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Abstract

We investigate how large language models001
(LLMs) generalize to math problems requiring002
extended reasoning1. Specifically, we assess003
LLM performance on GSM8K-like problems,004
which require an increasing number of opera-005
tions to solve, and conduct a detailed analysis006
of the models’ responses. Our findings reveal a007
significant decline in accuracy as problem com-008
plexity increases, while thinking time (both to-009
ken length and reasoning steps) naturally grows.010
Additionally, we explore whether using more011
complex Chain-of-Thought (CoT) prompts can012
enhance generalization and examine the perfor-013
mance of reasoning models (i.e., o1-like mod-014
els that generate long CoTs). Although reason-015
ing models show better length generalization,016
this limitation persists, highlighting inherent017
constraints in current LLMs’ ability to learn018
from shorter, simpler examples and apply that019
knowledge to longer, more complex tasks.020

1 Introduction021

Large language models (LLMs) (Brown et al.,022

2020; Touvron et al., 2023; OpenAI, 2024a; Yang023

et al., 2024; DeepSeek-AI, 2024) have demon-024

strated impressive reasoning abilities in domains025

such as mathematics (Hendrycks et al., 2021) and026

programming (Jain et al., 2024). However, despite027

these advancements, LLMs still struggle to gener-028

alize their success on simpler problems to more029

complex ones. For example, while LLMs perform030

well on arithmetic problems involving the addition031

or multiplication of smaller numbers, their perfor-032

mance often declines as the number of digits in-033

creases (Jelassi et al., 2023). Since more complex034

problems typically have less training data (Anil035

et al., 2022), it is crucial for LLMs to learn from036

shorter examples and generalize this knowledge to037

longer, more complex tasks.038

1We will release code and data upon publication.

Figure 1: An example of a grade-school math problem,
where letters represent the parameters for simplicity.
We also present the correct solution with necessary rea-
soning steps and LLM CoT with necessary steps high-
lighted in green.

A key technique for enabling reasoning abili- 039

ties in LLMs is chain-of-thought (CoT) prompting 040

(Nye et al., 2021; Wei et al., 2022), which encour- 041

ages models to generate intermediate reasoning 042

steps before arriving at a final answer. While CoT 043

has shown promise in facilitating length general- 044

ization for simple symbolic reasoning tasks, such 045

as the Coin flip task, it still fails to generalize effec- 046

tively for more complex reasoning tasks, as detailed 047

in Section 2. However, the potential of CoT for 048

improving length generalization in mathematical 049

reasoning remains an area worthy of further explo- 050

ration. Previous studies (Fu et al., 2022; Jin et al., 051

2024) have demonstrated that more complex CoTs 052

can significantly improve mathematical reasoning, 053

suggesting that this approach might also help with 054

length generalization, as models may learn more 055

complex reasoning patterns through such extended 056

CoTs. 057

Recently, OpenAI’s o1 (OpenAI, 2024b) models 058

and its replicas (Qwen Team, 2024; DeepSeek-AI, 059

2025; Kimi Team, 2025) have made significant 060

breakthroughs in reasoning. A key distinguishing 061

feature of these models is their ability to scale in- 062

ference compute with long CoTs, incorporating 063

strategies such as recognizing and correcting mis- 064

takes, breaking down complex steps, and iterating 065

on alternative approaches. These reasoning models 066

have shown great potential in solving logic grid 067
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puzzles and generalizing to more complex ones068

