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ABSTRACT

We present a method for composing photorealistic scenes from captured images
of objects. Our work builds upon neural radiance fields (NeRFs), which implicitly
model the volumetric density and directionally-emitted radiance of a scene from a
collection of images. While NeRFs synthesize realistic pictures, they only model
static scenes and are closely tied to specific imaging conditions. This property
makes NeRFs hard to generalize to new scenarios, including new lighting or new
arrangements of objects. Instead of learning a scene radiance field as a NeRF
does, we propose to learn object-centric neural scattering functions (OSFs), a rep-
resentation that models per-object light transport implicitly using a lighting- and
view-dependent neural network. This enables rendering scenes even when ob-
jects or lights move, without retraining. Combined with a volumetric path tracing
procedure, our framework is capable of rendering light transport effects including
occlusions, specularities, shadows, and indirect illumination, both within individ-
ual objects and between different objects. We evaluate OSFs on synthetic and real
world datasets, and on generalizing to new scene configurations. Learning OSFs
leads to photorealistic, physically-accurate renderings of multi-object scenes.

1 INTRODUCTION

Synthesizing images of dynamic scenes is an important problem in computer vision and graphics,
with applications in AR/VR and robotics (Savva et al., 2019; Xia et al., 2020). For synthetic scenes,
a user typically designs a set of 3D objects separately, then composes them into scenes to be rendered
with specified camera, material, and lighting parameters. While this traditional graphics approach
allows for flexible scene compositions, it requires detailed models of geometry, lighting, materials,
and cameras, which can be difficult to obtain for real-world scenes.

To render real-world scenes without computer graphics models, recent works have explored using
neural implicit methods (Lombardi et al., 2019; Sitzmann et al., 2019a;b). Most notably, Milden-
hall et al. (2020) proposed neural radiance fields (NeRF), which achieve photorealistic quality by
implicitly modeling the volumetric density and directional emitted radiance of a scene.

However, as shown in Figure 1, NeRF cannot gen-
eralize beyond the scene it was trained on, because
it assumes static scenes and fixed illumination and
learns a radiance field, which estimates only the
resulting radiance along a ray after all light trans-
port has occurred in a scene. Thus, for dynamic
scenes where lights and objects can move, a sep-
arate NeRF-based model is needed for each new
scene configuration.

(a) NeRF (Baseline) (b) OSF (Our Method)

Figure 1: (a) NeRF. (b) Our method.

To address this issue, we propose Object-Centric Neural Scattering Functions (OSFs) to synthesize
dynamic scenes of objects learned from 2D images (Figure 2). We represent each object as a learned
7D scattering function with inputs (x, y, z, φi, θi, φo, θo), where (x, y, z) is the spatial location,
(φi, θi) is the incoming light direction, and (φo, θo) is the outgoing light direction. The function
outputs the volumetric density as well as the fraction of light arriving from direction (φi, θi) that
scatters in outgoing direction (φo, θo).

Each OSF models all light bounces (reflections) and occlusions (shadows) within an object. Since
each object’s scattering function is a radiance transfer function rather than a radiance field, it is
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(c) Compose Scene (d) Move Light (e) Move Camera (f) Move Objects(b) Object Library(a) Params

Figure 2: We propose an object-centric neural scene representation for image synthesis. Given a
scene description (a), and a repository of neural object-centric scattering functions (OSF) trained
independently from images and frozen for each object (b), we can compose the objects into scenes
(c), and render photorealistic images as we move lights (d), cameras (e), and/or objects (f). Our
framework is capable of rendering occlusions, specularities, shadows, and indirect illumination.

intrinsic to the object (independent of the scene it is in) and can be reused across different object
placements and lighting conditions without retraining. We emphasize that because NeRFs are radi-
ance fields, they cannot be composed, and cannot generalize beyond one scene. In contrast, we can
render infinitely many scenes. We can build a library of OSFs trained independently for different
objects to be composed into scenes with different object placements, camera, and lighting.

To model light transport between objects, we integrate our implicit object functions with volumetric
path tracing. Like NeRF, we evaluate the radiance and volumetric density at 5D samples along
every primary ray to the camera and composite them with an over operator. However, unlike NeRF,
we estimate the radiance for each 5D sample by integrating our 7D OSF across the 2D sphere of
incoming light directions. We estimate the integral with Monte Carlo path tracing (Kajiya, 1986) to
reproduce shadows and indirect illumination effects.

