Under review as a conference paper at ICLR 2021

CONSTRAINT-BASED GRAPH NETWORK SIMULATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

In the rapidly advancing area of learned physical simulators, nearly all methods
train a forward model that directly predicts future states from input states. How-
ever, many traditional simulation engines use a constraint-based approach instead
of direct prediction. Here we present a framework for constraint-based learned
simulation, where a scalar constraint function is implemented as a trainable func-
tion approximator, and future predictions are computed as the solutions to a con-
straint satisfaction problem. We implement our method using a graph neural net-
work as the constraint function and gradient descent as the constraint solver. The
architecture can be trained by standard backpropagation. We test the model on
a variety of challenging physical domains, including simulated ropes, bouncing
balls, colliding irregular shapes and splashing fluids. Our model achieves better
or comparable performance to top learned simulators. A key advantage of our
model is the ability to generalize to more solver iterations at test time to improve
the simulation accuracy. We also show how hand-designed constraints can be
added at test time to satisfy objectives which were not present in the training data,
which is not possible with forward approaches. Our constraint-based framework
is applicable to any setting in which forward learned simulators are used, and
more generally demonstrates key ways that learned models can leverage popular
methods in numerical methods.

1 INTRODUCTION

Consider a bowling ball colliding with a bowling pin. You might explain this event as involving a
pair of forces being generated, one which causes the pin to move, and the other which causes the ball
to careen away with a different direction and speed. This kind of intuitive cause-and-effect approach
is analogous to physical simulators that apply an explicit forward model to calculate a future state
directly from the current one, such as when numerically integrating discretized equations of motion.

An alternative, but equally valid, way to explain the collision is in terms of constraint satisfaction:
the ball and pin cannot occupy the same location at the same time, and their combined energies
and momenta must be conserved, so the post-collision trajectories are the only way the future can
unfold without violating these constraints. This constraint-based approach is analogous to physical
simulators that use an implicit function to model a system of constraints over the current and future
states, and which generate a prediction by searching for a future state that respects all constraints.

Both families of simulators—those based on explicit, forward functions versus those which define
the dynamics implicitly, via constraints—are widely used in physics, engineering, and graphics. In
principle they can model the same types of dynamics, however they differ in how their respective
predictions are computed and in practice strike different trade-offs that determine why one or the
other is preferred in different domains. For example, explicit methods are popular for large systems
with (mostly) independent local effects whose space and time derivatives are relatively smooth, and
their accuracy can often be increased by discretizing space and time more finely. Implicit approaches
are often preferred for systems with strong interactions, such rigid and stiff dynamics, and more
accurate solutions can often be found by using more sophisticated constraint solvers or by increasing
the computational budget (e.g., solver iterations) allocated to searching for solutions. In machine
learning (ML), there have been rapid advances recently in methods for learning to simulate complex
dynamic processes, however almost all (e.g., Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021))
have focused on explicit forward model approaches, with few exceptions (Yang et al., 2020).

Under review as a conference paper at ICLR 2021

Here we present a framework for learning to simulate complex dynamics via constraint satisfaction.
Our “Constraint-based Graph Network Simulator” (C-GNS) defines a single scalar-valued constraint
function that represents whether a future state satisfies the physical constraints, conditioned on the
current and previous states. The constraint function is implemented as a Graph Neural Network
(GNN) (Bronstein et al., 2017; Battaglia et al., 2018), which can model systems with rich composi-
tional structure—multiple bodies, complex meshes, etc. To predict the next state via the constraint
function’s implicit representation of the dynamics, a gradient-based solver finds a proposed state
which satisfies the constraints. We train it through the solver by backpropagation. We also intro-
duce a hybrid approach that proposes and refines the future state using an explicit iterative predictor,
rather than solving for learned constraints.

We tested the C-GNS on a variety of challenging physical simulation domains generated by sev-
eral different simulation engines: simulated rope, bouncing balls, and bouncing irregular rigid
shapes (MuJoCo, Todorov et al. (2012)) and splashing fluids (Flex, Macklin et al. (2014)). We found
that the C-GNS’s simulated rollouts were more accurate than a state-of-the-art Graph Net Simula-
tor (GNS) (Sanchez-Gonzalez et al., 2020) with comparable number of parameters. At test time,
the C-GNS could use additional solver iterations to improve its predictive accuracy, striking desired
speed-accuracy trade-offs. It could also satisfy new, hand-designed constraints jointly alongside its
learned constraints. Neither of these capabilities are possible in explicit forward-style approaches.

2 BACKGROUND AND RELATED WORK

Constraint solvers are central to many physics simulators. Most rigid-body and game engines use
constraints to model joints, collision and contact (Baraff, 1994). They are used for limiting strain
in realistic cloth simulation (Thomaszewski et al., 2009), and are a core component in Eulerian
incompressible fluid solvers to solve for pressure (Chorin, 1967). Recently, position-based (Miiller
et al., 2007) and projective dynamics methods (Bouaziz et al., 2014) have become very popular for
interactive simulation. These methods express dynamics purely as constraints, and can simulate a
wide range of physical systems from rigids over soft-bodies to fluids (Macklin et al., 2014).

Machine learning methods for accelerating scientific simulation of complex systems, such as tur-
bulence (Kochkov et al., 2021; Wang et al., 2020) and aerodynamics (Thuerey et al., 2020; Zhang
et al., 2018), have grown rapidly in recent years. GNN-based learned simulators, in particular,
are a very flexible approach which can model a wide range of systems, from articulated dynam-
ics (Sanchez-Gonzalez et al., 2018) to particle-based physics (Mroweca et al., 2018; Li et al., 2019;
Sanchez-Gonzalez et al., 2020) and mesh-based continuum systems (Pfaff et al., 2021; De Avila
Belbute-Peres et al., 2020), and generalize well to unseen scenarios. Combining learning algo-
rithms with principles from physics and numerical methods, such as auxiliary loss terms and rich
inductive biases, can improve sample complexity, computational efficiency, and generalization (Wu
et al., 2018; Karniadakis et al., 2021; Chen et al., 2018; Rubanova et al., 2019). Imposing Hamilto-
nian (Greydanus et al., 2019; Sanchez-Gonzalez et al., 2019; Chen et al., 2019) and Lagrangian (Lut-
ter et al., 2019; Cranmer et al., 2020; Finzi et al., 2020) mechanics in learned simulators offers unique
speed/accuracy tradeoffs and can preserve symmetries more effectively.

Recent methods have been proposed for learning constraint functions and solving them in a model’s
forward pass (Duvenaud et al. (2020)’s “Deep Implicit Layers” tutorial is an excellent hands-on
survey). Such models can play games (Amos & Kolter, 2017; Wang et al., 2019), optimize power
flow (Donti et al., 2021), support robotic planning (Loula et al., 2020), and perform combinato-
rial optimization (Bartunov et al., 2020). Solvers such as gradient descent and Newton’s method
are differentiable, and support training by backpropagation, but this can be computationally expen-
sive, so approaches such as Deep Equilibrium Models (DEM) (Bai et al., 2019; 2020) use implicit
differentiation to compute gradients only at the solution point.

