI) (Halkidi,201

Batistakis, and Vazirgiannis 2002) and Normalized Mutual Information (NMI) (Cover and Thomas202

1991) are used. ARI measures the similarity between two clustering results, ranging from -0.5 to 1,203

with 1 indicating perfect agreement. NMI ranges from 0 to 1, with higher values indicating better204

clustering quality. In some tests, the variability of scores across multiple runs is also reported due to205

the random initialization in k-means, though k-means++ generally provides stable and reproducible206

results.207

4.3 Platform208

All experiments were conducted on an Archlinux machine with Linux 6.9.3 Kernel, 8GB of RAM, and209

an AMD Ryzen 3 7320U processor.210
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4.4 Hyperparameter settings211

The hyperparameters of the Spectral Bridges algorithm were based on the size of each dataset, 𝑛,212

and the number of clusters, 𝐾. A larger number of clusters typically suggests that a higher value213

for the number of Voronoï regions is optimal. Conversely, using a high number of Voronoï regions214

for a small dataset might result in nearly empty regions that do not adequately represent any local215

structure.216

A good yet not very precise way of setting the number of Voronoï regions 𝑚 is to observe the Within217

Cluster Sum of Squares (WCSS) or inertia in a way akin to the elbow method. Since 𝑚 should be set218

to a value strictly greater than 𝐾, we plot the WCSS for varying values of 𝑚, and find a value such219

that the WCSS-𝑚 relationship becomes quasi-linear.220

By adjusting 𝑚 in this manner, we aim to balance the need for detailed representation with the221

risk of overfitting, ensuring that each Voronoï region meaningfully captures the underlying data222

distribution. The sensitivity or lack thereof is illustrated later on by Figure 10.223

For other algorithms, such as DBSCAN, labels were used to determine the best hyperparameter224

values to compare our method against the “best case scenario”, thus putting the Spectral Bridges225

algorithm at a voluntary disadvantage.226

4.5 Time complexity227

To assess the algorithm’s time complexity, the average execution times over 50 runs were computed228

for varying numbers of Voronoï regions 𝑚 as well as dataset sizes. With a constant number of clusters229

𝐾 = 5 and an embedding dimension of 𝑑 = 10, the results (see Figure 3) highlight Spectral Bridges230

algorihtm’s efficacy. As discussed previously, we observe a linear relationship between 𝑚 and the231

execution time because the matrix construction is highly optimized and the time taken is almost232

negligeable compared to that of the initial k-means++ centroids initalization.233
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(b) Varying 𝑚, fixed 𝑛 = 5000

Figure 3: Average time taken per model fit.

4.6 Accuracy234

The algorithm’s accuracy was first evaluated on the MNIST dataset. Metrics were collected to235

compare our method with k-means++, EM, and Ward clustering. Metric were estimated by taking236

the empirical average over 10 consecutive runs with the same random seed for each method. Since237

our computational capabilites were too limited, a sample of 20,000 (one third) data points was chosen238

at random for each iteration.239
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Let ℎ denote the embedding dimension of the dataset. Spectral Bridges was tested both on the raw240

MNIST dataset without preprocessing (ℎ = 784) and after reducing its dimension using PCA to241

ℎ ∈ {8, 16, 32, 64} (see Figure 4).242
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Figure 4: ARI and NMI scores of k-means++ (blue), EM (green), Ward Clustering (red), and Spectral
Bridges (purple) on PCA embedding and full MNIST.

For visualization purposes, the predicted clusters by Spectral Bridges and k-means++ were projected243

using UMAP to compare them against the ground truth labels and to better understand the cluster244

shapes (see Figure 5). Note that the projection was not used in the experiments as an embedding, and245

thus does not play any role in the clustering process itself. As a matter of fact, the embedding used246

was obtained with PCA, ℎ = 32 and 250 Voronoï regions. Note that the label colors match the legend247

only in the case of the ground truth data. Indeed, the ordering of the labels have no significance on248

clustering quality.249
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Figure 5: UMAP projection of predicted clusters against the ground truth labels.

The Spectral Bridges algorithm was also put to the test against the same competitors using scikit-250

learn’s UCI Breast Cancer data. Once again, this new method performs well although the advantage251

is not as obvious in this case (see Figure 6). However, in none of our tests has it ranked worse than252

k-means++. The results are displayed as a boxplot generated from 200 iterations of each algorithm253

using a different seed, in order to better grasp the variability lying in the seed dependent nature of254

the k-means++, Expectation Maximization and Spectral Bridges algorithms.255

Since the Spectral Bridges algorithm is expected to excel at discerning complex and intricate cluster256
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Figure 6: ARI and NMI scores of k-means++ (blue), EM (green), Ward Clustering (red), and Spectral
Bridges (purple) on the UCI Breast Cancer dataset.

structures, an array of four toy datasets was collected, as illustrated in Figure 7.257
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Figure 7: Four toy datasets.