Our key idea is to decompose the rendering problem into (i) a learned component (per-object asset
creation), and (ii) a non-learned component (per-scene path tracing). The learned component mod-
els intra-object light transport (e.g., bounces from the seat of a chair to the back of the chair). The
non-learned component handles inter-object light transport (e.g., bounces from a wall to a chair). To-
gether, they model the full rendering equation (Kajiya, 1986) (except for occluders or light sources
that intrude the object’s convex hull (Sloan et al., 2002)). Since only the inter-object light trans-
port changes as objects and lights move, no re-training is required for different scene arrangements.
Experimental results indicate that our method is capable of rendering images with novel scene com-
positions and lighting conditions better than alternative learned approaches.

In summary, our contributions are:

1. Learning Object-Centric Neural Scattering Functions (OSFs) that model intra-object light trans-
port implicitly using a lighting- and view-dependent neural network.

2. Integrating implicitly learned object scattering functions with volumetric path tracing to model
inter-object light transport.

3. A rendering algorithm that enables rendering scenes with moving objects, lights and cameras,
using implicit functions.

2 RELATED WORK

Classical object-centric representations. Factoring light transport into intra- and inter-object il-
lumination has a long history in traditional computer graphics (Dutre et al., 2018). In most cases,
the motivation is to improve rendering efficiency by approximating intra-object lighting factors with
simple transfer functions (e.g., linear) for simple radiance fields (e.g., spherical harmonics) de-
rived from from computer graphics models, as in precomputed radiance transfer (PRT) (Sloan et al.,
2002), ambient occlusion (Miller, 1994), or virtual walls (Arnaldi et al., 1994). In other cases, the
motivation is to insert captured, real-world radiance fields into synthetic scenes, as in Light Field
Transfer (Cossairt et al., 2008). These methods generally store the radiance field for objects in a
discrete representation (e.g., a sampled 2D or 4D grid). As a result, they cannot reproduce accurate
inter-object light transport, especially for objects with intersecting bounding volumes. In contrast,
we focus on learning radiance transfer from images in order to model complex real-world scattering
accurately, and utilize volumetric rendering techniques to account for inter-object illumination.
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Novel view synthesis. Traditional methods for synthesizing novel views of a scene from cap-
tured images include using Structure-From-Motion (Hartley & Zisserman, 2003) and bundle adjust-
ment (Triggs et al., 1999) to predict a sparse point cloud and camera parameters of the scene. More
recently, a number of learning-based novel view synthesis methods have been presented but require
3D geometry as inputs (Hedman et al., 2018; Thies et al., 2019; Meshry et al., 2019; Aliev et al.,
2020; Martin-Brualla et al., 2018). Others use multiplane images as proxies for novel view synthe-
sis, but their viewing ranges are limited to interpolated input views (Flynn et al., 2016; Zhou et al.,
2018; Srinivasan et al., 2019; Mildenhall et al., 2019). Some works represent scenes as coarse voxel
grids and use a CNN-based decoder for differentiable rendering, but lack view consistency due to
the use of 2D convolutional kernels (Nguyen-Phuoc et al., 2018; 2019; 2020).

Recently, volume rendering approaches have been used to render scenes represented as voxel grids
that are more view-consistent (Lombardi et al., 2019; Sitzmann et al., 2019a). However, the render-
ing resolution of these methods are limited by the time and computational complexity of discretely
sampled volumes. To address this issue, Neural Radiance Fields (NeRF) (Mildenhall et al., 2020)
directly optimizes a continuous radiance field representation using a multi-layer perceptron. This
allows synthesizing novel views of realistic images at an unprecedented level of fidelity. To make
NeRF more efficient, Neural Sparse Voxel Fields (Liu et al., 2020) have been proposed as a sparse
voxel octree variant of NeRF and demonstrate the ease of composing learned NeRFs with their
voxel representation. See (Dellaert & Yen-Chen, 2020) for survey. While these implicit methods
produce high-quality novel views of a scene, their models assume a static scene with fixed illumi-
nation. Our method enables synthesizing dynamic scenes with novel viewpoint, lighting, and object
configurations.
Relighting. Learning-based methods that relight images without explicit geometric reasoning have
been proposed, but lack the ability to recover hard shadows (Sun et al., 2019; Xu et al., 2018; Zhou
et al., 2019). Other works use geometric representations that facilitate shadowing computation,
but require 3D geometry as input (Philip et al., 2019; Zhang et al., 2021; Oechsle et al., 2020;
Rematas & Ferrari, 2020). Deep Reflectance Volumes (Bi et al., 2020b) reconstructs a voxelized
representation of a scene and predict per-voxel BRDFs, but the fixed resolution of voxel grids limits
the quality in the rendered images. Similarly, Neural Reflectance Fields (Bi et al., 2020a) predicts
the parameters of a BRDF model, but demonstrate higher fidelity rendering by learning a continuous
scene representation. However, Neural Reflectance Fields focuses on relighting single objects, and
requires manual specification of the BRDF model. Parametric BRDF models are unable to handle
complex scattering functions, including real-world scattering phenomena that are difficult to model.
In contrast, our method is capable of learning all scattering functions, and can render multiple objects
in dynamic scenes.