(Lin et al., 2025). However, it remains unclear069

whether they can achieve length generalization in070

mathematical reasoning tasks.071

In this work, we focus on length generaliza-072

tion in LLMs for solving grade-school math prob-073

lems. Here, “length” refers specifically to reason-074

ing length, which may not necessarily correspond075

to longer input lengths as seen in previous works076

(Wei et al., 2022; Anil et al., 2022). While the satu-077

ration of the GSM8K (Cobbe et al., 2021) dataset078

might suggest that LLMs have mastered this type079

of problem, we emphasize that most GSM8K prob-080

lems require fewer than five reasoning steps.081

Therefore, the ability to extend the complexity082

of these problems is crucial for our study. Using083

a synthetic framework (Ye et al., 2025) (see Sec-084

tion 3 for more details), we can generate an infinite085

number of GSM8K-like problems with controlled086

complexity—specifically, the number of parame-087

ters in the problems and operations required to088

reach a solution—providing an ideal testbed for089

our investigation.090

Through our evaluation of various LLMs—three091

conventional models (Qwen2.5-72B-Instruct,092

Llama3.3-70B, and DeepSeek-V3) and two093

reasoning models (QwQ-32B-Preview and094

DeepSeek-R1)—we found that CoT prompting095

provides limited improvement in length gener-096

alization. Performance drops significantly as097

problem complexity increases, and using more098

complex CoT prompts yields only marginal099

gains for simpler problems, while still failing100

for more complex ones. However, we observed101

that reasoning models, particularly DeepSeek-R1,102

show better generalization and perform better as103

complexity increases.104

Instead of solely focusing on the accuracy of105

solving problems of varying complexity, we also106

analyze the responses of LLMs from different per-107

spectives, such as how well the responses cover108

the necessary parameters, the number of reasoning109

steps taken, and the token length. Through this110

analysis, we observed several interesting patterns.111

For example, all models naturally require more112

compute as problem complexity increases. Addi-113

tionally, redundant reasoning steps are frequently114

observed. As shown in Figure 1, only two steps115

are necessary in the LLM CoT, while the rest are116

irrelevant. While redundancy tends to decrease117

for conventional LLMs as problems become more118

complex, it increases for reasoning models.119

Our work makes the following key contributions: 120

• We explore how well conventional LLMs gen- 121

eralize to GSM8K-like problems of varying 122

complexity using CoT prompting. 123

• We investigate how well reasoning models 124

generalize with long CoTs. 125

• We provide a comprehensive analysis of mod- 126

els’ responses and insights into the reasoning 127

process when handling problems of varying 128

complexity. 129

2 Related Work 130

Wei et al. (2022) demonstrated that chain-of- 131

thought (CoT) prompting can facilitate length gen- 132

eralization for inference-time inputs longer than 133

those seen in the few-shot exemplars, specifically 134

for two symbolic reasoning tasks. The first task, 135

Last Letter Concatenation, asks the model to con- 136

catenate the last letters of words (e.g., “Byron Kim” 137

→ “bk”). The second task, Coin Flip, requires the 138

model to determine whether a coin remains heads 139

up after certain actions, such as flipping or not flip- 140

ping the coin (e.g., “A coin is heads up. Craig flips 141

the coin. Alice does not flip the coin. Is the coin 142

still heads up?” → “no”). 143

However, their exploration scaled only from two 144

reasoning steps to four steps. Further scaling, con- 145

ducted by Stechly et al. (2024), revealed that while 146

generalization holds for the Coin Flip task (with 147

accuracy only dipping below 90% at 31-step prob- 148

lems), the performance on Last Letter Concatena- 149

tion drops rapidly to near zero when the number 150

of words increases to 20. Stechly et al. (2024) also 151

observed a similar decline in performance for two 152

other tasks: Blockworld, where models must stack 153

blocks in the required order, and Multi-step Arith- 154

metic on Single-digit Numbers, which involves sim- 155

plifying parenthesized expressions with repeated 156

applications of the four basic arithmetic operations 157

on single-digit numbers. Recently, Lin et al. (2025) 158

also found that accuracy declines significantly as 159

problem complexity increases for logic grid puz- 160

zles. 161

In addition to examining how CoT prompting 162

might assist with length generalization, various 163

other approaches have been tested for their poten- 164

tial to help. Several studies (Zhou et al., 2024; 165

Jelassi et al., 2023) have found that appropriate 166

position encoding can also facilitate length gener- 167

alization for addition of two numbers. Anil et al. 168
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(2022) demonstrated that both standard fine-tuning169

