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Abstract

Efficiently training large language models requires parallelizing across hun-
dreds of hardware accelerators and invoking various compute and memory
optimizations. When combined, many of these strategies have complex
interactions regarding the final training efficiency. Prior work tackling
this problem did not have access to the latest set of optimizations, such as
FLASHATTENTION or sequence parallelism. In this work, we conduct a
comprehensive ablation study of possible training configurations for large
language models. We distill this large study into several key recommen-
dations for the most efficient training. For instance, we find that using a
micro-batch size of 1 usually enables the most efficient training layouts.
Larger micro-batch sizes necessitate activation checkpointing or higher
degrees of model parallelism and also lead to larger pipeline bubbles. Our
most efficient configurations enable us to achieve state-of-the-art training
efficiency results over a range of model sizes, most notably a Model FLOPs
utilization of 70.5% when training a LLAMA 13B model.

1 Introduction

The number of parameters and computational resources spent on training deep neural
networks is growing rapidly (Brown et al., 2020; Chowdhery et al., 2022; OpenAI, 2023).
The largest models consisting of hundreds of billions of parameters do not even fit onto
a single hardware accelerator. Thus, training these models requires various ways of re-
ducing the memory requirements, such as ZeRO (Rajbhandari et al., 2020), activation
checkpointing (Chen et al., 2016), and 3D-parallel (data, tensor, and pipeline parallel) train-
ing (Narayanan et al., 2021b). 3D parallelism, in particular, has been demonstrated to be
effective for the training of Transformer-based large language models (LLMs) with hundreds
of billions of parameters (Narayanan et al., 2021b).

However, training these models efficiently with 3D parallelism requires significant domain
expertise and extensive manual effort to determine the ideal configurations. These config-
urations not only need to combine data, model, and pipeline parallelism most efficiently,
but also consider complex interactions with other memory and compute optimizations.
FLASHATTENTION (Dao et al., 2022) in particular has had a notable impact since its release,
enabling us to train models at previously impossible degrees of training efficiency. In light
of these developments, we conduct a systematic study via a large-scale training efficiency
sweep of these interactions. We consider up to 256 GPUs and LLAMA models with up to 65
billion parameters.

We expand on previous work in this direction (Narayanan et al., 2021b), but include more
complex interactions, such as varying the micro-batch size alongside the 3D-parallel config-
uration. We also investigate the impact of newer methods, such as FLASHATTENTION (Dao
et al., 2022) and sequence parallelism (Korthikanti et al., 2022), finding that these can affect
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the optimal training configuration considerably. Our paper provides several actionable
insights for efficiently training LLMs. In summary, the contributions of our work are as
follows:

• We conduct a large sweep over possible configurations for efficiently training LLMs.

• Our work considers more degrees of freedom in the training configurations than pre-
vious work (Narayanan et al., 2021b) and incorporates important recent techniques
such as FLASHATTENTION and sequence parallelism.

• We distill our findings into several, actionable insights that enable a more efficient
large-scale training of LLMs.

2 Background

Training very large models requires the combination of various techniques for paralleliza-
tion across devices and other memory and compute optimizations. In the following, we
provide an overview of the techniques implemented in our in-house training framework
AA-Scaling, which we use to conduct the experiments in this paper. These techniques are
also implemented in various other frameworks (Zheng et al., 2022; Li et al., 2022; Shoeybi
et al., 2019; Rasley et al., 2020; Xu et al., 2021).

Data Parallelism. Data parallelism (Valiant, 1990) splits the dataset across GPUs during
training. Each GPU holds a full model copy, computing loss and gradients for its data
shard in parallel. Gradients are then synchronized across devices before weight updates.
However, this requires that the model fits entirely within a single GPU’s memory.

Tensor Parallelism. Tensor parallelism splits individual weight matrices across multiple
GPUs and computes the matrix multiplication in parallel across them. As each GPU only
holds a shard of the full matrix, we can fit larger models into memory. For Transformer mod-
els, the self-attention and MLP blocks can be parallelized this way with little communication
overhead (Shoeybi et al., 2019).

