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Abstract

We present AIRS: Automatic Intrinsic Reward
Shaping that intelligently and adaptively pro-
vides high-quality intrinsic rewards to enhance
exploration in reinforcement learning (RL). More
specifically, AIRS selects shaping function from a
predefined set based on the estimated task return
in real-time, providing reliable exploration incen-
tives and alleviating the biased objective prob-
lem. Moreover, we develop an intrinsic reward
toolkit ! to provide efficient and reliable imple-
mentations of diverse intrinsic reward approaches.
We test AIRS on various tasks of MiniGrid, Proc-
gen, and DeepMind Control Suite. Extensive sim-
ulation demonstrates that AIRS can outperform
the benchmarking schemes and achieve superior
performance with simple architecture.

1. Introduction

Striking an appropriate balance between exploration and
exploitation remains a long-standing problem in reinforce-
ment learning (RL) (Sutton & Barto, 2018). Sufficient ex-
ploration can prevent the RL agent from prematurely falling
local optima after finite iterations, contributing to learning
better policies (Frangois-Lavet et al., 2018). To address this
problem, classical exploration strategies such as e-greedy or
Boltzmann exploration will randomly choose all the possi-
ble actions with a non-zero probability (Mnih et al., 2015).
But these approaches are inefficient when handling complex
environments with high-dimensional observations. More-
over, extrinsic rewards are consistently found to be sparse
or even absent in many real-world scenarios, and they may
completely fail to learn.
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Figure 1. (a) AIRS employs two branches in the value network to
disentangle the estimation of total return (evaluated by intrinsic and
extrinsic reward function) and task return (only extrinsic reward
function). (b) AIRS formulates the intrinsic reward selection as a
multi-armed bandit problem and uses the upper confidence bound
(UCB) to make decisions based on the estimated task return. Ext.:
Extrinsic. Int.: Intrinsic. @): Weighted summation operation.

Recent approaches have proposed to leverage intrinsic re-
wards to encourage exploration (Oh et al., 2015; Houthooft
et al., 2016; Bellemare et al., 2016; Pathak et al., 2017;
Haber et al., 2018; Ostrovski et al., 2017). For instance,
(Bellemare et al., 2016) leverage a density model to approx-
imate the state visitation frequency and define the intrinsic
reward as inversely proportional to the pseudo-count. As
a result, the agent is encouraged to visit the infrequently-
seen states, increasing the probability of encountering states
with higher task rewards. In contrast, curiosity-driven ex-
ploration aims to learn the dynamics of the environment and
utilizes the prediction error as the intrinsic reward (Stadie
et al., 2015; Yu et al., 2020; Burda et al., 2019b). For exam-
ple, (Pathak et al., 2017) use an inverse-forward dynamics
model to learn the representation of state space, which only
encodes the part that affects the decision-making and ig-
nores environment noise and other irrelevant interference.
After that, the intrinsic reward is defined as the prediction
error of the encoded next-state based on the current state-
action pair.

Despite the excellent performance of intrinsic rewards, they
cannot guarantee the invariance of the optimal policy, and
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excessive exploration may lead to learning collapse (Ng
et al., 1999). Since the joint objective composed of ex-
trinsic and intrinsic rewards is biased, maximizing it only
sometimes yields the optimal policy for the extrinsic re-
ward alone. To alleviate this problem, (Chen et al., 2022)
proposed an extrinsic-intrinsic policy optimization (EIPO)
approach, which automatically tunes the importance of the
intrinsic reward via a principled constrained policy opti-
mization procedure. As a result, EIPO can restrain the in-
trinsic reward when exploration is unnecessary and increase
it when exploration is required. However, EIPO is too so-
phisticated to implement and cannot provide increments
for arbitrary RL algorithms. Moreover, many experiments
reported in existing work (Burda et al., 2019a;a; Raileanu
et al., 2020; Badia et al., 2020; Chen et al., 2022) demon-
strate that the performance of the same intrinsic rewards
varies significantly in different tasks and learning stages.
Selecting the best intrinsic reward for a specific task is al-
ways challenging. With this in mind, (Zheng et al., 2018)
proposed a stochastic gradient-based method to learn para-
metric intrinsic rewards, which improved the performance
of policy gradient-based algorithms.

In this paper, we solve the aforementioned problems using
a novel framework entitled Automatic Intrinsic Reward
Shaping (AIRS). Our main contributions can be summarized
as follows:

* Firstly, we formulate the intrinsic reward selection as
a multi-armed bandit problem, in which different in-
trinsic reward functions are regarded as arms. AIRS
can automatically select the best shaping function at
different learning stages based on the estimated task
return, providing reliable exploration incentives and
alleviating the biased objective problem.

» Secondly, we develop a toolkit that provides high-
quality implementations of various intrinsic reward
modules based on PyTorch. These modules can be
deployed in arbitrary RL algorithms in a plug-and-play
manner, providing efficient and robust exploration in-
crements.

* Finally, we test AIRS on MiniGrid, Procgen (sixteen
games with procedurally-generated environments), and
DeepMind Control Suite. Extensive simulation results
demonstrate that AIRS can achieve superior perfor-
mance and generalization ability and outperform the
benchmarking schemes.

2. Related Work

2.1. Count-Based Exploration

Count-based exploration provides intrinsic rewards by mea-
suring the novelty of states, which are usually defined to

be inversely proportional to the state visit counts (Belle-
mare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017;
Machado et al., 2020; Jo et al., 2022). (Strehl & Littman,
2008) proposed to use the state visit counts as exploration
bonuses in the tabular setting and provided a theoretical
explanation for its effectiveness. (Bellemare et al., 2016)
designed a context-tree switching density model to perform
state pseudo-count, and (Ostrovski et al., 2017) considered
the environments with high-dimensional observations and
used a PixelCNN as a state density estimator. (Martin
et al., 2017) proposed to perform pseudo-count by lever-
aging the learned feature space of value function approxi-
mation, which can evaluate the uncertainty associated with
any state. (Burda et al., 2019b) proposed a random-network-
distillation (RND) method composed of a predictor network
and a target network, using the prediction error to reward
novel states.

