You Only Spectralize Once: Taking a Spectral Detour
to Accelerate Graph Neural Network

Yi Li®, Zhichun Guo®, Guanpeng Li”, and Bingzhe Li*
@ University of Texas at Dallas
AUniversity of Washington
YUniversity of Florida
{Yi.Li3 ,bingzhe.li} @utdallas.edu
zcguo @uw.edu
liguanpeng @ufl.edu

Abstract

Training Graph Neural Networks (GNNs) often relies on repeated, irregular, and
expensive message-passing operations over all nodes (e.g., V), leading to high
computational overhead. To alleviate this inefficiency, we revisit the GNNs training
from the spectral perspective. Node features and embeddings in many real-world
graph exhibit sparse representation in Graph Fourier domain. This inherent sparsity
aligns well with the Compressed Sensing principles, which posits that sparse signals
can be accurately reconstructed from significantly fewer measurements (e.g., M
and M < N). This observation motivates designing efficient GNNs that operates
predominantly in a compressed spectral subspace. In this paper, we propose You
Only Spectralize Once (YOSO), a GNN training scheme that first performing a
single projection of features onto a learnable orthonormal Graph Fourier basis Uy,
and after compressed sensing is used, retaining only M spectral coefficients where
M < N. The entire GNN computation then performs in this reduced/compressed
spectral domain. Finally, the full graph embeddings are recovered back to original
domain at output layer by solving a compressed sensing bounded ¢5 ;-regularized
optimization problem. Theoretically, drawing upon the compressed sensing theory,
we prove that stable recovery by showing that this whole process can satisfy the
Restricted Isometry Property when M = O(k(log N/k)). Empirically, YOSO
achieves an average 74% training time reduction across five benchmark datasets
compared to state-of-the-art baseline schemes, while maintaining the competitive
model accuracy.

1 Introduction

Graphs effectively capture the relational structures in diverse data [27,151} 1261 139], offering advantages
over Euclidean representations [7]. Graph Neural Networks (GNNs) [36} 28, (72| [15] leverage this
via localized message passing (LMP) [19], achieving state-of-the-art (SOTA) performance in tasks
such as link prediction [25,167] and node classification [71}169]. However, LMP on the large-scale
graphs leads to prohibitively long training time, e.g., billion-scale graphs can demand hours or even
days of computation [38} 58]]. To mitigate these costs, prior works explored the strategies like graph
pruning/condensation [50} 33} 60] and various sampling techniques [13} 31} 166, |15]. By discarding
parts of the graph or limiting nodes neighbors exploration, these methods might miss crucial relational
information, thus often leading to a notable degradation in model accuracy [12]. Consequently, GNN
training faces a fundamental efficiency-accuracy trade-off.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1.00 4000
YOsO

0.98 PR— @ Non-Computation Time @ Computation Time
. Sraphs:

o @
3 5
g f 0.96 > GraphSAINT/EDGE AS'GCN E 3000
8 5 GraphSage Cluster-GCN %‘7 2000 //
E § 094 FastGCN 8 E/ fi
o as(GC & . -
§ g’ 0.92 gunms T«g 1000 . O T
0.90 = i t =
0 1000 2000 3000 4000 0 E B2 I B | /-
Total Training Time (s) GS VG FG AG LA CG S EG SRW
(a) Total training time V.S. Model accuracy (b) Total training time breakdown

Figure 1: Total training time and model accuracy of different schemes, including GraphSage (GS) [28]],
VR-GCN (VG) [12], FastGCN (FG) [13], AS-GCN (AG) [31], LADIES (LA) [72], Cluster-GCN
(CG) [15] and two different versions of GraphSAINT (S_EG and S_RW) [66]], on Reddit [28]]. Total
training time is broken into two parts: (1) Non-computation time, includes mini-batch construction
(e.g., indexing, sampling) and data transfer between host and device memory; and (2) Computation
time, which covers computation on the GPU (i.e., forward and backward propagation, and weight
updates). The seven-pointed red star marks the desired operational point targeted by this paper.

Fig. illustrates this trade-off: methods such as GraphSAINT [66] and AS-GCN [31]] achieve high
accuracy with comprehensive neighborhood data but suffer long training times (top-right of Fig. [Ta)).
Conversely, schemes like FastGCN [13]] and LADIES [72] offer speed-ups but sacrifice accuracy
(bottom-left of Fig.[Ta) due to the information loss from aggressive sampling [55]]. These existing
methods form a Pareto frontier: reducing non-computational overheads (e.g., host-side sampling,
host-device data migration etc.) impairs accuracy, while preserving accuracy inflates these overheads.
We performed a breakdown analysis, as illustrated in Fig.[Tb] The results reveal that non-computation
time dominate the overall training time relative to the computation time (i.e., computation in devices),
highlighting a key opportunity for optimization.

Our goal is to transcend this trade-off, achieving both high accuracy and low training time (reaching
seven-pointed red star indicated in Fig. [Ta). To this end, we draw inspiration from the Graph Fourier
analysis [52| 144,137, [17] where node features are viewed as signals defined on graph structure [45]].
Orthonormal eigenvectors of graph Laplacian [42} 21} 24, 36] (e.g., Lsym) serve as the fundamental
frequency components [35,161]. Graph Fourier transform matrix U (composed of these eigenvectors)
projects original features X into spectral domain via U " X [46]]. This initial transformation is, in
principle, information-preserving [44,42]]. A crucial observation is that graph signals (both initial
features and intermediate GNN embeddings) exhibit spectral sparsity [32,/48]]. This means that the
most important information in these graph signals can be captured by just a few dominant frequencies
or spectral components [42], while many others carry little significant information. Retaining only
these critical coefficients is a principle central to Compressed Sensing (CS). CS posits that if a signal
is sparse in some domain, we don’t need to measure all its components to reconstruct it accurately; a
much smaller number of "smart" measurements can suffice to recover the essential information. By
operating only on these few critical spectral coefficients, we could drastically reduce the amount of
data the GNN needs to process, store, and move, directly tackling the non-computational bottlenecks
(Fig.[Ib) and potentially speeding up the GNN’s computations themselves.

However, directly integrating Graph Fourier and compressed sensing principles into GNN training
presents several significant challenges: (a) Prohibitive U Construction Cost: To use Graph Fourier,
it is typically need a fixed U, which involves eigendecomposition of graph Laplacian (e.g., Lgym)
that typically has complexity of O(N?) [53}15], where N is total number of nodes in the graph. This
makes pre-computing suitable U a substantial overhead itself for large graphs [32, 6, 57, 48|, [14].
(b) Inaccurate Reconstruction from the Spectral Domain: GNNss iteratively apply the non-linear
activation functions. If transform embeddings into spectral domain and later convert them back to
original domain (for performing the downstream task), but only use a simple inverse transform (e.g.,
U 1), thus, these non-linearities prevent perfect recovery of original embeddings. This information
loss can be accumulated layer-by-layer and degrade final model accuracy [3, 2]]. (¢) Costly Layer-
wise Sensing and Recovery: While compressed sensing [10, 9] can, in principle, help to achieve
more accurate reconstruction from fewer measurements and potentially counteract some effects of
non-linearities [63}62], applying the full sequence of Graph Fourier transform, compressed sensing
measurement and recovery at every GNN layer to maintain embedding fidelity would introduce its
own significant computational overhead, negating any time benefits we try to introduce. To address
these challenges, we propose the YOSO (You Only Spectralize Once).

To overcome challenge of fixed basis U, YOSO does not pre-compute it but using a learnable Uy,
which is learned as part of the GNN training process via backpropagation. Crucially, this potentially
complex transformation is performed only once on initial input features. For compressed sensing (CS)
to be effective, data needs to be sparse in chosen transform domain, YOSO’s unified training objective
includes the terms (in total loss L)) that encourage Uy to naturally induce sparse representations
from the input data, denoted X = H () € RV *? where d is the dimension of feature vector. After
this one-time Graph Fourier transformation UET X and the selection of only M (where M < N)
significant spectral coefficients, all subsequent GNN computations proceed entirely in this highly
compact, M-dimensional, CS-informed spectral domain. To tackle inaccurate reconstruction and
costly layer-wise sensing, YOSO applies CS principles for the final output reconstruction only. It
employs a fixed sensing matrix ® (designed to work effectively with the learned U, and satisfy a key
condition called the Restricted Isometry Property (RIP) [[10], which ensures stable recovery from
few measurements). Then, a CS recovery algorithm (bounded /5 ;-regularization) reconstructs the
full-graph node embeddings from the GNN’s compact)M -dimensional output. This one-time spectral
projection at the input and one-time CS-based reconstruction at the output layer significantly reduces
computational complexity. Our main contributions are:

* We propose YOSO, a GNN training scheme that leverages a once-per-training learnable orthonormal
spectral transformation to operate in a Compressed Sensing—informed compressed spectral domain,
thereby mitigating expensive computations (e.g., full message passing), circumventing complex
spatial sampling, and significantly reducing training time while maintaining competitive accuracy.