3 PRELIMINARIES

3.1 VOLUME RENDERING

To render an image of a scene with arbitrary camera parameters, camera rays are sent into the scene,
through each pixel on the image plane. The expected color of each pixel is computed as the radiance
along each camera ray.

Volume rendering is an approach for computing the radiance traveling along rays traced in a volume.
Let r(t) = x0 + ωot be a point along a ray r with origin x0 and direction ωo, where t ∈ R is a
1D location along the ray, and the o in ωo denotes “outgoing” direction. For our purposes, we
assume non-emissive and non-absorptive volumes. From Novák et al. (2018), the volume rendering
equation to compute the radiance L(x0,ωo) of the ray is defined as:

L(x0,ωo) =

∫ tf

tn

τ(t)σ(r(t))Ls(r(t),ωo) dt, where τ(t) = exp

(
−
∫ t

tn

σ(r(u)) du

)
, (1)

where tn and tf are near and far integration bounds, σ(r(t)) denotes the volume density of point
r(t), and τ(t) denotes the accumulated transmittance from tn to t. The termLs(r(t),ωo) is the light
scattered at point r(t) along direction ωo, defined as the integral over all incoming light directions:

Ls(x,ωo) =

∫
S
L(x,ωl)fp(x,ωl,ωo) dωl, (2)

where S is a unit sphere and fp is a phase function that evaluates the fraction of light incoming from
direction ωl at a point x that scatters out in direction ωo. In NeRF, Mildenhall et al. (2020) assume
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fixed illumination and do not consider any form of Equation 2. We consider a more general form of
the volume rendering equation that explicitly models light paths within and between objects. This is
important for dynamic scenes, where lighting and objects can move with respect to one another.

3.2 RAY MARCHING

The continuous integrals in Equation 1 can be estimated with quadrature (Kniss et al., 2003; Max,
1995), as done in NeRF (Mildenhall et al., 2020). For each ray, stratified sampling is used to obtain
N samples {ti}Ni=1 along the ray, where ti ∈ [tn, tf ]. The rendering equation is approximated by:

L(x0,ωo) =

N∑
i=1

τiαiLs(xi,ωo) where Ls(xi,ωo) =
1

|L|
∑
l∈L

L(xi,ωl)ρ
l
i, (3)

where τi =
∏i−1
j=1(1−αj) and αi = 1− e−σi(ti+1−ti). To compute the average over incoming light

paths Ls, we discretize over the domain S in Equation 2 by sampling a set of incoming light paths
L = {l1, . . . , lK}, where ρli = fp(xi,ωl,ωo) ∈ [0, 1], the fraction of light incoming from light
path l that is scattered in direction ωo.

3.3 NEURAL RADIANCE FIELDS

NeRF represents a continuous scene as a volumetric radiance field, approximated with a multilayer
perceptron FΘ. The model FΘ takes spatial location x = (x, y, z) and viewing direction d = (φ, θ)
as input, and outputs the density σ and color c = (r, g, b), where r, g, b ∈ [0, 1]. Frequency-based
positional encoding (Rahaman et al., 2019; Vaswani et al., 2017) is applied to the inputs to better
capture high-frequency variation in appearance and geometry.

A hierarchical volume sampling procedure (Mildenhall et al., 2020; Levoy, 1990) is then employed
to more efficiently allocate samples along each ray. This technique biases sample allocation to
favor the visible parts of the scene that contribute the most to the final render, avoiding occluded
or free space in the scene. NeRF simultaneously optimizes two radiance fields, where the sample
weights τi · αi from a coarse model are used to bias samples for a fine model. The L2 loss is used
to optimize both models:

∑
r∈R‖Ĉc(r) − C(r)‖22 + ‖Ĉf (r) − C(r)‖22, where R is the set of all

camera rays, Ĉc(r) and Ĉf (r) denote the radiance along ray r predicted by the coarse and fine
models respectively, and C(r) is the ground truth pixel color for r.