2.2. Curiosity-Driven Exploration

Curiosity-driven exploration encourages the agent to in-
crease its knowledge (e.g., dynamics) about the task envi-
ronment (Stadie et al., 2015; Pathak et al., 2017; Yu et al.,
2020). The most well-known work is the intrinsic-curiosity-
module (ICM) proposed by (Pathak et al., 2017). However,
(Yuetal., 2020) suggested that the discriminative model may
suffer from the compounding error and redesigned the ar-
chitecture of ICM using a variational auto-encoder (Kingma
& Welling, 2014), which circumvents the encoding of state
space and can be trained using a one-life demonstration.
In particular, (Burda et al., 2019a) attempted to solve vi-
sual tasks (e.g., Atari games) using only curiosity-based
intrinsic reward, and the agent could still achieve remark-
able performance. But the curiosity-driven methods are
consistently found to be futile when handling the noisy-TV
dilemma (Savinov et al., 2019). To address the problem,
(Raileanu et al., 2020) proposed a rewarding-impact-driven-
exploration (RIDE) method that uses the difference between
two consecutive encoded states as the intrinsic reward and
encourages the agent to choose actions that result in sig-
nificant state changes. In this paper, the RIDE is selected
as the candidate for the intrinsic reward set. It can provide
aggressive exploration incentives and oblige the agent to
adapt to the environment quickly, improving the generaliza-
tion ability of the agent and facilitating solving tasks with
procedurally-generated environments.

2.3. Information Theory-Based Exploration

Another representative idea is to design intrinsic rewards
based on information theory (Seo et al., 2021; Mutti et al.,
2021; Yuan et al., 2022c¢;b;a). (Houthooft et al., 2016) pro-
posed to maximize the information gain about the agent’s
belief of environment dynamics, which uses variational in-
ference in Bayesian neural networks to handle continuous
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Figure 2. The overview of AIRS. (a) The architecture of DAAC. Here, we use two branches in the value network to estimate Vf (8) and
Vf + (8). (b) AIRS selects the intrinsic reward function based on a queue (length=W) of estimated task return.

state and action spaces efficiently. (Kim et al., 2019) pro-
posed to maximize the mutual information between related
state-action representations and define the intrinsic reward
using prediction error under a linear dynamics model. (Seo
et al., 2021) proposed to maximize the Shannon entropy
of state visit distribution and designed a random-encoder-
for-efficient-exploration (RE3) method. RE3 leverages a
k-nearest neighbor estimator to estimate entropy efficiently
and transforms the sample mean into particle-based intrinsic
rewards. (Yuan et al., 2022c¢) further extended RE3 and pro-
posed a Rényi state entropy maximization (RISE) method,
which prevents the agent from visiting some states with a
vanishing probability. In this paper, we selected RE3 and
RISE as the candidates for the intrinsic reward set, provid-
ing powerful exploration incentives from the information
theory perspective.

3. Background
3.1. Preliminaries

In this paper, we study the RL and control problems consid-
ering a Markov Decision Process (MDP) (Bellman, 1957)
defined by a tuple M = (S, A, E, P, p(sg),), where S is
the state space, A is the action space, £ : S x A xS - R
is the extrinsic reward function that evaluates the actual
task reward, P(s’|s,a) : S x A — A(S) is the state-
transition function that defines a probability distribution
over S, p(so) is the initial state distribution, and v € [0, 1)

is a discount factor. Denoting by g (a|s) the policy of the
agent, the objective of RL is to learn a policy that maximizes
the expected discounted return Jg(0) = Er, [> 2 7' EY]
(Sutton & Barto, 2018).

In the following sections, we leverage intrinsic rewards to
improve the exploration capability of the agent. Letting
I:8 x A xS — R denote the intrinsic reward function,
and the optimization objective is redefined as

JE+1(0) = Enry lz V(B + B - It)‘| ; €]

t=0

where 8; = 8o(1 — x)* is a weighting coefficient that con-
trols the degree of exploration, and « is a decay rate.

3.2. Decoupled Advantage Actor-Critic

Decoupled advantage actor-critic (DAAC) is a state-of-the-
art on-policy algorithm that decouples the policy and value
optimization for generalization in RL (Raileanu & Fergus,
2021). As shown in Figure 2a, DAAC includes two separate
networks, one for learning the policy and advantage and
one for learning the state-value function. More specifically,
the policy network of DAAC is trained to maximize the
following objective:

Jpaac(8) = J-(0) + H-(0) — La(0), 2

where J; is the policy gradient term of the proximal pol-
icy optimization (PPO) (Schulman et al., 2017), H, is
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an entropy bonus to encourage exploration, and Ly =
[Ag(st,ar) — At}Q is the advantage loss, and A, is the
corresponding generalized advantage estimate at time step
t (Schulman et al., 2015). Finally, the value network of
DAAC is trained to minimize the following loss:

Lv(9) = [Vals) =] 3)

where V/ is the total discounted return obtained during the
corresponding episode after time step ¢.

4. AIRS

In this section, we propose the AIRS framework that im-
proves the exploration and generalization ability of the RL
agent by intelligently providing high-quality intrinsic re-
wards. Our critical insight is that different tasks and learning
stages may benefit from distinct intrinsic reward functions.
For instance, in the early stage of learning, aggressive ex-
ploration can enable agents to gain a lot of discriminative
experiences in a short time. To that end, the simple idea is
to design an intrinsic reward function that rewards signifi-
cant state changes. However, in the later stage of learning,
excessive exploration is unnecessary and may disturb the
learned policy, and it suffices to keep appropriate explo-
ration. The discussions above can be summarized as the
following problems:

¢ Use or not use intrinsic reward function?

¢ Use which intrinsic reward function?

Denoting by Z = {I', ..., I"} the set of intrinsic reward
functions, the problem of intrinsic reward selection can be
formulated as a multi-armed bandit (Figure 2b) (Lattimore
& Szepesvari, 2020). Each reward function is considered an
arm, and the objective is to maximize the long-term return
evaluated by the extrinsic reward function.

4.1. Upper Confidence Bound

Upper confidence bound (UCB) (Auer, 2002) is an effective
algorithm to solve the multi-armed bandit problem, which
selects actions by the following policy:

I; = argmax [Qt(l) +c “)

logt }
IeT ’

Ni(I)

where (Q);(I) is the estimated value of action I, N,(I) is
the number of times that action I has been selected prior
to time £, and ¢ > 0 is a constant that controls the degree
of exploration. To update ();, we employ two branches
(Figure 2a) in the value network to estimate the state-value
function evaluated by the mixed reward function £ + I and

extrinsic reward function F, respectively. For each intrinsic
reward function I, a queue of length W is leveraged to store
the average estimated task return, and Q, (1) is computed as

1 &g
Qi) =7 > Vgl ©)
=1

where V7 is the average estimated return of a rollout. Mean-

while, the loss function of the value network is redefined

as )
Ly(¢) = {Vfﬂ(st) - ‘%E“]

L ©)

AR

Finally, the detailed workflow of AIRS based on DAAC is
summarized in Algorithm 1. We want to highlight two criti-
cal facts about AIRS. Here we use DAAC as the benchmark
due to its improvement in generalization ability. But AIRS
can be combined with many RL algorithms, and it suffices
to use two branches in the value network to estimate task
and total return, respectively. In addition, any appropriate
bandit algorithms can replace the UCB algorithm. For ex-
ample, the Thompson sampling (Russo et al., 2018) can be
deployed when the intrinsic reward pool only has two re-
ward functions. Therefore, AIRS is a very open architecture,
and various attempts are possible.