Pipeline Parallelism. Pipeline parallelism splits the model’s layers into subsequent stages
across GPUs. Activations are transferred between these stages. As each GPU only holds
some of the layers of the model, we can again fit larger models into memory. However, it can
introduce pipeline bubbles of GPU inactivity due to processing delays. PipeDream (Narayanan
et al., 2021a) is a scheduling algorithm to reduce these by using micro-batches and scheduling
their forward and backward computations across pipeline stages. By interleaving forward
and backward passes for each micro-batch, PipeDream reduces memory usage, discarding
activations after the specific micro-batch’s backward pass.

3D Parallelism. As shown by Megatron-LM (Shoeybi et al., 2019), data, tensor, and
pipeline parallelism can be combined, which is also referred to as 3D parallelism. In this
paper, we use model parallelism as an umbrella term for both tensor and pipeline parallelism.
With an efficient combination of these techniques, we can scale the training of models up to
1 trillion parameters (Narayanan et al., 2021b).

Sequence Parallelism. Sequence parallelism (Korthikanti et al., 2022) builds on tensor par-
allelism (Shoeybi et al., 2019) by further parallelizing normalization and dropout operations
along the sequence dimension. This reduces activation memory usage, especially for longer
sequences. Efficiently implemented, sequence parallelism does not introduce additional
communication overhead when used together with tensor parallelism.

Activation Checkpointing. Activation checkpointing (Chen et al., 2016) enables a tradeoff
between memory and compute. Rather than storing all activations for gradients, they are
recalculated during the backward pass. This enables fitting larger models into memory and
can improve training throughput by enabling larger batch sizes (Narayanan et al., 2021b).
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Model Seq. Len. GPUs TP sizes PP sizes MB Sizes Act. Checkpointing RMSNorm Kernel

13B 2k 64 {1, 2} {1, 2} {1, 2, 4, 8} {yes, no} {yes, no}

13B 8k 128 {1, 2, 4} {1, 2, 4} {1, 2, 4} {yes, no} {yes, no}

30B 2k 256 {1, 2, 4} {1, 2, 4} {1, 2, 4} {yes, no} {yes, no}

30B 8k 128 {2, 4} {2, 4, 8, 16} {1, 2, 4} {yes, no} {yes, no}

65B 2k 128 {2, 4, 8} {2, 4, 8} {1, 2, 4} {yes, no} {yes, no}

Table 1: Search space of our training efficiency sweep. We sweep over the Cartesian
product of all options given in set notation. In particular, we sweep over different tensor
parallelization (TP), pipeline parallelization (PP), and micro-batch (MB) sizes, and also
whether activation checkpointing was used. Models with a sequence length of 2k use a
global batch size of 2,048, whereas models with a sequence length of 8k use a global batch
size of 512. All runs use FLASHATTENTION-2. For runs using activation checkpointing, the
RMSNorm kernel caused an error. Therefore, this combination is omitted.

Fused Kernels. Fusing sequential operations into a single kernel enhances the efficiency
of memory-bound computations. By executing multiple operations concurrently within
a single kernel, data is loaded only once, minimizing memory accesses and optimizing
computational overhead.

Flash Attention. Dao et al. (Dao et al., 2022; Dao, 2023) introduce an IO-aware attention
algorithm that builds on kernel fusion. Their method provides speedups compared to a
conventional implementation by minimizing read/write operations between the slower
high-bandwidth memory and the quicker on-chip SRAM in GPUs. Additionally, selective
activation recomputation during the backward pass alleviates the O(n2) memory cost in
the sequence length.

3 Experimental Setup

Our experiments are conducted on up to 32 NVIDIA DGX A100 nodes, each equipped
with eight NVIDIA A100 80GB GPUs, resulting in a total of 256 GPUs. The GPUs within
each node are interconnected via a third-generation NVLink1, which provides 600GB/s
of bandwidth. Cross-node communication is facilitated by NVIDIA Mellanox 200Gb/s
HDR Infiniband2 connections. We utilize torch.distibuted package with NCCL for the
communication backend.