4 METHOD

4.1 OBJECT-CENTRIC NEURAL SCATTERING FUNCTION

We represent each object as a 7D object-centric neural scattering function (OSF), depicted in Fig-
ure 3a. For each object, we learn an implicit function FΘ : (x,ωl,ωo) → (σ,ρ) that receives a 3D
point in the object coordinate frame, the incoming light direction, and the outgoing light direction,
and predicts the volumetric density as well as fraction of incoming light that is scattered in the out-
going direction. Θ are learned weights that parameterize the neural network, x = (x, y, z) denotes
the spatial location, ωl = (φl, θl) denotes the incoming light direction, ωo = (φo, θo) denotes the
outgoing light direction, σ denotes the volumetric density, and ρ = (ρr, ρg, ρb) denotes the frac-
tion of light arriving at x from direction ωl that is scattered and leaving in direction ωo. The final
color of a point x is the integral of ρ multiplied by the incoming radiance over all incoming light
directions in unit sphere S (Equation 2). Following NeRF, we similarly apply positional encoding
to our inputs (x,ωl,ωo) and employ a hierarchical sampling procedure to recover higher quality
appearance and geometry of learned objects.

During training, we assume a single point light source with radiance of (1, 1, 1). This simplifies
Ls from Equation 2 to Ls(x,ωo) = L(x,ωl)fp(x,ωl,ωo) = fp(x,ωl,ωo). To learn per-object
NeRFs independent of object rotation and translation, the inputs to FΘ must be in the object’s canon-
ical coordinate frame. Given a object transformation Ti for object oi, we apply T−1

i to (r,ωl,ωo)
before feeding the inputs to the network.

4.2 RENDERING MULTIPLE OSFS

Once we have learned an OSF for each object, we aim at composing the learned objects into scenes.
An overview of our procedure is visually depicted in Figure 3b.
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Light 
Source

Camera

(a) We represent each object as an object-centric
neural scattering function (OSF), which models how
light entering at a point x on the object, from direc-
tionωl where l corresponds to a light path, undergoes
multiple bounces within the object and exits along di-
rection ωo with some fractional amount of light ρ.
We approximate the scattering function with a mul-
tilayer perceptron FΘ where Θ are learned weights
that parameterize the neural network. Given a single
point x, an incoming light direction ωl, and an out-
going direction ωo, FΘ outputs the volume density σ
of that point, as well as the fraction of light arriving at
x from direction ωl that is scattered in direction ωo.

Primary rays

Indirect Illumination

Shadow Ray

Direct illumination
Light 

Source

Camera

(b) Our procedure for rendering an arbitrary scene
consisting of multiple objects, light sources, and cam-
eras. Given a set of objects, we compute direct illu-
mination by shooting rays from each light source to
each object (brown arrows). Shadows are computed
by sending shadow rays back to each light source
(purple arrow). The shadow ray from the desk is oc-
cluded by the mug, so the mug casts a shadow on the
desk. We send secondary rays between objects to ren-
der indirect illumination effects, such as between the
desk and the kettle (green and blue dashed arrows).
Finally, rays are sent back to the camera to render the
final image (dark blue arrows).

Figure 3: Using our method (OSFs) to render: (a) single and (b) multiple objects.

(a)
Primary ray sampling

(b)
Shadow ray sampling

Figure 4: Sampling procedure. (a) Scene with a camera, light source, and object bounding boxes.
Primary rays are sent from the camera into the scene. Rays that do not intersect with objects are
pruned. Of the intersecting rays, we sample points within intersecting regions. (b) Shadow rays
from each sample are sent to the light source, and samples within intersecting regions are evaluated.

Let O = {oi}Ni=1 be a set of N objects we wish to render. For simplicity, we first describe the
rendering process for each object oi, then explain the process to combine results across all objects
to render the final scene. Let oi ∈ O denote object i with transformation Ti ∈ R4×4 and bounding
box dimensions Di ∈ R3. Further let r be a camera ray with origin c ∈ R3 and direction ωo ∈ R3,
which we define with parameters γ = [c,ωo] ∈ R6. Our goal is to compute L(c,ωo) as described
in Equation 3. We compute the ray-box intersection between the ray and the object to obtain near
bound tin and far bound tif such that r(tin) and r(tif ) each intersect a box plane, as shown in Figure 4.
Note that rays that do not intersect with oi are excluded from our computation. We sampleM points
between tin and tif along ray r to obtain a sample Xi = {xim}Mm=1, where Xi ∈ RM×3. Given a
light source l, we evaluate the object’s model FΘi(X

i,ωl,ωo) to obtain alpha valuesαi ∈ RM and
phase function values ρi ∈ RM×3.