4.2. Intrinsic Reward Toolkit

To facilitate the experiments and inspire subsequent research
on intrinsic rewards, we developed a toolkit that provides
high-quality implementations of diverse intrinsic reward
modules based on PyTorch. This toolkit is designed to be
highly modular and scalable. Each intrinsic reward module
can be deployed in arbitrary algorithms in a plug-and-play
manner, providing efficient and robust exploration incre-
ments. The following experiments are also performed based
on this toolkit. More details about this toolkit can be found
in Appendix D.

S. Experiments

In this section, we designed experiments to answer the fol-
lowing questions:

* Can AIRS alleviate the aforementioned biased objec-
tive problem? (See Figure 3)

* Can AIRS improve policy performance in both contin-
uous and discrete control tasks? (See Table 5, Table 6,
Figure 3, and Figure 9)

* How does AIRS compare to single intrinsic reward-
driven approaches? (See Figure 4, Figure 5, Figure 6,
Table 5, and Table 6)
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Algorithm 1 Automatic Intrinsic Reward Shaping (AIRS)

1: Initialize policy network mg and value network Vg with parameters 6 and ¢;
2: Initialize the set of intrinsic reward functions Z = {I L § ™1, exploration coefficient ¢, window length W for
estimating the Q-functions, and total number of updates K;

32 N(I)=1,VI €T, > Initialize the number of times each I was selected.
4: Q(I)=0,VI €T, > Initialize the Q-functions for all 1.
5: R(I) =FIFO(W),VI € T, > Initialize the lists of returns for all I.
6. fork=1,..., K do
7 I}, = argmax [Q(I) +cy/ }3%1’“) ; > Use UCB to select an I.
IeT
8:  Collect {(s¢,as, By, 8¢11) 1 using me;
9: ;
10: Compute the value and advantage targets V,”, VtE +1 and A, for all states s;;
11: 0 < argmax Jpaac; > Update the policy network.
6

12: ¢ + argmax Ly ;
¢

13:

> Update the value network.

s

14: Add Vg to the R(I}) list using the first-in-first-out rule;

15 QIx) + m 2 Vyer(ry) Vo>
16:  N(Ip) « N(Ip) + 1.

17: end for
Empty-16x16 DoorKey-6x6 DoorKey-8x8
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Figure 3. Sample efficiency comparison between AIRS and benchmarks. The solid line and shaded regions represent the mean and

standard deviation, which are computed over five random seeds.

* Can the redesigned value network make effective value
estimation? (See Figure 14)

* What is the detailed decision process of AIRS during
training? (See Figure 7)

In particular, we report all the experiment results using
a reasonable and reliable toolbox entitled rliable to guar-
antee reliability and reduce the uncertainty (Agarwal et al.,
2021). Four metrics are introduced in the following sections,
Median: Aggregate median performance, higher is better.
IQM: Aggregate interquartile mean performance, higher is
better. Mean: Aggregate mean performance, higher is bet-
ter. Optimality Gap: The amount by which the algorithm
fails to meet a minimum score, lower is better.

5.1. MiniGrid Games
5.1.1. SETUP

We first tested AIRS on the MiniGrid benchmark to high-
light the effectiveness of automatic intrinsic reward shaping
(Chevalier-Boisvert et al., 2018). MiniGrid contains a col-
lection of 2D grid-world environments with goal-oriented
and sparse-reward tasks that are extremely hard-exploration.
We selected advantage actor-critic (A2C) (Mnih et al., 2016)
as the baseline and considered the combination of A2C and
RE3. For AIRS, we build it on top of A2C+RE3, in which
the intrinsic reward function pool only has ID and RE3. See
Table 1 for the details of the two functions. In particular,
we added the intrinsic rewards into estimated advantages
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Figure 4. Comparing Median vs IQM on train and test levels. Sample-efficiency of agents as a function of number of frames measured via
IQM (two on the left) and Median (two on the right) PPO-Normalized scores. Shaded regions show pointwise 95% percentile stratified

bootstrap confidence intervals.

Table 1. Four intrinsic reward functions are employed in the Procgen experiments, where e = g(s) is the representation of s, Nep, is the
episodic state visitation frequency. For RE3 and RISE, g is a random and fixed encoder, while g is a learned encoder for RIDE. é is the
k-nearest neighbor of s in the encoding space. More details about the implementations can be found in Appendix B.

Intrinsic reward module Formulation

Remark

RE3 (Seo et al., 2021)

k 5
= % 21:1 log(|le: — €tlla +1)

Shannon entropy maximization

RISE (Yuan et al., 2022c) L=15% (e —éll2)'— Rényi entropy maximization
RIDE (Raileanu et al., 2020) I = |lei+1 — e¢|l2/+/Nep(Si+1)  Significant state changes
ID ;=0 No shaping

directly rather than using an additional branch in the value
network. For each benchmark, we only report the best re-
sults after a hyper-parameter search, and more details on
MiniGrid experiments are provided in Appendix A.

5.1.2. RESULTS

Figure 3 illustrates the sample efficiency comparison be-
tween AIRS and benchmarking schemes. A2C+RE3 suc-
cessfully outperformed the vanilla A2C agent in all three
games, demonstrating that RE3 can effectively promote the
sample efficiency using the same environment steps. In
contrast, A2C+AIRS achieves the highest performance and
convergence rate in all three games. This indicates that
AIRS successfully alleviated the biased objective problem
and controlled the exploration degree intelligently in the
training process.

5.2. Procgen Games
5.2.1. SETUP

Next, we tested AIRS on the full Procgen benchmark con-
taining sixteen games with procedurally-generated environ-
ments (Cobbe et al., 2020). Procgen is developed similarly
to the ALE benchmark, in which the agents have to learn
motor control directly from images (Bellemare et al., 2013).

But Procgen has higher requirements for the generalization
ability, and the agent has to make sufficient exploration and
learn transferable skills rather than memorizing specific tra-
jectories. These attributes make it a good benchmark for our
research. All Procgen games utilize a discrete action space
with 15 possible actions and produce 64 x 64 x 3 RGB
observations. The agents were trained on the easy level and
tested on the entire distribution of levels.

