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A B S T R A C T   

Parkinson’s disease (PD) is a common neurodegenerative movement disorder among older individuals. As one of 
the typical symptoms of PD, tremor is a critical reference in the PD assessment. A widely accepted clinical 
approach to assessing tremors in PD is based on part III of the Movement Disorder Society-Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS). However, expert assessment of tremor is a time-consuming and laborious 
process that poses considerable challenges to the medical evaluation of PD. In this paper, we proposed a novel 
model, Global Temporal-difference Shift Network (GTSN), to estimate the MDS-UPDRS score of PD tremors based 
on video. The PD tremor videos were scored according to the majority vote of multiple raters. We used Eulerian 
Video Magnification (EVM) pre-processing to enhance the representations of subtle PD tremors in the videos. To 
make the model better focus on the tremors in the video, we proposed a special temporal difference module, 
which stacks the current optical flow to the result of inter-frame difference. The prediction scores were obtained 
from the Residual Networks (ResNet) embedded with a novel module, the Global Shift Module (GSM), which 
allowed the features of the current segment to include the global segment features. We carried out independent 
experiments using PD tremor videos of different body parts based on the scoring content of the MDS-UPDRS. On 
a fairly large dataset, our method achieved an accuracy of 90.6% for hands with rest tremors, 85.9% for tremors 
in the leg, and 89.0% for the jaw. An accuracy of 84.9% was obtained for postural tremors. Our study 
demonstrated the effectiveness of computer-assisted assessment for PD tremors based on video analysis. The 
latest version of the code is available at https://github.com/199507284711/PD-GTSN.   

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease with a high 
incidence in older individuals (Bhattacharjee and Sambamoorthi, 2013; 
Dong et al., 2021). It has a complex pathogenesis and can result in severe 
deterioration in the patient’s health. As the ageing population increases, 
the number of PD patients is on the rise, which puts much pressure on 
diagnostic process in healthcare settings (Amoroso et al., 2018; Porritt 
et al., 2006). Therefore, a computer-assisted assessment method is ur-
gently needed so that specialists can develop a treatment plan early. The 

symptoms of PD include tremors, bradykinesia, rigidity, and postural 
instability (Bi et al., 2021). Tremor is a kind of abnormal movement 
defined as the involuntary occurrence of periodic oscillations of body 
parts, which has been suggested to occur in more than 70% of PD pa-
tients (Baumann, 2012; Politis et al., 2010). Thus, the accuracy of PD 
tremor assessment is essential for PD diagnoses and treatment (Bhatia 
et al., 2018; Massano and Bhatia, 2012). However, accurately assessing 
PD tremors is a major challenge since the form and amplitude of PD 
tremors often vary and are context-dependent (Zach et al., 2015). 

The current clinical assessment of PD is primarily based on the 
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Movement Disorder Society-Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS), which was defined by the World Academy of Movement 
Disorders (Bhatia et al., 2018). It has four parts with several tests for 
various motors such as gait, finger tapping, and leg agility. Each test is 
scored by trained experts using five levels of severity: 0=normal, 
1=slight, 2=mild, 3=moderate, and 4=severe (Zitser et al., 2017). Part 
III of the MDS-UPDRS contains the tremor tests for PD patients, with the 
3.17 test for rest tremor and the 3.15 test for postural tremor (Li et al., 
2018c). Fig. 1 describes the tremor test in MDS-UPDRS. The 3.17 test for 
rest tremor requires participants to sit statically in a chair for 10 s with 
their hands resting on the chair’s armrests and their feet placed 
comfortably on the floor. The specialist scores the participant by 
observing the limb and jaw tremors. In the 3.15 test for postural tremors, 
the participant holds their arm straight out in front of the body with the 
palm down. The wrist is held in a straight position, and the fingers are 
separated. Then the specialist observes the participant’s hand tremors to 
give the score (Goetz et al., 2012; Stebbins et al., 2013). The 
MDS-UPDRS provides a reliable criterion for the assessment of PD 
severity. However, the evaluation process requires trained experts to 
complete, which results in inefficiencies in healthcare as well as sub-
jective variation in assessment. In addition, the limitations to mobility 
and travel restrictions caused by the recent COVID-19 pandemic make it 
more challenging for PD patients to get timely clinical assessment and 
treatment (Li et al., 2021). Therefore, clinical practice and health ser-
vices urgently need an automated and objective method to assess PD 
tremors. We argue it is feasible to quantify the severity of PD tremors 
based on video by computer-assisted technologies. 

Thus far, most research on automatic assessment of PD tremors has 
focused on wearable sensors (Monje et al., 2019; Silva de Lima et al., 
2017). Inertial sensing-based wearable devices (ISWDs) were designed 
to capture tremors, and the scores of professional physicians were 
trained by a supervised learning algorithm. However, the results of this 
method have not been satisfactory. Some researchers have combined the 
6-axis high-precision electromagnetic tracking system (EMTS) with 
machine learning algorithms to address this challenge, which has 
improved the quantification performance (Dai et al., 2021). It should be 
noted that the wearable device might affect the patient’s tremor per-
formance during wearing due to the weight of the device, which could 
cause the results to be less accurate. Moreover, wearing the device might 
interfere with the patient’s daily life. Thus, the sensor method is not 
applicable for daily monitoring. In this study, we developed an auto-
mated video-based method for assessing the severity of PD tremors. This 
novel method did not require the patient to put on any wearable 
equipment, which would not cause any adverse effects on the patients. 

Base on the idea of a video classification algorithm, we proposed a 
deep learning network model to quantify PD tremors according to the 
MDS-UPDRS. One challenge to the video classification algorithm was 
the lack of video datasets. Deep learning algorithms often need 
numerous datasets to sufficiently support the training task of the 
network, so a data augmentation process was necessary (Wang et al., 

2021a, 2022, 2021b). In addition, the scoring targets for PD tremors in 
the MDS-UPDRS involved several different body parts (Legaria-Santiago 
et al., 2022). This would have required considerable workload to cap-
ture the videos individually. So it is necessary to design a method to 
divide video of different body parts from the entire video automatically. 
Human pose estimation predicts the coordinates of the body joints in the 
image using a deep learning algorithm. Subsequently, the body joints are 
connected based on the structure of the human skeleton (Zhao et al., 
2021). We postulated that we could accurately segment the entire video 
through the coordinates that were obtained from the pose estimation. 
Based on this process, it was possible to obtain the video dataset of target 
body parts automatically. 