It is not always possible for a light ray from light source l to reach the object oi. Any of the other
objects in O′ = {oj ∈ O | j 6= i} in the scene may occlude the incoming light, casting a shadow
on object oi. We compute shadows by sending a shadow ray rm from each of the M samples inXi

5



Under review as a conference paper at ICLR 2022

to the light source l. Evaluating the shadow ray enables us to determine the amount of light blocked
along the ray by other objects. We define the parameters of the M shadow rays as Γ ∈ RM×6.

For each object oj ∈ O′, we compute ray-box intersections between shadow rays Γ and oj’s bound-
ing box. This allows us to compute the amount of light traveling towards oi that is blocked by
oj . Similar to primary rays, we sample M points along each shadow ray to obtain a set of points
Xj ∈ RM×M . We then evaluate the object model FΘj

(Xj) to obtain alpha values Aj ∈ RM×M .
For each shadow ray rm, we combine samples Aj

m across the N − 1 objects in O′ by sorting ac-
cording to sample distance to obtain alpha values Am ∈ RM(N−1). The fraction of unobstructed
light traveling along the shadow ray rm is computed as the transmittance:

τ lm =

M(N−1)∏
n=1

(1−Amn). (4)

Thus, the adjusted incoming radiance from light source l when accounting for occlusions is com-
puted as Ll(xm,ωl) = τ lmLl(xm,ωl).

We follow the scattering equation in Equation 2 and now consider all incoming light directions over
the unit sphere S. This accounts for secondary light rays traveling to an object oi indirectly from
another object oj (indirect illumination). We approximate the integral over the unit sphere S by
sampling K directions on the unit sphere uniformly at random. For each direction ωk randomly
sampled for a point x, we send a secondary ray rk from x in direction ωk and evaluate the radiance
L(x,ωk) traveling along the ray. To compute the radiance of the secondary ray L(x,ωk), we
employ the same technique used to compute the radiance of a primary ray L(c,ωo) (described at
the beginning of Section 4.2). The incoming radiance L(x,ωk) is multiplied with the phase function
value ρ = fp(x,ωk,ωo) to determine the outgoing radiance L(x,ωo), where ρ is evaluated using
FΘi . Note that this is possible due to the recursive nature of our formulation. Only secondary rays
are described here (two bounces), but our method supports an arbitrary number of bounces.
Rendering. We sample and evaluate all objects in O to obtain alpha values {αi}Ni=1 and phase
function values {ρi}Ni=1 for a set of sampled points {Xi}Ni=1 along ray r. We sort the samples across
all objects to produce a final set of P = M ·N samples {xm}Pm=1, {αm}Pm=1, and {ρm}Pm=1.

Given light paths L containing both direct and indirect illumination, we render the final radiance of
a ray with origin x0 and direction ωo with the following equation:

L(x0,ωo) =
1

|L|
∑
l∈L

P∑
m=1

αmρ
l
mτmLl(xm,ωl), where τm =

m−1∏
n=1

(1− αn), (5)

and Ll(xm,ωl) is the radiance from light path l arriving at point xm.
Runtime. In total, the cost of rendering a single image with Npixel pixels and Nobject objects is
O(P 2KNpixel). Note that P is an upper bound on number of samples that need to be evaluated. In
practice, a single ray often only intersects with at most one object in the scene, which means that
the proposed rendering procedure is not significantly more expensive than the single object setting.
We also note that compared to NRF Bi et al. (2020a) or traditional volumetric path tracing methods,
OSF crucially does not require running path tracing within each object to simulate intra-object light
bounces. This is because OSF learns the object-level scattering function that directly predicts the
effects after all light bounces (reflections) and occlusions (shadows) within an object have occurred.
Thus OSF is significantly faster than NRF which relies on simulating intra-object light bounces
while querying its learned BRDF model.

In our experiments, rendering a single image with a single OSF at a resolution of 256 × 256 takes
roughly 3.7 seconds. While the computation cost is high, there are efforts to reduce the rendering
speed of NeRF that are orthogonal to this work. For instance, KiloNeRF (Reiser et al., 2021) can
easily adapted to this work by utilizing thousands of tiny MLPs instead of one single large MLP to
represent each OSF to obtain 1-2 orders of magnitude speed up.

5 EXPERIMENTS

Datasets and evaluation metrics. We evaluate our approach on several image datasets:

• FURNITURE-SINGLE: 15 objects rendered with random object pose, point light, and viewpoint.
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• FURNITURE-RANDOM: 25 dynamic scenes, each containing a random layout of multiple objects,
point light, and viewpoint.

• FURNITURE-REALISTIC: Scenes containing realistic arrangements of objects in rooms.
• REAL-NRF: Real-world objects from Bi et al. (2020a), captured in a dark room under varying

viewing and lighting directions.
• REAL-OUTDOOR: Real-world outdoor scenes from Mildenhall et al. (2020).