We chose the LLAMA (Touvron et al., 2023a) model architecture for our experiments, due
to its recent popularity. The LLAMA architecture introduces minor improvements over the
standard Transformer architecture (Vaswani et al., 2017), which have been incorporated
into other models over the past few years. The primary architecture modifications include
pre-normalization and RMSNorm (Zhang & Sennrich, 2019), the SwiGLU activation func-
tion (Shazeer, 2020), and rotary positional embeddings (Su et al., 2022). Our LLAMA models
use a 128k token vocabulary. The LLAMA models have a sequence length of 2k tokens. How-
ever, the growing trend of training LLMs with longer sequences (OpenAI, 2023; Touvron
et al., 2023b) led us to assess the training efficiency of our LLAMA models on sequences of
up to 8k in length. We use AdamW optimization (Loshchilov & Hutter, 2019) following the
training setup of LLAMA (Touvron et al., 2023a). All training runs are conducted with our
in-house large-scale training framework AA-Scaling using mixed-precision with bfloat16.
We use ZeRO-1 (Rajbhandari et al., 2020) to shard the optimizer states across all data parallel
ranks based on the results of previous scaling experiments (Narayanan et al., 2021b).

We aim to provide a systematic analysis of different combinations of parallelization strategies
and other memory and compute optimizations. To this end, we conducted a large-scale
training efficiency sweep. We ran this analysis for the following model types: LLAMA 13B (2k

1NVLink: nvidia.com/en-us/data-center/nvlink
2Infiniband: nvidia.com/en-us/networking/infiniband-switching
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Influence of Optimized Implementations on Model FLOPs Utilization

FlashAttention2 + RMS Kernel FlashAttention2 FlashAttention1.0.8 CUDA Kernel PyTorch

Figure 1: Comparison of the MFU with different attention layer optimizations. The optimal
3D layout was selected for each respective setting. Each optimal layout is annotated with its
(micro-batch size, tensor parallelism size, pipeline parallelism size). The kernel
from Megatron-LM failed to operate with an 8k sequence length.

& 8k sequence length), LLAMA 30B (2k & 8k sequence length), and LLAMA 65B (2k sequence
length). Depending on the model size and availability of compute, we used 64 to 256 GPUs.
Table 1 lists the different configuration options for each of the model types. For our training
efficiency sweep, we build the Cartesian product of possible options and benchmark each
individual configuration. For each configuration, we train for 10 global steps and measure
the Model FLOPS Utilization (MFU) (Chowdhery et al., 2022). We exclude the first step, as
its performance is significantly impacted by a warm-up phase, and report the mean of the
last 9 steps.3 We chose MFU (Chowdhery et al., 2022) over other metrics such as measured
hardware TFLOPS, since the latter are system- and implementation-dependent. A higher
MFU results in higher throughput and shorter training duration, displaying its efficiency in
evaluating computational performance.

Specifically, we compare different tensor parallelization, pipeline parallelization, and micro-
batch sizes, as well as the use of activation checkpointing (yes/no). Since we operate with a
fixed number of GPUs and global batch size for each model, the data parallelization size and
the number of necessary accumulation steps directly follow from the other specified options
and are automatically calculated. For example, using 128 GPUs with a tensor parallelization
size of 4 and pipeline parallelization size of 2 results in a rank 16 data parallelization (with
4 × 2 × 16 = 128), each with 2 pipeline stages and each pipeline stage sharded across 4
tensor parallel splits. We provide the full results of our training efficiency sweep in Table B.1.

Additionally, we conducted a preliminary sweep over different attention kernels
(native Torch implementation, Megatron-LM kernel4, FLASHATTENTION-1.0.8, and
FLASHATTENTION-2). Based on the results, we concluded that FLASHATTENTION-2 is
superior and thus always used it for our main sweep.

4 Efficient LLM Training Analysis

4.1 Fused Kernels and Flash Attention

Our evaluation of FLASHATTENTION expands on the original papers (Dao et al., 2022;
Dao, 2023) by testing larger model sizes and up to 256 GPUs, compared to the prior focus
on models up to 2.7B parameters on a single node. We benchmark against an optimized
baseline, the Megatron-LM softmax attention kernel, and assess an optimized RMSNorm
kernel from the FLASHATTENTION repository.