Despite the popularity of constraint-based traditional simulators, only a single simulator which uses
learned constraints has been reported (Yang et al., 2020). Their “Neural Projections” method, based
on Goldenthal et al. (2007), iteratively proposes a future state with an Euler step, then projects
the proposal onto a learned constraint manifold, implemented as a multilayer perceptron (MLP).
Crucially, their constraint function only measures how much an individual state violates the learned
constraints, and thus is not an implicit representation of the dynamics. It is suitable for quasi-static
regimes, but not scenarios such as the elastic collisions in the bowling ball example described above.

Under review as a conference paper at ICLR 2021

(b) Forward predictor (c) Forward iterative predictor (d) Constraint-based predictor

X<y X< y (©0) X YO
!
Iterator |) Solver
YO« &
o Vy fa
ﬁ\ th N
- Y

oY

0Y = =AVy fe(X<t,Y)ly—y®

y(1+1) y@ 4 5y_ L ytD) — y(@ L gy - L
! L ! J

i
v ¥y Yoy

Figure 1: Learned simulator schematics. (a) A simulator, s, maps X<, to a future state Xtﬂ,
using a PREDICTOR that returns Y, which represents information about the system’s temporal evo-
lution, and an UPDATER which uses Y to update X; to Xt+1 (b) Forward GNN simulator. The

PREDICTOR maps X<, directly to Y using fp. (¢) Iterative GNN simulator. The iterator refines Y
by repeatedly applying fp;. (d) Constraint-based Graph Network simulator (C-GNS). The PREDIC-

TOR iteratively solves for a Y that satisfies a constraint function, fc, using Vy fc.

3 MODEL FRAMEWORK

Simulation basics A physical trajectory, measured at discrete time intervals, is a sequence of states,
(X1,...,Xr), where X represents properties such as the positions, velocities, masses, etc, of ele-
ments of the system. A physical simulator, s, is a function that maps current and/or previous state(s),

which we term the context, X<, to a predicted future state, Xt+1 = s(X St) (see Figure la)l. A
simulated physical trajectory, termed a rollout, (X, Xt+1, Xt+2, ...), can be generated by repeat-
edly applying s to its own predicted state, X;41 = s(X <t).

Simulators are often comprised of a PREDICTOR mechanism which maps the context X<; to an
update value Y, that represents information about the system’s temporal evolution at the current
time. Then Y is used by an UPDATER mechanism to update the current state to the next state:
)A(Hl = UPDATER (X<, }7), e.g., updating current positions and velocities represented by X, with
new velocities and accelerations represented by Y, to predict the next state.

Explicit simulators Across science, engineering, and graphics, a popular class of simulators are de-
fined explicitly: the state update Y is predicted directly from X <; using an explicit forward function,

Y = fo(X<t), as illustrated in Figure 1b. Among the rapidly growing family of learned simulators,
the forward function fp is typically implemented using a neural network (Sanchez-Gonzalez et al.,
2020; Pfaff et al., 2021).

Constraint-based implicit simulators Here we explore learned simulators based on implicit formu-
lations of the dynamics. Rather than predicting the desired state directly, as in explicit formulations,

our implicit simulator uses a differentiable constraint function, ¢ = fc(X<q, Y), where c is a scalar
that quantifies how well a proposed state update Y agrees with X<;. A future prediction is generated
by applying a solver, such as an optimization or zero-finding algorithm, to find a Y that satisfies the

constraint function, and applying the UPDATER to update X; to Xt+1~ The fc can represent all the
physical constraints in the system, including the time dynamics.

"Despite that physics is Markovian, we use X<, as input because our framework can also apply to dynamic
processes which are non-Markovian. Providing previous states can also often be helpful when there are hidden
properties of the system which are only identifiable over a sequence of observed states, and when a state does
not represent velocity or momentum information.

Under review as a conference paper at ICLR 2021

As illustrated in Figure 1d, we formulate our constraint-solving procedure via an iterative method
that starts with an initial proposal, Y (?). On the i-th iteration, the solver uses the gradient of fc w.r.t.
Y at the current proposal to compute a change to the proposal, 0Y = =\ Vy fe(X<,Y)|y_y -
This 6Y is then used to revise the proposal to, Y(t1) = Y 4 §Y. This process repeats for N
steps, and the final proposal value is treated as the PREDICTOR’s output, Yy =y,

Our constraint-based model’s fc is defined as a trainable function approximator which is real-valued
and lower bounded at zero, and uses gradient descent to find Y that minimizes it, where) is a fixed
step size. This induces the semantics that the desired Y = arg miny fc(X<¢,Y).

We also explore a second constraint-solving procedure, inspired by Yang et al. (2020)’s

Neural Projections’ use of “fast projection” Goldenthal et al. (2007). Specifically, A =
(@)

— feX<e ¥) . Unlike gradient descent, fast projection is a zero-finding algorithm, so in

HVYfC(XSt’Y)‘y:y(i)

this case fc is not lower bounded. This induces the semantics that fc(X<;,Y) = 0.

This general formulation of constraint-based learned simulation can be trained by backpropagating
loss gradients through the solver loop?. The computational budget of the forward pass can be varied
via the number of solver iterations V.

Explicit iterative simulators As a hybrid between forward and constraint-based simulators, we
introduced a model which iteratively refines a proposed state update, like in the constraint-based
approach described above, but using an explicit function to directly output a 4} at each iteration,
rather than solving a constraint function (see Figure 1¢). See Section 4.3 for details.

4 EXPERIMENTS

4.1 EXPERIMENTAL TASK DOMAINS

We test our framework on a variety of physical environments, shown in Figure 2: ROPE, BOUNCING
BALLS and BOUNCING RIGIDS, whose ground truth training and test data were generated by the
MuJoCo physics simulator, as well as BOXBATH from Li et al. (2019). These environments demon-
strate a diverse set of physical constraints: ‘hard’ constraints (preserving the shape of the rigid object
and resolving collisions), and ‘soft’ constraints on fluid movement, handling gravity and preserving
the momentum of the rope and bouncing balls. See the Supplementary Materials for details.

ROPE BOUNCING BALLS BOUNCING RIGIDS BOXBATH

Figure 2: Renderings of the physical environments. Videos of the model rollours are available at:
sites.google.com/view/constraint-based-simulator.