Recording PD tremors using video has the potential problem that 
very subtle tremors might not be adequately represented in the video, 
skewing the final results. To solve this challenge, we adopted the tech-
nique of video magnification to enhance the subtle tremors in the video, 
thereby increasing the accuracy of the results. Apart from that, in video 
classification tasks based on deep learning, a large amount of input data 
and complex network models would result in substantial calculations 
(Wang et al., 2020). Therefore, the design of the video sampling and the 
network structure were particularly significant. Current video classifi-
cation algorithms aim to recognize larger actions with greater sampling 
intervals (Zhou et al., 2017). However, PD tremors were more minute 
motions, so the sampling interval should be appropriate. Since too small 
sampling interval would increase the occurrence of unnecessary com-
putations, while an over large sampling interval would decrease the 
accuracy of the results. Therefore, the best sampling method for the 
video also was a focus of our research. Moreover, current video-based 
methods are only concerned with local temporal movements, while 
assessing PD tremors is a global process. Thus, our method expanded the 
model’s focus to include the whole temporal domain of the videos. 

In summary, we proposed an effective method to predict the MDS- 
UPDRS scores of PD tremor videos in this paper. The contribution of 
our work is as follows:  

(1) We proposed an efficient video-based method to evaluate the 
severity of PD tremors, which was carried out without physical 
contact with the patient. This novel method has achieved 
considerable accuracy in predicting MDS-UPDRS scores for both 
rest and postural tremors. 

(2) We combined temporal difference and video classification algo-
rithms to classify PD tremor videos with different severity levels 
effectively. EVM (Eulerian Video Magnification) was applied as 
video pre-processing to enhance the subtle PD tremors in the 
videos.  

(3) We proposed the GTSN model, which focused more on global 
temporal changes in the PD tremor videos. This novel model is 
more advanced than other video classification models to assess 
PD tremors in videos.  

(4) We proposed a novel module, GSM, which allowed each temporal 
segment to include the feature of the global segment. Experi-
mental results demonstrated that GSM was more powerful than 
the other state-of-the-art modules in predicting the scores based 
on the PD tremor videos. 

2. Related work 

Researchers have recently invented several methods to assess the 
severity of PD. These researchers have primarily focused their work on 
analyzing the gait and bradykinesia of PD patients using specially 
designed wearable sensors (Fino and Mancini, 2020; Liu et al., 2019). 
With the advent of deep learning algorithms, methods based on videos 
have been proposed to quantify PD (Hughes et al., 2020; Lu et al., 2021; 
Mei et al., 2021). Although the final results of these methods have 
proven to be satisfactory in experiments, the application of these 
methods in the clinical diagnosis of PD has not yet been adopted. Fig. 1. Rest and postural tremor test in MDS-UPDRS for PD patients.  
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Mandy Lu introduced an ordinal focal neural network and used 
human joint information as inputs to the model, which achieved 
acceptable predictions of MDS-UPDRS scores for PD gait. They also 
applied this method to the finger-tapping task in the MDS-UPDRS and 
obtained excellent results (Lu et al., 2020, 2021). Besides taking the 
video directly to assess the severity of PD, some works extracted motion 
features including speed and frequency from the video for further 
analysis. They extract the features that were most relevant to the motion 
and carried out the assessment of PD using deep learning (Vignoud et al., 
2022). Samuel Rupprechter calculated six motion features, including 
speed, arm swing, postural control, and smoothness, using a sequence of 
key points that were obtained from videos. Subsequently, they trained 
an ordinal random forest classification model, which produced a rating 
estimation of the MDS-UPDRS gait on a lager video dataset (Rup-
prechter et al., 2021). 

Video-based deep learning algorithms have been used to assess MDS- 
UPDRS as well as other assessment methods. Michael H. Li was the first 
to apply deep learning algorithms for the vision-based assessment of PD 
and levodopa-induced dyskinesia (LID). They used the Random Forest 
algorithm to predict the total UPDRS and MDS-UPDRS Part III scores 
based on motion features (Li et al., 2018a, b). In addition, some research 
has combined video-based methods with other methods to evaluate the 
results in an integrated manner. They used special sensors to obtain 3D 
gait information. Then, they combine it with 2D gait information from 
the camera to demonstrate the correlation between these two methods 
and the MDS-UPDRS-gait and SAS-gait scores (Sabo et al., 2020). Vin-
cenzo Dentamaro extended the application of the video-based gait 
assessment method to other diseases. In their work, the human gait 
movement patterns were modeled using the kinematic theory of rapid 
human movements and its sigma-lognormal model to achieve diagnoses 
for neurodegenerative diseases (Dentamaro et al., 2020). With the 
development of human posture estimation algorithms and graph neural 
networks, researchers take human key points as input of graph neural 
networks to analyzed the characteristic relationships between move-
ments. Rui Guo proposed a sparse adaptive graph convolutional network 
(SA-GCN) in their study to achieve a fine-grained quantitative evalua-
tion of skeleton sequences that had been extracted from videos. They 
demonstrated the validity and reliability of their method for PD motor 
disorder assessment using a large dataset (Guo et al., 2020). 

Wearable watches and smartphones also have been used in PD 
tremor research (Liddle et al., 2014; Marxreiter et al., 2020). Kuosmanen 
et al. quantified the severity of PD hand tremors using smartphone in-
ertial sensors to better understand the effects of PD medications in 
normal environments. These studies have demonstrated the effective-
ness of the method in monitoring PD symptoms and remotely assessing 
the effects of medications (Kuosmanen et al., 2020). It should be noted 
that wearable devices could influence the patient’s tremor performance 
due to the weight of the device, which might adversely affect the ac-
curacy of the results. Moreover, wearable devices are expensive, com-
plex, and not easy to design, which is more inconvenient than the 
non-intrusive method based on video. 

Feature extraction algorithms of videos based on deep learning are 
better at quantifying PD tremors captured on video (Ali et al., 2020; 
Rupprechter et al., 2021), but previous research has focused on only a 
few video features. On the other hand, the quantification process can be 
considered as a process of video classification since the score of videos 
(0,1,2,3,4) is discrete. Zhao Yin employed a 3D Convolutional Neural 
Network (CNN) to quantify the severity of PD, which was processed 
using PD videos. Due to the limited video data, they pre-trained the 
network model using a non-medical dataset. The authors applied 
transfer learning in their research, and the experimental results proved 
to be valid. However, their study only targeted the seven tasks in 
MDS-UPDRS and ignored the rest tremors test in part III of the 
MDS-UPDRS (Yin et al., 2022). Haozheng Zhang proposed a new model 
named SPAPNet, which classified tremors using non-invasive video re-
cordings. They extracted relevant tremor information and effectively 

filtered out noise using a novel attention module with a lightweight 
pyramidal channel squeeze fusion architecture (Zhang et al., 2022). 
Their work focused on classifying different tremor types, while our work 
was about MDS-UPDRS assessment of PD tremors which was crucial for 
following the progression of patients’ symptoms. 

Silvia L. Pintea et al. accomplished the task of estimating hand 
tremor frequencies from RGB videos by proposing the Eulerian method, 
which used intensity values or phase information from the video to es-
timate the result after removing large motions from the videos (Pintea 
et al., 2018). This method developed a novel concept for research 
through the analysis and diagnosis of dyskinesia, such as PD. Finally, 
Xinyi Wang designed a gesture recognition and body motion detection 
system. In this system, relevant features were extracted from videos 
taken in arbitrary situations, and machine learning was used to make 
classifications based on the observed video features to detect tremors 
(Wang et al., 2021c). 