In Figure 1, we present results from our main and preliminary sweeps over attention
implementations, detailed in Section 3. We compare FLASHATTENTION-2, FLASHATTEN-

3Our detailed MFU calculation is reported in Appendix A.1.
4Megatron-LM softmax attention kernel: from here (Date: 25 July 2024)
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Figure 2: Comparing MFU of the optimal 3D layout with and without activation checkpoint-
ing. LLAMA 30B with 8k sequence length did not fit into memory without checkpointing.
The reported results do not use the RMSNorm kernel. Each optimal layout is annotated
with its (micro-batch size, tensor parallelism size, pipeline parallelism size).

TION-1.0.8, the Megatron-LM kernel, and the standard PyTorch implementation, noting
the fused kernel’s limit of 2,048 tokens sequence length. Given the poor performance of
pure PyTorch attention in our LLAMA 13B evaluation, we excluded it for larger models. For
LLAMA 65B and 30B with 8k sequence length, we focused solely on FLASHATTENTION.

Unsurprisingly, we find that FLASHATTENTION vastly outperforms native PyTorch. How-
ever, we also find that FLASHATTENTION significantly outperforms the kernel from
Megatron-LM. Between the two different FLASHATTENTION versions, FLASHATTENTION-
2 outperforms FLASHATTENTION-1.0.8 by 4 to 13 percentage points across model sizes.
FLASHATTENTION-1.0.8 already contains many of the optimizations introduced in the
FLASHATTENTION-2 paper, which measures a 2× improvement (Dao, 2023).

It is important to note that FLASHATTENTION’s improvements are two-fold: FLASHAT-
TENTION’s improved tiling method for an efficient IO-aware SRAM cache utilization and
reduced memory requirements through its activation recomputation approach in the atten-
tion block. Notably, all best-performing FLASHATTENTION layouts reported in Figure 1 do
not make use of activation checkpointing, thereby also benefiting from FLASHATTENTION’s
own activation recomputation.

We further evaluate the effect of FLASHATTENTION’s optimized RMSNorm kernel in Fig-
ure 1. The RMSNorm kernel provides a significant boost in training efficiency, up to 14
percentage points compared to FLASHATTENTION-2 without the RMSNorm kernel. No-
tably, with the use of the kernel, we can fit the entire LLAMA 13B model into a single GPU
without model parallelization during training (although we still employ ZeRO-1 and shard
the optimizer states). In general, the RMSNorm kernel allows us to choose more efficient
parallelization layouts due to its memory savings. We do not have results combining ac-
tivation checkpointing with the RMSNorm kernel, as the combination caused an error in
our experiments. We control for this and only consider runs without the RMSNorm kernel
whenever necessary for a fair comparison.

4.2 Activation Checkpointing

In Figure 2, we report the MFU of the best configurations across model sizes, with activation
checkpointing of every layer and without. Overall, not using activation checkpointing
while compensating with smaller batch sizes or higher model parallelism achieves the best
training throughputs. We exclude runs with the RMSNorm kernel for a fair comparison due
to compatibility issues with checkpointing.
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Figure 3: MFU of the best-performing run configurations at different fixed micro-batch
sizes, visualized by the (activation checkpointing, tensor parallelism size, pipeline
parallelism size) triple. The reported results do not use the RMSNorm kernel.

For the LLAMA 30B with 8k sequence length, activation checkpointing was necessary to fit
the model into memory, even with tensor parallelism up to 4 and pipeline parallelism up to
16. The tensor parallelism could not be increased because the model has 52 attention heads,
not divisible by 8. In Section 4.1, we show that adding the RMSNorm kernel further reduces
memory, making activation checkpointing unnecessary for the best throughput.5

It is crucial to underline that efficient performance without activation checkpointing is only
feasible due to FLASHATTENTION. Without it, models larger than LLAMA 13B required
activation checkpointing due to memory constraints despite extensive parallelization.

FLASHATTENTION already uses selective activation checkpointing in the attention block,
suggesting a need for more targeted activation checkpointing in large-scale Transformer
training. Previous work (Korthikanti et al., 2022) also suggests focusing on selective re-
computation. This was addressed by a FLASHATTENTION-aware checkpointing strategy
in recent research (Li et al., 2023) and the incorporation into NeMO-Megatron Harper et al..
Future work could benchmark the performance and memory efficiency of large-scale model
training against frameworks in combination with other parallelization strategies.