* Experiments show YOSO reduces training time by ~74% on average, preserving accuracy compa-
rable to SOTA methods, with robust performance and high-fidelity embedding reconstruction.

2 Background and Preliminaries

Graph Neural Networks. GNNs operate on graph G = (V, E, A, X), where V = {v1,..., vy} is
the node set, £ C V x V the edge set, A € RV*V the adjacency matrix, and X € RY*? is node
feature matrix. GNNs learn node embeddings H®) € RN*4" for layer I parameterized by 0() via:
HO = f,0, (H'Y, A), forlayer [= 1,..., L. We denote H®) = X.

Graph Fourier (GF) Analysis. One important concept in GF Analysis is GF transform, which often
uses graph symmetric normalized Laplacian Ly, = I — D~ AD~ 2 [57.136,[14], where D is the
diagonal degree matrix. Ly, has eigendecomposition Ly, = UAUT, where U € RV*N js an
orthonormal matrix of eigenvectors (GF basis) and A = diag()o, ..., Anx—1) contains corresponding
non-negative eigenvalues (graph frequencies). The GF transform of H (") is HO = (U (l))TH),
with the inverse HV = UOHO®, HO ¢ RVxd" (called spectral coefficients) is sparse for real-
world graphs [2, [14} 17,29} 132]], meaning that most energy or information is store in few coefficients,
enabling compressed sensing-based reconstruction.

Compressed Sensing (CS) can reconstruct signals with few measurements, based on two prerequi-
sites [[10]. First, the reconstructed signals need to exhibit sparsity in the transform domain [9]], and
Graph Fourier analysis provides guarantee for this: k-row-sparse H®O in transform domain. The sec-
ond is Restricted Isometry Property (RIP). CS acquires a compressed measurements T € RM xd®
using the sensing matrix &) € RM*N (M <« N) such that T = O HO = dOUOH®O,
Operating on the measurements T4 € RM*4" ingtead of H® € RV*4" is more efficient since
M < N [54,29]. A successful recovery of HO from T relies on the matrix ¥ () defined as
SOU O, ¥O should satisfy the Restricted Isometry Property (RIP) [10] with a constant §;, € (0, 1)
for all k-row-sparse I € R¥N*4": (1 —) |[HO||2. < [€OHO |2, < (14 6,)|HO || If RIP
holds, H® can be estimated from measurements 7)), This estimation, denoted H, él)*, is found by
an optimization problem that promotes row-sparsity, commonly via {3 ;-minimization:

2 1 . 2 R
HO* = Solver(T®, &, UM \) £ argmin ., (2 HT(Z) X0} {08 {0 HF Y HH(Z) H2 1)

(1
Solver(-) represents a determinative algorithm like FISTA [4] adapted for the /5 ;-norm, and A is

a regularization parameter. The asterisk in ﬂﬁ”* denotes this is an estimated approximation of the
true sparse coefficients. The (5 ;-norm is | H |y ; = Zf\; |R*® |5 (where h*(") is the i-th row

of H®). Once the specific ﬁél)* value is solved, then the original domain signal can be computed

and reconstructed as Hc(l)* = UH c(l)*. Crucially, the number of measurements M required for
successful recovery is primarily dictated by the sparsity level k (e.g., M = O(klog(N/k))), not the
number of nodes N (see Appendix [B.2]for the detailed statement).

3 Benefits and Obstacles of Integrating GF and CS in GNNs

Integrating Graph Fourier transform and compressed sensing layer-wise in GNNs seems promising,
since training process can be performed with dimension of M (< N) instead of original N. If node

embeddings H® € RV*4" at each GNN layer I could be represented sparsely viaa U € RV <N
as HO = UOHO one could use a sensing matrix 1 to compress: T" = O HO ¢ RMxd"
One potential successful recovery would involve solving Eq.(1)) and () = &0 U is required to
satisfy Restricted [sometry Property (RIP). This offers two theoretical benefits:

Benefit I: Reduced Data Representation. Compressed H(®) € RV*d" (o 7() ¢ RM*d" yhere
M < N, could reduce computational/memory needs, if subsequent GNN computation could be
adapted to work directly with T, e.g., use T”) as GNN input to perform the forward propagation.
Benefit I1: Faithful Signal Recovery. Compressed sensing provides the guarantee via Restricted

Isometry Property, such that HO e RV*4Y can be accurately recovered from T'(!). This suggests
that the full expressive power of the original embedding space could be restored for downstream
tasks, for example, node classification and link prediction.

However, integrating Graph Fourier and compressing sensing with layer-wise GNN (superscript (1)),
aligning with the above description (ideal scenario in Eq.(2)) is impractical due to two obstacles:

HY = fyo)(Rec{T 1}, A))

Obstacle I: Prohibitive Costs and Complexity of Layer-Specific Transformations. A layer-wise
application of Graph Fourier and compressed sensing would necessitate a distinct orthonormal basis
U® and a corresponding sensing matrix &) for each GNN layer /. Determining the optimal U (!
typically requires costly eigendecompositions (O(N?) complexity [53,5]), as a single fixed basis
is unlikely to maintain the sparsity for embeddings across all non-linear GNN layers. Furthermore,
designing and verifying L distinct ®() matrices to pair with each U") and satisfy the Restricted
Isometry Property adds significant complexity, rendering this layer-by-layer approach impractical.
This motivates a strategy using a single, efficiently obtained (e.g., learnable) transformation and a
universal sensing matrix, denoted ® (without superscript /).

Obstacle II: Impracticality of Layer-Wise Reconstruction and the Resulting Efficiency-Accuracy
Dilemma. Even layer-specific transformations were feasible, reconstructing full N-dimensional
embeddings from compressed measurements at each of the L total GNN layers is computationally
prohibitive. Solving the required optimization problem (Eq.(2))) repeatedly (e.g., with complexity
related to O(N M d®) per layer [41])) would negate any efficiency gains from compressed format.

Therefore, a successful integration should reap the benefits of compression without paying the penalty
of expensive reconstructions at every layer. This necessitates a framework that carefully balances the
depth of spectral processing against the fidelity of information required for high GNN performance,
ideally through a single and efficient transformation and reconstruction pipeline.

4 Methodology

We present the design of YOSO in this section. Section[d.T]introduces YOSO’s overall architecture
and computational workflow. Section 4.2 specifically describe how YOSO learns U, (addressing
Obstacle I) and performs GNN computations (addressing Obstacle II). Finally, the universal sensing
matrix ® (further addressing Obstacle I) details in Section[4.3]

4.1 Overall Process of YOSO

As illustrated in Fig.[2} YOSO introduces a novel GNN training pipeline that integrates a learnable
transformation U, with compressed sensing principles. The core idea is that to project features into
a learnable, sparse spectral domain defined by Uy, perform GNN computations on a significantly

Graph Domain A0 ¢ gVxd Spectral Domain Graph Domain
(0) Mxd (L) MxXd oy,
H® e gRVx¢ A = UTH©® mE-E TO = ®u,H® T €eR ER ‘ H® ¢ RN¥dout
e
Graph L] Il Compressed > GNN -
- N
Fourier(U;) Sensing(®) Message Passing Reconstruct

Figure 2: Overall architecture of YOSO. The model first uses a learnable Graph Fourier transform
U, to project the input H®) € RV*4 into a sparse representation H(© ¢ RN*d Then applies a
fixed sensing matrix & € RM*N (M < N) to compress the features. YOSO perform the Message
Passing directly on the compressed M x d representation T'°). At output layer, it reconstructs the
full-resolution embeddings H (X) € RN *dout to produce task-specific predictions. We should note
that, during the training process, Graph Fourier transform U; is learnable, while the compressed
sensing matrix ¥ remains fixed.

compressed M-row representation T (I = [0, 1, ..., L]) within this domain, and then reconstruct
the full N-dimensional embeddings H (*) only at the output layer for task-specific predictions and
loss calculation. This approach contrasts with the traditional GNNs by primarily operating in a much
lower-dimensional space. The key stages are:

Initialization. Two sets of parameters are initialized: (1) The learnable orthonormal transformation
matrix U, € RV*N_ This matrix aims to form a Graph Fourier basis where feature matrix become
sparse. Thereby Uy, can be initialized as a random orthogonal matrix (e.g., via QR decomposition of
a Gaussian matrix) or using other Stiefel manifold initialization techniques [11], and (2) The GNN

model weights © = {W) € RI"™"*d)L These are initialized using standard practices.

Learnable Spectral Projection (via U;). The input feature matrix H(©) € RN *9 is projected into
the spectral domain defined by the current learnable basis Uy:

HO =y HO 3)

where H(©) ¢ RNxd represents the spectral coefficients of features H(®). To overcome the high
cost of using fixed U (as discussed in Obstacle I, Section , in YOSO, Uy is learned jointly with
the GNN parameters O, subject to an orthonormality constraint (U,' U, = I). This learning process
(detailed in Section guides Uy to become a suitable basis that can project node signals (input
features and, implicitly, subsequent embeddings) into effectively sparse representations, facilitating
efficient compression and high-fidelity reconstruction.