3. Materials and methods 

3.1. Participants and dataset 

In this study, 130 unrelated sporadic patients were recruited from 
2019 to 2021. The diagnosis of PD was based on the UK Brain Bank 
diagnostic criteria, which was proposed by The United Kingdom Par-
kinson’s Disease Society Brain Bank (UKPDSBB). This system is the first 
set of formal diagnostic criteria for PD, which is currently broadly used 
in clinical trials and routine clinical practice worldwide (Luca et al., 
2018). This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Fujian Medical University, and written consent 
was obtained from all participants. All participants in this paper were 
evaluated using the MDS-UPDRS in the off-medication state, and the 
evaluation process was recorded on video. These videos were produced 
and provided by professional specialists who participated in the Inter-
national Movement Disorders Association’s MDS-UPDRS scoring 
training and received a certificate of competency. The videos were not 
allowed to be made public according to the relevant regulations pro-
tecting patient privacy. All video data were recorded using one Sony 
camera with a video resolution of 1920×1280, a video frame rate of 30 
frames per second (fps), and the video recordings were stored in MTS 
format. Each participant was captured on two videos with the guidance 
of professionals. One video was obtained for the 3.17 test, and the other 
for the 3.15 test. During the recording process, the camera was posi-
tioned 3 m away from the participants and kept in a stationary position. 
In the videos for the 3.17 test, the participants were instructed to sit 
calmly in a chair for 7 to 14 s with their hands on the arms of the chair 
and their feet resting comfortably on the floor. The videos for the 3.15 
test required the participants to sit in a chair with their arms held 
straight out from their body, palms facing down, and wrists straight 
while keeping their fingers apart. 

According to the MDS-UPDRS, the test for rest tremors (3.17) focused 
on three items: hands, legs, and jaw. The test for postural tremors (3.15) 
focused only on the hands. Therefore, we focused on scoring these three 
body parts in our study. The scores from the videos were evaluated by 
three trained, board-certified physicians. The final scores were deter-
mined based on a majority vote of the three evaluators. Since the scar-
city of videos with scores of 3 and 4 in the collected videos, we combined 
them with videos scoring 2 as scored 2+. Table 1 and 2 shows the valid 
number of different body parts of the participants that were assessed as 
well as the gender distribution. Except for the jaw assessment, the videos 
of the hands and legs included the left and right sides. Therefore, twice 
the amount of leg and hand video data were obtained. We also 
augmented the videos by mirroring to expand the dataset for each body 
part examined. Thus, we theoretically obtained four times as many 
videos of the hands and legs as the number of participants and twice as 
many videos of the jaw as the number of participants. However, the 
automatic extraction of the different body parts included some problems 
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e.g. if one hand of a patient occluded the other one, or some participants’ 

voluntary head bowing and shaking. All the above non-standard 
movements would cause failed acquisition for body parts video, which 
also leads to the number of available videos unequal to the total number 
of videos. The actual number of valid video of different body parts in our 
experiment is shown in Table 3. 

3.2. Overall framework 

Our method contained EVM (Eulerian Video Magnification) pre- 
processing and GTSN (Global Temporal-difference Shift Network), 
which included the temporal difference module and the ResNet-50 
embedded with GSM (Global Shift Module). The overall flow is shown 
in Fig. 2. First, the input tremor video was pre-processed by EVM. Then 
after the sampling process, the optical flow was extracted from the 
sampled image as the input of GTSN. In the GTSN, the optical flow 
initially passed through the temporal difference module, stacking the 
inter-frame difference results of five successive frames with the current 
frame. Then the features were extracted from the ResNet-50 with GSM. 
The GSM was placed inside the residual branch in a residual block, 
which was denoted as the GSM-Residual block. This plug-and-play 
module allowed the features of each moment to accept the features of 
the other moments through the global temporal shift. Finally, the pre-
dicted score of the video was output from a fully connected layer. In the 
following sections, we described the proposed method in detail. 

3.3. Obtaining videos of different body parts 

The objects scored in tests 3.17 and 3.15 of the MDS-UPDRS included 
the participant’s limbs and jaw. We used OpenPose to automatically 
divide the original video to obtain partial videos containing only the 
target body parts (Cao et al., 2021). This procedure greatly reduces the 
workload of collating tremor videos from different body parts. 21 hand 
key points of OpenPose were used to obtain the videos which only 
contain the hands; 25 body key points of OpenPose were used to obtain 
the videos which only contain the legs; 20 mouth key points of OpenPose 
were used to obtain the videos which only contain the jaw. The distri-
bution of OpenPose keypoints and the acquisition of the video are shown 
in Fig. 3. 

3.4. Video magnification 

Eulerian Video Magnification has been proposed by Wu, HY. It fo-
cuses on subtle motions in videos that can be effectively enhanced 
through filtering and amplification processes (Wu et al., 2012). In our 
research, the three raters stand at the same angle and distance from the 
camera during the PD tremor video recording. Considering that the 
resolution of the human eyes is greater than that of the common camera 
we used in our research, it may be difficult for some subtle tremors to be 
captured and presented in the videos. Therefore, we pre-processed the 
PD tremor video using EVM to amplify tremors that were difficult to be 

Table 1 
Dataset of rest tremor participants from 130 participants in this study. The ground-truth for each video is determined by the majority vote of raters. (M: Male; F: 
Female)  

Score Left Hand Right Hand Left Leg Right Leg Jaw 
Valid/Total M/F Valid/Total M/F Valid/Total M/F Valid/Total M/F Valid/Total M/F 

0 46/47 28/19 46/49 22/27 41/49 28/21 48/56 31/25 58/61 27/34 
1 40/41 20/21 34/36 18/18 55/56 24/32 45/46 22/24 40/43 22/21 
2 29/29 14/15 35/35 20/15 22/24 15/9 23/26 13/13 23/25 18/7 
3 11/11 4/7 8/9 6/3 0/1 0/1 2/2 1/1 1/1 0/1 
4 2/2 1/1 1/1 1/0 0/0 0/0 0/0 0/0 0/0 0/0 
All 128/130 67/63 124/130 67/63 118/130 67/63 118/130 67/63 122/130 67/63  

Fig. 2. The framework of our method: the subtle tremor in the video is amplified by EVM pre-processing. In the GTSN, temporal difference module stacks the current 
optical flow to the result of inter-frame difference. The features are obtained through the ResNet-50 which consists of several GSM-Residual block. Each GSM- 
Residual block is embedded with GSM to gain the global temporal features. The final prediction score is obtained through a fully connected layer. 
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picked in the video. For EVM, a video Ican be indicated as amplitude and 
phase: 
I(m, n, t) = A(γ, θ,m, n, t)eiψ(γ,θ,m,n,t) (1)  

