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Extended Abstract
Social network data are at the forefront of healthcare research. It is widely acknowledged
that a better understanding of community social structure can provide insights into the preva-
lence of mental illnesses such as depression, transmittable diseases such as HIV, syphilis, and
COVID, and other medical conditions like obesity and type-II diabetes [1]. Currently, available
methodologies for studying the underlying social network in a community fall broadly into two
categories: (1) complete community census, or (2) network sampling techniques. The magni-
tude of modern healthcare needs makes complete censuses nearly unachievable (and generally
impractical). Consequently, network sampling techniques have proven invaluable.

Respondent-driven sampling (RDS) is a network sampling algorithm based on participant
referral which is frequently employed for surveillance in public health research [2]. It is espe-
cially necessary when the population of interest is hidden or hard-to-reach, e.g., people who
are unhoused, people who are undocumented, and people who inject drugs. RDS begins with
an initial group of individuals who are given a limited number of coupons and asked to recruit
other members of the population of interest by giving them one of the coupons directly. Recip-
ients of these initial coupons redeem them with study researchers and are then compensated,
interviewed, and given new coupons to recruit additional subjects. This process continues until
a sufficient sample is generated, the study budget or duration is reached, or some other stopping
criterion is met.

In standard RDS, researchers give each participant an identical set of coupons. The at-
tributes of the coupons in this set (e.g., their value, call to action, expiration date) can play a
critical role in determining the coupon return rates, the coverage of the population in question,
and the cost of the study. Consequently, using an identical coupon allocation throughout the
study may be inefficient and ineffective in comparison to adapting the coupon allocation as
more is learned about the population.

We use reinforcement learning [RL, 3] to tailor coupon allocations over time in such a way
that a study objective is optimized. We consider the setting in which the goal is to recruit
the largest subset of people in a hidden population with binary trait Y , e.g., undiagnosed HIV.
Specifically, define the history of the RDS sampling process after recruit n ∈ N has arrived
as Hn ∈ H n, a potential coupon allocation strategy as π ∈ Π, and an indicator of trait Y as
Y v ∈ {0,1}. We consider the value function after recruit n has arrived,

V n(hn,π;β ) = Eβ

{
∑
v≥n

Y v(π)
∣∣Hn = hn

}
,

which represents the expected future number of recruits with trait Y under policy π and the
generative process, β ∈ B. The optimal policy maximizes the value function at every n ∈ N
under the true generative process, β ∗, i.e., it maximizes the expected cumulative reward over
the complete study.
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At the beginning of the RDS sampling process, we cannot identify the optimal policy be-
cause we lack sufficient information to accurately estimate β ∗. RL-RDS learns from new in-
formation to estimate the generative process and better allocate coupons. Specifically, our
method balances between coupon allocations that appear to be optimal given the current es-
timated generative process and those that might improve estimates of β ∗ and thereby lead to
better decisions in the future (the exploration-exploitation trade-off). This is the first principled
framework for efficiently conducting RDS by directly and flexibly incorporating research ob-
jectives. We simulate RL-RDS on realistic social networks under various settings to evaluate its
improvements over common network sampling techniques. Our experiments indicate that RL-
RDS consistently achieves higher cumulative reward than alternatives (e.g., more efficiently
recruits the target subpopulation). Figure 1 illustrates a subset of these results.

Social network data is imperative to study but difficult to collect. RL-RDS provides a
natural structure for leveraging information from the network sampling process to maximize
study goals. Through this work, we develop a complete, practical procedure for improving the
way researchers collect representative network data.
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Figure 1: Experiments. This figure compares the estimated cumulative reward of each policy
with 90% Monte Carlo confidence intervals over multiple sample budgets and graph densities.
It compares RL-RDS to a random coupon allocation (Rand.), fixed coupon allocations (Type
1-3), and a two-stage design (T&I: trains a model in the first stage and implements that model
to assign coupon allocations in the second stage).
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