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Abstract

We investigate how large language models
(LLMs) generalize to math problems requiring
extended reasoning'. Specifically, we assess
LLM performance on GSM8K-like problems,
which require an increasing number of opera-
tions to solve, and conduct a detailed analysis
of the models’ responses. Our findings reveal a
significant decline in accuracy as problem com-
plexity increases, while thinking time (both to-
ken length and reasoning steps) naturally grows.
Additionally, we explore whether using more
complex Chain-of-Thought (CoT) prompts can
enhance generalization and examine the perfor-
mance of reasoning models (i.e., ol-like mod-
els that generate long CoTs). Although reason-
ing models show better length generalization,
this limitation persists, highlighting inherent
constraints in current LLMs’ ability to learn
from shorter, simpler examples and apply that
knowledge to longer, more complex tasks.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Touvron et al., 2023; OpenAl, 2024a; Yang
et al., 2024; DeepSeek-Al, 2024) have demon-
strated impressive reasoning abilities in domains
such as mathematics (Hendrycks et al., 2021) and
programming (Jain et al., 2024). However, despite
these advancements, LLMs still struggle to gener-
alize their success on simpler problems to more
complex ones. For example, while LLMs perform
well on arithmetic problems involving the addition
or multiplication of smaller numbers, their perfor-
mance often declines as the number of digits in-
creases (Jelassi et al., 2023). Since more complex
problems typically have less training data (Anil
et al., 2022), it is crucial for LLMs to learn from
shorter examples and generalize this knowledge to
longer, more complex tasks.

'We will release code and data upon publication.

A=1,B=1+C,D=9%x(A+C),C=E=8,F=2+A,

Problem: what is the value of B?

Solution: [C=8;B=1+C=1+8=9

A=1F=2+A=2+1=3;C=8D=9x(A+C)=

LLMCOT: | g (1+8)=9x9=1,E=8;5=1+C=1+5-9

Figure 1: An example of a grade-school math problem,
where letters represent the parameters for simplicity.
We also present the correct solution with necessary rea-
soning steps and LLM CoT with necessary steps high-
lighted in green.

A key technique for enabling reasoning abili-
ties in LLMs is chain-of-thought (CoT) prompting
(Nye et al., 2021; Wei et al., 2022), which encour-
ages models to generate intermediate reasoning
steps before arriving at a final answer. While CoT
has shown promise in facilitating length general-
ization for simple symbolic reasoning tasks, such
as the Coin flip task, it still fails to generalize effec-
tively for more complex reasoning tasks, as detailed
in Section 2. However, the potential of CoT for
improving length generalization in mathematical
reasoning remains an area worthy of further explo-
ration. Previous studies (Fu et al., 2022; Jin et al.,
2024) have demonstrated that more complex CoTs
can significantly improve mathematical reasoning,
suggesting that this approach might also help with
length generalization, as models may learn more
complex reasoning patterns through such extended
CoTs.

Recently, OpenAl’s o1 (OpenAl, 2024b) models
and its replicas (Qwen Team, 2024; DeepSeek-Al,
2025; Kimi Team, 2025) have made significant
breakthroughs in reasoning. A key distinguishing
feature of these models is their ability to scale in-
ference compute with long CoTs, incorporating
strategies such as recognizing and correcting mis-
takes, breaking down complex steps, and iterating
on alternative approaches. These reasoning models
have shown great potential in solving logic grid



puzzles and generalizing to more complex ones
(Lin et al., 2025). However, it remains unclear
whether they can achieve length generalization in
mathematical reasoning tasks.

In this work, we focus on length generaliza-
tion in LL.Ms for solving grade-school math prob-
lems. Here, “length” refers specifically to reason-
ing length, which may not necessarily correspond
to longer input lengths as seen in previous works
(Wei et al., 2022; Anil et al., 2022). While the satu-
ration of the GSMS8K (Cobbe et al., 2021) dataset
might suggest that LLLMs have mastered this type
of problem, we emphasize that most GSM8K prob-
lems require fewer than five reasoning steps.