Where γ represented the scale and θ represented the direction. The 
phase-changed δ at time t was calculated based on the phase at the time 
t0: 
δ(γ, θ,m, n, t) = ψ(γ, θ,m, n, t) − ψ(γ, θ,m, n, t0) (2) 

After obtaining the phase change, we multiplied it by the amplifi-
cation factor α and added it to the phase of the original video to obtain 
the magnified result: 
Î(m, n, t) = A(γ, θ,m, n, t)ei(ψ+αδ) (3)  

Where ̂I was the video that has been magnified. We used EVM as a pre- 
processing technique to enhance subtle movements in the original video. 
We apply EVM to all PD tremor videos and compare the result from the 
original video and that from the EVM video, which shows a significant 
difference for all PD tremor videos. To visualize the differences between 
the original video and the EVM video, we took pixel slices of the same 
position and spliced them together. Fig. 4 shows the splicing results of 
slices from one original video and its EVM video. This video was a rest 
tremor video of one participant’s right hand. Comparing the two splicing 
results of the slices on the right side of Fig. 4, we determined that the 
EVM effectively magnified the subtle movements in the original video. 

3.5. Global temporal-difference shift network 

In the algorithms of video classification based on the two-stream 
network, the inputs were of two types: RGB images and optical flow 
(Lee et al., 2018; Wang et al., 2019). RGB images have three channels 
with the input shape of N×3×c×H×W, and optical flow has two chan-
nels with the input shape of N×2×c×H×W. In these cases, N was the 
number of video segments, and c was the number of each segment 

channel. Current video classification methods tend to target larger ac-
tions. For the more subtle movements of PD tremors, we proposed a new 
network model GTSN. 

3.5.1. Video sampling 
To minimize the number of calculations in the video classification 

algorithm, the videos must be appropriately sampled as input to the 
model (Liu et al., 2021b). The method proposed in this study focused on 
the PD tremor videos. We argue that the process of recording PD tremors 
with a camera was a sampling of the PD tremors, where the fps of video 
were the sampling frequency (e.g., a video at 30 fps that had a sampling 
frequency of 30 Hz). Therefore, the actual tremor frequency and video 
sampling frequency of PD patients needed to satisfy the Nyquist limits to 
ensure the validity of the results. Thus, the frames per second of the 
captured video FPS and the highest frequency of the PD tremor fmax 

needed to satisfy the following inequalities: 
FPS > 2⋅fmax (4) 

Related studies have shown that the normal frequency range of PD 
tremors is 3 to 7 Hz (Delval et al., 2016; Duval and Beuter, 1998; Florin 
et al., 2008; Lukhanina et al., 2000). It was apparent that the video in 
our study obeyed the Nyquist limits. Rest and postural tremors 
commonly appear after the PD patient has been in a stable state for a 
while. The tremor might not occur immediately in PD patients during 
the first half of the video in our research. Therefore, we only captured 
frames to 3 s later as the model’s input. Video classification algorithms 
tend to use sparse sampling or dense sampling (Liu et al., 2018; Vig 
et al., 2012). However, both methods are unsuitable for the tremor video 
because the tremor is a continuous and small motion. Therefore, we 
especially designed a sampling method for PD tremor video in this study. 
Furthermore, to reduce the number of calculations as much as possible 
without distortion, we sampled the video in compliance with the 
Nyquist limit: 
FPS

′

> 2⋅fmax (5) 

Fig. 3. Videos of different body parts are obtained from the source video by the 
keypoints of the OpenPose. The lines in the middle figures represent the human 
skeleton, and different colors mean different parts. The videos containing only 
the target body parts can be automatically obtained through OpenPose. 

Fig. 4. The splicing slices of the original video and the video after EVM in the 
same position. The splicing results of slices showed that EVM can enhance the 
subtle PD tremors in the video. Top left: we take a pixels slice from each frame 
of the original video at row x; Top right: we splice the original video slices in 
the order of temporal t to show the pixels’ motion at the slice position in the 
original video; Bottom left: we take a pixel slice from each frame of the EVM 
video at row x; Bottom right: we splice the EVM video slices in the order of time 
t to show the pixels’ motion at the slice position in the EVM video. 
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Where fmax was set to the maximum value of 7, so the minimum sampling 
frequency FPS′ could be set to 15. The original video frame rate was 30 
fps, and we sampled each frame at intervals, so the final sampling result 
was 15 frames per second, satisfying the above inequality. Fig. 5 shows 
how we sampled the frames, which were only 1/2 of the original number 
of frames. 

3.5.2. Temporal difference 
Although the video classification base on deep learning can effec-

tively classify different videos, it primarily addresses videos with larger 
actions (Lin et al., 2020). However, the tremor videos in our works are 
more subtle and slight motion, and we argue that the small differences 
between frames in the tremor video were particularly significant. 
Therefore, we designed a temporal difference module, which allowed 
the model to extract motion changes in the videos more effectively. We 
set each segment S containing five frames of images O: 
S = [On,On+1,On+2,On+3,On+4] (6) 

The shape of O was (H×W). To obtain the distinctive features be-
tween consecutive frames in the tremor video, we first made an inter- 
frame difference on five consecutive frames in each segment and then 
stacked the local frame to ensure the information of the current moment 
could be acquired. Using the results of the temporal difference as input 
to the model allowed the model to focus more on the changes between 
frames, which might increase the model’s accuracy for tremor classifi-
cation. Moreover, the input included the local frame, so the model did 
not lose local information. To keep the number of sampled frames within 
the original number of frames, the start of sampling was limited to the 
first 12 frames. Therefore, the first segment S′

1 after the change was: 
S’

1 = [On,On+1 −On,On+1 −On+1,On+3 −On+2,On+4 −On+3](0 ≤ n ≤ 12)

(7) 
We took five frames from each segment as one feature channel of the 

model input. After the above processing, the input of shape 
(N×c’×5×H×W) was kept constant, where c’=3×c when the input was 
RGB image and c’=2×c when the input was optical flow. 

3.5.3. Global shift module 
The Temporal Shift Module (TSM) was proposed by Ji Lin et al. It 

allowed the model to learn the different information between adjacent 
segments by shifting the feature channels up and down in the temporal 
dimension. Through this simple module, each segment contains features 
of the adjacent segments without any extra calculation (Liu et al., 

2021a). However, we determined that the scoring of PD tremors by the 
evaluators was a global procedure. Thus, not only the adjacent segments 
but also other non-adjacent segments were significant for the current 
segment. We developed a novel plug-and-play module, GSM, which 
allowed for better interactions between each feature across the global 
temporal. 

