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Abstract—The method of obtaining (bi)-orthogonal wavelets on
intervals (boundary wavelets) by a direct approach is employed.
The tensor product can then be applied for the construction of
high-dimensional boundary wavelets. The ℓ1 optimization model
integrating with such high-dimensional boundary wavelets for
regularization was then used for image denoising and can be
solved through the ADMM algorithm. Comparisons with the
traditional wavelets (without boundary) are done to demonstrate
the effectiveness of boundary wavelets and the advantages of the
model with ADMM in the presence of large noise levels.

Index Terms—Wavelets on intervals, ℓ1 optimization model,
ADMM, image denoising.

I. INTRODUCTION

The theory of wavelet analysis has received a lot of attention
over the past decades, see, e.g., [1]–[8]. Generally, wavelets
are functions defined on L2(Rd), but in practical applications,
such as signal/image processing, data are defined on a bounded
domain Ω, e.g., Ω = [0, 1], the unit interval.

The construction of wavelets on intervals was first given
by Meyer [9] in the early 1990s by means of the Gram-
Schmidt method. The constructed wavelets on the boundaries,
together with those already inside the interval, form the basis
of L2[0, 1]. Such approach makes the condition number of or-
thogonal matrices uncontrollable as the support of the wavelet
function increases. To address this problem, Cohen et al. [10]
and Andersson et al. [11] give an alternative construction of
wavelets on the boundary. After this, a number of pioneers
have emerged to contribute to the construction of wavelets
on intervals, see, e.g., [12]–[15]. Recently, Han and Michelle
[16] provided a general framework for the construction of
compactly supported (bi-)orthogonal wavelets on intervals.

Following the construction in [16], [17], we further em-
ploy the tensor product to obtain high-dimensional boundary
wavelets, which are then integrated into the ℓ1 optimization
model for image denoising. We utilize the ADMM algorithm
to solve the ℓ1-model similar to [18]. We focus on the two-
dimensional case that involves large matrix multiplications,
which requires a careful algorithmic implementation for the
boundary wavelet transforms. To demonstrate the effectiveness
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of boundary wavelets, we compared the results with those
of traditional wavelets under the same soft-thresholding tech-
nique. The experimental results demonstrate that the proposed
ℓ1 optimization model with boundary wavelets achieves en-
hanced performance, particularly at high noise levels (σ ≥ 25).
Compared with the commonly used one-step thresholding
technique, the solution of the ℓ1 model through the ADMM
method does provide better performance when faced with large
noise levels but requires much more computational time.

The structure of the paper is as follows. In Section II, we
provide details of the approach for the construction of wavelets
on intervals. In Section III, we propose the ℓ1 optimization
model that integrates the boundary wavelets for regularization.
In Section IV, numerical experiments on image denoising are
performed to demonstrate the effectiveness of the model.

II. BOUNDARY (BI)-ORTHOGONAL WAVELETS ON
INTERVALS

A. Han and Michelle’s Direct Approach

We present Han and Michelle’s recent work that utilizes a
direct approach to bi-orthogonal wavelets on intervals without
explicitly involving the dual part by constructing wavelets
in the half-space L2[0,∞) and thus on the interval through
symmetric operations and intersection. See [17] for more
details.

Define Φj := {ϕLj;0}∪{ϕj;k, nϕ ≤ k ≤ 2j−nϕ̊}∪{ϕ
R
j;2j−1}

and Ψj := {ψLj;0} ∪ {ψj;k, nψ ≤ k ≤ 2j − nψ̊} ∪ {ψRj;2j−1},
where fj;k := 2j/2f(2jx− k), while ϕLj and ϕRj are function
vectors composed of boundary functions {ϕL1

j , · · · , ϕLnL
j }

and {ϕR1
j , · · · , ϕRnR

j }, respectively. Here, nL and nR denote
the number of functions crossing the left and right boundaries
of the interval, and their values are independent of j. Simi-
larly, we can define the wavelet part and even bi-orthogonal
counterparts. For the boundary part, the refinement relation
should be

ϕL = ALϕ
L(2·) +

∑
k≥nϕ

aL(k)ϕ(2 · −k), (1)

where AL, Ak are matrices with appropriate sizes, nϕ denote
the smallest integer such that with supp(ϕ(· − k)) ⊂ [0,∞)
for all k ≥ nϕ.