and scratchpad fine-tuning fail to achieve length170

generalization for parity (a classical learning prob-171

lem that requires predicting whether a bit-string172

has an even or odd number of ones) and variable as-173

signment (involving Python programs where each174

line contains a boolean variable assignment, and175

the model is tasked with outputting the value of176

the last variable by keeping track of previous as-177

signments). Furthermore, Lin et al. (2025) found178

that while model growth, training data expansion,179

and increasing the generation sample size yield180

modest improvements for logic grid puzzles, a181

backtracking-based approach with expanded rea-182

soning steps (reasoning models with long CoTs)183

significantly boosts accuracy.184

3 Experiment185

In this section, we describe the data generation186

process, the prompt setup, and the analysis methods187

employed.188

3.1 Data Generation189

We generated our data using a synthetic generation190

pipeline designed to create grade-school math prob-191

lems similar to those in the GSM8K dataset. The192

pipeline begins by constructing a structure graph,193

from which instance parameters are selected for194

the dependency graph. The problems are then for-195

mulated based on the dependencies among the pa-196

rameters. Finally, the solution is represented as a197

sequence of sentences outlining the necessary steps198

to solve the given problem. Lastly, we describe the199

implementation details for generating our dataset.200

Structure graph. The process begins by organiz-201

ing hierarchical categories into layers, with each202

layer containing various items. For instance, as203

shown in Figure 2, there are two layers: District204

and Supermarket. The District layer may include205

items such as Manhattan and Chaoyang, while the206

Supermarket layer includes Costco and Walmart.207

A structure graph is then constructed for each math208

problem by connecting items from different layers.209

For example, linking Manhattan to Walmart rep-210

resents “the number of Walmart available in each211

Manhattan” and generates a new instance param-212

eter, Manhattan’s Walmart. Abstract parameters,213

such as “the number of supermarket available in214

each Chaoyang” are excluded in structure graph.215

Figure 2: An example of a structure graph. There are
two layers: District and Supermarket, each containing
two items. The edges between the items represent pa-
rameters; for example, the edge between Manhattan
and Walmart signifies “the number of Walmart in each
Manhattan.”

Figure 3: An example of a dependency graph. RNG
stands for random number generator. The dependen-
cies among the parameters are represented as a directed
acyclic graph. For instance, Manhattan’s Costco plus
8 results in Chaoyang’s Costco. Implicit dependencies
are excluded for simplicity.

Dependency graph. A dependency graph is cre- 216

ated to illustrate the relationships among parame- 217

ters. Each instance parameter depends on up to four 218

other parameters, with one of them potentially be- 219

ing RNG (random number generator). For example, 220

as shown in Figure 3, the parameter Manhattan’s 221

Costco is assigned the value 3, which is randomly 222

generated, while Manhattan’s Walmart is set to be 223

twice the value of Chaoyang’s Costco. Worth men- 224

tioning, there also exists implicit dependency. For 225

example, Chaoyang’s Supermarket will be equal 226

to Chaoyang’s Costco, as Chaoyang only has one 227

type of Supermarket. 228

Problem generation. The problem is written in 229

English, with each instance parameter described 230

in a sentence. Abstract parameters are not directly 231

described, but their relationships can be implied 232

through the structure graph. The sentences are 233

shuffled to increase difficulty, and one parameter is 234

selected as the subject of a question and placed at 235

the end. An example of a problem is shown below. 236
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Problem: The number of each Manhat-
tan’s Walmart is 2 times more than each
Chaoyang’s Costco. The number of each
Chaoyang’s Costco is 8 more than the num-
ber of each Manhattan’s Costco. The num-
ber of each Manhattan’s Costco is 3. How
many Costco does Chaoyang have?

237

Solution construction. The solution is presented238

as a sequence of sentences describing the neces-239

sary steps toward solving the given problem — also240

known as Chain-of-Thought (CoT). For each pa-241

rameter necessary for answering the final question,242

a random letter is assigned, and a sentence is used243

to describe its computation. Throughout this pa-244

per, we perform arithmetic operations modulo 10245

to avoid errors arising from computations involving246

large numbers. An example of a solution is shown247

below.248

Solution: Define Manhattan’s Costco as A;
A = 3. Define Chaoyang’s Costco as B; B
= 8 + A = 8 + 3 = 1.