To construct the intrinsic reward set, four intrinsic reward
functions were selected to serve as the candidates, namely
RE3, RISE, RIDE, and ID, respectively (Seo et al., 2021;
Yuan et al., 2022c; Raileanu et al., 2020). The detailed
information of these functions is illustrated in Table 1. The
reasons for selection are as follows: (i) they can provide
sustainable exploration incentives, i.e., the intrinsic rewards
will not vanish with visits; (ii) they are computation-efficeint
and easy to implement, and (iii) they can leverage fixed and
random encoder to encode the state space, which provides
relatively stable intrinsic reward space and guarantees the
algorithm convergence.

Furthermore, we selected data-regularized actor-critic
(DrAC), IDAAC, DAAC, and PPO to serve as the bench-
marks (Raileanu et al., 2021; Raileanu & Fergus, 2021;
Schulman et al., 2017). DrAC combines data augmentation
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Figure 5. PPO-Normalized test performance for the Procgen benchmark, which are aggregated over all sixteen tasks and ten randoms

seeds.

Algorithm X Algorithm Y
AIRS | PPO
AIRS | DrAC
AIRS 1 DAAC
AIRS 1 IDAAC
AIRS i) i — RE3
AIRS 1 RISE
AIRS Il (nj— RIDE

0.4 0.5 0.6 0.7 0.8 09 1.0
P(X >Y)

Figure 6. Each row shows the probability of improvement, with
95% bootstrap confidence intervals, that the algorithm X on the
left outperforms algorithm Y on the right, given that X was claimed
to be better than Y. For all algorithms, results are based on ten
random seeds per task.

and actor-critic algorithms theoretically, demonstrating re-
markable performance on Procgen benchmark. IDAAC is
a variant of DAAC that adds an additional regularizer to
the DAAC policy encoder to guarantee that it only contains
episode-specific information. For each benchmark method,
we only report its best performance after a hyper-parameter
search, and more details on Prcogen games are provided in
Appendix B.

5.2.2. RESULTS

The game complexity of test levels is much higher than the
train levels, which provides a direct measure to evaluate
the generalization ability of the agents. Figure 5 illustrates
the test performance comparison evaluated by four metrics.
AIRS achieved the highest performance in all four metrics,
especially for the Median and IQM. In contrast, IDAAC
achieved the second highest performance in all four metrics.
The performance of IDAAC and DAAC is very close in most
games. This indicated that the additional regularization term
did not significantly improve the performance of DAAC,

which was the same as the results reported in (Raileanu &
Fergus, 2021). Moreover, the combination of DAAC and
single intrinsic rewards achieved lower performance than
the vanilla DAAC agent. Furthermore, we computed the
probability of improvement of AIRS over the benchmarks.
Figure 6 indicates that the probability of AIRS being better
than DAAC is 67%, and the probability of AIRS being better
than IDAAC is 61%. We also provided a complete list of
final performance comparisons in Table 5 and Table 6.

Figure 4 illustrates the sample efficiency comparison be-
tween AIRS and benchmarking schemes on the full Procgen
benchmark. AIRS had a lower convergence rate in the early
stage, which was mainly limited by the estimation accu-
racy of the value network. Figure 8§ illustrates the value
loss of eight games during training, and full loss curves can
be found in Appendix B. It is evident that the loss of the
two branches tended to stabilize after 1M environment steps.
But AIRS still achieved remarkable performance gains. This
indicates that AIRS can effectively improve the exploration
of the agent and keep tracking the fundamental objective,
i.e., the task reward.

Furthermore, we documented the specific decision-making
process of AIRS. Figure 7 illustrates the cumulative number
of times AIRS selects each intrinsic reward function over
the training progress of eight games, and full curves can
be found in Appendix B. In BigFish game, the RIDE was
the most selected function while AIRS chose no shaping in
33.7% of the training time. In Miner game, the RISE was
the most selected function while AIRS chose no shaping
in 59.3% of the training time. Similarly, the RISE was
also the most selected function in Ninja game, and AIRS
chose no shaping in 66.5% of the training time. Meanwhile,
AIRS divided the choice opportunity into three functions
in CoinRun game and BossFight game. It is evident that
no shaping played an essential role in the whole training
process, and appropriate exploration can improve sample
efficiency and gain higher performance. In contrast, AIRS



Automatic Intrinsic Reward Shaping for Exploration in Deep Reinforcement Learning

BigFish BossFight Chaser CoinRun

°
9] g 1400
© 800 800
< ™ 1200
[T} -
w ——
5 600 600 1000
-g 800
2 400 400 600
[
2 400
® 200 200
° 200
£
3 o 0 0

0 2 4 6 8 0 4. 6 0 2 4. 6 8 0 4 6

Ninja Fruitbot Miner StarPilot

o 1400
9]
D 800 1200
& 1000
J
8600
g 800
= 400 600
[
2 400
& 200
S 200
g 0 0
O

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Training Progress (%) Training Progress (%)

Training Progress (%) Training Progress (%)

Figure 7. The cumulative number of times AIRS selects each intrinsic reward function over the training progress, computed with ten

random seeds.

BigFish BossFight Chaser CoinRun
= E+| Return 08 15
0.8] — E Return 0.6 :
0.6
© 0.6
§ 0.4 1.0
9 0.4
TDB 0.4
> 0.2 0.5
0.2 0.2
0.0 0.0 0.0 0.0
0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25
Ninja Fruitbot Miner StarPilot
2.0
2.0 15 1.5
1.5 1.5 1.2
o b
@ 1.0 1.0
p 1.0
g10 ‘ 0.8
o
- 05 0.5
0.5 0.5 -
0.2
0.0 00 0.0
0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25

Environment Steps (1e7) Environment Steps (1e7)

Environment Steps (1e7) Environment Steps (1e7)

Figure 8. Value loss of eight selected games during training. ”E Return” indicates the branch for extrinsic value estimation in the value
network. Full loss curves can be found in in Appendix A. The solid line and shaded regions represent the mean and standard deviation

over 10 random seeds, respectively.

selected RISE and RIDE at most in Fruitbot game. In
Chaser and StarPilot game, AIRS only selected the RE3
function during the training, and the final performance of
AIRS and DAAC+RE3 is almost the same.

5.2.3. ABLATIONS

Like the MiniGrid experiments, we performed an ablation
study by setting the intrinsic reward pool to have only two

modules: RE3 and ID. As a result, the test IQM and OG
are 1.27 and 0.015, which was better than DAAC+RE3. The
ablation results further proved that AIRS can effectively
alleviate the bias objective problem, providing appropriate
exploration incentives when necessary. It also demonstrated
that AIRS could assemble advantages by automatically se-
lecting from multiple intrinsic rewards.
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Figure 9. Sample-efficiency of agents as a function of number of frames measured via IQM and Median PPO-Normalized scores. Shaded
regions show pointwise 95% percentile stratified bootstrap confidence intervals.