For FURNITURE datasets, we use Blender’s Cycles path tracer (Blender Foundation, 1994) to ren-
der images at 256 × 256 resolution for different object arrangements, camera views, and lighting
configurations. We report PSNR, SSIM (Wang et al., 2003), and LPIPS (Zhang et al., 2018) metrics.
Baselines and ablations. We compare our method to the following baselines:

1. o-NeRF: A variant of the NeRF model, but with one NeRF trained per object. When o-NeRFs
are composed into scenes, they are rendered separately.

2. o-NeRF + S: An extension of o-NeRF with inter-object shadows; reduces the light arriving at
each o-NeRF by the cumulative opacity of shadowing objects along the ray from the light (§4.2).

These baselines represent what could be achieved by combining separately trained NeRFs into a
scene. Of course, since o-NeRFs produce radiance fields (not scattering fields), we do not expect
them to perform well in novel lighting environments or object placements.

5.1 NOVEL LIGHTING

In the first experiment, we investigate how OSF method handles novel lighting conditions.

We train one model per object in FURNITURE-
SINGLE. For each object model, we train on
400 images with randomized viewpoint and
lighting, and test on 20 images of novel view-
point and lighting. As can be seen in Fig-
ure 5, our method produces more accurate ap-
pearance of the objects in comparison to o-
NeRF when tested on novel illumination con-
ditions. In particular, o-NeRF fails to pre-
dict self-shadows for the couch and chair cor-
rectly. Additionally, o-NeRF fails to disen-
tangle viewpoint versus lighting-dependent ap-
pearance, producing incorrect shadows for the
couch and chair, and fails to capture the specu-
lar details of the ottoman. Quantitative results
can be found in Table 1.

Couch Chair Table Ottoman
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Figure 5: Novel lighting results.

5.2 SCENE COMPOSITION

In a second experiment, we conduct a scene composition task on FURNITURE-RANDOM, where
multiple object models are combined into scenes in random pose, lighting, and viewpoint configu-
rations. For this task, we use the same object models trained in Section 5.1. Results are shown in
Table 1 and Figure 6. While not shown in the main text, results for FURNITURE-REALISTIC can be
found in Appendix B.

Table 1: Quantitative results for novel lighting (FURNITURE-SINGLE) and scene composition
(FURNITURE-RANDOM). Rows denote different methods: our full model (OSF), a variant of NeRF
where one NeRF is trained per object (o-NeRF), and o-NeRF with shadows (o-NeRF + S).

Dataset FURNITURE-SINGLE FURNITURE-RANDOM

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
o-NeRF 33.22 0.980 0.021 12.17 0.690 0.280
o-NERF + S — — — 14.70 0.697 0.267
OSF (Our Method) 44.07 0.998 0.002 19.02 0.793 0.135
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Ground Trutho-NeRF + S o-NeRFOSF (ours)
Figure 6: Scene composition results on FURNITURE-RANDOM. The models OSF, o-NeRF, and
o-NeRF + S are explained in §5. Compared to o-NeRF, our model (OSF) is able to disentangle
lighting-dependent and view-dependent appearance and can render shadows.

These results suggest that OSF outperforms all baselines and ablations, both quantitatively and qual-
itatively. As in the previous experiment (Section 5.1), we find that OSF reproduces object appear-
ances and self-shadows more accurately than the baselines. The difference is especially apparent
in the couches in scenes (a) and (b), where the couches predicted by o-NeRF are extremely dark.
This is due to the fact that o-NeRF is unable to disentangle view-dependence appearance from light-
dependent appearance, and simply interpolates the radiance field learned another different lighting
configuration. Please note that OSF is able to model inter-object light transport effects by rendering
shadows cast by one object onto another and on the ground plane. Plus, it is able to render indirect
illumination of one object reflecting light onto another. For example, light reflected from the left
wall causes the left of the couch and table in scenes (a) and (b) to be brighter. Neither of these
lighting effects are present in the o-NeRF results.

5.3 REAL-WORLD SCENES

In this section we evaluate our method on real
world objects and scenes from the REAL-NRF
and REAL-OUTDOOR datasets. For these
experiments, we train one OSF for each object
in REAL-NRF and each scene in REAL-
OUTDOOR.

Figure 7 shows a comparison between ground
truth, our method (OSF), and Neural Re-
flectance Fields (NRF) (Bi et al., 2020a). We
show that OSF recovers stronger, more accurate
specular highlights compared to NRF. OSF also
produces more detailed appearances (see pony
logo). This comparison demonstrates the main
advantage of OSF: the ability to handle complex
scattering functions.