Therefore, the ability to extend the complexity
of these problems is crucial for our study. Using
a synthetic framework (Ye et al., 2025) (see Sec-
tion 3 for more details), we can generate an infinite
number of GSM8K-like problems with controlled
complexity—specifically, the number of parame-
ters in the problems and operations required to
reach a solution—providing an ideal testbed for
our investigation.

Through our evaluation of various LLMs—three
conventional models (Qwen2.5-72B-Instruct,
Llama3.3-70B, and DeepSeek-V3) and two
reasoning models (QwQ-32B-Preview and
DeepSeek-R1)—we found that CoT prompting
provides limited improvement in length gener-
alization. Performance drops significantly as
problem complexity increases, and using more
complex CoT prompts yields only marginal
gains for simpler problems, while still failing
for more complex ones. However, we observed
that reasoning models, particularly DeepSeek-R1,
show better generalization and perform better as
complexity increases.

Instead of solely focusing on the accuracy of
solving problems of varying complexity, we also
analyze the responses of LLMs from different per-
spectives, such as how well the responses cover
the necessary parameters, the number of reasoning
steps taken, and the token length. Through this
analysis, we observed several interesting patterns.
For example, all models naturally require more
compute as problem complexity increases. Addi-
tionally, redundant reasoning steps are frequently
observed. As shown in Figure 1, only two steps
are necessary in the LLM CoT, while the rest are
irrelevant. While redundancy tends to decrease
for conventional LLMs as problems become more
complex, it increases for reasoning models.

Our work makes the following key contributions:

* We explore how well conventional LLMs gen-
eralize to GSM8K-like problems of varying
complexity using CoT prompting.

* We investigate how well reasoning models
generalize with long CoTs.

* We provide a comprehensive analysis of mod-
els’ responses and insights into the reasoning
process when handling problems of varying
complexity.

2 Related Work

Wei et al. (2022) demonstrated that chain-of-
thought (CoT) prompting can facilitate length gen-
eralization for inference-time inputs longer than
those seen in the few-shot exemplars, specifically
for two symbolic reasoning tasks. The first task,
Last Letter Concatenation, asks the model to con-
catenate the last letters of words (e.g., “Byron Kim”
— “bk”). The second task, Coin Flip, requires the
model to determine whether a coin remains heads
up after certain actions, such as flipping or not flip-
ping the coin (e.g., “A coin is heads up. Craig flips
the coin. Alice does not flip the coin. Is the coin
still heads up?” — “no”

However, their exploration scaled only from two
reasoning steps to four steps. Further scaling, con-
ducted by Stechly et al. (2024), revealed that while
generalization holds for the Coin Flip task (with
accuracy only dipping below 90% at 31-step prob-
lems), the performance on Last Letter Concatena-
tion drops rapidly to near zero when the number
of words increases to 20. Stechly et al. (2024) also
observed a similar decline in performance for two
other tasks: Blockworld, where models must stack
blocks in the required order, and Multi-step Arith-
metic on Single-digit Numbers, which involves sim-
plifying parenthesized expressions with repeated
applications of the four basic arithmetic operations
on single-digit numbers. Recently, Lin et al. (2025)
also found that accuracy declines significantly as
problem complexity increases for logic grid puz-
zles.

In addition to examining how CoT prompting
might assist with length generalization, various
other approaches have been tested for their poten-
tial to help. Several studies (Zhou et al., 2024;
Jelassi et al., 2023) have found that appropriate
position encoding can also facilitate length gener-
alization for addition of two numbers. Anil et al.