5.3. DeepMind Control Suite
5.3.1. SETUP

Finally, we tested AIRS on the DeepMind Control Suite
with distractors, and four tasks were introduced, namely
Cartpole Balance, Cheetah Run, Finger Spin, and Walker
Walk, respectively (Tassa et al., 2018). For each task, the
backgrounds of image observations are replaced using nat-
ural videos from the Kinetics dataset (Cobbe et al., 2019).
Note that the background is sampled from a list of videos
at the beginning of each episode, which creates spurious
correlations between backgrounds and rewards. For each
benchmark, we only report the best results after a hyper-
parameter search, and more details on DeepMind Control
Suite experiments are provided in Appendix C.

5.3.2. RESULTS

Figure 9 illustrates the sample efficiency comparison be-
tween AIRS and benchmarking schemes after training S00K
frames. AIRS achieved the highest performance in all the
tasks, while IDAAC outperformed the vanilla PPO agent in
all the tasks. Therefore, AIRS can improve the performance
of RL agents on both discrete and continuous control tasks.

6. Discussion

In this paper, we investigate the problem of enhancing explo-
ration in RL and propose an intrinsic reward-driven method
entitled AIRS. AIRS can intelligently select the best in-
trinsic reward function from a pre-defined set in real-time,
providing reliable exploration incentives and guaranteeing
policy invariance. In particular, we develop a toolkit to
provide high-quality implementations of diverse intrinsic
reward approaches, which is expected to inspire more sub-

sequent research. We test AIRS on multiple tasks from
MiniGrid, Procgen, and DeepMind Control Suite. Exten-
sive simulation results demonstrate that our method can
achieve superior performance.

However, there are some remaining limitations of AIRS.
Firstly, AIRS performs selection based on a pre-defined
reward set. The quality of selected reward modules will
inevitably affect the final policy performance. It’s critical to
find an effective method to build the reward set. Meanwhile,
different intrinsic reward spaces may interfere with each
other, resulting in unexpected learning collapse. Secondly,
AIRS makes decisions based on the estimated task return,
which requires an independent module to make estimations.
The estimation accuracy also determines the reliability of
actions of AIRS, and additional modules will increase the
complexity of the deployment of AIRS. For algorithms like
A2C and PPO, a simple method is to add the intrinsic re-
wards into estimated advantages directly rather than using
an additional branch in the value network, which is used in
our MiniGrid experiments. Finally, AIRS formulates the re-
ward selection as a bandit problem and uses UCB to solve it,
in which enough attempts are required to estimate the bound.
This will significantly increase the computational overhead
and decrease the convergence rate. We will address these
issues in future work.
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A. Details on MiniGrid Experiments
A.1. Environment Setting

In this section, we evaluated the performance of AIRS on three tasks from MiniGrid games (Chevalier-Boisvert et al., 2018),
namely Empty-16x16, DoorKey-6x6, and DoorKey-8x8, respectively. The environment code can be found in the publicly
available released repository (https://github.com/Farama-Foundation/MiniGrid). Figure 10 illustrates
the screenshots of the three games. The girdworld was set to be fully observable, and a compact grid encoding was used to
generate observations (7x7x3).

Empty-16x16 DoorKey-6x6 DoorKey-8x8

[] B

g

Figure 10. Screenshots of three MiniGrid games.

A.2. Experiment Setting

A2C. (Mnih et al., 2016) For A2C, we followed the implementation in the publicly released repository (https://github.
com/lcswillems/rl-starter-files), and used their default hyperparameters listed in Table 2.

A2C+RE3. (Seo et al., 2021) For RE3, we followed the implementation in the publicly released repository (https:
//github.com/younggyoseo/RE3). Here, the intrinsic reward is computed as I; = log(||e: — é:||2 + 1), where
e; = g(s;) and g is a random and fixed encoder. The total reward of time step ¢ is computed as F; + f; - I;, where
Bt = Bo(1 — k)t. Moreover, the average distance of e; and its k-nearest neighbors was used to replace the single k nearest
neighbor to provide a less noisy state entropy estimate. As for hyperparameters related to exploration, we used k = 3,k = 0
for all three games, By = 0.1 for Empty-16x16, 5y = 0.005 for DoorKey-6x6, and 5y = 0.01 for DoorKey-8x8, respectively.

A2C+AIRS. For AIRS, we built it on top of A2C+RE3, which uses same policy and value network architectures with
A2C and A2C+RE3. We performed a hyperparameter search over the initial exploration degree Sy € {0.005,0.01,0.1},
the decay rate x € {0.0,0.00001, 0.000025, 0.00005}, the exploration coefficient ¢ € {0.0,0.1,0.5,1.0,5.0} and the size
of sliding window used to compute the Q-values W € {10, 50,100}. We found that the best values are Sy = 0.1 for
Empty-16x16, 5y = 0.005 for DoorKey-6x6, 5y = 0.01 for DoorKey-8x8, x = 0, ¢ = 0.1, and W = 10, which were used
to obtain the results reported here.
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Table 2. General hyperparameters used to obtain the MiniGrid results.

Hyperparameter Value
Observation downsampling (7, 7, 3)
Stacked frames No
Environment steps 400000 Empty-16x16, 400000 DoorKey-6x6, 2400000 DoorKey-8x8
Episode steps 5
Number of workers 1
Environments per worker 16
Optimizer RMSprop
Learning rate 0.001
GAE coefficient 0.95
Action entropy coefficient ~ 0.01
Value loss coefficient 0.5

Value clip range 0.2
RMSprop € 0.01

Max gradient norm 0.5
Epochs per rollout 3
Mini-batches per epoch 8

LSTM No
Gamma ~y 0.99
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B. Details on Procgen Experiments
B.1. Environment Setting

In this section, we evaluated the performance of AIRS on the full Procgen benchmark (Cobbe et al., 2020). All Procgen
games utilize a discrete action space with 15 possible actions and produce 64 x 64 x 3 RGB observations. Figure 11
illustrates the screenshots of multiple procedurally-generated levels from 12 Procgen environments. The environment code
can be found in the publicly available released repository (https://github.com/openai/procgen). The agents
were trained on a fixed set of 200 levels (i.e., generated using seeds from 1 to 200) and tested on the full distribution of
levels (i.e., generated using randomly-sampled computer integers).