4.3 Micro-batch size

In this section, we evaluate the tradeoff between the micro-batch size, required de-
gree of model (tensor or pipeline) parallelism, and activation checkpointing. Previous
work (Narayanan et al., 2021b) benchmarked different micro-batch sizes with fixed de-
grees of tensor and pipeline parallelism, showing that larger micro-batch sizes yield higher
throughput. However, a smaller micro-batch size may enable a different, more efficient

5Detailed results are reported in Appendix B.5.
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Figure 4: MFU for various model and pipeline parallel configurations for the LLAMA 13B
with 8k sequence length, LLAMA 30B, and LLAMA 65B models. Only runs with a micro-
batch size of 1, activation checkpointing disabled, FLASHATTENTION-2, and the RMS norm
kernel are included; runs that ran out of memory are excluded. The LLAMA 13B and the
LLAMA 30B with 8k sequence length models are excluded due to limited model parallel
configuration options in our sweep.

parallelization configuration. Also, the degree of tensor and pipeline parallelism are often
not fixed in practice.

In Figure 3, we present the optimal (activation checkpointing, tensor parallelism
size, pipeline parallelism size) configuration for each assessed model type. To ensure
a fair comparison, runs with the RMSNorm kernel are excluded due an error when coupled
with checkpointing. For all model types, a micro-batch size of 1 achieves the highest MFU.
Generally, smaller micro-batch sizes correlate with better MFU performance. Models with
an 8k sequence length did not fit into memory with a micro-batch size over 2.

Thus, a micro-batch size of 1 is beneficial in most scenarios, attributable to three factors:

1. Minimal Degree of Model Parallelization: The most efficient training typically
requires the least amount of model (tensor or pipeline) parallelization, which is
achieved when the micro-batch size is smallest.

2. Avoiding Activation Checkpointing: For some models (e.g., LLAMA 65B), a micro-
batch size of 1 was the only configuration allowing training without activation
checkpointing. As discussed in the previous section, not using activation check-
pointing often allows for the highest throughput configurations. The LLAMA 30B
8k model did not fit into memory without using the RMSNorm kernel.

3. Reduced Pipeline Bubble Time: A smaller micro-batch size reduces the time spent
in the pipeline bubble at the beginning and end of a batch. We already use the
better-than-naive Pipedream 1F1B scheduling method (Narayanan et al., 2021a)
discussed in Section 2.

4.4 Tensor vs. Pipeline Parallelism

Narayanan et al. (2021b) ablation studies show that neither tensor nor pipeline parallelism,
when used in isolation, can achieve the performance of utilizing both at the same time.
Our empirical data, especially from the LLAMA 65B model – where higher degrees of
parallelism are necessary – validate this to some extent even in combination with the
newly introduced optimizations, as depicted in Figure 4. Their results suggest that an
even distribution between the tensor and pipeline parallelism size is optimal, up until
the tensor parallelism size reaches the GPU limit in a single node. In contrast, our results
favor pipeline parallelism over tensor parallelism. The LLAMA 65B model performed
best with a (tensor, pipeline) parallelism size of (2, 8) compared to an evenly distributed
(4, 4). Also, the (8, 2) configuration was considerably less efficient. This trend was also
observed in the LLAMA 13B with 8k sequence length and LLAMA 30B model, where the
configurations with a higher pipeline parallel size outperform the configurations with a
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larger tensor parallelism size. Our findings differ from Narayanan et al. (2021b) due to the
inclusion of recent optimizations like FlashAttention-2 and the RMS norm kernel, which
significantly impact the efficiency of parallelism configurations. The training efficiency
measured by Megatron-LM (Shoeybi et al., 2019) was comparable when the tensor and
pipeline parallelism sizes were interchanged.

4.5 Sequence Parallelism
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Figure 5: Comparing MFU of the optimal 3D layout with and without sequence parallelism.
The reported results use the RMSNorm kernel. Each optimal layout is annotated with its
(micro-batch size, tensor parallelism size, pipeline parallelism size).

Based on the findings from previous sections, we performed an additional efficiency sweep
to assess the impact of sequence parallelism. We limited the search space to consistently
use FLASHATTENTION-2 and the RMSNorm kernel, while omitting the use of activation
checkpointing. Furthermore, we restricted the number of GPUs for each model type due to
computational constraints. The full configuration sweep is documented in Table 9.