We extended the shifted feature channels to all temporal segments so 
that each segment incorporated the temporal difference information 
from the others. Thus, the global tremor information of the video could 
be learned. Fig. 6 shows the structure of GSM, where we retained a 
certain percentage of the feature channels and recombined others. After 
the global temporal shift, the current moment segment still retained 
most of the original features, while the global features represented only 
a small proportion. GSM allowed the information of every temporal 
feature to be exchanged with each other sufficiently so that the global 
features of the PD tremor could be learned, which increased the sensi-
tivity of the convolutional neural network to the whole tremor video. 
Notably, the shifting object of the TSM was the features of the frames in 
the temporal segment, whereas GSM dealt with the features of the cur-
rent frames and the temporal difference. 

For input shape (N×C×H×W), N was the number of temporal seg-
ments, and C was the total number of feature channels. We set the 
proportional size of the global shifted features to 1/m. The shape of the 
features taking part in the global shift was (N×C/m×H×W), and the 
shape of the retained features was (N×C(m-1)/m×H×W). Each shifted 
feature size was (1×C/(m×N)×H×W), and the overall feature shape 
remained the same after the global temporal shift. 

As with TSM, GSM is a plug-and-play module (Voillemin et al., 
2021). It needs to be embedded in other networks. In this study, we used 
ResNet-50 as the backbone of our model because we found that 
ResNet-50 works best through experiments. We tried several ways to 
insert GSM into the residual block, and the version shown as 
GSM-Residual block in Fig. 2 demonstrates the best result. Furthermore, 
for the proportional size of the global shifted features 1/m, we deter-
mined that the best performance of the model was achieved when it was 
set as 1/4, which was consistent with the experimental results of TSM. 

3.5.4. GTSN-loss 
Formally, for K segments of the input video (S1, S2, ⋯, SK), each 

segment contained the same number of frames. By modeling the 
network through which the input passes, we obtained the following 
results: 
GTSN(S1, S2,⋯, SK) = Softmax(F(W(S1),W(S2),⋯,W(SK))) (8)  

Where the W function was the selected convolutional network (ResNet- 
50), and its result was the output of the convolutional neural network 
(ResNet-50). The F function was the feature fusion function, which fused 
the output feature results of all segments. Finally, the probability of the 
input video on every classification was derived by the Softmax function, 
which resulted in an M-dimensional vector, where M was the number of 
classifications of the video. Based on the standard cross-entropy loss 
function, the final loss function of GTSN obtained was as follows: 

Loss(y, f ) = −
∑M

i=1

yi

(
fi − log

∑M

j=1

expfj

)
(9)  

Where y is the true label of the input classification and f is the result of 
feature fusion: 
f = F(W(S1),W(S2),⋯,W(SK)) (10)  

4. Experiments and results 

In this section, we present the experimental results of the rest tremor 
and the postural tremor tests. We completed several comparative ex-
periments under the combination of different modules and showed the 

Fig. 5. By sampling the video in one frame intervals, the input shape of the 
model has changed from (t, h, w) to (t/2, h, w), which reduces the data size 
while satisfying the Nyquist limits. 
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results of the evaluation metrics. We separated the videos for the 
different body parts. All videos were divided into four groups for 
training: left and right hand videos in the 3.17 test for hand rest tremors; 
left and right leg videos in the 3.17 test for leg rest tremors; jaw videos in 
the 3.17 test for jaw rest tremors; left and right hand videos in the 3.15 
test for postural tremors. It should be noted that we trained the left and 
right limb videos of one participant together because the tremors of the 
left and right limbs from the same participant were not correlated (e.g. 
some participants presented a normal score of 0 for the left hand but a 
severe score of 2 for the right hand). 

4.1. Experiment settings and evaluation metrics 

All experiments in this section were run on Pytorch in a server with 4 
Nvidia GTX1080ti GPU. The model used a cross-entropy loss function 
and the SGD optimizer. The best performance was achieved at 100 
epochs with an initial learning rate of 0.002 (decays by 0.1 at epochs 
40&80), a batch size of 32, and a dropout of 0.3. The backbone of the 
model was ResNet-50. For GSM, we embedded it in the residual block of 
ResNet-50. The proportional size of the global shift m in GSM was set to 
1/4. The number of video segments N was set to 8. The training time in 
all experiments was approximately 1 to 2 h. 

To evaluate the experimental results of our method, we reported four 
metrics for each experimental result: average F1, the area under the ROC 
curve (AUC), precision (Pre), and recall (Rec). These metrics proved the 
effectiveness of the method in the classification task (Ong et al., 2012; 
Ureten and Maras, 2022). In this study, we compared these metrics re-
sults for each score. Furthermore, we also compared the result of mul-
tiple classification and binary classification (scores 0 and non-0). We 
must emphasize that participants with a task score of 0 did not mean that 
they were not PD patients, but rather indicated that the participants 
might have a lower severity on this test. To account for the limited 
dataset size, all evaluations of this research were performed using a 
participant-based k-fold cross-validation with k = 5. The training set and 
test set had the same distribution. All metrics in this section were ob-
tained from the experimental results of the test set. The videos of the test 
and training sets were both taken from different participants to ensure 
the model’s generalizability. 

4.2. Rest tremor score estimation results 

The rest tremor experiment included rest tremors of the hands, legs, 
and jaw. We analyzed the results of the average F1, the area under the 
ROC curve (AUC), precision (Pre), and re-call (Rec) for the experiment 
on the three body parts. We used the experiment of hand rest tremor 
videos for the representative comparison since the hand rest tremor 
videos were more sufficient and the scores were more uniformly 
distributed. We analyzed the experimental results of the hand rest 
tremors in detail to further explain the reasons for discrepancies be-
tween the different methods. 

Table 4 shows the accuracy of the different methods in normal and 
EVM pre-processed cases. These models are current state-of-the-art 
methods in video classification tasks (Carreira and Zisserman, 2017; 
Feichtenhofer, 2020; Feichtenhofer et al., 2019). These results included 
the comparison between the RGB image and the optical flow of PD 
tremor videos. Since some models focused only on the RGB images, we 
could only show their RGB results in Table 4. In the experiments for 
these methods, we only changed the sampling methods to satisfy the 
Nyquist limits. In addition, we added the temporal difference module to 
compare with our method. The best results of every experiment were 
obtained by adjusting the hyperparameters. Every method also used the 
same training and test sets. All the above operations were to make each 
model’s experiment has the same setting to ensure the validity of the 
comparison results. 

It is clear from the Table 4 that the optical flow performed better than 
the RGB image for all methods. This demonstrated that the results 
focused more on the tremor changes in the video, which the optical flow 
could represent better than the RGB information. In addition, all 
methods’ results were significantly improved after EVM pre-processing, 
which demonstrated the effectiveness of EVM in PD tremor enhance-
ment. In the normal case, X3D performed best with RGB images. While 
in all other cases, our method achieved the best results. Furthermore, we 
carried out experiments for two streams (Optical flow + RGB) and found 
that the results were not better than with optical flow alone, but the 
calculations increased. Overall, the results demonstrated that our 
method (Temporal Difference+GSM+ResNet-50 in EVM pre-processing) 
exhibited a higher accuracy than current state-of-the-art methods in the 
assessment of PD tremor videos. 