Ground Truth OSF (Ours) NRF (Bi et al.) [3]
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Figure 7: Comparison of OSF (ours) to Neu-
ral Reflectance Fields (NRF) (Bi et al., 2020a).
OSF produces stronger, more accurate specular
highlights on the legs (see zoomed view) and
recovers more detailed appearances (see pony
logo).

For scene composition, the OSFs trained on each object are composed with a synthetic floor OSF
in Figure 8 row (a). Our method is able to compute accurate shadows, such as the shadow cast by
the pony onto the two other objects in the scene. The indirect reflections from the floor allow the
shadowed objects to be slightly visible as shown in the “OSF” panel.

Figure 8 rows (b) and (c) show results on inserting REAL-NRF objects into real outdoor scenes
(REAL-OUTDOOR). Shadows and reflections are rendered with randomized lighting directions to
approximate the environment lighting. Our method accurately renders occlusions between the in-
serted objects and the vase in Figure 8 row (c). Due to the compositional nature of OSFs, we are
able to insert the learned pinecone from Figure 8 (b) into (c).

In Figure 8, each column shows ablated versions of OSF to study the impact of computing shadows
and indirect illumination with our path tracing algorithm. “No Shadows, No Indirect” represents
a version of our model containing only direct illumination (without modeling inter-object lighting
effects). We additionally show “No Indirect” and “Indirect Only” variants of our model which

8
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No Indirect Indirect Only Full ModelNo Shadows, No Indirect

(a)

(b)

(c)

NeRF [21]
Our Method: Object-Centric Neural Scattering Functions (OSF)

NRF [3]

Figure 8: Real-world results. NRF (Bi et al., 2020a) and NeRF (Mildenhall et al., 2020) learn
on individual static scenes or objects. In contrast, we compose real-world objects and scenes using
OSFs. The objects are composed with a (a) synthetic floor and (b, c) real outdoor scenes from REAL-
OUTDOOR. Columns show different ablated versions of our model: “No Shadows, No Indirect”
which considers only direct illumination; “No Indirect” which includes both direct illumination and
shadows; “Indirect Only” which considers only indirect illumination. Our OSFs show the most
realistic renderings, with accurate shadows (e.g., pony shadowing the two other objects (row a) and
indirect illumination (i.e., the ground and environment illuminating the objects).

represent computing shadows and indirect illumination, respectively. As illustrated by Figure 8, our
full model containing both shadows and indirect illumination effects is the most realistic. Additional
results on real-world scenes, including complex shadows, can be found in Appendix A.

6 DISCUSSION

We have proposed Object-Centric Neural Scattering Functions (OSFs), a method that enables com-
posing objects captured only from photographs into photorealistic renderings of dynamic scenes.
We demonstrated that decomposing a scene into implicit object functions that are view- and light-
dependent enables reusabiliy of objects across scenes where objects, camera, and lighting can
change. We presented a method for integrating our learned implicit functions with volumetric path
tracing, and showed inter-object light transport effects such as shadow and indirect illumination for
real-world objects where no computer graphics model is available. We believe our work is a step
towards a graphics pipeline where real-world scenes are modeled by a composition of implicit func-
tions to combine the flexibility of object-centric neural modeling with the photorealism of graphics
rendering algorithms.

There are a few main limitations to OSF. First, the computational complexity of our method is high,
but there are several works tackling the orthogonal issue of improving NeRF efficiency (as discussed
in Section 4.2) that can easily be applied to OSFs. Second, while learning intra-object light transport
means that intra-object path tracing is not needed, this formulation assumes that at test time, there
are no occluders or light sources that intrude the object’s convex hull (Sloan et al., 2002) (e.g., a
person sitting in a chair). However, OSFs can still be rendered even if their bounding boxes are
intersecting, as long as this assumption is not violated. Finally, acquiring datasets of real world
objects with varying point light sources and viewpoints is challenging, but we hope that in the future
such acquisition of real world datasets will become easier to capture and more widely available.

REPRODUCIBILITY STATEMENT

We describe our method (Section 4) and experimental setup (Section 5) in detail to maximize repro-
ducibility. We will release our code upon publication to facilitate future research.
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A REAL-WORLD SCENE COMPOSITION

Different scene configurations of composed objects from REAL-NRF are shown in Figure 9. We
show the effect of moving the light, camera, or objects. Notice how the the appearance and shadows
of the objects are updated across different scene configurations. Also notice that even when parts
of the palm tree object and the cartoon object are cast under the pony’s shadow, they do not appear
completely dark due to the indirect illumination from the floor.