249

Implementation details. For the hierarchical cat-250

egories, we use four layers: District, Supermar-251

ket, Product, and Ingredient, each containing 100252

items. There are two hyperparameters for difficulty253

control: ip, representing the number of instance254

parameters, and op, representing the number of so-255

lution operations. We set the ip ≤ 20 while op will256

take every even number from 2 to 20. For each257

value of op, we generate 100 problems. It is worth258

mentioning that we break computations into binary259

operations; for example, a = 1 + 3 + 7 will take260

two ops as it will be broken into a = 1 + b and261

b = 3 + 7.262

3.2 Prompt Setup263

We describe the process of forming the basic264

prompt here. In certain experiments, CoT exam-265

ples will be added, as detailed in Section 4. All266

prompts include domain information, specifying267

that calculations should be performed modulo 10,268

and describe the scenario involving the hierarchical269

categories. They also provide guiding principles270

on how to handle parameters based on their exis-271

tence. Additionally, the prompts include formatting272

requirements for how the solution should be struc-273

tured: beginning with the definition of a parameter,274

followed by the computation. For each problem,275

specific background information is provided, as 276

shown below, along with the problem description 277

outlined in the previous section. 278

Background: Thera are two types of Dis-
trict: Manhattan and Chaoyang. There are 2
types of Supermarkets: Walmart and Costco.
Each Manhattan has Walmart and Costco.
Each Chaoyang has Costco.

279

3.3 Analysis Setup 280

We focus on four main aspects when analyzing the 281

responses of LLMs. 282

Accuracy. We measure accuracy for problems re- 283

quiring each op individually and investigate how 284

well LLMs generalize to problems with longer rea- 285

soning lengths. The answers are extracted as the 286

last number from the response. 287

Parameter Hit. In the correct solution, every pa- 288

rameter is necessary toward calculating the final 289

query parameter. Thus, we measure how close 290

the response is to the correct solution by comput- 291

ing the percentage of necessary parameters that 292

are mentioned in the response. Let Pnecessary = 293

{p1, p2, . . . , pn} be the set of necessary parame- 294

ters. The parameter hit is given by: 295

Parameter Hit (%) =
k

n
× 100 296

where k is the number of necessary parameters 297

mentioned in the response, and n is the total num- 298

ber of necessary parameters. 299

To check the existence of the necessary param- 300

eters, we begin by segmenting the response into 301

individual sentences. Next, we examine whether 302

two items within a single parameter exist, as the 303

same parameter can be expressed in various ways. 304

For instance, Manhattan’s Walmart could also be 305

phrased as Walmart in Manhattan. 306

Reasoning step. For LLMs that are able to follow 307

the format requirements — starting by defining a 308

parameter as a random letter and then describing 309

the computation, as mentioned in the previous sec- 310

tion — we can easily count the reasoning steps 311

by using regular expressions to count the number 312

of occurrences of “define” in the response. For 313

those that do not follow the format, we have spe- 314

cific methods for counting, which are detailed in 315

Section 4. 316

Token length. Token length is the most straight- 317

forward way to measure the compute LLMs put 318

4



2 4 6 8 10 12 14 16 18 20
# Operations

20

40

60

80

100

A
cc

ur
ac

y

LLaMA3.3
DeepSeekV3
Qwen2.5

75

80

85

90

95

100

Pa
ra

m
et

er
 H

it 
(%

)

LLaMA3.3
DeepSeekV3
Qwen2.5

Figure 4: Accuracy and average parameter hit rate of LLMs across different complexity levels of GSM8K-like
problems. A pronounced drop in accuracy is observed, while the decline in parameter hit rate is smaller.
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Figure 5: Average number of reasoning steps (with the necessary reasoning steps indicated by the black dashed
lines) and tokens for LLMs. Both reasoning steps and tokens increase as the problems become more complex. The
plot also shows that more redundant steps are present when the problems are simpler.