By [17, Theorem 6.1], for every J ≥ J0, one can construct
(B̃J ,BJ) that forms a pair of bi-orthogonal Riesz bases of
L2([0, 1]), where

BJ := ΦJ ∪ {Ψj : j ≥ J}, B̃J := Φ̃J ∪ {Ψ̃j : j ≥ J}

and there exist (sparse) matrices Aj , Bj , Ãj , B̃j such that the
refinement relations hold:

Φj = AjΦj+1 and Ψj = BjΦj+1,

Φ̃j = ÃjΦj+1 and Ψ̃j = B̃jΦ̃j+1.

Moreover, we have the perfect reconstruction condition:[
Ãj
B̃j

] [
Ā⊤
j B̄⊤

j

]
= I#Φj+1

.

According to Han’s construction, we have nϕ̃ ≥ nϕ and n ˜̊
ϕ
≥

nϕ̊. Thus we can define

ΦLJ;0 := [ϕLJ;0;ϕJ;nϕ
; · · · ;ϕJ;nϕ̃−1], (2)

and

ΦRJ;2J−1 := [ϕJ;2J−n ˜̊
ϕ
+1; · · · ;ϕJ;2J−nϕ̊

;ϕRJ;2J−1]. (3)

Consequently, the projection of a function f ∈ L2([0, 1]) at
level J can be represented as

fJ = ⟨f, ϕ̃LJ;0⟩⊤ΦLJ;0 +
2J−n ˜̊

ϕ∑
k=nϕ̃

⟨f, ϕ̃J;k⟩ϕJ;k

+⟨f, ϕ̃RJ;2J−1⟩
⊤ΦRJ;2J−1. (4)

Using the multi-level relation, the space spanned by ΦJ is the
same as the the one spanned by ΦJ0 plus Ψj , j = J0, . . . , J−
1, leading to,

fJ =
∑
η∈ΦJ

⟨f, η̃⟩η =
∑
η∈ΦJ0

⟨f, η̃⟩η +
J−1∑
j=J0

∑
η∈Ψj

⟨f, η̃⟩η.

B. Boundary (Bi-)Orthogonal Wavelet Transform

By the refinement relations, we have the decomposition
relation between 2 levels for the approximation coefficients:

⟨f, Φ̃J−1⟩ΦJ−1 =⟨f, ÃJ−1Φ̃J⟩AJ−1ΦJ

=⟨f, Φ̃J⟩
[
ÃJ−1

⊤
AJ−1

]
ΦJ .

Similarly, for the wavelet detail coefficients, we have the
reconstruction relation:

⟨f, Ψ̃J−1⟩ΨJ−1 =⟨f, B̃J−1Φ̃J⟩BJ−1ΦJ

=⟨f, Φ̃J⟩
[
B̃J−1

⊤
BJ−1

]
ΦJ .

Therefore, we have

⟨f, Φ̃J−1⟩ΦJ−1 + ⟨f, Ψ̃J−1⟩ΨJ−1

=⟨f, Φ̃J⟩
[
ÃJ−1

⊤
AJ−1 + B̃J−1

⊤
BJ−1

]
ΦJ

=⟨f, Φ̃J⟩ΦJ .

Define
cj := ⟨f, Φ̃j⟩ and dj := ⟨f, Ψ̃j⟩.

Then, the decomposition from cJ to {cJ−1, dJ−1} is given by

cJ−1 = ⟨f, ÃJ−1Φ̃J⟩ = ⟨f, Φ̃J⟩ÃJ−1

⊤
= cJ ÃJ−1

⊤
,

dJ−1 = ⟨f, B̃J−1Φ̃J⟩ = ⟨f, Φ̃J⟩B̃J−1

⊤
= cJ B̃J−1

⊤
.

The reconstruction of cJ from {cJ−1, dJ−1} is given by

cJ =cJ

[
ÃJ−1

⊤
AJ−1 + B̃J−1

⊤
BJ−1

]
=

[
(cJ ÃJ−1

⊤
)AJ−1 + (cJ B̃J−1

⊤
)BJ−1

]
=cJ−1AJ−1 + dJ−1BJ−1.

C. Examples

In this section we give two most common examples: the
Haar and the bi-orthogonal wavelets from the hat function.