Compressed Measurement (via ®). After obtaining the spectral representation H©, Y0OSO applies
a carefully designed sensing matrix ® € RM >~ (where M < N) to generate a compressed version
of these spectral coefficients, which forms the initial input T'(9) for the GNN layers:

7O =eHO 4)

T ¢ RM*d j5 a compressed feature matrix, representing M measurements or intuitively, a
sketches of N spectral components. The construction of ® is detailed in Section[d.3] The sequence

T . A .
HO Y20, Fro) 20, 1) 4 performed at the beginning of each training iteration, as U, updates.

Forward Propagation in Compressed Domain. Given compressed representation T'(°) € RM <@ a5
input, YOSO performs L layers of message passing entirely within this M -dimensional compressed

space. For layers [= 1, ..., L, the compressed embeddings T') ¢ RM>d" gre updated as:

TO = o (AeT VW) ©)

where W () is trainable weight matrix for layer I, o'(+) is a non-linear activation, and Ag € RM*M j
a graph propagation operator in the compressed domain. A principled choice for A@ is <I>An0rm<I> ,
where A, is a normalized adjacency matrix of the original graph (e.g., GCN’s D~ 3 AD~2 [36)).
This operator allows structural information from the original graph to influence propagation within
compressed M x M space. The weight matrices W () thus learn the transformations (analogous to
spectral filtering when U, captures frequency components) on these compressed embeddings. After
L layers, we obtain the final compressed output T"(%) ¢ RM > dou

Reconstruction, Loss Computation, and Joint Optimization Objective. The compressed GNN
output T(F) (Eq.), being M -dimensional, does not directly correspond to the N original nodes.
To bridge this gap and compute a meaningful task-specific loss, YOSO reconstructs an estimate of

the full N-dimensional node embeddings H'P* ¢ RN *dow This reconstruction and the subsequent
loss calculation are integrated within a joint optimization objective. Total loss Ly, is defined as:

Etotal = ﬂﬁtask(HéL)*7 Krue) + aﬁrecon (T(L)a Qa UZ? ﬁ((:L)*; A) (6)
where HéL)* = U,H, éL)*, and term IﬁIéL)* represents the estimated sparse spectral coefficients of
the final layer’s embeddings. It is not a parameter learned via direct backpropagation in the same

way as U; or ©. Instead, for current training iteration’s GNN output 7(%) and Uy, H £L)* is directly
computed by solving the compressed sensing recovery problem (Eq.(I))). The two components of the
Lo are then:

Task-specific Loss L,qc. This term directly relates to the GNN’s predictive performance on the
downstream task (e.g., cross-entropy for node classification), computed using the reconstructed
N-dimensional embeddings H, L(,L)* = Ugﬁ c(.L)* and ground true labels Y.

Compressed Sensing Reconstruction Loss Lyecon. This term evaluates how well the GNN output

T'L) and the learned basis Uy, conform to the compressed sensing model using the computed | éL)*.

It is defined as:
@)

The first part is the data consistency term, measuring how well the sensed version of the recovered
sparse coefficients matches the GNN’s compressed output T'%). The second part is the sparsity-
promoting regularizer. Both parts of L.con explicitly depend on H C(L)*, which itself is a function of
T) &, U,. The hyperparameters /3, \, a balance these objectives. The overall objective (Eq.)
function is then minimized subject to the constraint U, Uy = 1.

% HT<L> — ®U,HD* i + A Hﬂg”*

2,1

4.2 Learning the Orthonormal Transformation U; and GNN Parameters

As established in Section 4.1} YOSO’s training is driven by the joint optimization objective presented
in Eq.(7). This section further clarifies how the gradients of this total loss are used to concurrently
update the the learnable orthonormal basis U, and GNN parameters O.

In each training iteration, after the GNN produces the compressed output T'(%), H C(L)* are directly

computed by applying FISTA [4] algorithm (Eq.). This H, (EL)* is then used to calculate the values
for both L (via HC(L) = Ugﬂc(L)*) and Lecon. Consequently, the total loss L, becomes a
differentiable function of © (through TL) which is an input to the Eq.) and U, (which is an
input to the Eq.@ and also used in Lygx and Lyecon). Automatic differentiation can then compute

Ve Liotar and Vg, Liorar, encouraging the GNN to produce compressed outputs T that lead to low
task error and are well-suited for sparse recovery. Theoretical analysis concerning error bounds is in

Appendix [B.3]
4.3 Constructing the Universal Sensing Matrix ®

A central challenge (Obstacle I, Section in YOSO is designing the fixed sensing matrix & € RM*V
to be effective with the learned, evolving basis Uy (in Section[4.2)). ® must robustly capture salient

information from the spectral coefficients HO =, ZT H©) and ensure that the combined operation
DU, satisfies favorable compressed sensing properties like RIP.

YOSO constructs ¢ by combining a graph-structure-aware component Sy € RMXN with a

randomized component ;g € RMx*N, using element-wise product: ® = Sy ® Bpang. The
matrix Sy 1S determined once during pre-processing based on graph structure and remains fixed.
Construction of the Structural Matrix S yet. The matrix S aims to guide sensing towards
structurally important parts of the graph, which are assumed to correspond to important spectral
information. Its construction is based on sampling nodes according to importance scores derived

from the eigenvalues of the symmetric normalized Laplacian Ly, = I — D 2AD 2. Let the
N eigenvalues of Lgy be 0 < A\g < Ay < -+ < Ay_1. A probability P(i) is defined for
each spectral mode 7 (associated with the eigenvalue \;) as P(i) = %
j=0 WAj
weighting function reflecting the importance of the i-th spectral mode. To construct the M rows of
Sqiruet € {0, 1}M*N for eachrow k = 1,..., M: (1) Sample spectral index i, € {0,...,N — 1}

where w(;) is a

omputa 4000 = c 500 10000
250 ‘& Computation Time & Computation Time g;ﬁﬂ!gi“‘;‘"‘;}g“ Fime @ Computation Time © Computation Time
@Non-Computation Time @ Non-Computation Time 12000 i @ Non-Computation Time @ Non-Cor ion Time
_ 2 n z Z 400 i Z 8000
=200 g 3000 B E g
> o E
£ & = = =
£ 150 % ep 8000 g &30 Fh
o = 52000 £ £ _H £ -
E g . g 5 'E 200 g ‘E 4000
g 100 £ E e =
E S 1000 g 4000 E E|
S 5 b & 2 100 £ 2000
= FREICN e E BAA g BH &
TR o 147 i Nl . ARNR. - JBhalallls
0 FICICICEICICP Y. 622258823 VOLY<CVUEO 0 POLOLOBE O FICICICRACICE .|
OFEIJ08Z2 Inate] C>E<-10RZZ O>E<404ay 2 C>E<d08zZ
mm‘g o 'S @S o'
(a) ogbn-arxiv (b) Reddit (c) ogbn-products (d) ogbl-ppa (e) ogbl-citation2

Figure 3: The total training time comparison (with breakdown). The evaluation covers two learning
tasks across five datasets [30} 28]: (a) to (c) represent the results for the node classification task on
ogbn-arxiv, Reddit, and ogbn-products, respectively; while (d)-(e) correspond to the link prediction
task on ogbl-ppa and ogbl-citation2. The schemes are GS (GraphSage [28]]), VG (VR-GCN [12]),
FG (FastGCN [13])), AG (AS-GCN [31]), LA (LADIES [72]), CG (Cluster-GCN [[15])), two versions
of GraphSAINT [66] (S_EG and S_RW), and our proposed YOSO.

according to the probability distribution P(7), and (2) The k-th row (Ssyruct)k,: i set to be ij-th row
of N x N identity matrix I. That is, (Ssuuct)r,; = 1if j = ix, and 0 otherwise. This construction
means each row of Sy, selects exactly one spectral coefficient based on the eigenvalue-weighted
sampling. Thus, Sy 1S a binary matrix where each row has exactly one non-zero entry. This
inherently ensures that S,y has no all-zero rows (provided M > 0). This structural property is
important for the full rank characteristic of ®, as detailed in Appendlx B.1}

Construction of the Random Matrix 3,,,q. Randomness is introduced via Epqg € RM*V to
help satisfy RIP-like conditions [3]]. The construction of > and 18 coordinated with Sycr. For each
column j =1,..., N of Sgyue, let g(j) Zk 1 (Sstruct)k,; be the number of non-zero elements in
that column (i.e., how many sampled "sensor neighborhoods" node j is part of). The elements of
3;ang are defined as: for each entry (Xiand) k5

(Brand)k,j ~ N0, ﬁ) if (Sstruct)x, j=1and 9(j) >0
rand J k,j 0 if (Sstruct) =0

If g(j) = 0 for some j (meaning node j is not in any sampled neighborhood), then (24na)r,; = 0 for
all k. This implies the j-th column of ® will be all zeros. The specific design for ® = Syuct ® rand
combines the graph-aware structural selection (via node importance and neighborhoods encoded in
Sistruct) With scaled randomness (in 3.,,4). It aims to create a fixed sensing matrix that is effective for
capturing information from spectrally sparse signals generated by the evolving U,. The claim that
this construction satisfies Restricted Isometry Property is detailed in Appendix [B.2]

S Experiments

We evaluate YOSO and other baselines with across two most widely used tasks: node classification
and link prediction. For the detailed description of experimental setting, such as the datasets (Please
refer to Table [5 for the detailed descriptions of the datasets), baselines and hyperparameter, are
provided in Appendix [A]

5.1 Overall Comparison

We evaluate baselines and YOSO with two core metrics: model accuracy and total training time.