In Figure 5, we report the MFU of the best configurations across model sizes, both with
sequence parallelism enabled or disabled. For the LLAMA 13B and 30B models with a 2k
sequence length, top configurations do not use tensor parallelism, hence showing no effect
from sequence parallelism. For the 13B model with an 8k sequence length, employing a
tensor parallelism size of 2 shows no training efficiency improvement. However, for the 30B
with 8k sequence length and the 65B models, we can see 2-6 percentage point improvements
when using sequence parallelism. In both cases, sequence parallelism enables a lower degree
of model parallelization due to reduced memory needs, which leads to higher training
efficiency.

Therefore, we conclude that the use of sequence parallelism, paired with other optimiza-
tions, only shows a notable difference in training efficiency for model sizes exceeding 30B
parameters or 2k sequence length.

4.6 End-to-End Performance

We benchmark the recommendations distilled from our extensive sweeps against other
publicly reported results in Table 2. For our runs using the in-house AA-Scaling frame-
work, we report the MFU of the best configuration for each model size, following our
recommendations.

We evaluate against publicly available benchmarks from MosaicML6, Megatron-
DeepSpeed (Korthikanti et al., 2022), Meta’s LLAMA (Touvron et al., 2023a), and

6MosaicML MPT Training Benchmarks: from here (Date: 25 July 2024)
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Model GPUs Seq. Len. Batch Size MFU (↑)

AA-Scaling LLAMA 13B (ours) 64 2048 2048 70.5%
MPT 13B 64 2048 2048 52.5%
Megatron-LM 18B† 256 2048 1024 34.2%

AA-Scaling LLAMA 13B (ours) 64 8192 512 62.7%
MPT 13B 8 8192 120 52.8%

AA-Scaling LLAMA 30B (ours) 64 2048 2048 61.9%
MPT 30B 64 2048 3072 52.9%
Megatron-DeepSpeed 22B 8 2048 4 41.5%
Megatron-LM 39B† 512 2048 1536 34.5%

AA-Scaling LLAMA 30B (ours) 64 8192 512 60.2%
MPT 30B 8 8192 168 42.6%

AA-Scaling LLAMA 65B (ours) 64 2048 2048 59.6%
MPT 70B 64 2048 2048 53.3%
LLAMA 65B by Meta† 2048 2048 2048 49.4%
Megatron-LM 76B† 1024 2048 1792 34.7%

Table 2: Best achieved end-to-end training efficiency numbers using our recommendations
compared to other public training efficiency numbers. We group across comparable model
sizes and sequence length. Batch size refers to the Global Batch size. †: MFU numbers were
calculated by us based on published training times, as detailed in Appendix A. We provide
the exact configurations of our runs included in this table in Appendix B.1.

Megatron-LM (Narayanan et al., 2021b). Other frameworks were excluded from our compar-
isons, because they either lacked publicly available training efficiency scores, used entirely
different hardware, or trained models with vastly different parameter sizes. To the best of
our knowledge, we have gathered the best performing, publicly available training efficiency
benchmarks for LLMs with comparable architectures and parameter counts.

In general, our configurations set new benchmarks for all assessed model sizes, with MFU
improvements of 6–18 MFU percentage points over the previous state-of-the-art. Noticeably
our LLAMA 13B model achieves an MFU of 70.5%, outperforming the MPT and Megratron-
LM models. For the 13B and 30B models with an 8k sequence length, our only point of
comparison are the models by MosaicML’s framework. Here, we outperform the MPT
models by 9–17 percentage points. Within the 65B parameter model range, we outperform
MPT-70B, the original LLAMA 65B model by Meta, and the Megatron-LM 76B model with
an MFU of 59.6% compared to 53.3%, 49.4%, and 34.7%, respectively.

Note on comparability. Most of the comparisons in Table 2 are not one-to-one, due to
further differences such as model architecture, employed global batch size, number of used
GPUs, and hardware interconnect. For example, the MPT model family employs additional
efficiency optimizations, such as the use of ALiBi (Press et al., 2022) instead of RoPE (Su
et al., 2022). On the other hand, our models use a 128k token vocabulary, which can result
in a more optimistic MFU estimate compared to smaller vocabulary sizes. The comparison
made in Table 2 is not meant to be directly one-to-one, but a wholesale evaluation of the
achieved end-to-end training efficiency. We hope to showcase that a careful evaluation of the
training layout and optimizations used can enable a significant boost to training efficiency.