Example 1 (The Haar Orthogonal Boundary Wavelets):
Consider the compactly supported orthogonal Haar wavelet
{ϕ;ψ} with a = { 1

2 ,
1
2}[0,1]. Recall that ϕ = χ[0,1]. Define:

Φj :={ϕj;0} ∪ {ϕj;k : 1 ≤ k ≤ 2j − 2} ∪ {ϕj;2j−1},
Ψj :={ψj;0} ∪ {ψj;k : 1 ≤ k ≤ 2j − 2} ∪ {ψj;2j−1}.

Then BJ := ΦJ0∪{Ψj}∞j=J0 , where J0 ≥ 1, is an orthonormal
basis of L2[0, 1].

Example 2 (Biorthogonal Boundary Wavelets): Con-
sider the scalar biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) and a
biorthogonal wavelet filter bank ({ã; b̃}, {a; b}) given by

a = {1
4
,
1

2
,
1

4
}[−1,1], b = {−1

8
,−1

4
,
3

4
,−1

4
,−1

8
}[−1,3],

ã = {−1

8
,
1

4
,
3

4
,
1

4
,−1

8
}[−2,2], b̃ = {−1

4
,
1

2
,−1

4
}[0,2].

The analytic expression of ϕ is the hat function: ϕ = (x +
1)χ[−1,0]+(1−x)χ[0,1]. We denote this wavelet system as CW
as a classical wavelet system without boundary consideration
to be used in the next section.

The primal left boundary elements can be represented as

ϕL =ϕχ[0,1] = ϕL(2·) + 1

2
ϕ(2 · −1),

ψL =ϕL(2·)− 5

6
ϕ(2 · −1) +

1

3
ϕ(2 · −2).

For the dual part, we utilize (1) to define ϕ̃L and ψ̃L, where

ÃL =

− 2
9 − 2

36
2
72

14
9

14
36 − 14

72
− 2

3
4
3

4
3

 , ãL =

 1
2

3
2

1
2 − 1

4
1
2 − 1

4 0 0
0 0 0 0


[3,6]

,

B̃L =

[
− 4

9 − 1
9

1
18

2
3 − 4

3
2
3

]
, b̃L =

[
1 − 1

2
0 0

]
[3,4]

.

The right boundary elements can be defined using symmetry:

ϕR = ϕL(1− ·), ψR = ψL(1− ·),
ϕ̃R = ϕ̃L(1− ·), ψ̃R = ψ̃L(1− ·).



Define the generators at scale j by:

Φ̃j ={ϕ̃Lj;0} ∪ {ϕ̃j;k : 3 ≤ k ≤ 2j − 3} ∪ {ϕ̃Rj;2j−1},
Ψ̃j ={ψ̃Lj;0} ∪ {ψ̃j;k : 2 ≤ k ≤ 2j − 3} ∪ {ψ̃Rj;2j−1},
Φj ={ϕj;2, ϕj;1, ϕLj;0} ∪ {ϕj;k : 3 ≤ k ≤ 2j − 3}

∪ {ϕj;2j−2, ϕj;2j−1, ϕ
R
j;2j−1},

Ψj ={ψj;1, ψLj;0} ∪ {ψj;k : 2 ≤ k ≤ 2j − 3}
∪ {ψj;2j−2, ψ

R
j;2j−1}.

Let BJ := ΦJ ∪ {Ψj}∞j=J and B̃J := Φ̃J ∪ {Ψ̃j}∞j=J . Then
(B̃J ,BJ), where J ≥ 3, is an biorthonormal basis of L2[0, 1].
We denote this system as BW as a boundary wavelet system
to be used in next section.

III. OPTIMIZATION MODEL AND ALGORITHMS

A. Optimization Model

Given data set {(xi, f(xi))}ni=1 of samples, and we can
approximate fJ as in (4). It is worth noting that in the general
case, fJ is only an approximation of f , but for the particular
bi-orthogonal wavelet in Example 2, fJ has the interpolation
property, i.e., fJ(xi) = f(xi) for all i.

Define the matrix according to Φj in Example 2:

Φx :=[η(xj)]η∈ΦJ ,1≤j≤n

=


ϕJ;2(x1) ϕJ;1(x1) · · · ϕRJ;2J−1(x1)

ϕJ;2(x2) ϕJ;1(x2) · · · ϕRJ;2J−1(x2)
...

...
. . .