Node Classification Task. YOSO achieves the shortest training time with an average of 74% reduc-
tion among all baselines as shown in Fig.[3] For most of the cases, YOSO can achieve more than 60%
training time reduction. For two cases with less than 40% reduction compared to FG and LA on Red-
dit. The training time is reduced from around 490s with FG and around 501s with LA to around 341s
with YOSO (with 36% and 37% time reduction, respectively). The main reason is that YOSO can sig-
nificantly reduce the Non-computation time while introducing a little reconstruction overhead. On av-
erage, YOSO reduces non-computation time by approximately 95.7% compared to all other baselines.
For model accuracy shown in Table[T} YOSO consistently matches or closely approaches the top per-
formers. For example, YOSO obtains an accuracy of 0.71 on ogbn-arxiv, just 0.01 below GraphSage.

Training Loss
54 e = - =
£ =2 5 %

Training Loss
=

S s

100
Epoch

(a) ogbn-arxiv (b) ogbl-ppa
Figure 4: Training loss and epoch curves for YOSO and baselines on two benchmark datasets.

Link Prediction Task. For total training time, Table 1: Model accuracy results for different meth-
similar to the node classification task, YOSO ods on node classification and link prediction tasks.
achieves the best training time with around 72% Accuracy metrics on each dataset are in Table Bl

average training time decrease across all datasets
for the link prediction. This improvement is con-

Datasets

Method |
. . . . ethods
sistent with the node classification task, where | Node Classification Link Prediction
YOSO achieves considerable reductions in non- | arxiv Reddit products ppa citation2
computation time while introducing minimal Grap(l;gage g-ZSO 8-323 8-;;; 8.}78 8.882
. g VR-GCN 697 0.) 17 7

reconstructlon.overhead. As shown in Fig. Ekd)— FastGCN 0438 0927 0404 0108 0655
(e), YOSO achieves an average non-computation AS-GCN 0.687 0964 0510 0.124 0.659

: : LADIES 0649 0927 0501 0113 0.669
time reduction of about 81% across all datasets. Cluster.GCN 0653 0966 0769 0205 0790

As for model accuracy, in Table[T} YOSO main- GraphSAINT-EG | 0702 0967 0792 0214 0.804
: : . GraphSAINT-RW | 0.701 0967 0783 0226 0.805

tained resultg. with only a very small gap: 0.003 Yo5o 0920 0967 0787 0233 080>

on ogbn-arxiv and ogbl-citation2, compared to

the best results.

In summary, for both tasks of node classification and link prediction, by combining high accuracy
with substantial reductions in sampling and total training time, YOSO demonstrates its efficiency in
GNN training and significantly improves both sampling and total training times across all datasets
while maintaining competitive accuracy, highlighting its effectiveness compared to the baselines on
the node classification task.

5.2 Convergence Comparison

We investigate YOSO convergence performance compared to other baselines on ogbn-arxiv (node
classification) and ogbl-ppa (link prediction). The training loss-epoch curves are shown in Fig. [In
two different learning tasks, YOSO consistently outperformed the baselines in terms of convergence
speed and stability. For ogbn-arxiv, YOSO reached a lower training loss more rapidly than Graph-
SAGE, GraphSAINT-EDGE, and FastGCN, with significantly fewer oscillations, indicating a more
stable and efficient training process. Similarly, for ogbl-ppa, YOSO demonstrated faster convergence
and maintained a smoother training loss curve compared to other baselines. These results suggest
that YOSO not only accelerates the convergence process but also ensures a more stable training path
compared to existing sampling methods, highlighting its effectiveness in GNN training.

5.3 Ablation Study

We explore three main aspects of YOSO design: (i) How YOSO’s total training time and model
accuracy vary with different size of M, (ii) Reconstruction effectiveness by comparing the H (%) and
HW) and (iii) The parameterization strategy of ® (layer-wise vs. universal) (see Section .

Varying M value. We examine how total training time (including breakdown) and model accuracy
vary with M values, specifically M = {64,128, 256, 1024, 2048}, as shown in Fig. [5| The results
indicate that YOSO’s sampling time remains stable across different M, ranging from 107.94 to
111.53 seconds on ogbn-products and 143.56 to 149.65 seconds on ogbl-citation2, showing minimal
impact from M. In contrast, as M decreases, computation time increases, reflecting more iterations
needed for convergence (e.g., rising from 275.98s at M = 2048 to 301.94s at M = 64 on ogbn-
products, with a similar trend on ogbl-citation2). Model accuracy improves with larger M, eventually
stabilizing; it rises from 0.597 to 0.7873 on ogbn-products and from 0.312 to 0.8025 on ogbl-citation2.
These findings highlight YOSQO'’s efficient sampling and improved accuracy and convergence with
larger M.

e Non-Computation Time z=rzx Computation Time = «Model Accuracy s Non-Computation Time — #+# Computation Time = «Model Accuracy

600 1

é 038

£ 400 06 o
£300 04 2
£200 -

§ 100 0.2

0 0 e e |
M=64 M=128 M=256 M=1024 M=2048 M=64 M=128 M=256 M=1024 M=2048
(a) ogbn-products (b) ogbl-citation2

Figure 5: Total training time (including its breakdown) and model accuracy for YOSO with different
sampling sizes: (a) for the node classification learning task on the ogbn-products dataset, and (b) for
the link prediction learning task on the ogbl-citation2 dataset.

M=64 M=128 M=256 M=512 M=1024

-1.0
- 0.
0.
0.
I .
0.0

Figure 6: Reconstruction effectiveness visualized via heatmap. Using the ogbn-products dataset, 10
nodes are randomly selected from the training set, and for each node, 10 embedding dimensions are
randomly picked. The heatmap shows the absolute differences between original and reconstructed
embeddings for these elements. M is the size of the sampling set.

&

&

IS

9

Table 2: Total training time and model accuracy under different ® configurations.

Dataset \ ogbn-arxiv ogbl-ppa

Type of ® | Layer-wise ~Universal ~Layer-wise Universal
Total Training Time (s) 59.22 10.93 145.50 21.46
Model Accuracy 0.730 0.727 0.2254 0.2235

Reconstruction effectiveness: Fig. [6|shows the reconstruction effectiveness for different sampling
sizes M. Each 10 x 10 block represents the absolute difference between reconstructed embeddings
from our two-layer GNN sampling and those computed with all neighbors (without sampling). As M
increases, reconstruction accuracy improves, enhancing overall model accuracy. However, beyond
a certain point, such as M = 512 in Fig. [] further increases in M offer diminishing returns in
both reconstruction quality and model accuracy. This suggests there is an optimal M that balances
reconstruction quality and computational efficiency.

Layer-wise vs. Universal. We compare two parameterization strategies: a layer-wise variant, where
each GNN layer maintains its own transformation matrix, and a universal variant that shares a single
® across layers. As shown in Table[2] the layer-wise ® notably increases computational overhead:
by approximately 5x on ogbn-arxiv and 7x on ogbl-ppa, while providing only marginal accuracy
improvements (within 0.001). This indicates that a universal ® achieves nearly equivalent accuracy
at substantially lower cost, offering a favorable efficiency—accuracy trade-off.

5.4 Comparisons to Graph Condensation/Distillation and Linearization

To further contextualize YOSO’s efficiency, we compare it with two other families of graph-level
optimization schemes that also aim to reduce the training cost: (i) Graph Condensation/Distillation
methods, which synthesize smaller representative graphs for training, and (ii) Linearization methods,
which approximate message passing through pre-computed feature propagation.

YOSO vs. Graph Condensation/Distillation. Both Graph Condensation and Graph Distillation
introduce the substantial preprocessing overhead and risk discarding informative structural signals,
which can degrade model performance. To quantify this, we compare YOSO against two most widely
used condensation schemes: GCond [34] and GC-SNTK [60]], on the ogbn-arxiv dataset with a 0.25%
reduction ratio. As shown in the Table[3] YOSO achieves higher accuracy (0.7169) while requiring

Table 3: Comparison of preprocessing time and model accuracy on the ogbn-arxiv dataset

Dataset \ ogbn-arxiv

Schemes | GCond GC-SNTK YOSO
Preprocessing Time (s) | 20615.6 11066.89 1643.32
Model Accuracy 0.6172 0.6219 0.7169

Table 4: Comparison between YOSO with linearization schemes.