into solving the problems. For each value of op,319

we compute the mean token length.320

4 Results321

In this section, we present the results, beginning322

with how three conventional LLMs generalize with323

Chain-of-Thought (CoT) prompting as the reason-324

ing length of the problems increases. We then in-325

vestigate how increasingly more complex CoT can326

help one of the LLMs generalize, and finally, we327

explore how reasoning models — those that gener-328

ate long CoTs for the problems — perform in terms329

of length generalization. Additionally, we provide330

a comprehensive analysis of the models’ responses331

and share our findings.332

4.1 CoT Prompting333

Wei et al. (2022) demonstrated that CoT can fa-334

cilitate length generalization in two symbolic rea-335

soning tasks. However, after scaling these tasks,336

Stechly et al. (2024) found that such generaliza-337

tion may not hold over longer reasoning lengths.338

Our experiment confirms that while CoT can aid339

in length generalization, this generalization does340

not hold for math reasoning tasks as the complexity341

increases.342

Setup. We use a 5-shot CoT prompting, with each343

shot including a solution that requires 4 operations. 344

Additionally, we prepend the phrase “let’s think 345

step by step” (Kojima et al., 2022) to the beginning 346

of each solution. We test the models Qwen2.5- 347

72B-Instruct, Llama3.3-70B, and DeepSeek-V3. 348

Among the three models, Llama occasionally fails 349

to output a valid response, resulting in fewer re- 350

sponses for some operations (on average, there are 351

93 responses for each operation). The temperature 352

is set to 0 for all LLMs. 353

Both Llama3.3-70B and DeepSeek-V3 follow 354

the format well, allowing us to easily count the 355

reasoning steps and parameters using regular ex- 356

pressions. In contrast, Qwen2.5-72B-Instruct occa- 357

sionally fails to adhere to the format, so we use ad- 358

ditional regular expressions to capture those cases 359

and exclude instances where it’s difficult to obtain a 360

valid result (on average, 12 instances are excluded 361

per operation). 362

Results. As shown in Figure 4, LLMs do not gen- 363

eralize well as the complexity of the problems in- 364

creases. The accuracy decreases from near perfect 365

for op = 2 to around 30% for op = 20. Meanwhile, 366

LLMs become less able to identify the necessary 367

parameters for a correct solution as the problems 368

grow more complex, which explains the drop in 369

accuracy. 370
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Figure 6: Accuracy and average parameter hit rate of DeepSeek-V3 across CoTs of varying complexity (e.g.,
“CoT_2” refers to CoT consist of 2 operations). We observe that more complex CoTs lead to performance gains
when the problems are not too complex, and consistently result in a higher parameter hit rate.
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Figure 7: Average number of reasoning steps (with necessary reasoning steps marked by black dashed lines) and
token counts for DeepSeek-V3. While more complex CoTs generally increases the number of reasoning steps,
it does not always correspond to longer token length. For instance, “CoT_2” results in a higher token count but
fewer reasoning steps; an explanation for this discrepancy is provided in Section 4. Additionally, we note an overall
reduction in redundancy.

We also observe that simply covering the nec-371

essary parameters does not directly lead to higher372

accuracy. For example, as the number of operations373

increases, Qwen2.5-72B-Instruct achieves a higher374

parameter hit rate but exhibits lower accuracy.375

Figure 5 presents our further investigation into376

the CoTs generated by LLMs. We find that LLMs377

tend to generate more tokens for more difficult378

problems, indicating that they naturally increase379

their reasoning time when they find the problem380

harder to solve. Additionally, the increase in tokens381

corresponds to a rise in the number of reasoning382

steps.383

However, we observe that many reasoning steps384

are redundant. For example, for op = 2, only385

2 steps are necessary, but there are, on average,386

more than 5 steps. Interestingly, the redundancy387

decreases as the number of operations increases. In388

some cases, certain LLMs even take fewer steps389

than necessary (e.g., Llama3.3-70B and DeepSeek-390

V3 for op = 18), indicating that these models may391

not be putting enough compute with complex prob-392

lems. This lack of thorough reasoning can directly393

lead to a decline in accuracy.394

4.2 Increasingly More Complex CoT 395

Prompting 396

Recent studies (Fu et al., 2022; Jin et al., 2024) have 397

shown that more complex CoTs can lead to sig- 398

nificant performance improvements in math word 399

reasoning tasks. We investigate whether increasing 400

the complexity of CoTs can help LLMs generalize 401

to problems that require longer reasoning lengths. 402

Setup. We create 5-shot CoTs that require an in- 403

creasing number of operations to solve. We focus 404

our investigation on DeepSeek-V3 in this setting, 405

as it is the most capable model and adheres well to 406

the format requirements. Additionally, we prepend 407

the phrase “let’s think step by step” to the begin- 408

ning of each solution, with the temperature set to 409

0. 410

Results. In Figure 6, we observe that more com- 411

plex CoT prompts lead to some gains for problems 412

with fewer operations, but these gains diminish as 413

the problems increase in complexity. While more 414

complex CoTs do not result in better performance 415

for more complex problems, they do bring the re- 416

sponse closer to the correct solution, as the param- 417

eter hit rate increases with the complexity of the 418

CoT for most operations. 419
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Figure 8: Accuracy and average parameter hit rate of
reasoning models. “R1S” refers to the summary part of
DeepSeek-R1’s response. Since the answers in the sum-
mary are always consistent with those in the reasoning
content, the accuracy for both parts is identical.