(2022) demonstrated that both standard fine-tuning
and scratchpad fine-tuning fail to achieve length
generalization for parity (a classical learning prob-
lem that requires predicting whether a bit-string
has an even or odd number of ones) and variable as-
signment (involving Python programs where each
line contains a boolean variable assignment, and
the model is tasked with outputting the value of
the last variable by keeping track of previous as-
signments). Furthermore, Lin et al. (2025) found
that while model growth, training data expansion,
and increasing the generation sample size yield
modest improvements for logic grid puzzles, a
backtracking-based approach with expanded rea-
soning steps (reasoning models with long CoTs)
significantly boosts accuracy.

3 Experiment

In this section, we describe the data generation
process, the prompt setup, and the analysis methods
employed.

3.1 Data Generation

We generated our data using a synthetic generation
pipeline designed to create grade-school math prob-
lems similar to those in the GSM8K dataset. The
pipeline begins by constructing a structure graph,
from which instance parameters are selected for
the dependency graph. The problems are then for-
mulated based on the dependencies among the pa-
rameters. Finally, the solution is represented as a
sequence of sentences outlining the necessary steps
to solve the given problem. Lastly, we describe the
implementation details for generating our dataset.

Structure graph. The process begins by organiz-
ing hierarchical categories into layers, with each
layer containing various items. For instance, as
shown in Figure 2, there are two layers: District
and Supermarket. The District layer may include
items such as Manhattan and Chaoyang, while the
Supermarket layer includes Costco and Walmart.
A structure graph is then constructed for each math
problem by connecting items from different layers.
For example, linking Manhattan to Walmart rep-
resents “the number of Walmart available in each
Manhattan” and generates a new instance param-
eter, Manhattan’s Walmart. Abstract parameters,
such as “the number of supermarket available in
each Chaoyang” are excluded in structure graph.

District Manhattan

Chaoyang

Supermarket Walmart Costco

Figure 2: An example of a structure graph. There are
two layers: District and Supermarket, each containing
two items. The edges between the items represent pa-
rameters; for example, the edge between Manhattan
and Walmart signifies “the number of Walmart in each
Manhattan.”

Manhattan’s
Walmart

Times 2 Assign 3

Manhattan’s
Costco

Chaoyang’s
Costco

Figure 3: An example of a dependency graph. RNG
stands for random number generator. The dependen-
cies among the parameters are represented as a directed
acyclic graph. For instance, Manhattan’s Costco plus
8 results in Chaoyang’s Costco. Implicit dependencies
are excluded for simplicity.

Dependency graph. A dependency graph is cre-
ated to illustrate the relationships among parame-
ters. Each instance parameter depends on up to four
other parameters, with one of them potentially be-
ing RNG (random number generator). For example,
as shown in Figure 3, the parameter Manhattan’s
Costco is assigned the value 3, which is randomly
generated, while Manhattan’s Walmart is set to be
twice the value of Chaoyang’s Costco. Worth men-
tioning, there also exists implicit dependency. For
example, Chaoyang’s Supermarket will be equal
to Chaoyang’s Costco, as Chaoyang only has one
type of Supermarket.

Problem generation. The problem is written in
English, with each instance parameter described
in a sentence. Abstract parameters are not directly
described, but their relationships can be implied
through the structure graph. The sentences are
shuffled to increase difficulty, and one parameter is
selected as the subject of a question and placed at
the end. An example of a problem is shown below.



Problem: The number of each Manhat-
tan’s Walmart is 2 times more than each
Chaoyang’s Costco. The number of each
Chaoyang’s Costco is 8 more than the num-
ber of each Manhattan’s Costco. The num-
ber of each Manhattan’s Costco is 3. How
many Costco does Chaoyang have?

Solution construction. The solution is presented
as a sequence of sentences describing the neces-
sary steps toward solving the given problem — also
known as Chain-of-Thought (CoT). For each pa-
rameter necessary for answering the final question,
a random letter is assigned, and a sentence is used
to describe its computation. Throughout this pa-
per, we perform arithmetic operations modulo 10
to avoid errors arising from computations involving
large numbers. An example of a solution is shown
below.