Figure 11. Screenshots of multiple procedurally-generated levels from 12 Procgen environments: StarPilot, CaveFlyer, Dodgeball,
FruitBot, Miner, Jumper, Leaper, Maze, Heist, Climber, Plunder, Ninja (from left to right, top to bottom).

B.2. Experiment Setting

AIRS. In this experiment, we built AIRS on top of DAAC (Raileanu & Fergus, 2021) and employed two branches in the
value network to predict the state-value function evaluated by the mixed reward function and extrinsic reward function,
respectively. Figure 12 illustrates the ResNet-based architectures of the policy network and the value network (Espeholt
et al., 2018). For each game, the agents were trained for 25M frames on the easy mode and tested using the entire distribution
of levels.

We performed a hyperparameter search over the initial exploration degree 5y € {0.01,0.05,0.1}, the decay rate « €
{0.00001, 0.000025, 0.00005}, the exploration coefficient ¢ € {0.0,0.1,0.5,1.0,5.0} and the size of sliding window used
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Figure 12. ResNet-based architectures of the policy network and the value network. Here the residual block consists of two convolutional
layers with ReLU function (Glorot et al., 2011; He et al., 2016).

to compute the Q-values W € {10, 50, 100}. We found that the best values are 5, = 0.05, kK = 0.000025, ¢ = 0.1, and
W = 10, which were used to obtain the results reported here.

PPO. (Schulman et al., 2017) For PPO, we followed the implementation in the publicly released repository (https:
//github.com/ikostrikov/pytorch—-a2c-ppo-acktr—-gail). To make a fair comparison, the agent was
parameterized by the same ResNet architecture in Figure 12 to obtain the best results. More detailed hyperparameters are
illustrated in Table 4.

DrAC. (Raileanu et al., 2021) For DrAC, we followed the implementation in the publicly released repository (https:
//github.com/rraileanu/auto—-drac). DrAC was implemented based on the PPO repository above and added
an augmentation loss term into the original PPO loss function. For each game, we used the best augmentation type reported
in (Raileanu et al., 2021), which is illustrated in Table 3. The coefficient of the augmentation loss was 0.1, and the remaining
hyperparameters were the same as Table 4.

DAAC. (Raileanu & Fergus, 2021) For DAAC, we followed the implementation in the publicly released repository
(https://github.com/rraileanu/idaac). DAAC was also implemented based on PPO and used two separate
neural networks to perform the policy and value optimization. As reported in (Raileanu & Fergus, 2021), the number of
epochs used during each update of the policy network was 1, the number epochs used during each update of the value network
was 9, the value update frequency was 1, the coefficient of the advantage loss was 0.25, and the remaining hyperparameters
were the same as Table 4.

IDAAC. (Raileanu & Fergus, 2021) For IDAAC, we followed the implementation in the publicly released repository
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Table 3. Augmentation type used for each game in DrAC.

Game BigFish StarPilot ~ FruitBot BossFight  Ninja Plunder CaveFlyer CoinRun
Augmentation crop crop crop flip color-jitter ~ crop rotate random-conv
Game Jumper Chaser Climber Dodgeball ~ Heist Leaper = Maze Miner
Augmentation random-conv  crop color-jitter ~ crop crop crop crop color-jitter

(https://github.com/rraileanu/idaac). IDAAC was a variant of DAAC that uses an auxiliary loss which
constrains the policy representation to be invariant to the task instance. As reported in (Raileanu & Fergus, 2021), the
number of epochs used during each update of the policy network was 1, the number epochs used during each update of the
value network was 9, the value update frequency was 1, the coefficient of instance-invariant (adversarial) loss was 0.001, the
coefficient of the advantage loss was 0.25, and the remaining hyperparameters were the same as Table 4.

DAAC+RE3. (Seo et al., 2021) For RE3, we followed the implementation in the publicly released repository (https:
//github.com/younggyoseo/RE3). Here, the intrinsic reward is computed as I; = log(||e: — é:]|2 + 1), where
e; = g(s;) and g is a random and fixed encoder. The total reward of time step ¢ is computed as F; + (; - I;, where
Bt = Bo(1 — k). Moreover, the average distance of e; and its k-nearest neighbors was used to replace the single k nearest
neighbor to provide a less noisy state entropy estimate. As for hyperparameters related to exploration, we used k = 5,
Bo = 0.05, and performed hyperparameter search over x € {0.00001, 0.000025}. Finally, the policy was updated using
DAAC with general hyperparameters listed in Table 4.

DAAC+RISE. (Yuan et al., 2022c) For RISE, we followed the implementation in the publicly released repository (https:
//github.com/yuanmingqgi/rise). Here, the intrinsic reward is computed as I; = (||e; — &;||2)' ™%, where e; =
g(st) and g is arandom and fixed encoder. The total reward of time step ¢ is computed as F; + f3; - I;, where 8; = 3p(1— H)t.
As for hyperparameters related to exploration, we used k = 5, a = 0.05, 5y = 0.1, and performed hyperparameter search
over £ € {0.00001,0.000025}. Finally, the policy was updated using DAAC with general hyperparameters listed in Table 4.

DAAC+RIDE. (Raileanu et al., 2020) For RIDE, we followed the implementation in the publicly released repository
(https://github.com/facebookresearch/impact-driven—-exploration). In practice, we trained a
single forward dynamics model g to predict the encoded next-state v(s:11) based on the current encoded state and
action (¢(s¢), a;), whose loss function was ||g(1(s¢), ar) — ¥ (8¢4+1)||2- Then the intrinsic reward was computed as
I = ||Y(se41) —¥(8¢) |2/ / Nep(St+1), where Ne,, is the state visitation frequency during the current episode. To estimate
the state visitation frequency of s;.1, we leveraged a pseudo-count method that approximates the frequency using the
distance between (s;) and its k-nearest neighbor within episode (Badia et al., 2020). Finally, the policy was updated using
DAAC with general hyperparameters listed in Table 4.

17


https://github.com/rraileanu/idaac
https: //github.com/younggyoseo/RE3
https: //github.com/younggyoseo/RE3
https://github.com/yuanmingqi/rise
https://github.com/yuanmingqi/rise
https://github.com/facebookresearch/impact-driven-exploration

Automatic Intrinsic Reward Shaping for Exploration in Deep Reinforcement Learning

Table 4. General hyperparameters used to obtain the Procgen results.