Table 4 shows that the accuracy in the EVM pre-processing was much 
better than in the normal case. To demonstrate the effect of EVM pre- 
processing on the prediction of video scores, we compared the confu-
sion matrix obtained from the normal case with the EVM pre-processing. 
The two confusion matrices in Fig. 7 show the prediction results for each 
score in the normal case and with EVM pre-processing. Comparing the 
two confusion matrices, the accuracy of all scores improved after EVM 
pre-processing, which was particularly evident for the scores of 0 and 
non-0. This suggests that EVM improved the model’s sensitivity to the 
tremors in the videos. 

To compare the performance of TSM and GSM in ResNet-50, we 
visualized their feature maps that were output from one network layer. 
Fig. 8 shows the feature maps from TSM and GSM in ResNet-50 in the 
normal case and with EVM pre-processing. These results were obtained 
from the hand rest tremor experiment. These feature maps were the 
results of temporal difference from the optical flow, and the temporal 
changes were due to the tremors in the video. Therefore, the temporal 
changes in these feature maps were primarily focused on the edge of the 
hand, which was consistent with the tremor performance in the videos. 
In comparing the feature maps in normal cases and with EVM pre- 
processing, it was evident that the temporal changes were signifi-
cantly enhanced with EVM pre-processing. Furthermore, when 

Fig. 6. Global Shift Module: Through global temporal shift, each temporal segment includes the features of other moments while retaining the majority of itself.  

W. Liu et al.                                                                                                                                                                                                                                      



Medical Image Analysis 85 (2023) 102754

8

comparing TSM and GSM, our proposed GSM makes the temporal 
changes to be more accurately focused on the edges of the hands, which 
further illustrated the effectiveness of EVM and GSM for extracting 
tremor features in the videos. 

We presented the results obtained from the three experiments with 
rest tremors using our method. Table 5 shows the accuracy of multiple 
classification and binary classification of the different body part. Our 
method achieved excellent accuracy in predicting the scores of rest 
tremor videos. The accuracy of binary classification was clearly 
improved compared to the accuracy of the multiple classifications 
(scores of 0, 1, 2+). The hand showed the highest accuracy among the 
three experiments, this is considering that hand tremors are more pro-
nounced than jaw tremors, and the number of videos with different 
scores for hand tremors was more uniformly distributed. The dichoto-
mous results from these experiments revealed that our method exhibited 
considerable sensitivity to rest tremor videos for the different body 
parts. In contrast, it had decreased ability to quantify rest tremor videos. 
However, the results were in an acceptable range. 

Table 6 and Fig. 9 demonstrate the metrics results of our method for 
the three rest tremor experiments. Our method achieved a macroscopic 
mean Pre of 0.92, a mean recall of 90%, and an F1 score of 0.91 for the 
hand rest tremors. A macroscopic mean Pre of 0.85, an average recall of 
85%, and an F1 score of 0.85 were achieved for the leg rest tremors. A 
macroscopic mean Pre of 0.91, a mean recall of 86%, and an F1 score of 
0.88 were achieved for the jaw tremors. The average metrics for the leg 
were lower than for the hands and jaw. The average metrics performed 
best for the hands. The average metrics for a score of 1 for all parts were 
typically better than the average metrics of scores 0 and 2+. 

Fig. 10 shows the ROC curves with each score for the three experi-
ments. The AUC is the area under the ROC curve, shown as the value of 
the area in Fig. 10. The micro-average AUC was higher than 0.9 for all 
three body sites, with a micro-average AUC of 0.93 for the hand, 0.92 for 
the leg, and 0.96 for the jaw. The jaw achieved the highest micro- 
average AUC. The micro-average AUC for all parts with scores of 1 
was generally lower than the AUC for scores 0 and 2+. The ROC curves 
for each experiment exhibited satisfactory AUC values. 

4.3. Postural tremor score estimation results 

In this experiment, we performed score prediction experiments for 
postural tremors (the 3.15 test in MDS-UPDRS). This part of the exper-
iment was performed only on the videos of the participant’s hand, and 
we compared the results of the Temporal Difference + TSM with GTSN 
after EVM pre-processing. Table 7 shows that our method outperformed 
other methods, achieving 84.9% accuracy in the multiple classification 

and 93.7% accuracy in binary classification. The results indicated that 
our method was very effective in predicting scores for rest tremors and 
exhibited high sensitivity in predicting scores for postural tremors. 

Fig. 11 shows the confusion matrix for the results of the three scoring 
classifications used in our method. Although the accuracy of our method 
remained low for classifications with scores of 1 and 2+, it achieved 
satisfactory accuracy for the 0 classification, indicating the high sensi-
tivity of our method for postural tremors. 

Table 8 and Fig. 12 reveal the evaluation metrics and ROC curves. 
These average metrics decreased compared to rest tremors but were 
above 0.85. The micro-average AUC in the ROC curve reached a satis-
factory value of 0.93. The reason for the decreased accuracy of postural 
tremors compared to rest tremors was that postural tremors tended to be 
accompanied by large movements, which influenced the model assess-
ment. The evaluation metrics of a score of 1 were lower than the eval-
uation metrics of scores of 0 and 2+, which were the same as the results 
obtained with rest tremors. 

Fig. 7. The comparison of confusion matrix for estimation of the hand rest tremor scores in different cases: (a) confusion matrix in the normal case, (b) confusion 
matrix in EVM pre-processing case. The accuracy of all scores improved after EVM pre-processing. 

Fig. 8. Optical flow maps visualisation (x and y directions in gray-scales) of our 
model for hand rest tremor video. The gray value of the pixel is correlated with 
the tremor at the position. We compare two settings: (1) normal video and EVM 
pre-processing video; (2) TSM and GSM. In both cases, GSM is more sensitive 
than TSM to PD tremors in the video. 
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Fig. 9. Assessment performance of our method for per-class of rest tremor score in different body parts. Our method achieves good results in different evaluation 
metrics, which demonstrates the reliability of our method. 

Fig. 10. ROC curves of our method for per-class of rest tremor score in different body parts. The results demonstrate the generalization ability of our method to 
tremor scores assessment in different body parts. 
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4.4. More score estimation levels results 

To further demonstrate the assessment capability of our model, we 
extended our assessment level range to (0, 1, 2, and 3+). We combined 
the scores of 3 and 4 into 3+. As we can see from Tables 1 and 2, both 
legs and jaw rest tremor lack the videos scoring 3 and 4, so the experi-
ment in this part only contains hand rest tremor and postural tremor. 
The experiment was based on the previous video data without 
augmentation. We trained our model under EVM pre-processing without 
changing the settings. 