Multiple algorithms, including the proposed one, were benchmarked in the exact same manner258

as for the UCI Breast Cancer data. The results show that the proposed method outperforms all259

tested algorithms (DBSCAN, k-means++, Expectation Maximization, and Ward Clustering) while260

requiring few hyperparameters. As previously discussed, DBSCAN’s parameters were optimized261

using the ground truth labels to represent a best-case scenario; however, in practical applications,262

suboptimal performance is more likely. Despite this optimization, the Spectral-Bridge algorithm still263

demonstrates superior ability to capture and represent the underlying cluster structures.264
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Figure 8: ARI and NMI scores of Spectral Bridges and competitors on standard synthetic toy datasets.
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4.7 Noise robustness265

To evaluate the noise robustness of the algorithm, two experimental setups were devised: one involved266

introducing Gaussian-distributed perturbations to the data, and the other involved concatenating267

uniformly distributed points within a predefined rectangular region (determined by the span of the268

dataset) to the existing dataset. As illustrated in Figure 9, the tests demonstrate that in both scenarios,269

the algorithm exhibits a high degree of insensitivity to noise.270
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Figure 9: Three representations of the algorithm’s predicted cluster centers are displayed as colored
dots, with each point of the Impossible dataset shown as a small black dot. In the left graph, the
dataset is unmodified. In the center graph, 250 uniformly distributed samples were added. In the
right graph, Gaussian noise perturbations with 𝜎 = 0.1 were applied.

4.8 Hyperparameter values effect on accuracy271

To better understand and measure the significance of choosing the right values for the hyper-272

parameters of the proposed algorithm, that it to say the number of Voronoï regions 𝑚, Spec-273

tral Bridges was run on the PCA ℎ = 32 embedded MNIST dataset with varying values of 𝑚 ∈274

{10, 120, 230, 340, 450, 560, 670, 780, 890, 1000}. The case 𝑚 = 10 is equivalent to the k-means++ algo-275

rithm. ARI and NMI scores are recorded over 20 consecutive iterations and subsequently plotted. As276

shown by Figure 10, the accuracy seems to be consistently increasing with values of 𝑚, although277

the largest observed gap occurs between values of 𝑚 = 10 and 𝑚 = 120, indicating a tremendous im-278

provement over the classical k-means++ framework even for empirically suboptimal hyperparameter279

values.280
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Figure 10: ARI and NMI scores of Spectral Bridges with varying values of 𝑚.
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5 Conclusive remarks281

Spectral Bridges is an original clustering algorithm which presents a novel approach by integrating282

the strengths of traditional k-means and spectral clustering frameworks. This algorithm utilizes a283

simple affinity measure for spectral clustering, which is derived from the minimal margin between284

pairs of Voronoï regions.285

The algorithm demonstrates scalability, handling large datasets efficiently through a balanced com-286

putational complexity between the k-means clustering and eigen-decomposition steps. As a non-287

parametric method, Spectral Bridges does not rely on strong assumptions about data distribution,288

enhancing its versatility across various data types. It performs exceptionally well with both syn-289

thetic and real-world data and consistently outperforms conventional clustering algorithms such as290

k-means, DBSCAN, and mixture models.291

The design of Spectral Bridges ensures robustness to noise, a significant advantage in real-world292

applications. Additionally, the algorithm requires minimal hyperparameters, primarily the number293

of Voronoï regions, making it straightforward to tune and deploy.294

Furthermore, Spectral Bridges can be kernelized, allowing it to handle data in similarity space directly,295

which enhances its flexibility and applicability. Overall, Spectral Bridges is a powerful, robust, and296

scalable clustering algorithm that offers significant improvements over traditional methods, making297

it an excellent tool for advanced clustering tasks across numerous domains.298

6 Appendix299

6.1 Derivation of the bridge affinity300

We denote a bridge as a segment connecting two centroids 𝜇𝑘 and 𝜇𝑙. The inertia of a bridge between301

𝒱𝑘 and 𝒱𝑙 is defined as302

𝐵𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘∪𝒱𝑙

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2,

where303

𝑝𝑘𝑙(𝑥𝑖) = 𝜇𝑘 + 𝑡𝑖(𝜇𝑙 − 𝜇𝑘),

with304

𝑡𝑖 = min (1,max (0,
⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩

‖𝜇𝑙 − 𝜇𝑘‖2
)) .