In Figure 7, we observe that more complex prob-420

lems tend to have fewer redundant reasoning steps.421

Additionally, more complex CoT prompts generally422

lead to longer reasoning sequences. Interestingly,423

we find that more complex CoT prompts do not424

result in more output tokens, whereas the simplest425

CoT prompts (“CoT_2”) tend to generate more to-426

kens, leading in token length for many operations,427

while with fewer reasoning steps.428

Upon manual inspection, we attribute this dis-429

crepancy between token length and reasoning steps430

to the fact that simpler CoT prompts often lead to431

solutions that directly reference a parameter, rather432

than using a letter. This often leads to solutions2433

as illustrated below. We hypothesize that this phe-434

nomenon arises because models may struggle to435

learn the topological order effectively with simpler436

CoTs, as they involve too few reasoning steps. As a437

result, while the number of reasoning steps remains438

constant, the token count increases.439

Solution: Define Chaoyang’s Costco as B;
B = 8 + Manhattan’s Costco = 8 + 3 = 1.
Define Manhattan’s Costco as A; A = 3.

440

4.3 Prompting Reasoning Models441

Recent studies (DeepSeek-AI, 2025; Kimi Team,442

2025) on reasoning models have observed that mod-443

els progressively enhance their performance on rea-444

soning tasks through reinforcement learning. Ac-445

companying this improvement is the emergence of446

notable long Chain-of-Thought (CoT) reasoning,447

where LLMs demonstrate the ability to backtrack448

and correct errors. Our experiments aim to explore449

whether such extended CoTs can facilitate length450

generalization in mathematical reasoning tasks.451

2This also exemplifies redundant reasoning, where two
reasoning steps are condensed into a single sentence, with one
step being reiterated in the following sentence.
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Figure 9: Average number of reasoning steps (with
necessary reasoning steps marked by black dashed lines)
and token count for reasoning models. For reasoning
steps, we separately count the reasoning content and
summary of DeepSeek-R1, while the token count is the
sum of both, with the summary comprising less than
one-tenth of the reasoning content.

Furthermore, studies (Chen et al., 2025) exam- 452

ining long CoTs of these reasoning models have 453

identified a tendency to overthink. Specifically, 454

these models often allocate excessive computa- 455

tional resources—measured in tokens or thinking 456

rounds—to questions that are either extremely sim- 457

ple or for which the answer is already obvious. Our 458

findings align with their observations regarding in- 459

efficiency in the inference process. 460

Setup. As shown in previous experiments, there 461

may not be a significant difference when the opera- 462

tions are just 2 steps apart. For reasoning models, 463

we downsample the operations from 4 to 20, with 464

a 4-step gap between each, using the same 100 465

samples for each operation. 466

Recent studies on reasoning models have sug- 467

gested that providing examples in the prompt 468

can lead to worse performance (OpenAI, 2024b; 469

DeepSeek-AI, 2025), so we directly provide the 470

prompt as described in Section 3. We select 471

two models—QwQ-32B-Preview and DeepSeek- 472

R1—as both make the thinking process visible. 473

For QwQ-32B-Preview, the temperature is set to 474

0, though temperature setting is not supported for 475

DeepSeek-R13. 476

For QwQ-32B-Preview, significant backtrack- 477

ing and self-validation are frequently observed in 478

nearly every computation. As illustrated in the ex- 479

ample below, the model may revisit and revise its 480

steps multiple times when computing one single pa- 481

rameter before arriving at a final, conclusive result. 482

Therefore, we define only the concluding statement 483

of each computation as a single reasoning step. 484

These conclusions often start with phrases such as 485

“so” or “therefore.” To detect them systematically, 486

we employ regular expressions. 487

3https://api-docs.deepseek.com/guides/
reasoning_model

7

https://api-docs.deepseek.com/guides/reasoning_model
https://api-docs.deepseek.com/guides/reasoning_model


Computing one parameter in long CoTs:
Chaoyang’s Costco will be 8 + 3 = 1. Is
that the answer? Wait, maybe Chaoyang’s
Costco is affected by Manhattan’s Walmart,
which is 2 times Chaoyang’s Costco. But
does this affect the number of Costco in
Chaoyang? Not directly, so Chaoyang’s
Costco will still be 1.