Solution: Define Manhattan’s Costco as A;
A =3. Define Chaoyang’s Costco as B; B
=8+A=8+3=1.

Implementation details. For the hierarchical cat-
egories, we use four layers: District, Supermar-
ket, Product, and Ingredient, each containing 100
items. There are two hyperparameters for difficulty
control: ¢p, representing the number of instance
parameters, and op, representing the number of so-
Iution operations. We set the ip < 20 while op will
take every even number from 2 to 20. For each
value of op, we generate 100 problems. It is worth
mentioning that we break computations into binary
operations; for example, a = 1 4+ 3 + 7 will take
two ops as it will be broken into ¢ = 1 + b and
b=3+T7.

3.2 Prompt Setup

We describe the process of forming the basic
prompt here. In certain experiments, CoT exam-
ples will be added, as detailed in Section 4. All
prompts include domain information, specifying
that calculations should be performed modulo 10,
and describe the scenario involving the hierarchical
categories. They also provide guiding principles
on how to handle parameters based on their exis-
tence. Additionally, the prompts include formatting
requirements for how the solution should be struc-
tured: beginning with the definition of a parameter,
followed by the computation. For each problem,

specific background information is provided, as
shown below, along with the problem description
outlined in the previous section.

Background: Thera are two types of Dis-
trict: Manhattan and Chaoyang. There are 2
types of Supermarkets: Walmart and Costco.
Each Manhattan has Walmart and Costco.
Each Chaoyang has Costco.

3.3 Analysis Setup

We focus on four main aspects when analyzing the
responses of LLMs.

Accuracy. We measure accuracy for problems re-
quiring each op individually and investigate how
well LLMs generalize to problems with longer rea-
soning lengths. The answers are extracted as the
last number from the response.

Parameter Hit. In the correct solution, every pa-
rameter is necessary toward calculating the final
query parameter. Thus, we measure how close
the response is to the correct solution by comput-
ing the percentage of necessary parameters that
are mentioned in the response. Let Phecessary =
{p1,p2,---,pn} be the set of necessary parame-
ters. The parameter hit is given by:

k
Parameter Hit (%) = — x 100
n

where k is the number of necessary parameters
mentioned in the response, and n is the total num-
ber of necessary parameters.

To check the existence of the necessary param-
eters, we begin by segmenting the response into
individual sentences. Next, we examine whether
two items within a single parameter exist, as the
same parameter can be expressed in various ways.
For instance, Manhattan’s Walmart could also be
phrased as Walmart in Manhattan.

Reasoning step. For LLMs that are able to follow
the format requirements — starting by defining a
parameter as a random letter and then describing
the computation, as mentioned in the previous sec-
tion — we can easily count the reasoning steps
by using regular expressions to count the number
of occurrences of “define” in the response. For
those that do not follow the format, we have spe-
cific methods for counting, which are detailed in
Section 4.

Token length. Token length is the most straight-
forward way to measure the compute LLMs put
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Figure 4: Accuracy and average parameter hit rate of LLMs across different complexity levels of GSM8K-like
problems. A pronounced drop in accuracy is observed, while the decline in parameter hit rate is smaller.
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Figure 5: Average number of reasoning steps (with the necessary reasoning steps indicated by the black dashed
lines) and tokens for LLMs. Both reasoning steps and tokens increase as the problems become more complex. The
plot also shows that more redundant steps are present when the problems are simpler.

into solving the problems. For each value of op,
we compute the mean token length.

4 Results

In this section, we present the results, beginning
with how three conventional LLMs generalize with
Chain-of-Thought (CoT) prompting as the reason-
ing length of the problems increases. We then in-
vestigate how increasingly more complex CoT can
help one of the LLMs generalize, and finally, we
explore how reasoning models — those that gener-
ate long CoTs for the problems — perform in terms
of length generalization. Additionally, we provide
a comprehensive analysis of the models’ responses
and share our findings.