...
ϕJ;2(xn) ϕJ;1(xn) · · · ϕRJ;2J−1(xn)


and c = [cJ;2, cJ;1, . . . , c

R
J;2J−1]

⊤. Then we have fJ = Φxc.
Defien dj = Bjc for j = J0, . . . , J − 1.

This allows us to introduce our ℓ1 optimization model:

argmin
c

1

2
∥Φxc− fJ∥22 +

J−1∑
j=J0

λj∥Bjc∥1, (5)

where λj are the regularization parameters. To apply the
ADMM algorithm, we define B = [BJ−1; . . . ;BJ0] and λ
s.t. λBc = [λJ−1BJ−1c; . . . ;λJ0BJ0c].

Define d = Bc and K(c) = 1
2∥ΦXc−fJ∥

2
2, H(d) = λ∥d∥1.

Then, (5) is equivalent to minimize K(c)+H(d) s.t. Bc−d =
0. Define augmented Lagrangian function:

L(c, d; v) = K(c)+H(d)+ v⊤(Bc− d)+
ρ

2
∥Bc− d∥22, (6)

where v is a vector and ρ is a constant.
To normalize the vector, let µ = v

ρ , then we have

v⊤(Bc− d) +
ρ

2
∥Bc− d∥22 =

ρ

2
∥Bc− d+ µ∥22 −

ρ

2
∥µ∥22.

Thus we can solve the original problem by pairwise iteration:
• ck+1 = argmincK(c) + ρ

2∥Bc− dk + µk∥22,
• dk+1 = argmindH(d) + ρ

2∥Bc
k+1 − d+ µk∥22,

• µk+1 = µk +Bck+1 − dk+1,
and this process has the explicit form:

• ck+1 = (Φ⊤
x Φx + ρ(B⊤B))−1(Φ⊤

x fJ +B⊤(dk − µk)),

• dk+1 = Tλ
ρ
(Bck+1 + µk), where T is the soft-

thresholding operator,
• µk+1 = µk +Bck+1 − dk+1.

In the first step of the iteration, we update c through an inverse
matrix, which may not exist, so instead of this, we use a
conjugate gradient to approximate the result.

The convergence of this iterative process is guaranteed in
the fulfillment of the KKT condition:

−B⊤x ∈ ∂K(c), x ∈ ∂H(d), Bc− d = 0, (7)

and it can be simplified to the form −λB⊤sgn(Bc) = 2Jc−
2J/2fJ , with a solution c existing.

B. Algorithms

We start with a description of the Algorithm 1 for (S2)
the computation of approximation coefficients cJ , (S3) the
decomposition of cJ to cJ−1, the wavelet coefficients dJ−1,
(S4) the thresholding of dJ−1, and (S5) the reconstruction of
the approximation coefficients cJ from cJ−1 and dJ−1.

Algorithm 1 Boundary Wavelet Transforms
(S1) Determine the finest level J . Let f be the input noisy
1-D signal with size n. We use formula J = ⌊log2(n)⌋ to
determine the finest level.
(S2) Calculate cJ . The boundary wavelets cJ consist of
three parts, which we denote by cXJ with X ∈ {L, I,R}.
By definition cXJ = ⟨f, ϕXJ ⟩. To calculate the inner prod-
uct we cut f into pieces and approximate them though
f |2−J [i,i+1] ≈ ai+bix, i = 0, · · · , 2J−1. Noet that ⟨1, ϕXj ⟩
and ⟨x, ϕXj ⟩ can be pre-calculated.
(S3) Decomposition. We can utilize (1) for direct computa-
tions of approximation involving boundary wavelets (only a
few). As for the interior part, we use cJ−1 = cJ ∗a ↓ 2 same
as the classical approach, where ∗ denotes convolution.
(S4) Thresholding. For this operation on the wavelet detail
coefficients, we use the soft threshold method with prede-
termined thresholding parameters.
(S5) Reconstruction. For the boundary part, we utilize (1)
for direct computations (only a few). As for the interior we
use cJ = (cJ−1 ↑ 2) ∗ ã+ (dJ−1 ↑ 2) ∗ b̃.

Remark:For the two-dimensional (or higher dimensional)
case in Algorithm 1, we can perform a one-dimensional
decomposition row by row and then column by column. In
this way, we can avoid storing and calculating large matrices,
which substantially improves the program’s running efficiency.
The computational complexity is proportional to the size of the
data (linear complexity). In the image case f with size m×n,
we use J = ⌊log2(min{m,n})⌋.