Dataset | ogbn-products ogbn-arxiv

Schemes ‘ SIGN-2 SIGN-4 SIGN-6 SIGN-8 YOSO iSVD iSVD-best YOSO
Total Training Time (s) | 421.79 584.07 831.94 105296 499.02 994 982.12 10.74
Model Accuracy 0.761 0.778 0.776 0.783 0.788 0.685 0.746 0.720

far less preprocessing time (12 x faster than GCond and 6x faster than GC-SNTK), demonstrating
superior efficiency and information retention.

YOSO vs. Linearization. We also compare YOSO with multiple linearized GNN variants, including
SIGN [22] and iSVD [1I], on ogbn-products and ogbn-arxiv. As summarized in the Table d SIGN-2
achieves slightly lower training time but at the cost of a 2.7% accuracy drop. The low-accuracy iSVD
variant reduces runtime by 8% yet loses 4% accuracy, whereas the high-accuracy version (iSVD-best)
increases runtime by 91x for only a 0.014 gain. YOSO consistently delivers a better balance between
accuracy and total training time.

6 Related Work

Numerous approaches have been proposed to enhance GNN training efficiency. Sampling-based
methods, including node-wise, layer-wise, and subgraph-based techniques [28l [13|15]], aim to reduce
computational load by training on smaller portions of the graph. While effective in certain scenarios,
node-wise sampling can suffer from exponentially growing receptive fields, layer-wise methods
may introduce bias or complex variance reduction schemes, and subgraph-based approaches often
incur significant pre-processing overhead for graph partitioning or dynamic subgraph generation,
sometimes at the cost of accuracy (e.g., layer-wise schemes) or increased complexity (e.g., subgraph-
based). Other strategies such as graph condensation and distillation [34, 56| focus on creating smaller
graph proxies or simpler models, which can be effective but may lose fine-grained information or
require careful tuning of the condensation/distillation process itself. Meanwhile, historical embed-
ding [[12] and linearization techniques [22]] seek to optimize specific aspects of GNN computation
or simplify model architecture, often by removing non-linearities which can limit expressive power.
YOSO distinguishes itself by uniquely combining a once-per-training learnable orthonormal spectral
transformation with Compressed Sensing principles for a one-shot projection and reconstruction.
This approach primarily targets the reduction of non-computational overheads (like extensive data
handling for sampling and repeated transformations) without resorting to complex graph sampling
strategies or repeated costly operations during the GNN’s forward and backward passes. A more
detailed discussion of related work is provided in Appendix[C|

7 Conclusion

In this paper, we introduce YOSO (You Only Spectralize Once), a novel training scheme aimed at
significantly enhancing the efficiency of GNN training without sacrificing prediction accuracy. By
leveraging a Graph Fourier and compressed sensing-based reconstruction framework, YOSO performs
a spectral transformation only once at the input layer, followed by an error-bounded reconstruction at
the output layer during each training iteration. Our experimental results demonstrate that YOSO can
achieve an average 74% reduction of existing state-of-the-art schemes while preserve model accuracy
comparable to top-performing baselines.

10

Acknowledgment

This work was partially supported by NSF 2204656, 2343863, 2413520 and 2440611. Any opinions,
conclusions, or the recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References

[1] Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, and
Aram Galstyan. Implicit svd for graph representation learning. Advances in Neural Information
Processing Systems, 34:8419-8431, 2021.

[2] Basheer Alwaely and Charith Abhayaratne. Graph spectral domain features for static hand
gesture recognition. 2019 27th European Signal Processing Conference (EUSIPCO), pages
1-5, 2019.

[3] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof of the
restricted isometry property for random matrices. Constructive approximation, 28:253-263,
2008.

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009.

[5] Florian Bernard, Daniel Cremers, and Johan Thunberg. Sparse quadratic optimisation over
the stiefel manifold with application to permutation synchronisation. In Neural Information
Processing Systems, 2021.

[6] Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral
graph neural networks. arXiv preprint arXiv:2302.05631, 2023.

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18-42, 2017.

[8] Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. Springer, 2016.

[9] Emmanuel J Candes and Terence Tao. Decoding by linear programming. /EEFE transactions on
information theory, 51(12):4203-4215, 2005.

[10] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406-5425,
2006.

[11] Rudrasis Chakraborty and Baba C Vemuri. Statistics on the stiefel manifold: Theory and
applications. 2019.

[12] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

[13] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[14] Siheng Chen, Rohan Varma, Aliaksei Sandryhaila, and Jelena Kovacevi¢. Discrete signal
processing on graphs: Sampling theory<? pub _newline=""? [EEE transactions on signal
processing, 63(24):6510-6523, 2015.

[15] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 257-266, 2019.

11

[16] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. Learning steady-states

of iterative algorithms over graphs. In International conference on machine learning, pages
1106-1114. PMLR, 2018.

[17] Joya A Deri and José MF Moura. Spectral projector-based graph fourier transforms. IEEE
Journal of Selected Topics in Signal Processing, 11(6):785-795, 2017.

[18] George H Dunteman. Principal components analysis, volume 69. Sage, 1989.

[19] Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems,
35:4776-4790, 2022.

[20] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International conference on
machine learning, pages 3294-3304. PMLR, 2021.

[21] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak mathematical journal, 25(4):619-633, 1975.

[22] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

[23] Xinyi Gao, Junliang Yu, Tong Chen, Guanhua Ye, Wentao Zhang, and Hongzhi Yin. Graph
condensation: A survey. arXiv preprint arXiv:2401.11720, 2024.

[24] Robert Grone, Russell Merris, and Viakalathur Shankar Sunder. The laplacian spectrum of a
graph. SIAM Journal on matrix analysis and applications, 11(2):218-238, 1990.

[25] Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and
Tong Zhao. Linkless link prediction via relational distillation. In International conference on
machine learning, pages 12012—-12033. PMLR, 2023.

[26] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. In Proceedings of the web
conference 2021, pages 2559-2567, 2021.

[27] Zhiwei Guo and Heng Wang. A deep graph neural network-based mechanism for social
recommendations. IEEE Transactions on Industrial Informatics, 17(4):2776-2783, 2020.

[28] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[29] Jarvis Haupt, Waheed U Bajwa, Michael Rabbat, and Robert Nowak. Compressed sensing for
networked data. IEEE Signal Processing Magazine, 25(2):92—-101, 2008.

[30] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

[31] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast
graph representation learning. Advances in neural information processing systems, 31, 2018.

[32] Elvin Isufi, Fernando Gama, David I Shuman, and Santiago Segarra. Graph filters for signal
processing and machine learning on graphs. IEEE Transactions on Signal Processing, 2024.

[33] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 6674, 2020.

[34] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

12

[35] Kyusoon Kim and Hee-Seok Oh. Principal component analysis in the graph frequency domain.
2024.

[36] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[37] Takashi Kurokawa, Taihei Oki, and Hiromichi Nagao. Multi-dimensional graph fourier trans-
form. arXiv preprint arXiv:1712.07811, 2017.

[38] YiLi, Tsun-Yu Yang, Ming-Chang Yang, Zhaoyan Shen, and Bingzhe Li. Celeritas: Out-of-core
based unsupervised graph neural network via cross-layer computing 2024. In 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pages 91-107.
IEEE, 2024.

[39] Hao Liu, Qiyu Wu, Fuzhen Zhuang, Xinjiang Lu, Dejing Dou, and Hui Xiong. Community-
aware multi-task transportation demand prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 320-327, 2021.

[40] Xin Liu, Mingyu Yan, Lei Deng, Guogqi Li, Xiaochun Ye, and Dongrui Fan. Sampling meth-
ods for efficient training of graph convolutional networks: A survey. IEEE/CAA Journal of
Automatica Sinica, 9(2):205-234, 2021.

[41] Arian Maleki. Approximate message passing algorithms for compressed sensing. PhD thesis,
Stanford University, 2010.

[42] Russell Merris. Laplacian graph eigenvectors. Linear algebra and its applications, 278(1-
3):221-236, 1998.

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013.

[44] Benjamin A Miller, Nadya T Bliss, and Patrick J Wolfe. Toward signal processing theory for
graphs and non-euclidean data. In 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 5414-5417. IEEE, 2010.

[45] Alan V Oppenheim and Donald H Johnson. Discrete representation of signals. Proceedings of
the IEEE, 60(6):681-691, 1972.

[46] Shan-Chen Pang, Kuijie Zhang, Gan Wang, Chun-Wei Lin, Fu-Yan Wang, Xiangyu Meng,
Shudong Wang, and Yuanyuan Zhang. Af-gcn: Completing various graph tasks efficiently via
adaptive quadratic frequency response function in graph spectral domain. Inf. Sci., 623:469-480,
2022.

[47] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532—1543, 2014.

[48] Gilles Puy, Nicolas Tremblay, Rémi Gribonval, and Pierre Vandergheynst. Random sampling of
bandlimited signals on graphs. Applied and Computational Harmonic Analysis, 44(2):446-475,
2018.

[49] Hassan Ramchoun, Youssef Ghanou, Mohamed Ettaouil, and Mohammed Amine Janati Idrissi.
Multilayer perceptron: Architecture optimization and training. 2016.

[50] Arash Rasti-Meymandi, Ahmad Sajedi, Zhaopan Xu, and Konstantinos N. Plataniotis. Gstam:
Efficient graph distillation with structural attention-matching. ArXiv, abs/2408.16871, 2024.