4.2 MODEL IMPLEMENTATIONS

Representing the physical system Our experimental domains are physical systems comprised of
sets of interacting point-like elements, e.g., objects, particles, mesh vertices, etc. We represent the
state as X; = (p])7='1X¢l, where | X,| is the number of elements, and p] is the j-th element’s
position at time ¢. There are also other static properties of the physical elements, e.g., masses,
material types, etc., which we represent with Z to keep it distinct from the dynamic state information
represented by X;. The input context is X<; = (Z, Xy_3, Xy—2, Xy—1, Xy).

Implicit differentiation at the solution point should be applicable as well, and potentially offer computa-
tional benefits as mentioned in the Section 2, though we do not explore that here.

https://sites.google.com/view/constraint-based-simulator

Under review as a conference paper at ICLR 2021

In our implementation, Y, represents the predicted changes in position (i.e., the “average velocity”
across the time step)3, 9’ = Apj,y = Piy1 — pi- The UPDATER then computes X1 using
Piyq = pi + Apj,, where p] is provided in the input X <,.

Constructing the input graph Our implementations of the fp, fpj, and fc use GNNs as the func-
tion approximators, so we need to pack the context, X<, and (for the fp; and fc) the proposed
state update information, Y (), into an input graph, G; = (V;, E;). The edges E; represent pos-
sible interactions among the elements, such as fully connected edges to represent collisions and
rigid attachments in BOUNCING BALLS and BOUNCING RIGIDS, spring constraints in ROPE, and
interactions among particles within a fixed connectivity radius in BOXBATH.

We enforced translation-invariance by construction, by never providing absolute positions as input
to the models. Instead, the j-th input node’s features are the static properties, and a sequence of
the three most recent position changes (i.e. average velocities), v] = [29,Apl_5, Apl_1, Apl],
where, Ap] = p] — p]_,. For fpr and fc, which also take the solver’s current proposed Y@, we

also concatenate the proposed average velocity from the i-th solver iteration, 7 (9 — p], as input.
For the input edge feature for an edge that connects from node j to k, we also provide the relative
displacement vector between the nodes’ positions, eik =pf —pl.

GNN-based Encode-Process-Decode core We implemented fp, fpi, and fc using Graph Net-
works (GN) (Battaglia et al., 2018), arranged in the Encode-Process-Decode architecture, similar
to previous work on GN-based learned simulators (Sanchez-Gonzalez et al., 2018; 2020; Pfaff et al.,
2021). The Encoder uses two MLPs to encode node and edge features into high-dimensional latent
vectors. The Processor applies multiple GNs, with unshared weights, in sequence, with node and
edge residual connections at each step. We do not use global updates for the GNs. The Decoder
uses an MLP to produce an output for each node.

The fp directly returns Y. The fpp returns a change to the proposed update Y for the current
iteration. The fc’s Decoder returns a scalar for each node to produce a constraint value per node
{c?|j = 1...|V]|}. These node-wise constraint values are averaged to compute a single scalar ¢

constraint for the entire system, ¢ = fo(X<;,Y) = i Z‘j‘gl .

Solving the constraint For fp; and fc we initialize Y (©) = Ap{ to the most recent average velocity*.
We used auto-differentiation in JAX to compute the gradient function, Vy fc, and the step size A was
specific to the model variant, as described below. During training we used N = 5 solver iterations.

4.3 MODEL VARIANTS

The key questions in this work are whether constraint-based learned simulators can compete with ex-
plicit, forward learned simulators, whether implementing the constraint function with GNNs is more
effective than with MLPs, and how minima-based constraint functions solved by gradient descent
compare to constraints defined as the zeros of a function which are solved by fast projection (Gold-
enthal et al., 2007). The following model variants allow us to answer these questions.

Forward GNN This is an explicit, forward GNN-based learned simulator based on the GNS models

from Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021). It directly predicts the state update Y from
the past time points X <.

C-GNS Gradient Descent (C-GNS-GD) and C-GNS-Fast Projections (C-GNS-FP) These are
our proposed constraint-based GNN models. For the C-GNS-GD, the scalar per-node output ¢’
was squared, to force the overall fc to be non-negative, and a gradient descent solver with a fixed
step size, A = 0.001, was used to minimize it. For C-GNS-FP, the A was based on “fast pro-
jection” (Goldenthal et al., 2007; Yang et al., 2020), as described in Section 3. Supplementary
Figure B.5(c-d) shows ablations.

3For BOXBATH we vary a number of modelling choices to best match those in Sanchez-Gonzalez et al.
(2020). The major difference is that we set Y to be the average acceleration rather than average velocity. See
Supplementary Materials for other differences.

“To ensure analogous information is provided downstream of fp, the update rule also includes the previous
average velocity: f)‘ti 1= pf + Ap'g + 97

Under review as a conference paper at ICLR 2021

Rope Bouncing Balls Bouncing Rigids Box Bath
2x1077
* T T
& 10-59 x 2 107% 4
x
S 1074 4) X §
= % -6
é . 10-6 10 ¥
x
o
§
L x ¥ 1077 LI ™
x 9x1078 - C-MLP-GD
C-MLP-FP
102 Forward GNN
103 4 1 1 101 - x Iterative GNN
w x 10 4 9x107 x C-GNS-GD
2 1024 x x B C-GNS-FP
¥ X _
é L 100 1004 8x1073 4
2 % x % x
X
oy % I 1071 % _
e 0 J 3 X
5 100 4 X 3 10-1 £, 7 x 10 x
= x
& x ¥

10-1 1 1072 4 N L]
| 3 %
1073 4 e 10-2 4 6 x 10 %

Figure 3: Test MSE on the node positions predictions across different models. Top row: 1-step
position MSE. Bottom row: full 160-step rollout MSE. The bar height represents the median MSEs
over random seeds. The black cross marks show the MSE metric for each random seed. The black
arrows indicate if MSE metric for a random seeds exceeds the upper y limit of the figure.

Iterative GNN We implemented a hybrid between the Forward GNN and C-GNS, as shown in
Figure lc. It was identical to the C-GNS models, except its fpy directly predicted proposed state
updates as in fp, rather than being computed via the gradients as was done with fc.

ConstraintMLP Gradient Descent (ConstraintMLP-GD) and ConstraintMLP-Fast Projec-
tions (ConstraintMLP-FP) These were MLP-based constraint models, which, rather than using
GNNs to implement fc, instead concatenated the embeddings of all the input nodes into a single
vector and passed them to an MLP implementation of fc. By default, these models cannot han-
dle variable-length inputs, so we padded smaller states with zeros up to the maximum state size.
The ConstraintMLP-FP was the MLP analog to our C-GNS-FP, and was similar to Neural Projec-
tions (Yang et al., 2020). The ConstraintMLP-GD used gradient descent, and was the MLP analog
to our C-GNS-GD. We omit the results for the ConstraintMLP models on BOXBATH (1024 nodes),
as MLPs do not generally work well on physical systems with more than a few particles (Battaglia
et al., 2016; Sanchez-Gonzalez et al., 2018).