𝐵𝑘𝑙, the bridge inertia between centroids 𝑘 and 𝑙, can be expressed as the sum of three terms, which305

represents the projection onto each centroïds and onto the segment:306

𝐵𝑘𝑙 = ∑
𝑖∣𝑡𝑖=0

‖𝑥𝑖 − 𝜇𝑘‖
2 + ∑

𝑖∣𝑡𝑖=1
‖𝑥𝑖 − 𝜇𝑙‖

2 + ∑
𝑖∣𝑡𝑖∈]0,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2.

The last term may be decomposed in two parts corresponding to the points of the two Voronoï307

regions which are projected on the segment:308

∑
𝑖∣𝑡𝑖∈]0,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 + ∑

𝑖∣𝑡𝑖∈[
1
2 ,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2
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and each part further decomposed using Pythagore309

∑
𝑖∣𝑡𝑖∈]0,

1
2 [

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝜇𝑘 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

= ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑡𝑖(𝜇𝑘 − 𝜇𝑙)‖
2,

∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝜇𝑙‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝜇𝑙 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

= ∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖(1 − 𝑡𝑖)(𝜇𝑘 − 𝜇𝑙)‖
2

Thus310

𝐵𝑘𝑙 − 𝐼𝑘𝑙 = ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

𝑡2𝑖 ‖𝜇𝑘 − 𝜇𝑙‖
2 + ∑

𝑖∣𝑡𝑖∈]
1
2 ,1[

(1 − 𝑡𝑖)2‖𝜇𝑘 − 𝜇𝑙‖
2,

𝐵𝑘𝑙 − 𝐼𝑘𝑙
‖𝜇𝑘 − 𝜇𝑙‖2

= ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

𝑡2𝑖 + ∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

(1 − 𝑡𝑖)2,

𝐵𝑘𝑙 − 𝐼𝑘𝑙
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

=
∑𝑥𝑖∈𝒱𝑘

⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩
2
+∑𝑥𝑖∈𝒱𝑙

⟨𝑥𝑖 − 𝜇𝑙|𝜇𝑘 − 𝜇𝑙⟩
2
+

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖4
.

6.2 Code311

6.2.1 Implementation312

Numerical experiments have been conducted in Python. The python scripts to reproduce the313

simulations and figures are available at https://github.com/flheight/Spectral-Bridges. The Spectral314

Bridge algorithm is implemented both in315

• Python: https://pypi.org/project/spectral-bridges, and316

• R: https://github.com/cambroise/spectral-bridges-Rpackage.317

6.2.2 Affinity matrix computation318

Taking a closer look at the second step of Algorithm 1 , that is the affinity matrix calculation319

with a 𝑂(𝑛 × 𝑚 × 𝑑) time complexity, most operations can be parallelized leaving a single loop,320

bundling together 𝑚2 dot products into only 𝑚 matrix multiplications, thus allowing for an efficient321

construction in both high and low level programming languages. Though the complexity of the322

algorithm remains unchanged, libraries such as Basic Linear Algebra Subprograms can render the323

calculations orders of magnitude faster. Moreover, the symmetrical nature of the bridge affinity can324

be used to effectively halve the computation time.325

The calculation of the affinity matrix is highlighted by the Python code Listing 1. Though it could326

be even more optimized, the following code snippet is approximately 200 times faster than a naive327

implementation on a small dataset comprised of 𝑛 = 3594, 𝑑 = 2 points, and a value of 𝑚 = 250.328

Notice that the Python code is significantly faster than the R code.329
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Listing 1 Python code for affinity matrix computation
# Initialize the affinity matrix
affinity = np.empty((self.n_nodes, self.n_nodes))

# Center each Voronoi region around its centroid
X_centered = [

X[kmeans.labels_ == i] - kmeans.cluster_centers_[i] for i in range(self.n_nodes)
]

# Count the total number of points in each pair of regions
counts = np.array([X_centered[i].shape[0] for i in range(self.n_nodes)])
counts = counts[np.newaxis, :] + counts[:, np.newaxis]

# Compute the segments between each pair of centroids and their squared Euclidean norm
segments = (

kmeans.cluster_centers_[np.newaxis, :] - kmeans.cluster_centers_[:, np.newaxis]
)
dists = np.einsum("ijk,ijk->ij", segments, segments)
np.fill_diagonal(dists, 1) # Avoid dividing by zero

# Assign each row of the affinity matrix
for i in range(self.n_nodes):

projs = np.maximum(np.dot(X_centered[i], segments[i].T), 0)
affinity[i] = np.einsum("ij,ij->j", projs, projs)

# Symmetrize the matrix and normalize, as well as taking the element-wise square root
affinity = np.sqrt(affinity + affinity.T) / (np.sqrt(counts) * dists)
affinity -= 0.5 * affinity.max() # For numerical stability

# Apply the exponential transformation
q10, q90 = np.quantile(affinity, [0.1, 0.9])

gamma = np.log(self.M) / (q90 - q10)
affinity = np.exp(gamma * affinity)
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