Analyzing the effect of different numbers of indirect (secondary) rays per primary sample, Figure 10
shows the result. As can be seen from the figure, the noisiness of the indirect illumination render
decreases as the number of samples increase. Results in this paper contain between one and five
randomly sampled secondary ray for each primary ray sample.
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Figure 9: Composing real-world objects from REAL-NRF using our OSF method. We demonstrate
the effect of moving the light, camera, or objects. Note how the appearance and shadows of the ob-
jects are updated across different scene configurations. Also notice that even when parts of the palm
tree object and the cartoon object are cast under the pony’s shadow, they do not appear completely
dark due to the indirect illumination from the floor.

Figure 10: Visualizing the effect of different numbers of indirect (secondary) rays (N ) per primary
sample for our OSF model (the brightness of these images has been increased only for visualization
purposes). Note that the noisiness of the render decreases as N increases. We find that we are able
to achieve relatively non-noisy results with approximately five samples.
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Single-object renderings from REAL-NRF are shown in Figure 11. The objects were captured in a
dark room with a one-light-at-a-time setup. After training OSF on each object in this dataset, we are
able to render the objects from novel viewpoints and lighting directions.
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Figure 11: Learned OSFs on objects from REAL-NRF. The objects were captured in a dark room
with a one-light-at-a-time setup. After training OSF on each object in this dataset, we are able to
render the objects from novel viewpoints and lighting directions.
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B ABLATION EXPERIMENTS

Direct + ShadowsDirect Only Indirect Only OSF (Ours)

Figure 12: Ablation results on our OSF model.

Figure 12 shows ablation results on FURNITURE-REALISTIC. We evaluate different variants of our
model: “Direct Only” which considers only direct illumination; “Indirect Only” which considers
only indirect illumination; “Direct + Shadows” which includes both direct illumination and shad-
ows. Our full model (OSF) shows the most realistic rendering, with accurate shadows and indirect
illumination effects such as the left side of the couches and tables appearing brighter due to indirect
lighting from the left wall. Note that the white area on the right of the images represent rays with
zero density that are composited onto a white background (and therefore do not contribute indirect
illumination to the scene).

(a)

(b)

o-NeRF + S o-NeRFOSF (ours) Ground Truth

Figure 13: Comparisons on scene composition on FURNITURE-REALISTIC. The models OSF, o-
NeRF, and o-NeRF + S are explained in §5. Compared to o-NeRF, our model (OSF) is able to
disentangle lighting-dependent appearance from view-dependent appearance for individual objects,
and is able to render shadows cast by objects onto the ground correctly.
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C COMPLEX ILLUMINATION

In this experiment, we investigate how scenes composed of OSF objects can be rendered with com-
plex illumination from an environment map.

Specifically, we apply the combination of a point
light source and the environment map shown in
the top-left corner of Figure 14 to light one of
our scenes in FURNITURE-REALISTIC. This
simulates the appearance of the scene as if the
scene were inserted into a complex lighting
environment, which stresses the benefits of the
OSF path tracing framework.

For each OSF sample point, we project the
equirectangular coordinates of the environment
map into spherical coordinates, sample 20 direc-
tions on the unit sphere uniformly at random,
evaluate the OSF function for each incoming di-
rection, and integrate them outgoing radiance us-
ing Equation 5. Please note that a green-blue tint
is slightly apparent in the scene rendering, due to
the contribution of green and blue lighting from
the environment map. Figure 14: Complex illumination results.
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D IMPLEMENTATION DETAILS

A flowchart of our method is shown in Figure 15.

We approximate our model FΘ with a multilayer perception (MLP) with rectified linear activations.
The predicted density σ is view-invariant, while the scattering function value ρ is dependent on the
incoming and outgoing light directions. We use an eight-layer MLP with 256 channels to predict
σ, and a four-layer MLP with 128 channels to predict ρ. For positional encoding, we use W = 10
to encode the position x and W = 4 to encode the incoming and outgoing directions (ωl,ωo),
where W is the highest frequency level. To avoid ρ from saturating in training, we adopt a scaled
sigmoid (Brock et al., 2016) defined as S′(ρ) = δ(S(ρ)− 0.5) + 0.5 with δ = 1.2. We use a batch
size of 4,096 rays.

rays

o1

oN

...

eval_object

eval_object

t, rgb, α

t, rgb, α

... sort_by_t integrate RGB, trans
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Figure 15: Flowchart of our method. See §4 for more details.

For synthetic datasets, we sample Nc = 64 coarse samples and Nf = 128 fine samples per ray. For
real world datasets, we sample Nc = 64 coarse samples and Nf = 64 fine samples per ray. We use
the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, and
ε = 10−7.
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