4.1 CoT Prompting

Wei et al. (2022) demonstrated that CoT can fa-
cilitate length generalization in two symbolic rea-
soning tasks. However, after scaling these tasks,
Stechly et al. (2024) found that such generaliza-
tion may not hold over longer reasoning lengths.
Our experiment confirms that while CoT can aid
in length generalization, this generalization does
not hold for math reasoning tasks as the complexity
increases.

Setup. We use a 5-shot CoT prompting, with each

shot including a solution that requires 4 operations.
Additionally, we prepend the phrase “let’s think
step by step” (Kojima et al., 2022) to the beginning
of each solution. We test the models Qwen2.5-
72B-Instruct, Llama3.3-70B, and DeepSeek-V3.
Among the three models, Llama occasionally fails
to output a valid response, resulting in fewer re-
sponses for some operations (on average, there are
93 responses for each operation). The temperature
is set to O for all LLMs.

Both Llama3.3-70B and DeepSeek-V3 follow
the format well, allowing us to easily count the
reasoning steps and parameters using regular ex-
pressions. In contrast, Qwen2.5-72B-Instruct occa-
sionally fails to adhere to the format, so we use ad-
ditional regular expressions to capture those cases
and exclude instances where it’s difficult to obtain a
valid result (on average, 12 instances are excluded
per operation).

Results. As shown in Figure 4, LLMs do not gen-
eralize well as the complexity of the problems in-
creases. The accuracy decreases from near perfect
for op = 2 to around 30% for op = 20. Meanwhile,
LLMs become less able to identify the necessary
parameters for a correct solution as the problems
grow more complex, which explains the drop in
accuracy.
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Figure 6: Accuracy and average parameter hit rate of DeepSeek-V3 across CoTs of varying complexity (e.g.,
“CoT_2” refers to CoT consist of 2 operations). We observe that more complex CoTs lead to performance gains
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Figure 7: Average number of reasoning steps (with necessary reasoning steps marked by black dashed lines) and
token counts for DeepSeek-V3. While more complex CoTs generally increases the number of reasoning steps,
it does not always correspond to longer token length. For instance, “CoT_2” results in a higher token count but
fewer reasoning steps; an explanation for this discrepancy is provided in Section 4. Additionally, we note an overall

reduction in redundancy.

We also observe that simply covering the nec-
essary parameters does not directly lead to higher
accuracy. For example, as the number of operations
increases, Qwen2.5-72B-Instruct achieves a higher
parameter hit rate but exhibits lower accuracy.

Figure 5 presents our further investigation into
the CoTs generated by LLMs. We find that LLMs
tend to generate more tokens for more difficult
problems, indicating that they naturally increase
their reasoning time when they find the problem
harder to solve. Additionally, the increase in tokens
corresponds to a rise in the number of reasoning
steps.

However, we observe that many reasoning steps
are redundant. For example, for op = 2, only
2 steps are necessary, but there are, on average,
more than 5 steps. Interestingly, the redundancy
decreases as the number of operations increases. In
some cases, certain LLMs even take fewer steps
than necessary (e.g., Llama3.3-70B and DeepSeek-
V3 for op = 18), indicating that these models may
not be putting enough compute with complex prob-
lems. This lack of thorough reasoning can directly
lead to a decline in accuracy.

4.2 Increasingly More Complex CoT
Prompting

Recent studies (Fu et al., 2022; Jin et al., 2024) have
shown that more complex CoTs can lead to sig-
nificant performance improvements in math word
reasoning tasks. We investigate whether increasing
the complexity of CoTs can help LLMs generalize
to problems that require longer reasoning lengths.

Setup. We create 5-shot CoTs that require an in-
creasing number of operations to solve. We focus
our investigation on DeepSeek-V3 in this setting,
as it is the most capable model and adheres well to
the format requirements. Additionally, we prepend
the phrase “let’s think step by step” to the begin-
ning of each solution, with the temperature set to
0.