[51] Manon Réau, Nicolas Renaud, Li C Xue, and Alexandre MJJ Bonvin. Deeprank-gnn: a graph
neural network framework to learn patterns in protein—protein interfaces. Bioinformatics,
39(1):btac759, 2023.

[52] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs: Graph fourier
transform. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 6167-6170. IEEE, 2013.

13

[53] Rishi Raj Sharma and Ram Bilas Pachori. Eigenvalue decomposition of hankel matrix-based

time-frequency representation for complex signals. Circuits, Systems, and Signal Processing,
37:3313 - 3329, 2018.

[54] Wuzhen Shi, Feng Jiang, Shaohui Liu, and Debin Zhao. Image compressed sensing using
convolutional neural network. IEEE Transactions on Image Processing, 29:375-388, 2019.

[55] Zhihao Shi, Xize Liang, and Jie Wang. Lmc: Fast training of gnns via subgraph sampling with
provable convergence. arXiv preprint arXiv:2302.00924, 2023.

[56] Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V Chawla. Knowledge
distillation on graphs: A survey. arXiv preprint arXiv:2302.00219, 2023.

[57] Mikhail Tsitsvero, Sergio Barbarossa, and Paolo Di Lorenzo. Signals on graphs: Uncertainty
principle and sampling. IEEE Transactions on Signal Processing, 64(18):4845-4860, 2016.

[58] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. Marius-
gnn: Resource-efficient out-of-core training of graph neural networks. In Proceedings of the
Eighteenth European Conference on Computer Systems, pages 144—-161, 2023.

[59] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1(1):396—413, 2020.

[60] Lin Wang, Wengqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with structure-
based neural tangent kernel. In Proceedings of the ACM on Web Conference 2024, pages
4439-4448, 2024.

[61] Tingting Wang, Haiyan Guo, Xue Yan, and Zhen Yang. Speech signal processing on graphs:
The graph frequency analysis and an improved graph wiener filtering method. Speech Commun.,
127:82-91, 2021.

[62] Xiaohan Wang, Jiaxuan Chen, and Yuantao Gu. Generalized graph signal sampling and
reconstruction. In 2015 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 567-571. IEEE, 2015.

[63] Xiaohan Wang, Pengfei Liu, and Yuantao Gu. Local-set-based graph signal reconstruction.
IEEE transactions on signal processing, 63(9):2432-2444, 2015.

[64] Lirong Wu, Haitao Lin, Yufei Huang, and Stan Z Li. Knowledge distillation improves graph
structure augmentation for graph neural networks. Advances in Neural Information Processing
Systems, 35:11815-11827, 2022.

[65] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974-983, 2018.

[66] Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931,
2019.

[67] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018.

[68] Shichang Zhang, Atefeh Sohrabizadeh, Cheng Wan, Zijie Huang, Ziniu Hu, Yewen Wang, Jason
Cong, Yizhou Sun, et al. A survey on graph neural network acceleration: Algorithms, systems,
and customized hardware. arXiv preprint arXiv:2306.14052, 2023.

[69] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification

on graphs with graph neural networks. In Proceedings of the 14th ACM international conference
on web search and data mining, pages 833-841, 2021.

14

[70] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
Advances in Neural Information Processing Systems, 36, 2024.

[71] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-
gnn: On few-shot node classification in graph meta-learning. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pages 2357-2360, 2019.

[72] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks.
Advances in neural information processing systems, 32, 2019.

15

A Experimental Setting

A.1 Hardware and Software Configuration

We evaluate all baselines and YOSO on Ubuntu 18.04.6 LTS, equipped with an NVIDIA GTX 1060Ti
(6GB memory), using CUDA version 11.8 and PyTorch version 2.0.0. The system features a AMD
Ryzen 5 5900 CPU with 128 GB DDR4 RAM, and the Python version used is 3.9.0.

Table 5: Statistics and metrics of the dataset.

Dataset | #node #edge #dim. Metric

169,343 1,166,243 128 Accuracy
Reddit 232,965 11,606,919 602 Micro-F1
ogbn-products | 2,499,029 61,859,140 100 Accuracy

ogbl-ppa ‘ 576,289 30,326,273 128 Hits@100

ogbn-arxiv
Node Property Prediction

Link Property Prediction | o) Giation2 | 2,027,963 30561187 128 MRR

A.2 Datasets

For node classification, we use Reddit [28]], ogbn-arxiv and ogbn-products [30] and for link prediction,
we use ogbl-ppa, and ogbl-citation2 [30]. The basic summary information of the datasets we use is
provided in Table[5] and detailed descriptions are as follows:

ogbn-arxiv: This dataset is a directed citation network of Computer Science (CS) arXiv papers from
the Microsoft Academic Graph (MAG) [59]]. Each node represents a paper, with directed edges
indicating citations. The task is to classify unlabeled papers into primary categories using labeled
papers and node features, which are derived by averaging word2vec embeddings [43]] of paper titles
and abstracts.

Reddit: Originally from GraphSage [28]], this Reddit dataset is a post-to-post graph where each
node represents a post, and edges indicate shared user comments. The task is to classify posts into
communities using GloVe word vectors [47/] from post titles and comments, along with features such
as post scores and comment counts.

ogbn-products: This undirected, unweighted graph represents an Amazon product co-purchasing
network, where nodes are products and edges indicate frequent co-purchases. Node features are
derived from bag-of-words features of product descriptions, reduced to 100 dimensions via Principal
Component Analysis [18]].

ogbl-ppa: This undirected, unweighted graph has nodes representing proteins from 58 species, with
edges indicating biologically meaningful associations. Each node features a 58-dimensional one-hot
vector for the protein’s species. The task is to predict new association edges, evaluated by ranking
positive test edges over negative ones.

ogbl-citation2: This dataset is a directed graph representing a citation network among a subset
of papers from Microsoft Academic Graph (MAG), similar to ogbn-arxiv. For each source paper,
two references are randomly removed, and the task is to rank these missing references above 1,000
randomly selected negative references, which are sampled from all papers not cited by the source
paper.

Data splitting: We adopt strategies consistent with previous works [28],[30]. Specifically, for the
Reddit dataset, we follow the data splitting used in GraphSage [28]], and for the OGB series (ogbn
and ogbl), we maintain the splitting described in [30].

A.3 Baselines and Implementation

The baselines used cover all major methods designed to address the trade-off between efficiency and
accuracy, including: GraphSage [28]] (GS), VR-GCN [12]] (VG), FastGCN [13] (FG), AS-GCN [31]
(AG), LADIES [72] (noted by LA), Cluster-GCN [15] (CG), and GraphSAINT [66] (two versions
noted as S_EG and S_RW). Detailed information on the source code for these baselines, the YOSO
implementation, and other related materials can be found in Appendix

16

Table 6: Baselines and their public available source code link

Scheme | Available Link

GraphSage https://github.com/williamleif/graphsage-simple

VR-GCN https://github.com/THUDM/cogdl/tree/master/examples/VRGCN
FastGCN https://github.com/gmancino/fastgcn-pytorch

AS-GCN https://github.com/Gkunnan97/FastGCN_pytorch

LADIES https://github.com/acbull/LADIES

Cluster-GCN | https://github.com/benedekrozemberczki/ClusterGCN
GraphSAINT | https://github.com/GraphSAINT/GraphSAINT

Table 7: Node classification hyperparamter setting for baselines and YOSO on different datasets.

Scheme \ ogbn-arxiv \ Reddit | ogbn-products
GraphSage 25&10/ Adam /0.7 | 25&10/ Adam /0.01 | 50&20/ Adam/0.01
VR-GCN 8/ Adam /0.01 16 / Adam / 0.01 32/ Adam/ 0.01
FastGCN 64 / Adam /0.01 128 / Adam / 0.001 256 / Adam / 0.001
AS-GCN 128 / Adam / 0.001 512/ Adam / 0.01 1000 / Adam / 0.01
LADIES 64 / Adam / 0.001 128 / Adam / 0.001 256 / Adam / 0.001
Cluster-GCN -/ Adam /0.01 -/ Adam / 0.005 -/ Adam / 0.005
GraphSAINT-EG 300/ Adam / 0.01 600 / Adam / 0.01 4000/ Adam / 0.01
GraphSAINT-RW | 4000/ Adam/0.01 8000/ Adam / 0.01 10000 / Adam / 0.01
YOSO 128 / Adam / 0.01 256 / Adam / 0.01 512/ Adam/0.01

Table [6] presents the baselines used in this paper along with their publicly available source code links.
Since some baselines were not originally implemented in PyTorch, we standardized the framework
for fair comparison. If a PyTorch version involved the original authors, we selected that source code
(e.g., FastGCN [13]]). Otherwise, we chose the most popular implementation based on the number of
stars. Notably, the repository linked for AS-GCN [31] in the table includes implementations of both
FastGCN and AS-GCN, but we only used the AS-GCN version, while the FastGCN implementation
was taken from the source listed in the table.