4.4 TRAINING AND EVALUATION

We trained the models to make next-step predictions, by computing the Lo loss between the pre-

dicted X ++1 and the corresponding ground truth X, averaged over nodes. All model weights and
biases were trained using standard backpropagation with the Adam optimizer.

At test time, we compute 1-step metrics by evaluating the 1-step errors along each point of the
ground truth trajectory. We also evaluate rollout errors by iteratively applying the learned model
starting from an initial state, over 160 rollout steps, and computing the error between the predicted
and ground truth trajectories.

5 RESULTS

Predictive accuracy’ Our experimental results show that our C-GNS-GD’s performance was gen-
erally better than the other model variants. Figure 3 compares the different models on 1-step and
rollout position MSE (see Supplementary Table B.1 for numerical results). For each dataset, we

>Videos of the model rollouts are available at sites.google.com/view/constraint-based-simulator

https://sites.google.com/view/constraint-based-simulator

Under review as a conference paper at ICLR 2021

10-4 1 MP steps 2 MP steps 3 MP steps 4 MP steps 5 MP steps Forward GNN

‘ 1 Iterative GNN

w . [C-GNs-GD
" .

g | , Forward GNN
a | . .
et | |
Q . :
105 0 0 b, | TR TR A .

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 12345678910

iterations # iterations # iterations # iterations # iterations # MP steps

Figure 4: Test 1-step MSE error on ROPE as a function of message-passing (MP) steps and
solver iterations. The left five subplots shows performance for different numbers of message-
passing steps. The blue and red bars represent the Iterative GNN and C-GNS-GD, respectively,
where the bar height is 1-step MSE. The green bars show the Forward GNN (it does not use solver
iterations). The rightmost subplot shows the Forward GNN with 1 to 10 MP steps.

used the same number of message-passing steps (MP) for all GN-based models. We used 2 MPs for
the ROPE dataset, and 1 MP for all other tasks.

The C-GNS-GD has lower 1-step MSE between the ground truth and predicted positions than other
models across all datasets. Qualitatively, we observed that for Forward GNN with a single message-
passing step, the box in BOXBATH “melts” over time, as the forward model cannot preserve its rigid
shape (see Videos). The comparable C-GNS-GD, by contrast, maintains the rigidity more effec-
tively. These quantitative results suggest that constraint-based learned simulators are competitive
alternative to explicit, forward learned simulators. We generally found that the Iterative GNN was
fairly competitive with the C-GNS-GD in overall performance and better than the Forward GNN.

We also found that the C-GNS-FP was generally less stable across seeds, and not as accurate as
the C-GNS-GD. The same conclusion holds for ConstraintMLP-FP versus ConstraintMLP-GD. We
speculate that the fast projection algorithm may make training challenging because the step size A
is proportional to fc, which may cause poor zero-finding early in training when the fc is not yet
informative. Additionally, we find that C-GNS-FP algorithm becomes unstable in the areas with
shallow constraint gradients, perhaps because its A depends on the inverse of the gradient’s norm.

We explored how varying the message-passing steps and solver iterations (/V) influenced the rel-
ative performance among the models in our ROPE dataset. Figure 4 shows that the C-GNS-GD
generally required fewer parameters and message-passing steps to achieve comparable 1-step MSE
to the other models. Supplementary Figure B.3 shows similar results for the rollout MSE. For most
combinations of message-passing steps and number of solver iterations, C-GNS-GD (green) outper-
forms the Iterative GNN (yellow), C-GNS-FP (purple) as well as the Forward GNN (blue) with the
same number of MPs (the Forward GNN is not iterative model, so we plot it as a single bar). We
hypothesize that the solver iterations in the C-GNS and Iterative GNN may play a similar role to
message passing with shared weights .

Interpreting the learned constraints To better understand the learned fc functions in the C-GNS-
GD, Figure 5 visualizes the node-wise constraint values as a function of Y (proposed average veloc-
ity) for different nodes in the ROPE dataset while holding the other nodes’ proposed update Y fixed.

Node 1 Node 2 Node 3 Node 4 Node 5
15 | 15 o 15 L 0|
= = [15 - o O o B ol B
~ C
~ ST N ST & SO &° Bl o & -10
) |
' -5 i -5 | -5 -5 -5
- -0 -0 - -0 -0 -0

Figure 5: Visualization of the constraint landscape for a trained C-GNS-GD. Each subplot cor-
responds to a different ROPE node. The heatmap’s color shows the constraint value evaluated at
different values of Y state. The plot is centered around the ground-truth point. The colored points
show the five iterations of the constraint solver, from the initial Y(?) (yellow) to final Y (*) (orange).

Oc®

https://sites.google.com/view/constraint-based-simulator

Under review as a conference paper at ICLR 2021

(a) Ground truth sequence (b) C-GNS (c) C-GNS with additional spatial constraints

Figure 6: Adding hand-designed constraints. (a) The ground truth sequence of rope states, initial-
ized at the cyan-colored state, and simulated over 14 time steps, to the final, purple-colored state. (b)
The C-GNS-GD’s rollout, without added constraints. (¢) The C-GNS-GD’s rollout, with wall, floor,
and disk-shaped “forbidden” zones, imposed at test time via hand-designed constraint functions. A
video of the trajectories is available at Videos.

We also overlay the sequence of five points that represent the proposed Y () steps from the solver
where all nodes were jointly optimized. The figure shows the learned fc has a minimum near the
ground truth Y, which the gradient descent steps are able to reach.

Incorporating novel constraints at test time We next explored a unique advantage of the
constraint-based model: because the fc measures the degree the physical constraints are violated,
we can incorporate additional, hand-designed constraints at test time, and use the model to poten-
tially satisfy them. For the ROPE dataset, we designed three constraint functions that return positive
values which increase quadratically as the rope enters different “forbidden” regions of the space: a
vertical wall, a horizontal floor, and a disk-shaped region. We weighted these constraint terms by a
coefficient hyperparameter and added each of the hand-designed constraints to the learned fc term
of C-GNS-GD and ran the forward evaluation of the model.

As shown in Figure 6, the model was able to simulate the dynamics in a way that the corresponding
forbidden region was avoided. In some cases, satisfying the joint constraint resulted in unintuitive
behaviors, such as the rope links changing in length to adapt to the obstacle (Videos). However,
this is to be expected, as the minimum of the joint constraint may not overlap with the minimum of
the learned constraint, which is the one that would otherwise guarantee length preservation. For this
example we added a further hand-designed constraint that incentivizes maintaining relative distances
between nodes. In general this is a powerful example of how constraint-based models can generalize
outside their training data, and solve both for the learned dynamics and arbitrary desired constraints.