Through the experiment, we obtained an accuracy of 87.5% for hand 
rest tremors and 82.2% for hand postural tremors. We presented the 
detailed results in this section. As can be seen from the experimental 

results in Table 9 and Fig. 14, the accuracy for non-0 scores (1, 2 and 3+) 
decrease after extending the assessment level range. However, the result 
of classification for score 0 still maintains a high accuracy as shown in 
Fig. 13, which demonstrates that our method is still more advanced than 
other current methods when it has more assessment levels. 

5. Discussion 

In this work, we developed an innovative video-based method to 
predict scores of PD tremors according to the MDS-UPDRS. Our work 
provided a novel and reliable way to the assessment of PD tremors, 
which was suitable for assessing rest and postural tremors. The assess-
ment of the severity of PD tremors is critical to the diagnosis and 
prognosis of PD, but this is quite a challenging task. Current methods use 
wearable equipment to extract and analyse PD tremor signals, but such 
methods could influence PD tremor development due to the weight of 
the devices (Shawen et al., 2020). In contrast, the model proposed in this 
study does not cause any interference to the PD tremors, which has a 
distinct advantage over wearable devices. It ultimately achieved a 
striking result on a large dataset. 

To demonstrate the strengths of our assessment method, we 
compared our method with the current work on MDS-UPDRS tremor 
scoring, as seen in Table 10. The current methods using video-based data 
sources have lower accuracy than the sensor data sources. In addition, 
most methods are limited to evaluating only a certain type of tremor or a 
particular body part. Compared to these other methods, our method 
overcame these limitations. Our video-based method was applied to 
different body parts with tremors and presented a significant advantage 
in the accuracy of tremor assessment. Therefore, our method has 
excellent potential for future clinical assessment and remote monitoring 
of PD patients. With this method, doctors can easily and quickly measure 
the severity of the patient’s symptoms to formulate better treatment 
plans. 

One critical reason for allowing the MDS-UPDRS score evaluation of 
PD tremors based on videos is that the video recording is a sampling 
process of the actual PD tremor, which is consistent with the Nyquist 
limits. Since the actual scores of PD tremor videos are discrete, pre-
dicting the scores of PD tremor videos could be considered a classifi-
cation process for PD tremor videos. However, the target in most current 
video classification algorithms tends to be bigger movements, while PD 
tremors are more detailed and are more subtle movements (Afsar et al., 
2015). Therefore, the current video classification algorithms are not 
very suitable for classifying PD tremor videos. To address this challenge, 
we designed a temporal difference module to stacks the current optical 
flow to the result of inter-frame difference so that the model could be 
more focused on learning information about the tremor. In the field of 
image and video processing, optical flow represents the motion char-
acteristics of pixels, and RGB image represents the spatial information of 
images (Reda et al., 2018). However, in the experiments of our study, it 
was noted that RGB information of image sequences did not improve the 
sensitivity to tremors based on optical flow. Therefore, we focused on 
the temporal differences in optical flow to obtain the characteristics of 
PD tremors in the video. 

The scoring criteria of our model for the PD tremor videos were 
based on trained medical professionals. While we recorded the test 
video, the evaluators were standing at the same angle and distance as the 
camera to ensure that the video was consistent with what the evaluators 
saw. However, the human eye has a distinct advantage in resolution over 
the common camera we used in our research. Many small PD tremor 

Fig. 11. Confusion matrix of our model for estimation postural tremor scores in 
EVM pre-processing. 

Fig. 12. ROC curves of our method for per-class in postural tremor score.  

Table 2 
Dataset of actual postural tremor participants from 130 participants in this 
study. The ground-truth for each video is determined by the majority vote of 
raters. (M: Male; F: Female)  

Score Left Hand Right Hand 
Valid/Total M/F Valid/Total M/F 

0 42/47 21/26 46/50 26/24 
1 42/45 26/29 37/38 19/19 
2 24/30 14/16 26/29 15/14 
3 3/6 4/2 10/11 6/5 
4 1/2 2/0 1/2 1/1 
All 112/130 67/63 120/130 67/63  

Table 3 
The actual video dataset of different body parts for the experiment.  

Rest Tremor Postural Tremor 
Left Hand/Right Hand Left Leg/Right Leg Jaw Left Hand/Right Hand 
256/248 236/236 244 224/240  
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motions could not be shown well in the captured test videos, which 
could impact model accuracy. EVM amplified the subtle motions in the 
videos (Abnousi et al., 2019), which enhanced the PD tremors into 
perceptible size for the model. In the experiment section, we compared 
the results in normal and EVM pre-processed cases, and the results 
revealed the effectiveness of EVM in improving the accuracy of the 
model. The confusion matrix of the results indicated that EVM signifi-
cantly improved the model’s ability to discriminate between scores of 
0 and non-0. 

In video classification algorithms, TSM makes each temporal 
segment contain the features of the neighboring temporal segments by 
simple temporal shifting. In our study, we first considered using this 
simple but effective module to shift the temporal difference features of 
tremor videos. However, TSM only allowed the features of the current 
segment to include the features of the adjacent segments, while the 
tremor test is a global process. Therefore, we argue that both the features 
of the adjacent and the no-adjacent segments are correlated to the cur-
rent segment. GSM extends the scope of the temporal shift to global 
features so that the features of each segment could include the features 
of all segments. Based on this experiment, we discovered that GSM 
exhibited a significant advantage over TSM in predicting PD tremor 
video scores. 

We presented numerous excellent video classification works in 
Table 4, they have different performances in the classification of PD 
tremor videos. SlowFast proposed a novel model with slow and fast 
channels (Feichtenhofer et al., 2019), which is highly sensitive to big 
movements, as well as fast and slow movements with different fre-
quencies. But compared with other movements, the frequency of PD 
tremors is more stable, with no obvious change in frequency. Therefore, 

this method might not be suitable for PD tremor video classification. 
However, it might perform well in the classification of PD gait videos. 
I3D performs better in two-stream (Carreira and Zisserman, 2017), but 
the model has a large amount of parameters that makes it difficult to 
achieve edge computing. X3D also performs well in PD tremor assess-
ment with less parameters, but its current work only focuses on RGB 
stream of video (Feichtenhofer, 2020). We believe it might have good 
potential in PD severity assessment. 

Furthermore, the model’s calculation also was an important factor in 
PD severity research. For the frame sampling of PD tremor videos, a 
higher fps might contain more subtle features of tremors, which could 
slightly improve the results. However, this also would increase the input 
data and model calculations. Therefore, it was necessary to sample PD 
tremor videos. As seen in Table 4, the Optical flow+RGB results did not 
significantly outperform the Optical flow results. The reasons for this 
observation might be that the feature fusion of tremors in two stream 
networks did not perform well, or the RGB stream might include some 
noise in addition to the tremor features. In addition, although some 
methods receive a small enhancement in the Optical flow+RGB cases, a 
large increase in the number of calculations and parameters to obtain 
only a minor improvement in the results was not desirable. 