YOSO’s Implementation: The base code of YOSdﬂ is built on GCN [36]], with the link available at
https://github.com/tkipf/pygcn. The sampling stage in YOSO occurs on the CPU and main memory
since it involves calculations related to the entire feature matrix and the regularized Laplacian matrix.
After sampling, the relevant data is migrated to GPU memory for computation. Throughout the
training process, multiple data exchanges occur between main memory and GPU memory, such as in
link prediction tasks where node embeddings need to be updated.

Modification: All baselines support updating node embeddings and performing node classification
tasks. For node classification, if a baseline did not originally use the cross-entropy loss function,
we adjusted it to adopt this loss function. For the link prediction task, the following loss function is
applied:

(L) p(L) (L) (L)
1 h;” -h; 1 h:" - h;
L= — Z (1_’J>_|_ Z max(O’y—(l—Z]>>
+ L L - ’ L L
N* e U RPN N S IR 1R
where N+ and N~ represent the number of positive and negative samples, respectively, and £+ and
E~ denote the sets of positive and negative edges. The parameter ~ is a hyperparameter, set to 0.5

in this study. As the ogbl-ppa and ogbl-citation2 datasets provide corresponding negative edges by
default, we used these pre-defined negative edges for our calculations.

A.4 Hyper-parameter Setting

All experiments are conducted with two layers. The hyperparameter settings for both YOSO and
the baselines are provided in Table[7]and Table [§] for node classification and link prediction datasets,
respectively. All experiments were conducted using a two-layer GCN with official configurations.

"https://anonymous.4open.science/t/ YOSO-B49B

17

Table 8: Link prediction hyperparamter setting for baselines and YOSO on different datasets.

Scheme \ ogbl-ppa \ ogbl-citation2
GraphSage 25&10/ Adam /0.7 | 50&20/ Adam/0.01
VR-GCN 8/ Adam/ 0.01 32/ Adam/0.01
FastGCN 64 / Adam / 0.01 256 / Adam / 0.001
AS-GCN 128 / Adam / 0.001 1000 / Adam / 0.01
LADIES 64 / Adam / 0.001 256 / Adam / 0.001
Cluster-GCN -/ Adam/0.01 -/ Adam / 0.005
GraphSAINT-EG 300/ Adam / 0.01 4000 / Adam / 0.01
GraphSAINT-RW | 4000/ Adam/0.01 | 10000/ Adam /0.01
YOSO 128 / Adam / 0.01 512/ Adam/ 0.01

When certain parameters were not clearly specified in some papers, we fine-tuned them for optimal
accuracy. The recorded hyperparameters include the sampling size (per node/layer/subgraph), the
optimizer, and the learning rate. For YOSO, the sampling size is denoted as M ; for example, on the
ogbl-ppa dataset (Table[§), M = 128.

B Formal Proof

B.1 Full Rank of ®

Theorem 1 (Full Rank of ®): Let Siucr € {0, 1} XY be the structural matrix where each of
its M rows, k is constructed by sampling a spectral index i, € 0,...,(/N — 1) according to the
probability distribution P(z) = w(\;)/ Z?’:_Ol w(A;) (with w();) = A; as proposed in Section ,
and setting (Ssiruct)k,; = 1if j = i) and 0 otherwise. Assume the M sampled spectral indices iy, are
distinct (ie., sampling without replacement, requiring M < N). Let 2,4, € RM*Y be a random
matrix where entries (X,4,q)%,; are defined as (X,454)k,; ~ N (0,1/9(5)) if (Sstruct)x,; = 1 and
g(j) > 0, and (Erand)k,; = 0if (Sstruct)r,; = 0, where g(j) = zﬁil(sstmt)k’j. Define the
sensing matrix ® = Syt @ Xrand, Where ® denotes element-wise multiplication. Then, with
probability 1, the matrix ® has full row rank M.

Proof: The structure of ® is such that for each row k¥ € 1,..., M, only one entry is non-zero.
Specifically, if the spectral index 7, was chosen for row & (50 (Sstruct)k,i, = 1 and (Ssiruct)k,; = 0
for j # ix), then ®y, ;, = (Sstruct)k,ix - (Brand)k,i, = 1, and all other entries (X,qnq)k,; for j # iy
are 0. Since we assume the M sampled spectral indices 41, 9, ..., 257 are distinct, it follow that for
each selected index iy, g(ix) = Zi\il(sstruct)mk =1 (as only row k has ’1” in column 7). Thus,
for the non-zero entry in row k, ix, = (Xrand)k,i, ~ N (0,1/1) = N(0,1). To show that ® has full
row rank M, we need to demonstrate that its M/ rows are linearly independent. Consider a linear
combination of the rows of ® that equals the zero row vector 07 € R*V:

M

ch(fp)h: = 0T (8)

k=1

where ¢y, are scalars and (®); . is the k-th row of ®. This vector equation implies that for each
column j €0,...,N — 1:
M

> k(@) =0)

k=1
Consider one of the M distinct spectral indices that were sampled, say i, (where p € 1, ..., M) is the
row for which this index was chosen). For the column j = ¢, the sum becomes:

cp(®)k # per(®)r,i, =0 (10)

since (®),;, = 0 for all £ # p (because the sampled indices i), are distinct, so only row p has its
non-zero entry in column ¢,), the equation simplifies to:

cp(®)p,i, =0 (11)

18

as (®),,5, ~ N(0,1), it is non-zero with probability 1. Therefore, for the equation c,(®),,;, = 0to
hold, we must have ¢, = 0. Since this argument applies to each of the M distinct sampled indices
i1, ..., 101, it follows that all coefficients c1, co, ...,)y must be zero. This demonstrates that the rows
of ® are linearly independent with probability 1. Thus, rank(®) = M.

B.2 Sensing Matrix ®, Learnable U,, and RIP Satisfaction

Theorem 2 (RIP Satisfaction for ®U,): Let U, € RV*Y be an orthonormal matrix. Let & €
RM*N be constructed as in Theorem 1 (effectively selecting M distinct rows of Uy, and multiplying
them by independent A(0, 1) scalars). If Uy is sufficiently incoherent with the standard basis (in

which H is k-row-sparse), then for any 0 < d; < 1, there exists a constant Cryp > 0 such that if

M > Crrp - klog(N/k), the matrix & = ®Uj satisfies the k-row-RIP for matrices H € RN *?
with constant J; with high probability:

(1=) [H|[3 < |®UM|F < (1+5,) | H| %

Proof. Let A = ®Uj. The k-th row of A is ()54, - (Up)i,..) T, where ((Uy);,)" is the ix-th
row of Uy. The core idea is to show that for any k-row-sparse matrix H, || AH||% concentrates
around || H||2.

Step 1: E)fpectation of the Squared Norm. Let X’ = U,/H. The k-th row of X is (®X');,.. =
(B)k,in (X iy oo

E {H@Uﬁl”%} —E

M
> ll(@um), ||2]

p=1

E [((£)p.5,)*] (Ui,) THI:

Dllﬂs

p=1

Since (2),.i, ~ N(0,1), E[((2),.,,)?] = 1.
A M A~
E[|leU 3] = 3 (U,)"

This is the sum of energies of H projected onto the M selected rows of Uy,. For this sum to be equal
to ||H||% = ||U/H||% (as Uy is orthonormal), the M selected rows must effectively form a basis for
the k-row-sparse H. This is where incoherence and random selection are crucial. If the selection
of 7, were uniformly random and U, were incoherent with the sparsity basis of H, this sum would
be proportional to (M/N)||H||%. The matrix ® needs to be appropriately scaled (e.g., by 1/vM
or N/M) if this expectation is to be exactly ||H||%. The current construction with A(0, 1) weights

results in an expectation that is the sum of energies in M selected components. Standard RIP proofs
often assume a sensing matrix A such that E[||Az|?] = ||=||?. For our ®U,, we’d typically need a

scaling factor of \/N/M or similar for the random entries if we were constructing a dense random
projection, or ensure the sum of energies of selected components approximates the total energy.

Step 2: Concentration for a Fixed k-row-sparse H. For a fixed k-row- sparse H, one uses matrix
concentration inequalities (e.g., Matrix Bernstein, Hanson-Wright for quadratic forms of random

variables, or specific results for random sampling from orthonormal systems) to show that || <I>UZI:I||%
is tightly concentrated around its expectation.

P (|1 @0} - Bl 2UF)| > SESUH]) < 2exp(—e M7 /E)

(The exact form of the exponent depends on the specific inequality and properties of U, and the sam-
pling P(i).) Assuming E[||®U/H||%] ~ ||H||2, (which requires careful normalization or argument
about the selection process effectively capturing the energy of k-sparse signals), this step shows that
for a single sparse signal, the norm is preserved with high probability if M is large enough.

Step 3: Covering Argument and Union Bound. The RIP must hold for all k-row-sparse matrices.

19

The set of k-dimensional row-subspaces (where the non-zero rows of H can reside) is finite, number-
ing (]:) An e-net argument is used to discretize the unit sphere in each & x d-dimensional subspace

of row-sparse matrices. The size of such a net is bounded by (C/¢)*. Let Praii_subspace be the
probability from Step 2 that the RIP condition fails for a fixed k-row-sparse matrix (or subspace).