Generalizing to larger systems via increased solver iterations In principle, iterative and
constraint-based simulators should find more accurate solutions by increasing the number of solver
iterations, N. We investigated whether the C-GNS-GD and Iterative GNN trained on ROPE could
generalize from Ny, = 5 on which they were trained, to Nyeg € [0, 15]. We also analyzed whether
increased solver iterations could improve generalize performance from training on ropes with 5 — 10
nodes, to test ropes with 20 nodes.

Figure 7a (top row) shows that for test ropes that match the 5 — 10 nodes experienced during training,
the Iterative GNN (light blue) overfits very heavily to Nig = Nyain = 5: error increases abruptly
for N < 4and N > 6. By contrast, the C-GNS-GD (light red) generalizes much better to different
Niest. Figure 7a (bottom row) shows that for test ropes with 20 nodes, the Iterative GNN again
overfits, while the C-GNS-GD can generalize well to longer ropes if Ny is increased.

We also trained the Iterative GNN and C-GNS-GD with additional loss terms that were applied to
the Y (*) on each solver iteration, not only the final one, Y = Y™, We used an exponential decay
factor, « = 0.25, which downweighted this additional loss term more heavily for earlier solver
proposals. The dark blue and red curves in Figure 7a show how this additional loss further improves
generalization to more solver iterations and larger systems as test time for the Iterative GNN, but
especially the C-GNS-GD. Figure 7b visualizes how increasing the solver iterations systematically
improves the quality of the long-term rollout accuracy in the ROPE dataset.

Together these results show the C-GNS-GD is effective in making use of additional resources at test
time. This opens the exciting possibility of training on small, simple systems, and testing on large,
complex systems. See Supplementary Figure B.2 for further details.

https://sites.google.com/view/constraint-based-simulator
https://sites.google.com/view/constraint-based-simulator

Under review as a conference paper at ICLR 2021

(a) One step position MSE Rollout position MSE (b)
c \
2 0 . Forward Iterative State after
3 $ 1073 4 102 44 C-GNS-GD T rollout steps
53 \ —— Forward Iterative (a=0.25) TV Num solver
S ; » —— C-GNS-GD (a=0.25) iterations N
2 10 1004 ° —1
=) . — 2
-E 10-5 \'~ S s oo 55 8 4 — 3
= . . ! . . T=30 \ — 4
- — 5
2 -2 — 6
ERRL .y
2 g
i 107 5 \ T=60
° % * SN, /zl\ ?0
c o W\ 7|
g g 1072 5 \ 10' 4 \, E ///f\ —— Ground T.
83 A\ AN
s ._:.\ % . ._:_<
g e SimemiEimImIDITIIIN 100 4 | S L
S T T T T | T T
(G} 0 5 10 15 0 5 10 15

Num iterations N (Nrain = 5)

Figure 7: Generalization to more solver iterations and larger ROPE systems at test time. (a) Top
row: test accuracy for ropes with the same lengths as those during training (5-10 nodes). Bottom
row: test accuracy for larger ropes (20 nodes) than during training. Left column: 1-step MSE.
Right column: full 160-step rollout MSE. The x-axes indicate the number of solver iterations at test
time (training used 5 iterations). The y-axis represents MSE values. Different line colors represent
different models, as indicated by the legend. (b) Example of the rollouts from C-GNS-GD with
different number of solver iterations.

6 DISCUSSION

We presented a general-purpose framework for constraint-based learned simulation, where a learned
constraint function implicitly represents the dynamics, and future predictions are generated via a
constraint solver. We implemented our framework using GNNs as the constraint function and gra-
dient descent as the constraint solver, and tested it in a variety of challenging physical simulation
problems. Our results showed that our C-GNS has competitive or better performance compared to
previous learned simulators. We demonstrated unique abilities to generalize to novel, hand-designed
constraints, and use more solver iterations than experienced during training to improve the accuracy
on larger systems.

We can hypothesize about the relationship between explicit, forward learned simulators and implicit,
constraint-based ones in terms of the sharing schemes of these architectures. The C-GNS has a
stronger inductive bias than the Forward GNN. The transformation of fc in C-GNS effectively ties
the parameters in the resulting Vy fc function, and the solver iterations are analogous to how a
recurrent neural network’s parameters are shared over iterations. In contrast, the message-passing
steps in the Forward GNN used in our work are unshared. In principle, the fp of the Forward GNN is
more expressive because if given enough depth, after training it could learn to take parameter values
that are equivalent to the shared parameters of C-GNS. Our results shown in Figure 4 supports
this possibility: the Forward GNN with many more message-passing steps eventually approaches
the C-GNS’s performance. Moreover, we speculate the C-GNS’s inductive biases contribute to
its advantages in terms of incorporating novel hand-designed constraints and generalizing to more
solver iterations and larger systems.

More broadly, the performance, generality and unique advantages of constraint-based learned sim-
ulation make it an important new direction in the advancement of machine learning methods for
complex simulation problems in science and engineering.

7 REPRODUCIBILITY STATEMENT

We are committed to open-source the model code after the paper is accepted. Also, we are going to
open-source the MuJoCo datasets that we generated for this paper. We provide more details on the
model implementation as well as the hyperparameters used for each model in the Supplementary
Material.

Under review as a conference paper at ICLR 2021

REFERENCES

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136—145. PMLR, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. arXiv preprint
arXiv:1909.01377, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. arXiv preprint
arXiv:2006.08656, 2020.

David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of the
21st annual conference on Computer graphics and interactive techniques, pp. 23-34, 1994.

Sergey Bartunov, Vinod Nair, Peter Battaglia, and Tim Lillicrap. Continuous latent search for com-
binatorial optimization. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020.

P. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and K. Kavukcuoglu. Inter-
action networks for learning about objects, relations and physics. ArXiv, abs/1612.00222, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. Projective dy-
namics: Fusing constraint projections for fast simulation. ACM transactions on graphics (TOG),
33(4):1-11, 2014.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18—42,
2017.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differ-
ential equations. arXiv preprint arXiv:1806.07366, 2018.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
networks. arXiv preprint arXiv:1909.13334, 2019.

Alexandre Joel Chorin. The numerical solution of the navier-stokes equations for an incompressible
fluid. Bulletin of the American Mathematical Society, 73(6):928-931, 1967.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable PDE
solvers and graph neural networks for fluid flow prediction. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 2402-2411. PMLR, 13-18 Jul 2020.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
hard constraints. arXiv preprint arXiv:2104.12225, 2021.

David Duvenaud, Zico Kolter, and Matt Johnson. Deep implicit layers - neural odes, deep equilib-
rium models, and beyond, 2020. URL http://implicit-layers-tutorial.org/.

Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying hamiltonian and la-
grangian neural networks via explicit constraints. arXiv preprint arXiv:2010.13581, 2020.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. Efficient
simulation of inextensible cloth. In ACM SIGGRAPH 2007 papers, pp. 49—es. 2007.