From the ROC curve of the experimental results, we found that our 
model has a stronger generalization ability for the most severe score. We 
believe this is due to the fact that higher scores mean the tremors are 
more pronounced and easier to distinguish, which is consistent with the 
tremor scoring rules in the MDS-UPDRS. In the experiments with more 
score estimation levels, it can be found surprising accuracy for the most 
severe score of 3+. One of the reasons is our method has a stronger 
generalization ability for more severe videos. On the other hand, it is due 

Fig. 13. Confusion matrix of our model for estimation rest and postural tremor scores.  

Fig. 14. ROC curves of our method for per-class rest and postural tremor score.  
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to the small number of videos with score of 3+. Even though we use data 
enhancement and cross-validation methods, it is still possible more 
positive samples in very few videos with score of 3+, which may lead to 
the very ideal results. 

Our study still has some room for improvement. The PD tremor test 
in MDS-UPDRS was aimed at different body parts since each part has 
different tremor patterns. We trained the tremor video of each body part 
independently, which might have increased the workload associated 

with the model training. We comprehensively compared the perfor-
mance of our method and the wearable method in the PD tremor 
assessment. Vision-based methods are very popular since they are more 
affordable and allow unconstrained limb movements. In the PD videos, 
limbs are likely to be occluded during interaction, while wearable de-
vices can get the tremor signal directly. However, wearable devices can 
negatively affect the results due to their weight. Therefore, both of the 
two methods could find their usage under different circumstances in PD 
tremor assessment and were still in constant development. For future 
research, our method has significant advantages in monitoring patients’ 

conditions, while the wearable method is more suitable for analysing the 
tremor electrophysiological mechanism. Furthermore, participants’ 

movements needed to be restricted from following the rules of the MDS- 
UPDRS to obtain accurate videos. Therefore, future application of this 
work to the daily monitoring of PD patients might require additional 
consideration of how to obtain ideal videos of routine behaviors. 

A common challenge in PD severity assessment studies is the lack of 
data with mild and moderate severity. We also faced this issue in our 
work, which can be seen in Tables 1 and 2. Although we performed data 
augmentation on these videos, the datasets were still unevenly distrib-
uted. In the experimental results, the accuracy of binary classification (0 
and non-0) was excellent, while the accuracy of multiple classification 
was less well, which was consistent with the expectations. From the 
evaluators’ perspective, this was due to the scoring criteria of the model 
that were based on the empirical judgment of the evaluators. The score 
of non-0 was a subjective quantitative process, so it was difficult to 
distinguish. Although we confirmed the final video scores by majority 

Table 5 
The accuracy of our method for different body parts rest tremor. Comparison of 
multiple classification ((scores of 0, 1, 2+)) and binary classification.   

Multiple-ACC(%) Binary-ACC(%) 
Hand 90.6 94.8 
Leg 85.9 96.9 
Jaw 89.0 95.3  

Table 6 
Comparison of metrics results for different body parts. The results include each score and the average.   

Pre Recall F1 
0 1 2+ Avg 0 1 2+ Avg 0 1 2+ Avg 

Hand 0.85 0.96 0.93 0.92 1.00 0.86 0.84 0.90 0.92 0.91 0.89 0.91 
Leg 0.92 0.75 0.89 0.85 1.00 0.79 0.76 0.85 0.96 0.77 0.82 0.85 
Jaw 0.86 0.87 1.00 0.91 1.00 0.72 0.86 0.86 0.93 0.79 0.92 0.88  

Table 4 
Comparison of different methods’ accuracy. RGB and optical flow comparison in normal and EVM pre-processed cases.  

Pre-processing Method Backbone ACC(%) 
RGB Optical flow RGB+Optical flow 

Normal Temporal Difference+I3D ResNet-50 73.9 76.0 76.9 
Temporal Difference+SlowFast ResNet-50 72.9 —— —— 

Temporal Difference+X3D X3D-XL 83.5 —— —— 

Temporal Difference+TSN ResNet-50 77.3 78.9 78.4 
Temporal Difference+TSM ResNet-50 79.8 80.2 80.5 
Temporal Difference+GSM (Ours) ResNet-50 81.0 83.3 83.2 

EVM Temporal Difference+I3D ResNet-50 77.1 79.9 80.1 
Temporal Difference+SlowFast ResNet-50 76.0 —— —— 

Temporal Difference+X3D X3D-XL 87.5 —— —— 

Temporal Difference+TSN ResNet-50 79.6 81.4 81.2 
Temporal Difference+TSM ResNet-50 80.5 83.3 83.0 
Temporal Difference+GSM (Ours) ResNet-50 88.7 90.6 91.2  

Table 7 
Accuracy of our method for postural tremor. Comparison of multiple classifi-
cation ((scores of 0, 1, 2+)) and binary classification.  

Method Multiple-ACC Binary-ACC 
EVM+Temporal Difference+TSM 80.6 89.1 
EVM+Ours 84.9 93.7  

Table 8 
Comparison of metrics results for postural tremor. The results include each score 
and the average.  

Score Pre Rec F1 

0 0.88 0.96 0.92 
1 0.76 0.84 0.80 
2+ 0.94 0.76 0.84 
Avg 0.86 0.85 0.85  

Table 9 
Comparison of metrics results for hand rest tremor and postural tremor. The 
results include each score and the average.  

Score Rest tremor Postural tremor 
Pre Rec F1 Pre Rec F1 

0 0.81 0.97 0.89 0.83 0.94 0.88 
1 0.92 0.79 0.85 0.85 0.79 0.81 
2 0.91 0.80 0.85 0.75 0.72 0.73 
3+ 1.00 1.00 1.00 1.00 0.71 0.83 
Avg 0.91 0.89 0.90 0.86 0.79 0.82  
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vote, the description of the tremor severity in the MDS-UPDRS was still 
somewhat subjective. 

6. Conclusion 

Herein, we proposed a video-based method to predict the scores of 
rest and postural tremors in MDS-UPDRS. This research focused on the 
continuous and subtle PD tremors in the video. Due to the limited 
capability of common cameras in capturing motion, we adapted EVM to 
the video pre-processing to magnify the subtle tremors that were diffi-
cult to represent in the videos. Current video classification algorithms 
were not suitable to accurately assess the tremor videos. To solve this 
issue, we proposed GTSN, a model that focuses more on the micro 
temporal changes caused by the tremors. Considering that the scoring of 
PD tremors is a global process, we propose the plug-and-play GSM that 
allowed the features of the current temporal segment to include features 
of the global temporal segment, which significantly increased the 
model’s prediction accuracy. The effectiveness of our proposed method 
(EVM+GTSN) for the score prediction of PD tremor videos was 
demonstrated through experiments. This work could be used for sup-
plementary assessment of PD tremors to reduce the stress of the 
healthcare system. In addition, the method could be considered as an 
approach for the classification of other subtle motion videos in the 
future. 
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