We next discuss the ADMM algorithm to solve (5) with
the bi-orthogonal boundary wavelets in Example 2. Note that
the primal part of the scaling function is the hat function and
thus Φx = I , where I is the identity matrix. For ease of
subsequent exposition, we denote the 2D-decomposition and
reconstruction parts of Algorithm 1 as Dec2D() and Rec2D(),



respectively. It is worth noting that since we are not dealing
with cJ0 in the thresholding step, so we need set values of
cJ0 to 0 in order to invoke the Rec2D(). In the Rec2D() we
should use the same mask as in the Dec2D() instead of the
primal part. The details is given in Algorithm 2.

Algorithm 2 ADMM for (5)
(S0) Initialization. Set the initial value of c, d and µ to 0.
Choose the appropriate λ and ρ for subsequent iterations.
(S1) Update on c. Use the conjugate gradient method pcg to
get an update on c. Define fk+1 = 2J/2fk +Rec2D(dk −
µk). Thus, we have Rec2D(Dec2D(ck+1)) = fk+1. We de-
note the process Rec2D(Dec2D()) as Trans(). Then we can
apply the MATLAB code to get ck+1 = pcg(@Trans,fk+1).
(S2) Update on d. Define dk+0.5 = Dec2D(ck+1) + µk, then
dk+1 = Tλ

ρ
(dk+0.5).

(S3) Update on µ. Apply Dec2D() and we can get µk+1 =
µk +Dec2D(ck+1)− dk+1.
(S4) Termination condition. Define t as a tolerance value,
e.g., t = 10−4. Iterative (S1)-S(3) until both ∥ck+1−ck∥2 <
t and ∥µk+1 − µk∥2 < t are satisfied.

IV. NUMERICAL EXPERIMENTS ON IMAGE DENOISING

A. Numerical Results for Barbara

In this section, we take the classic 512 × 512 gray-scale
images of Barbara as an example. To measure the quality of
image restoration, we use peak-signal-to-noise ratio (PSNR).
All the PSNR values are given after iterative convergence. The
coarsest layer is 6 and the finest layer is 9. For noisy Barbara,
4 different approaches were considered:

1) ADMM(BW): We use the ℓ1 optimization model with
ADMM integrated with our boundary wavelet system
BW. Here for the soft-thresholding function Tλ

ρ
we take

ρ = 0.5 and λ = τσ/σ0, where τ = 3 and σ0 = 5.
2) BW: We directly utilize the boundary wavelet transform,

apply the soft-thresholding operation on the detail coef-
ficients once, and then reconstruct the image from the
thresholded detail coefficients. The thresholding value is
given by T = 2−2J ·cσ/

√
|d|2 − 2−2Jσ, where c is tuned

to optimize the performance.
3) ADMM(CW): Same as the ADMM(BW) in 1) but re-

place the BW system by CW system. All other parameters
are the same for comparison purposes.

4) CW: Same as the BW in 2). We directly called the
wdenoise2 function in MATLAB using the CW system
(i.e. Bior2.2). Here the thresholding method we use is
Bayes and the thresholding rule we take is Mean to get
the best PSNR value using this approach.

We can see Fig. 1 for the visual comparisons when σ = 5
and from Table I that the ℓ1 optimization model with boundary
wavelets through ADMM does show advantages over other
methods in terms of PSNR, especially when the noise level
is large (σ ≥ 25). In conclusion, although applying boundary
wavelets to the optimization model is more time-consuming

Fig. 1. Different Denoising Methods for Barbara. Left to Right: (1)
AMDD+BW; (2) BW only; (3) ADMM+CW; (4) CW only.

TABLE I
IMAGE DENOISING COMPARISON RESULTS OF Barbara

Noise Different Methods for Denoising (PSNR)
σ Origin ADMM(BW) BW ADMM(CW) CW
5 17.3784 23.4511 23.4025 23.4569 23.0623
10 14.6792 22.1209 22.2489 22.1251 21.3393
25 11.5201 20.8579 20.7418 20.8564 19.0287
40 10.1804 19.9676 19.7635 19.9672 17.8381
50 9.6242 19.4685 19.2621 19.4682 17.3051
80 8.6284 18.3642 18.1755 18.3641 16.2755

compared to directly utilizing boundary wavelets for noise
reduction, it does contribute to the effectiveness of the image
denoising, which is well illustrated in TABLE I.
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