Using a union bound over all (JI\C/) choices of k row locations and then over the points in the e-net for
each such subspace:

- N
P(RIP fails for any k-row-sparse H) < (p) (C/e)k? . 2exp(—ci M6E k)

We want this total failure probability to be small (e.g., < 7). Taking logarithms and using (]Z) <
(eN/k)*:
kln(eN/k) + kdIn(C/e) — c; M63/k < In(n/2)

For fixed y, €, d, and desired probability, this implies M > Ck(; (In(N/k) + dIn(C/e)). If d is
19

considered small or constant, the dominant term is k£ In(/N/k). The learnable nature of U, means we
assume it behaves like a generic orthonormal system that is incoherent with the sparsity structure for
these results to apply directly.

B.3 Error Bound

Theorem 3: Let H(X) be the output embeddings obtained by the standard GNN computation with
full reconstruction at each layer. Let H) be the output embeddings, which performs sampling once
at the input layer and reconstructs only at the output layer. Assume that the activation function o is
Lipschitz continuous with Lipschitz constant L, and ®Uy, satisfies the Restricted Isometry Property
(RIP) of order k with constant 0y, (i.e., 0 < 8z < 1). Then, the error between H(X) and H) can be
bounded as:

L L
ﬁ@—HWH< u E
H = (125)

where E = T — ®UH) is the reconstruction error at the output layer, and L is the number of
layers in the GNN.
Proof: We aim to bound the error HI:I<L) —-H® HF between the output embeddings of the standard

GNN computation. Assume the activation function o is Lipschitz continuous with a constant L,
such that

o) oo, <1

H@—YH VHO Y.
F

Further, let the sampling matrix ®U satisfy the RIP of order £ with constant 65, meaning
112 112 112
(1 -o0 8| < |evn| <a+a|n|
F F F

for all H with HI:I’ < k. We also have H® = U,H®, where H® has at most k non-zero rows.
0,row

We will prove by inductionon ! = 1,2, ..., L that

l
Hﬁqu‘<<l¢)‘m@HmH
=

1— 6 F

For the base case | = 0, at the input layer, we have H(® = U,H© and H©® = H©). The initial
error HICI(O) —HO H is assumed. Assume that for some [> 0,
r

l
Hﬁm_WW‘S Lo Hmm_ww‘.
F 175]C F

‘We aim to show that

I +1
o -], ()™ oo
-

].76]C F.

20

For YOSO, at the output layer | = L, we perform reconstruction: H(X) = U,H®), where H(L) is

obtained by solving
1 - 2 -
min o | T3 - U HB|| +A|l7®)|
o 2 F 2,1

Due to the optimization and the RIP condition, we have "PI(L) — flgrﬁe)

- < Crec ||E|| , Where

ﬂﬁrﬁg is the true sparse representation of H(), and Ci.. = 12_‘§§k.

o A (L . . ~ .
have HH(L) —H® HF = [|H®) — Hfme) HF implying HH(L) — H(L)HF < % |E|| ~. Given the
Lipschitz continuity of o, the error accumulates multiplicatively through L layers:

Since U is orthonormal, we

L L
Hﬁ@)_H(L)H < (= Hﬁ(o>_H<o>H ,
F 1— 6 F

If the initial error HI:I(O) -~ HO H = 0, the primary source of error is from the reconstruction at the
F
output layer, yielding

L L
I;I(L)—H(L)H < 4 El,..
o —m < (e e,

C Detailed Related Work and Discussion

To address the efficiency issue of large-scale GNN training, schemes from different optimization
perspectives have been proposed at the algorithmic level [68]], such as Historical Embedding [12} 20],
Linearization [22} (1], Graph Condensation & Distillation [70} 64], and sampling-based methods. The
scope of this paper focuses on sampling-based methods.

Sampling-based Methods. A widely accepted criterion [40] divides current different sampling meth-
ods into three categories: node-wise sampling, layer-wise sampling, and subgraph-based sampling,
depending on the granularity of the sampling operation during mini-batch generation.

Node-wise Sampling. Pioneered by works such as GraphSage [28]] and others [65} 12} [16], involves
sampling at the individual node level. Each node’s neighbors are selected according to one specific
probability distribution. For example, GraphSage samples k—hop neighbors at varying depths with
the sampling sizes, for each depth tailored to optimize model performance. This approach, while
simple and effective, has been criticized for its exponential increase in sampling time complexity as
the number of GNN layers grows.

Layer-wise Sampling. Developed to address the issue of exponential growth in computational
complexity as GNNs depth increases in node-wise sampling, this method samples multiple nodes
simultaneously in one layer. Techniques like FastGCN [13] reframe GNN loss functions as integral
transformations and utilize importance sampling and Monte-Carlo approximation to manage vari-
ance. Following works, such as AS-GCN [31] and LADIES [72]], focus on maintaining the sparse
connections between sampled nodes to aid the convergence performance. However, these methods
tend to introduce additional complexity and computational cost.

Subgraph-based Sampling. Forming mini-batch through subgraph using expensive graph partition-
ing [8]]. Cluster-GCN [[15] partitions the full graph into clusters, sampling these clusters to create
subgraphs for training batches. GraphSAINT [66] dynamically estimates sampling probabilities for
nodes and edges to form subgraphs over which the full GNN model is trained. While these techniques
typically improve model accuracy, they also lead to longer training time.

Graph Condensation&Distillation: Graph Condensation [23] and Graph Distillation [56] are
methods designed to enhance computational efficiency. They achieve this by shrinking large-scale
graphs into smaller ones while preserving essential structural and feature information. Alternatively,
they replace complex GNN models with approximate and computationally simpler models, such as
MLPs [49]. However, these kinds of processes introduce additional computational overhead and may
result in the loss of important information, potentially leading to a decrease in model performance.
For example, GCond [34]] leverages a gradient matching framework to condense large graphs into
significantly smaller synthetic graphs. It optimizes node features as free parameters and models
synthetic graph structures as functions of these features, ensuring that training trajectories on the
condensed graph mimic those on the original graph. Another work, GC-SNTK [60], reformulates
graph condensation as a Kernel Ridge Regression (KRR) task, replacing computationally intensive

21

GNN training with a Structure-based Neural Tangent Kernel (SNTK). This approach captures both
node feature interactions and structural relationships, enabling efficient graph condensation while
maintaining strong generalization across GNN architectures.

Historical Embedding. This class of methods is not independent of sampling. Instead, they are often
integrated with existing sampling strategies to improve specific aspects of sampling performance,
such as estimated variance [12]], or expressiveness [20]. For example, VR-GCN [12] utilizes historical
embeddings within node-wise sampling. GNNAutoScale [20] incorporates the concept of historical
embeddings within subgraph-based sampling. Although historical embedding can be effective in
terms of accuracy, it often comes with high computational complexity.

Linearization. This stream of works [1}[22] aims to simplify the training and inference processes by
removing the nonlinear components (e.g., activation functions or deep iterative propagation) inherent
in traditional GNN models. This simplification achieves computational efficiency while preserving
essential graph structure and feature information through linear transformations, i.e., SIGN [22]] or
precomputations, i.e., iSVD [1]]. Linearization techniques often involve precomputing graph-based
transformations (e.g., matrix products or embeddings) and applying efficient optimization methods
(e.g., truncated Singular Value Decomposition (SVD) or matrix factorization) to enable scalable
training, particularly for large graphs.

22

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim are summarized in last paragraph in Section[I] Section [3]and
Section [] offer detailed explanations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state the limitations of our work in Section |4.2|and Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

23

Justification: All proofs are in Appendix B}

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Appendix [A]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]
Justification: https://github.com/PearLoveTana/Y0S0.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section[5} Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

25

https://github.com/PearLoveTana/YOSO
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix [A.T]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We respect the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work involves open-source models and datasets. It does no impact the
society at large, beyond improving our understanding of certain aspects of deep learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no risk of misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are not shipping our code with any source code or binary files from any
other existing libraries, so there are no concerns over getting permission or including a
license. We did cite open-sourced libraries, e.g. PyTorch, in our paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

27

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We released our code base with included readme files. We do not ship any
source code or binary files from any other existing libraries.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

28

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM was only used to polish the text.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Preliminaries
	Benefits and Obstacles of Integrating GF and CS in GNNs
	Methodology
	Overall Process of YOSO
	Learning the Orthonormal Transformation Ul and GNN Parameters
	Constructing the Universal Sensing Matrix

	Experiments
	Overall Comparison
	Convergence Comparison
	Ablation Study
	Comparisons to Graph Condensation/Distillation and Linearization

	Related Work
	Conclusion
	Experimental Setting
	Hardware and Software Configuration
	Datasets
	Baselines and Implementation
	Hyper-parameter Setting

	Formal Proof
	Full Rank of
	Sensing Matrix , Learnable U, and RIP Satisfaction
	Error Bound

	Detailed Related Work and Discussion