Results. In Figure 6, we observe that more com-
plex CoT prompts lead to some gains for problems
with fewer operations, but these gains diminish as
the problems increase in complexity. While more
complex CoTs do not result in better performance
for more complex problems, they do bring the re-
sponse closer to the correct solution, as the param-
eter hit rate increases with the complexity of the
CoT for most operations.
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Figure 8: Accuracy and average parameter hit rate of
reasoning models. “R1S” refers to the summary part of
DeepSeek-R1’s response. Since the answers in the sum-
mary are always consistent with those in the reasoning
content, the accuracy for both parts is identical.

In Figure 7, we observe that more complex prob-
lems tend to have fewer redundant reasoning steps.
Additionally, more complex CoT prompts generally
lead to longer reasoning sequences. Interestingly,
we find that more complex CoT prompts do not
result in more output tokens, whereas the simplest
CoT prompts (“CoT_2”) tend to generate more to-
kens, leading in token length for many operations,
while with fewer reasoning steps.

Upon manual inspection, we attribute this dis-
crepancy between token length and reasoning steps
to the fact that simpler CoT prompts often lead to
solutions that directly reference a parameter, rather
than using a letter. This often leads to solutions®
as illustrated below. We hypothesize that this phe-
nomenon arises because models may struggle to
learn the topological order effectively with simpler
CoTs, as they involve too few reasoning steps. As a
result, while the number of reasoning steps remains
constant, the token count increases.

Solution: Define Chaoyang’s Costco as B;
B = 8 + Manhattan’s Costco =8 + 3 = 1.
Define Manhattan’s Costco as A; A = 3.

4.3 Prompting Reasoning Models

Recent studies (DeepSeek-Al, 2025; Kimi Team,
2025) on reasoning models have observed that mod-
els progressively enhance their performance on rea-
soning tasks through reinforcement learning. Ac-
companying this improvement is the emergence of
notable long Chain-of-Thought (CoT) reasoning,
where LLMs demonstrate the ability to backtrack
and correct errors. Our experiments aim to explore
whether such extended CoTs can facilitate length
generalization in mathematical reasoning tasks.

’This also exemplifies redundant reasoning, where two
reasoning steps are condensed into a single sentence, with one
step being reiterated in the following sentence.
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Figure 9: Average number of reasoning steps (with
necessary reasoning steps marked by black dashed lines)
and token count for reasoning models. For reasoning
steps, we separately count the reasoning content and
summary of DeepSeek-R1, while the token count is the
sum of both, with the summary comprising less than
one-tenth of the reasoning content.

Furthermore, studies (Chen et al., 2025) exam-

ining long CoTs of these reasoning models have
identified a tendency to overthink. Specifically,
these models often allocate excessive computa-
tional resources—measured in tokens or thinking
rounds—to questions that are either extremely sim-
ple or for which the answer is already obvious. Our
findings align with their observations regarding in-
efficiency in the inference process.
Setup. As shown in previous experiments, there
may not be a significant difference when the opera-
tions are just 2 steps apart. For reasoning models,
we downsample the operations from 4 to 20, with
a 4-step gap between each, using the same 100
samples for each operation.

Recent studies on reasoning models have sug-
gested that providing examples in the prompt
can lead to worse performance (OpenAl, 2024b;
DeepSeek-Al, 2025), so we directly provide the
prompt as described in Section 3. We select
two models—QwQ-32B-Preview and DeepSeek-
R1—as both make the thinking process visible.
For QwQ-32B-Preview, the temperature is set to
0, though temperature setting is not supported for
DeepSeek-R1°.

For QwQ-32B-Preview, significant backtrack-
ing and self-validation are frequently observed in
nearly every computation. As illustrated in the ex-
ample below, the model may revisit and revise its
steps multiple times when computing one single pa-
rameter before arriving at a final, conclusive result.
Therefore, we define only the concluding statement
of each computation as a single reasoning step.
These conclusions often start with phrases such as
“s0” or “therefore.” To detect them systematically,
we employ regular expressions.