488

DeepSeek-R1 provides both the reasoning con-489

tent (i.e., long CoTs) and a summary that adheres490

to the format requirements, and we evaluate them491

differently depending on the context. Very rarely492

(about two problems per operation), the summary493

will only contain the answer, and we exclude those494

cases when considering parameter hit and reason-495

ing steps. Since the answers in the summary always496

match those in the reasoning content (indicating497

great faithfulness (Lyu et al., 2023)), the accuracy498

remains the same for both.499

For parameter hit, we evaluate the reasoning con-500

tent and summary separately. Similarly, for reason-501

ing steps, we count them separately—using the502

same method as QwQ-32B-Preview for the reason-503

ing content and the method outlined in Section 3504

for the summary. The token length is the combined505

total of both the reasoning content and the sum-506

mary, with the summary typically being less than507

one-tenth of the length of the reasoning content.508

Results. Figure 8 shows that accuracy declines as509

the number of operations increases. However, we510

observe that for more complex problems, reason-511

ing models can maintain better performance, with512

DeepSeek-R1 achieving nearly 60% accuracy for513

op = 20.514

Additionally, the parameter hit rate remains high515

and stable as the problems become more complex.516

However, we must be cautious, as this may be due517

to the models simply listing all possible parameters518

during the long reasoning process. We also ob-519

serve that in the summary of DeepSeek-R1, some520

necessary parameters mentioned in the reasoning521

content are excluded, leading to a slight decrease522

in the parameter hit rate.523

Figure 9 shows that both reasoning steps and524

token count increase as the number of operations525

grows. However, unlike previous results, redundant526

steps continue to increase for QwQ-32B-Preview527

and the reasoning content of DeepSeek-R1 as the528

op grows. In contrast, the summary of DeepSeek-529

R1 introduces little redundancy and even takes530

fewer steps than necessary for complex problems. 531

Upon examining the summary, we observe that 532

it often skips reasoning steps that involve implicit 533

dependency, which become more frequent as the 534

number of operations increases. For example, in 535

the correct solution below, the value of Costco’s 536

Product should be computed as highlighted in red, 537

and since Costco only has Doughnuts, it equals 538

Costco’s Doughnuts. However, the summary skips 539

this step. 540

Correct solution: Define each Walmart ’s
Banana as A; A = 9. Define each Costco’s
Doughnuts as V; V = 2 + A = 2 + 9 = 1.
Define each Costco ’s Product as f; f = V =
1. Define each Walmart ’s Pizza as P; P =
9 * f = 9 * 1 = 9.

541

DeepSeek-R1 summary: Define each Wal-
mart ’s Banana as A; A = 9. Define each
Costco’s Doughnuts as V; V = 2 + A = 2 +
9 = 1. Define each Walmart ’s Pizza as P;
P = 9 * V = 9 * 1 = 9.

542

5 Conclusion 543

This paper reveals a significant decline in model 544

performance as the complexity of math problems 545

increases. We find that more complex CoT prompt- 546

ing is beneficial primarily for simpler problems, of- 547

fering minimal gains for more complex ones. Rea- 548

soning models capable of generating long CoTs 549

can generalize further, but performance still drops 550

as problem complexity increases. These findings 551

highlight the limitations of LLMs in length gener- 552

alization for math reasoning. We hope this work 553

draws attention to the need for developing models 554

that can learn from shorter examples and apply that 555

knowledge to longer, more complex tasks. 556

Limitation 557

In this study, we primarily focus on state-of-the- 558

art open-source models, though the inclusion of 559

closed-source models could serve as a valuable 560

reference. While we aim to provide a comprehen- 561

sive analysis using various methods and human 562

inspection, it is possible that some aspects worthy 563

of further investigation may have been overlooked. 564
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