10

http://implicit-layers-tutorial.org/

Under review as a conference paper at ICLR 2021

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in Neural Information Processing Systems, 32:15379—-15389, 2019.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422—440, 2021.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning—accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In /CLR, 2019.

Jodo Loula, Kelsey Allen, Tom Silver, and Josh Tenenbaum. Learning constraint-based planning
models from demonstrations. In 2020 IEEE/RSJ International Conference on Intellitgent Robots
and Systems (IROS), pp. 5410-5416. IEEE, 2020.

Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model
prior for deep learning. arXiv preprint arXiv:1907.04490, 2019.

Miles Macklin, Matthias Miiller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle physics
for real-time applications. ACM Transactions on Graphics (TOG), 33(4):1-12, 2014.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum,
and Daniel LK Yamins. Flexible neural representation for physics prediction. arXiv preprint
arXiv:1806.08047, 2018.

Matthias Miiller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics.
Journal of Visual Communication and Image Representation, 18(2):109-118, 2007.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNgYLO_XP.

Yulia Rubanova, Ricky TQ Chen, and David Duvenaud. Latent odes for irregularly-sampled time
series. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, pp. 5320-5330, 2019.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning, pp. 4470—4479. PMLR, 2018.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ode integrators. arXiv preprint arXiv:1909.12790, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 8459—8468. PMLR, 13-18 Jul 2020. URL
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html.

Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strasser. Continuum-based strain limiting. In
Computer Graphics Forum, volume 28, pp. 569-576. Wiley Online Library, 2009.

Nils Thuerey, Konstantin Weilenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier—stokes simulations of airfoil flows. AIAA Journal, 58(1):25-36, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and log-
ical reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545-6554. PMLR, 2019.

11

https://openreview.net/forum?id=roNqYL0_XP
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html

Under review as a conference paper at ICLR 2021

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457-1466, 2020.

Jin-Long Wu, Heng Xiao, and Eric Paterson. Physics-informed machine learning approach for
augmenting turbulence models: A comprehensive framework. Physical Review Fluids, 3(7):
074602, 2018.

Shuqgi Yang, Xingzhe He, and Bo Zhu. Learning physical constraints with neural projec-
tions. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 5178-5189. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
37bc5e7fb6931a50b3464ec66179085f-Paper.pdf.

Yao Zhang, Woong Je Sung, and Dimitri N Mavris. Application of convolutional neural network
to predict airfoil lift coefficient. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, pp. 1903, 2018.

12

https://proceedings.neurips.cc/paper/2020/file/37bc5e7fb6931a50b3464ec66179085f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/37bc5e7fb6931a50b3464ec66179085f-Paper.pdf

Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL

A IMPLEMENTATION

A.1 THE DATASETS

We generate the ROPE, BOUNCING BALLS and BOUNCING RIGIDS datasets using MuJoCo phys-
ical simulator, using a MuJoCo timestep of 0.001 and taking every 30th time point. These datasets
contain 8000/100/100 train/validation/test trajectories of 160 time points each.

ROPE The rope is attached on one end and moves under the force of gravity in 2D space. We
randomly sample the number of nodes in [5, 10] interval and the length of the rope links in [0.6, 1.1]
interval. The length of the rope links remains constant during the simulation.

BOUNCING BALLS The simulation of the balls bouncing inside the box in 2D. The number of
bouncing balls is randomly sampled in [5, 10]. The radius of the ball is randomly sampled in [0.11,
0.3]. The size of the box is fixed to 5x5 in MuJoCo coordinates.

BOUNCING RIGIDS A similar simulation to BOUNCING BALLS, where the nodes are connected
into a 2D rigid structure that bounces inside the box. We randomly sample the number of nodes
between 3 and 6.

BOXBATH (Li et al., 2019) This is a 3D particle-based dynamics using the FleX engine of the
fluid enclosed inside a box, with a rigid cube floating on the surface of the fluid. Each simulation
contains 960 fluid particles and 64 particles representing the cube. The dataset contains 2700/10/100
training/validation/test trajectories with 150 time steps each.

We demonstrate the example of the rollouts for each environment in Supplementary Figure B.1 and
Videos.

A.2 CONSTRUCTING THE INPUT GRAPH

As mentioned, we append a history of three® recent velocities (see figure B.5(a-b) for ablations) for
each node as node features. We also compute relative positions for each edge by subtracting the
most recent positions in the history between the two particles adjacent to the edges, and use this as
edge features.” Note we do not include the absolute positions as node features as the laws of physics
are supposed to be invariant of the object’s position in the space. We find that including the absolute
positions into the nodes features harms the ability to generalize to a larger environment, such as a
longer rope.

Note that we do not provide the ‘rest shape’ true pairwise distances between the nodes for the ROPE
or rigid structures in BOUNCING RIGIDS and BOXBATH. This makes the task harder as the model
has to infer the rest shape from the input history, and may gradually deviated from the true shape.

Parameterizing the update Y For ROPE, BOUNCING BALLS, BOUNCING RIGIDS we use the
average velocity as the update Y. For BOXBATH, the proposed update represents the normalized
acceleration of the particle, initialized to zeros. We use normalized acceleration as the update Y,
rather than raw velocity to better match the approach in Sanchez-Gonzalez et al. (2020); Pfaff et al.
(2021). This proposed Y is is also concatenated as an extra node feature at each optimization
iteration, and optimized to match the target future normalized acceleration. This acceleration is
then un-normalized, and then Euler-integrated twice to produce the next position. We chose to used
normalized acceleration as the update Y, rather than raw velocity to better match the approach in
Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021).

®We use five for BOXBATH to match the model in Sanchez-Gonzalez et al. (2020)

"For BOXBATH, we also provide the norm of the relative distances as an additional vector to match features
in Sanchez-Gonzalez et al. (2020)

13

https://sites.google.com/view/constraint-based-simulator

Under review as a conference paper at ICLR 2021

Handling walls Similar to Sanchez-Gonzalez et al. (2020), we include the euclidean distance
between the center of the node to each of walls as additional node features, clipping it at a maximum
value to avoid this to become a proxy for absolute position. For BOUNCING BALLS and BOUNCING
RIGIDS we clip the distance at 2, and for BOXBATH at 0.08. For the iterative models, we update the
distances to the walls after every step of constraint optimization.

Node type We also provide an additional one-hot node feature indicating the node type (e.g. rigid,
fluid, fixed). For BOUNCING BALLS, for which the object size varies between the objects, we pro-
vide the radius of the object as an additional node feature. Other features, like the relative positions
are computed between centers of the nodes, and the network has to account for the object size to
detect a collision.

Graph edges In BOUNCING RIGIDS and BOUNCING BALLS we use a fully-connected graph. In
ROPE we add edges between nodes that are adjacent within the rope. In BOXBATH we add edges
between particles that are within a radius of 0.08 from within each other, and then recompute these
edges at every step of a rollout according to the updated positions (as in Sanchez-Gonzalez et al.
(2020)).