Hyperparameter Value
Observation downsampling (84, 84)
Stacked frames No
Environment steps 25000000
Episode steps 265
Number of workers 1
Environments per worker 64
Optimizer Adam
Learning rate 0.0005
GAE coefficient 0.95
Action entropy coefficient ~ 0.05
Value loss coefficient 0.5
Value clip range 0.2
Max gradient norm 0.5
Epochs per rollout 3
Mini-batches per epoch 8
Reward normalization Yes
LSTM No
Gamma v 0.99
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Table 5. Procgen scores on train levels after training on 25M environment steps. (i) The mean and standard deviation are computed using
10 random seeds, and the highest average score is marked in color. (ii) The best data augmentation for each game is used when computing
the results for DrAC. (iii) RE3 represents the combination of DAAC and RE3, RISE represents the combination of DAAC and RISE, and
RIDE represents the combination of DAAC and RIDE. These three methods only use a fixed intrinsic reward function during the training,
while AIRS automatically selects the most appropriate intrinsic reward in real-time. (iv) AIRS achieves the highest performance in 8 out
of 16 games, especially in the StarPilot game.

Game PPO DrAC DAAC IDAAC RE3 RISE RIDE ‘ AIRS (ours)

BigFish 10.2£2.0 10.2+1.4 20.0+£2.9 19.7£1.1 194£19 17.0£13 19.1+2.2
BossFight | 7.6+£0.6  8.3+0.9 104£0.6 10.1+03 10.5+0.1 10.6£04 10.4+£0.2
CaveFlyer | 6.1+0.4 6.4+0.7 59+04 58+£0.8 49+£06 57+03 | 6.0+0.3
Chaser 47+£05  55+1.1  5.1£03 52407  4.1+£1.1 5.6+0.5 | 54404
Climber 82+0.6 8.8+0.8 9.4+0.7 93+04 92405 9.6£04 9.3£0.2
CoinRun | 8.8+0.2 94402 99402 9.9£0.2

Dodgeball 4.5+£05 4.6+05 4.6+£04  4.4£07 32+02 44+03 | 54404
FruitBot 274+04 29.8+£0.7 29.6+1.0 29.0+£04 30.0£1.1 289+1.5 29.5+1.8

Heist 4.6£0.5 5.7£03  54£08 45+£03 47+£03 52403 | 5.7+04
Jumper 8.6+0.3 8.6+£03 85+05 85+03 83+04 7.6£03  8.4+£0.7

Leaper 3.7x£0.7  3.6+0.6 7.9£0.8 29+1.0 42403 43£03 | 42404
Maze 8.0+0.5 5.6£0.8 64+04 63+0.7 59+£03 59+0.7 | 6.6+0.4
Miner 10.1£0.6 12.0+0.2 11.4+1.1 11.3£0.5 11.8£09 10.6+£0.1 12.24+1.7

Ninja 7.8£03  7.7£0.8 9.0+0.2 9.1£02  9.0+0.7  9.3+0.7 9.5+0.5
Plunder 6.3+04  6.2+1.1  23.0%+1.7 222404 20.3+0.8 21.24+0.6 | 23.2£1.3

StarPilot 30.3£1.9 31.2+29 383+2.0 343420 40.0£3.0 36.0£1.3 36.0+2.1

Table 6. Procgen scores on test levels after training on 25M environment steps. (i) The mean and standard deviation are computed using
10 random seeds, and the highest average score is marked in color. (ii) The best data augmentation for each game is used when computing
the results for DrAC. (iii) RE3 represents the combination of DAAC and RE3, RISE represents the combination of DAAC and RISE, and
RIDE represents the combination of DAAC and RIDE. These three methods only use a fixed intrinsic reward function during the training,
while AIRS automatically selects the most appropriate intrinsic reward in real-time. (iv) AIRS achieves the highest performance in 9 out
of 16 games, especially in the BigFish game and StarPilot game.

Game PPO DrAC DAAC IDAAC RE3 RISE RIDE ‘ AIRS (ours)

BigFish 42409  8.2&£1.1 17.0£3.6 17.9+0.7 18.0+£1.3 152449 16.5£3.5
BossFight | 7.0+£0.6  7.94+0.6  9.7£04  9.7£04  8.8%+0.2 92404 9.8+0.8

CaveFlyer 53+05 47404 5.1£03  47+£06  3.8+0.5 4.7+0.7 | 4.8+04
Chaser 4.6£08 52+1.0 55+04 6.24+04 44+£03  52+0.5
Climber 5.7£0.6 6.0+£0.6 7.2+0.6 7.5+£0.1  7.7£03  6.5£0.3 | 7.5£0.1

CoinRun | 8.8404  9.0+0.2 9.24+03 9.1£04  9.2+0.5
Dodgeball | 2.3+04 29402 3.3£02 32406 2.7+0.1 27403  2.7£0.1
FruitBot 234+£0.7 26.7£0.9 27.6+0.8 28.4+0.8 27.9+£1.5 28.3+1.2 28.6+0.6

Heist 2.8+0.7  3.6+0.5 3.5+05 3.0£03  3.4+£0.1 33+0.6  3.4£03

Jumper 59+04 58+03 63+£05 5.9+0.3 59+0.7 6.1£0.6 | 6.6%£0.2
Leaper 29+04 3.7£06  7.0£0.5 3.6+£03 40+03 3.6+0.7 | 42+0.7
Maze 5.6+£0.7 5.14£05 55£1.1 5.6+£06 57%+1.0 54£03 | 5.9+0.5
Miner 7.6+£0.7 9.1+£04  8.5£0.8 8.8+13 9.1+0.6 8.7£1.0 | 9.0+0.5
Ninja 5.8£0.5 6.1+£0.5 69+06 6.7£03  69+04  63+0.7 7.0£0.2

Plunder 59+0.6 9.44+04  20.6x1.5 21.240.1 19.0+0.2 22.14+0.3 | 22.5£0.9

StarPilot 247+£13 27.04£3.4 36.8£1.7 359+£34 36.7£2.0 35.6+3.0 37.1+£24
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Figure 13. The cumulative number of times AIRS selects each intrinsic reward function over the training progress, computed with ten

random seeds.
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Figure 14. The loss curves of value estimation. Here, ”E Return” represents the estimated return evaluated by the extrinsic reward function.
The solid line and shaded regions represent the mean and standard deviation over ten random seeds, respectively.
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C. Details on DeepMind Control Suite Experiments
C.1. Environment Setting

In this section, we evaluated the performance of AIRS on four tasks from DeepMind Control Suite (Tassa et al., 2018),
namely Cartpole Balance, Cheetah Run, Finger Spin, and Walker Walk, respectively. To test the generalization ability of
AIRS, we followed (Zhang et al., 2020) to replace the task background using synthetic distractors. Figure 15 illustrates
the derived observations with synthetic distractor backgrounds and default backgrounds, and the code for background
generation can be found in (https://github.com/facebookresearch/deep_bisim4control). For each
task, we stacked three consecutive frames as one observation, and these frames were further cropped to the size of (84, 84)
to reduce the computational resource request.