3https ://api-docs.deepseek.com/guides/
reasoning_model
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Computing one parameter in long CoTs:
Chaoyang’s Costco will be 8 + 3 = 1. Is
that the answer? Wait, maybe Chaoyang’s
Costco is affected by Manhattan’s Walmart,
which is 2 times Chaoyang’s Costco. But
does this affect the number of Costco in
Chaoyang? Not directly, so Chaoyang’s
Costco will still be 1.

DeepSeek-R1 provides both the reasoning con-
tent (i.e., long CoTs) and a summary that adheres
to the format requirements, and we evaluate them
differently depending on the context. Very rarely
(about two problems per operation), the summary
will only contain the answer, and we exclude those
cases when considering parameter hit and reason-
ing steps. Since the answers in the summary always
match those in the reasoning content (indicating
great faithfulness (Lyu et al., 2023)), the accuracy
remains the same for both.

For parameter hit, we evaluate the reasoning con-
tent and summary separately. Similarly, for reason-
ing steps, we count them separately—using the
same method as QwQ-32B-Preview for the reason-
ing content and the method outlined in Section 3
for the summary. The token length is the combined
total of both the reasoning content and the sum-
mary, with the summary typically being less than
one-tenth of the length of the reasoning content.
Results. Figure 8 shows that accuracy declines as
the number of operations increases. However, we
observe that for more complex problems, reason-
ing models can maintain better performance, with
DeepSeek-R1 achieving nearly 60% accuracy for
op = 20.

Additionally, the parameter hit rate remains high
and stable as the problems become more complex.
However, we must be cautious, as this may be due
to the models simply listing all possible parameters
during the long reasoning process. We also ob-
serve that in the summary of DeepSeek-R1, some
necessary parameters mentioned in the reasoning
content are excluded, leading to a slight decrease
in the parameter hit rate.

Figure 9 shows that both reasoning steps and
token count increase as the number of operations
grows. However, unlike previous results, redundant
steps continue to increase for QwQ-32B-Preview
and the reasoning content of DeepSeek-R1 as the
op grows. In contrast, the summary of DeepSeek-
R1 introduces little redundancy and even takes

fewer steps than necessary for complex problems.

Upon examining the summary, we observe that
it often skips reasoning steps that involve implicit
dependency, which become more frequent as the
number of operations increases. For example, in
the correct solution below, the value of Costco’s
Product should be computed as highlighted in red,
and since Costco only has Doughnuts, it equals
Costco’s Doughnuts. However, the summary skips
this step.

Correct solution: Define each Walmart ’s
Banana as A; A=9. Define each Costco’s
Doughnuts as V; V=2+A=2+9=1.
Define each Costco ’s Product as f; f=V =
1. Define each Walmart ’s Pizza as P; P =
9*f=9%*1=09,

DeepSeek-R1 summary: Define each Wal-
mart ’s Banana as A; A =9. Define each
Costco’s Doughnuts as V; V=2 + A=2+
9 =1. Define each Walmart ’s Pizza as P;
P=9*V=9%1=09,

5 Conclusion

This paper reveals a significant decline in model
performance as the complexity of math problems
increases. We find that more complex CoT prompt-
ing is beneficial primarily for simpler problems, of-
fering minimal gains for more complex ones. Rea-
soning models capable of generating long CoTs
can generalize further, but performance still drops
as problem complexity increases. These findings
highlight the limitations of LLMs in length gener-
alization for math reasoning. We hope this work
draws attention to the need for developing models
that can learn from shorter examples and apply that
knowledge to longer, more complex tasks.

Limitation

In this study, we primarily focus on state-of-the-
art open-source models, though the inclusion of
closed-source models could serve as a valuable
reference. While we aim to provide a comprehen-
sive analysis using various methods and human
inspection, it is possible that some aspects worthy
of further investigation may have been overlooked.
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