Normalization For the large scale datasets BOXBATH we found it was important to normalize
inputs and targets to zero-mean unit-variance (as in Sanchez-Gonzalez et al. (2020)). In the other
datasets, BOUNCING BALLS, BOUNCING RIGIDS, and ROPE, the scale of the features was al-
ready close to zero-mean unit-variance, except for the input/target velocities in BOUNCING BALLS,
BOUNCING RIGIDS to which we applied a scaling factor 100.

Noise To stabilize rollouts in BOXBATH, we added noise to the input sequences in the same man-
ner and with the same magnitude as in Sanchez-Gonzalez et al. (2020).

Fixed particles Some of the datasets contain the fixed nodes that do change the their position in
the simulation, like the first node in the ROPE. We prevent the update for those nodes by using
stop_gradient.

A.3 MODEL IMPLEMENTATION

Computing the constraint gradients To compute the gradients of the constraint scalars for the
batch of graphs, we use the vector-jacobian product (vjp) function. VJP does not explicitly con-
struct a jacobian, and its asymptotic computational cost is the same as the forward evaluation of the
constraint function.

Constraint function We use the mean aggregation for the per-node outputs to obtain the scalar
constaint value for the entire graph. For gradient descent, we additionally take a square of per-
node outputs before aggregating them. We use a fixed learning rate of 0.001 for Gradient Descent
constraint solver.

ConstraintMLP For the ConstraintMLP we use a similar setup to as in the original paper by
Yang et al. (2020). We concatenate the features for each node into a single vector and run an MLP to
produce a scalar constraint output. The node features include the absolute positions, velocities and
distances to the walls for each node for the optimized state and for the past three time points. Note
that this model does not have access to the position differences between the nodes (this information
is in the edge features for the graph network). Therefore we add the absolute positions to the node
features, which simplifies the task for the model. Additionally, we adapt the ConstraintMLP to
handle the scenes with the variable number of the nodes. To do so, we pad the missing nodes with
zeros vectors up to the maximum number of nodes in the dataset.

A.4 HYPERPARAMETERS
Rope We used 2 message-passing step for the graph-network-based models. The MLPs for node

and edge processing consist have 3 hidden layers with 256 hidden units, and hidden node and edge
latent size of 64. We use ’softplus’ activation and a LayerNorm Ba et al. (2016).

14

Under review as a conference paper at ICLR 2021

For the ConstraintMLP, we performed the hyperparameter search and chose the best performing
configuration. We use the MLP with 10 hidden layers and 2048 hidden units with ’softplus’ activa-
tion with no LayerNorm for the constraint function. We include the absolute positions into the node
features, otherwise the ConstraintMLP model does not contain any information about the relative
positions of the nodes (that we add into the edges for the graph model).

Bouncing Balls We used 1 message-passing step for the graph-network-based models. The MLPs
for node and edge processing consist have 3 hidden layers with 256 hidden units, and hidden node
and edge latent size of 64. We use ’softplus’ activation and LayerNorm after every MLP, except the
final decoder.

For ConstraintMLP we used the best-performing configuration from our hyperparamter search. We
use the MLP with 10 hidden layers and 2048 hidden units with ’softplus’ activation with no Layer-
Norm.

Bouncing Rigids We used 1 message-passing step for the graph-network-based models. The
MLPs for node and edge processing consist have 3 hidden layers with 256 hidden units, and hidden
node and edge latent size of 64. We use ’tanh’ activation and LayerNorm after every MLP, except
the final decoder.

For ConstraintMLP, we use the MLP with 10 hidden layers and 2048 hidden units with ’softplus’
activation. On this dataset, we found that adding a LayerNorm to ConstraintMLP-FP model helps
the stability of the model.

Box Bath We used 1 message-passing step for the graph-network-based models. All other hy-
perparameters are as in Sanchez-Gonzalez et al. (2020). The MLPs for node and edge processing
consist have 2 hidden layers with 128 hidden units, and hidden node and edge latent size of 128. We
use ’softplus’ activation and LayerNorm after every MLP, except the final decoder.

Training We train the models for 1 million steps on ROPE, BOUNCING BALLS and BOUNCING
RIGIDS. We used the initial learning rate of 0.0001, with the decay factor of 0.7 and learning
schedule of (1e5, 2e5, 4e5, 8e5). We use a batch size of 64. We trained for 2.5 million steps for
the experiments studying the number of solver iterations. On BOX BATH we trained for 2.5M steps
with a batch size of 2. With a learning rate starting at 0.001 and decaying continuously at a rate of
0.1 every 1M steps, as in Sanchez-Gonzalez et al. (2020).

Loss on multiple iterations For the variable solver iterations results we experimented training
models with a loss imposed not only at the last iteration output Y @) but at all intermediate outputs
Y (@) of the iterative models. We used exponentially decaying relative weights (from last to first),
such that the relative weight w; for the loss term for the y® output was w; = oV, The goal
of « is to encourage the model to make progress towards the minimum at each iteration, without
penalizing the model heavily for not reaching the solution in 7 < N iterations. More details on the
choice of « are provided on Supp. Fig. B.2.

15

Under review as a conference paper at ICLR 2021

Rope
(GT) -~ /
Rope
(Rollout) e J

B0ﬁncing / ..*.V\/.\ / :.\.J\
?&; °® o’
goiincing / ..‘V:\ / :..“\J.\
(I?olslout) o [J °
Y DYRYEYE
G e \ B % =
Bf)qncing \ \ &\
F LY @X/ A/ #\/

Figure B.1: Examples of the rollouts for our simulation environments.

BoxBath
(GT)

BoxBath
(Rollout)

16

Under review as a conference paper at ICLR 2021

B SUPPLEMENTARY PLOTS AND TABLES

One step position MSE Rollout position MSE Constraint Value (with arbitrary offset) Constraint Gradients

5

1071 4

s
[} 00y — CGNSGD (@=0.0) 10" 2

s 1% £ Ao C-GNS-GD (@=0.125) 100 09

g_ 2 10 N C-GNS-GD (@=0.25)

23 \ C-GNS-GD (a=0.5) 1071 10° 4

3 O —— C-GNS-GD (a=

5 10 C-GNS-GD (a=1.0)

g8 \ 1072

2= 107 *

8

s

£

1072 4

10-3 1

10 4

(20 nodes)

Generalization distribution

10-1 4

0.0 5 X X 5 X 7.5 10.0 125 15.0 00 25 50 75 100 125 15.0
Num iterations N (Nirain = 5)

Figure B.2: Generalization to more solver iterations at test time N as function of «. Imposing loss
only at the last iteration (a=1), causes the model to

1 MP steps 2 MP steps 3 MP steps 4 MP steps 5 MP steps Forward GNN
1— Iterative GNN
w 10° s C-GNS-GD
=
o
3
S 1ot
4
1072
1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 12345678910
iterations # iterations # iterations # iterations # iterations # MP steps

Figure B.3: Comparison of C-GNS to the baselines with different number of message-passing layers
and number of constraint solver iterations (Test MSE on the full rollout). Last facet: 1-step rollout
error of the state-of-the-art Forward GNN with 1 to 10 message-passing steps for reference.