Figure 15. Environment examples of DeepMind Control Suite. Top row: default backgrounds without any distractors. Middle row:
synthetic distractor backgrounds with ideal gas videos. Bottom row: natural distractor backgrounds with Kinetics videos.

C.2. Experiment Setting

We compared AIRS with PPO (Schulman et al., 2017) and IDAAC (Raileanu & Fergus, 2021). For each task, the agents
were trained for 1M frames and evaluated every 10K frames. Table 7 illustrates the hyperparemeters derived by grid search.
Any other hyperaparameters not mentioned here were set to the same values as the ones used for Procgen games in Table 4.

Table 7. Hyperparameters used to obtain the DeepMind Control Suite results.

Hyperparameter Value

Observation downsampling (84, 84)

Stacked frames 3

Environment steps 1000000

Episode steps 2048

Number of workers 1

Environments per worker 1

Learning rate 0.001 Cartpole Balance, Cheetah Run, and Walker Walk; 0.0001 Finger Spin
GAE coefficient 0.99

Action entropy coefficient ~ 0.0001 Cheetah Run; 0.0 Cartpole Balance and Finger Spin; 0.001 Walker Walk;
Epochs per rollout 0.0001 Cheetah Run; 10 Cartpole Balance and Finger Spin; 5 Walker Walk
Mini-batches per epoch 64 Cheetah Run; 16 Cartpole Balance and Finger Spin; 32 Walker Walk
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D. Intrinsic Reward Toolkit

D.1. Introduction

Intrinsic rewards have been widely used to improve the exploration, and generalization ability of RL agents (Ryan &
Deci, 2000; Simsek & Barto, 2006; Stadie et al., 2015; Bellemare et al., 2016; Ostrovski et al., 2017; Burda et al., 2019b;
Savinov et al., 2019; Raileanu et al., 2020; Yu et al., 2020; Yuan et al., 2022¢;b). However, there are great differences
in the implementation of various intrinsic reward modules, which cannot provide efficient and reliable baselines. To
facilitate our experiments and inspire subsequent research on intrinsic rewards, we developed a toolkit that provides
high-quality implementations of various intrinsic reward modules based on PyTorch. This toolkit is designed to be
highly modular and scalable. Each intrinsic reward module can be deployed in arbitrary algorithms in a plug-and-
play manner. Table 8 illustrates currently included implementations in the toolkit, and the code is available at https:
//github.com/RLE-Foundation/rllte.

Table 8. Included implementations of the intrinsic reward toolkit. (i) Here, e = ¢(8) is the learned representation of state s, and Nep, is
the episodic state visitation frequency. For ICM and RIDE, v (-) is learned by reconstructing the transition process. For RE3, RISE and
REVD, % (+) is a random and fixed encoder. (iv) GIRM is a variant of [CM that utilizes variational auto-encoder (Kingma & Welling,
2014) to reconstruct the transition process and computes the intrinsic reward in a end-to-end manner. (iii) For RND, f is the target network
that is fixed and randomly-initialized neural network, and f is the predictor network that aims to approximate f . (iv) The intrinsic reward
produced by NGU is composed of episodic state novelty and life-long state novelty. Here, o is life-long curiosity factor computed
following the RND method and C' is is a chosen maximum reward scaling. (v) For RE3 and RISE, € is the k-nearest neighbor of s in the
encoding space. For REVD, é is the k-nearest neighbor of s within the current episode, and € is the k-nearest neighbor of s within the
former episode. (vi) PseudoCounts is an ablation of NGU in which the life-long module is deprecated.

Intrinsic reward module Formulation Remark

PseudoCounts (Badia et al., 2020) I, =1/ \/m Count-based exploration

ICM (Pathak et al., 2017) I = || f(es, ar) — eri1]3 Curiosity-driven exploration

RND (Burda et al., 2019b) I = || f(se41) — f(ses1)2 Count-based exploration

GIRM (Yu et al., 2020) I = |8 — 1113 Curiosity-driven exploration

NGU (Badia et al., 2020) I, = min{max{a; }, C}/v/Nep(81+1) Memory-based exploration

RIDE (Raileanu et al., 2020) I = |lers1 — etll2//Nep(8e41) Significant state changes

RE3 (Seo et al., 2021) I =1 Zle log(||e; — €i]|2 + 1) Shannon entropy maximization

RISE (Yuan et al., 2022¢) I =1 SF (e — éifla) Rényi entropy maximization

REVD (Yuan et al., 2022c¢) I =1 ¥ (lles — &illa/|ler — €ill2)~*  Rényi divergence maximization
D.2. Usage Example

Due to the large differences in the calculation of different intrinsic reward methods, the toolkit has the following rules:

¢ The environments are assumed to be and ;

* Each intrinsic reward module has a function with a mandatory argument . It is a Python dict like
(Harris et al., 2020):

Key Data shape Data type

observations (n_steps, n_envs, *obs_shape) PyTorch Tensor
actions (n_steps, n_envs, *action_shape) PyTorch Tensor
rewards (n_steps, n_envs) PyTorch Tensor
next observations  (n_steps, n_envs, *obs_shape) PyTorch Tensor
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Take RE3 for instance, it computes the intrinsic reward for each state s based on the Euclidean distance between the state s
and its k-nearest neighbor within a mini-batch. Thus it suffices to provide data to compute the reward. The
following code provides a usage example of RE3:

"""Load package
from rllte.xplore.reward import RE3
from rllte.env import make_atari_env

import torch as th

[ '

if _ _name__ __main__

Environment setup
num_envs = 8
num_steps 128
device "cpu"

env = make_atari_env(
env_1id="PongNoFrameskip-v4",
num_envs=num_envs,
device=device

)

print(env.observation_space, env.action_space)

Create RE3 instance
re3 = RE3(
observation_space=env.observation_space,
action_space=env.action_space,
device=device

)

Compute intrinsic rewards
obs = th.rand(size=(num_steps, num_envs, *env.observation_space.shape))

intrinsic_rewards re3.compute_irs(samples={"'obs': obs})

print(intrinsic_rewards.shape, type(intrinsic_rewards))
print(intrinsic_rewards)

Figure 16. Code example of the intrinsic reward toolkit.
We are testing this toolkit on various tasks (e.g., OpenAl Gym and DeepMind Control Suite) and will establish a complete test

dataset to provide convenient baselines. More consequent results can be found at https://hub.rllte.dev/. We will
also continue to follow up the latest research on intrinsic reward-driven exploration and provide reliable implementations.
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