1 MP steps 2 MP steps 3 MP steps 4 MP steps 5 MP steps

N | |
-4
10 | |
1073
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5
iterations # iterations # iterations # iterations # iterations

1-step MSE

L

1 MP steps 2 MP steps 3 MP steps 4 MP steps 5 MP steps

10!
10° I I |
107t
1072
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5
iterations # iterations # iterations # iterations # iterations

Rollout MSE

.

Figure B.4: Test 1-step MSE and Full Rollout MSE of the C-GNS with Neural Projection with
different number of message-passing layers and number of constraint solver iterations on the Rope
dataset. Top row: position MSE on the full rollout.

Under review as a conference paper at ICLR 2021

Table B.1: Median performance of the models on different datasets. *ConstraintMLP: results not
shown for the ‘BoxBath’ dataset as it is infeasible to run MLP constraint on 1000s of nodes. The
standard deviation from the median is shown over 5 random seeds. We do not show the results for
the models where the median value, or standard deviation is more than 1000 times larger than the
best model in each column. Results for all seeds are shown in figure B.6 Note that the tables use
different scales to demonstrate the errors on 1-step error, 10-step rollouts and full rollouts.

Model

One-step position MSE

Rope (le-4) Bouncing Balls Bouncing Rigids Box Bath (1e-7)
(le-6) (le-7)
ConstraintMLP-GD* 0.740 £ 0.021 7.716 £ 1.610 8.047 +1.029 -
ConstraintMLP-FP* 32.332 4 90.408 31.336 + 0.000 25.221 +0.000 -
Forward GNN 0.406 & 0.005 0.126 + 0.009 1.152 £ 0.051 1.440 £ 0.038
Iterative GNN 0.135 £ 0.001 0.168 £+ 0.019 1.172 +0.298 1.042 +0.103
C-GNS-FP 0.698 + 0.297 5.896 + 5.930 - 0.954 +1.885
C-GNS-GD 0.110 + 0.005 0.103 £+ 0.032 0.884 +£0.163 0.998 + 0.038
Model Rollout position MSE (10 steps)
Rope (1e-3) Bouncing Balls Bouncing Rigids Box Bath (1e-5)
(le-5) (le-4)
ConstraintMLP-GD* 1.463 £ 0.231 - 0.998 + 0.436 -
ConstraintMLP-FP* - 692.940 £ 0.000 4.460 £ 0.000 -
Forward GNN 27.585 + 7.335 2.853 +0.277 1.217 £ 0.346 0.386 + 0.061
Iterative GNN 0.251 +0.145 2.260 + 0.429 0.238 + 0.026 0.174 + 0.020
C-GNS-FP 4.458 +2.323 661.72 + 372.49 - 0.200 £ 0.321
C-GNS-GD 0.226 + 0.058 0.613 +0.333 0.248 + 0.038 0.288 £+ 0.055
Model Rollout position MSE
Rope (le-1) Bouncing Balls Bouncing Rigids Box Bath (1e-2)
(le-1)
ConstraintMLP-GD* 20.619 4+ 94.212 2.161 +£0.217 4.241 +£1.970 -
ConstraintMLP-FP* - 6.664 £ 0.000 13.128 £ 0.000 -
Forward GNN 18.305 £ 2.340 0.389 £+ 0.022 1.174 £ 0.486 0.756 + 0.089
Iterative GNN 0.546 + 0.026 0.445 + 0.044 0.306 + 0.253 0.609 + 0.015
C-GNS-FP 2.804 £ 3.432 - - 0.689 + 0.099
C-GNS-GD 0.602 + 0.088 0.308 +0.142 0.374 +0.171 0.654 + 0.002

18

Under review as a conference paper at ICLR 2021

Rope Bouncing Balls . Bouncing Rigids Box Bath
X X 10 T 4x1077 T
1072 4 1055 x % 5 g
w 249 (] — ()
_ 3x1077 j
g X W 107° 5 é <
s
5 1073 4
3 - 2x1077
g 1076 4
o X
[
D 104 4 o ¥
o X % ¥ x
S X 1077 + X
1077 A % X
1075 5 T X -
1004 X 102 | % X T X
X 10° 5 5
w ()
w 100 4 x 10-1 1 5 |6x107°
= 1073 4 ® X
own
5§ 107 5 1072 4 ax1076{ ¥ x
28 %
own i x
Qo 6
== 102 4 x 104 4 1073 4 3x10 % x
2 x X
o
€ s l% % ¥ y 104 %] 2x1076 x
§ § 1075 4 1% s ¥ * §
1075 4
1074 - % X
T X 10 4 X X
104 4
10° 3 o 9x1073 X
- % 10° X
& 104 4 s
= 102 4 107 A -
3 3
5 10°3 8x 10 <
B
G 5 |
2102 4 § X X 10 §
S X 1004 10% { 7x1073 o
3 1073 X M % x X
2 100X K X% 10* 1 x
- ' 1072 { x %
1071 4 R . ¥
x X < 10] % % || [6x10]

C-MLP-GD
C-MLP-FP
Forward GNN
Iterative GNN
C-GNS-GD
mmm C-GNS-FP

Figure B.6: Test MSE on the node positions predictions across different models. First row: 1-
step position MSE. Second row: position MSE error for the first 10 steps of a rollout. Third row:
position MSE error full 160-step rollout MSE. The bar height represents the median MSEs over
random seeds. The x marks show the MSE metric for each random seed. The black arrows indicate

the MSE metric for a random seed exceeding the upper y limit of the figure.

Num input steps. Square node constr
— Faise

— True

0 25 o 75 100 125 150 0 25 0 75 100 125 150 0 20 40 6 80 100 120 140 160 0 20 40 0 80 100 120 140 160
E Simulation time Simi ime

imulation time Simulation time

(a) # past time point (b) # past time point in (c) Squaring per-node (d) Squaring per-node

in the history: position the history: constraint outputs: position MSE outputs:

MSE MSE MSE

Figure B.5: Ablations of the modelling choices.

19

constraint

	Introduction
	Background and related work
	Model Framework
	Experiments
	Experimental task domains
	Model implementations
	Model variants
	Training and evaluation

	Results
	Discussion
	Reproducibility Statement
	Implementation
	The datasets
	Constructing the input graph
	Model Implementation
	Hyperparameters

	Supplementary plots and tables