5 Conclusion

We conducted an exhaustive search over possible combinations of tensor, pipeline, and
data parallelism layouts, fused kernels, FLASHATTENTION, activation checkpointing, micro-
batch sizes, and sequence parallelism. Our experiments are designed to reflect real-world
scenarios. We expect that the distilled findings of our experiments will help researchers and
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practitioners to perform more efficient training runs on similar frameworks by using similar
3D parallel training configurations, without having to repeat our extensive analysis:

• Use a micro-batch size of 1 to enable the least degree of model parallelization, to
avoid activation checkpointing, and to reduce pipeline bubbles.

• Prefer increasing the degree of tensor and pipeline parallelization over the use of
activation checkpointing.

• Only scale the micro-batch size when you cannot further reduce the degree of model
parallelization.

• Use sequence parallelization for models exceeding 30B parameters and 2k sequence
length.

We experimentally verify that the efficacy of the FLASHATTENTION-2 kernel remains as
we scale the model size to tens of billions of parameters and to training on multiple nodes.
Additionally, we compared the end-to-end training efficiency of our most efficient configu-
rations against several other frameworks. We achieved state-of-the-art efficiency in five out
of the five model configurations we evaluated, reaching up to 70.5% MFU.

Future work could expand our recommendations on a broader range of computational
frameworks and hardware setups. This involves examining the applicability of our findings
with different parallelization strategies such as various ZeRO stages and FSDP, as well as
their performance on recently introduced hardware such as NVIDIA’s H100 GPUs and
GH200 superchips. Since those offer improved support for fp8 precision and better data
transfer efficiency, it is necessary to re-evaluate and possibly refine training strategies to
take full advantage of these advancements.

We publish the full data of our sweeps at github.com/JohannesHa/COLM-submission-
efficient-parallelization-layouts.

Limitations

Hardware generalization. We deliberately choose the Llama-style model architecture
and Nvidia A100 GPU nodes as our setting: These are widely used, giving our findings
a large target audience. Further, the currently deployed clusters will remain in use for
some time. We also believe that our findings can be extrapolated to clusters with similar
accelerators and VRAM sizes (e.g., 80GB devices), such as clusters based on H100s with
Infiniband interconnect. However, different hardware characteristics, such as the Nvidia
GH200 and its coherent memory model, may lead to different conclusions. For example,
these characteristics can make offloading more beneficial. As we only benchmark on Nvidia
A100 80GB GPUs, we do not derive “hardware scaling laws“. We recommend running a
small-scale performance benchmark based on the recommendations presented in this work
on different systems.

Applicability to other Model Architectures and Domains. We perform our training
analysis using a Transformer language model with the LLAMA architecture. Some of the
benchmarked optimizations are specific to the general Transformer architecture, such as
FLASHATTENTION, while others are tailored to specific architectural design choices, such as
RMSNorm. In our experiments, we only considered the language modeling task. Applica-
tions of the Transformer architecture to other domains, such as vision (Dosovitskiy et al.,
2021), might also benefit from our recommendations. However, we do not experimentally
verify this.

Additional methods not considered in this study. We evaluate 3D-parallel training with
ZeRO-1. Using different ZeRO stages or FSDP (Zhao et al., 2023) might enable even more
efficient configurations due to the saved memory. In a similar vein, employing selective
activation checkpointing (Korthikanti et al., 2023) to improve the interplay the FLASHAT-
TENTION’s own activation checkpointing might enable more efficient configurations.
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A Measuring Model Training Efficiency Calculations

A.1 Model FLOPs Utilization (MFU)

The calculation of Model FLOPs Utilization (MFU) follows that of PaLM (Chowdhery
et al., 2022). We consider the theoretical peak matrix multiplication throughput of P FLOPs
per second (e.g., A100 GPUs with 312 peak matmul TFLOPs). Then, the model FLOPs
utilization is the ratio of the achieved throughput in tokens per second to the theoretical
peak throughput R = P/(6N + 12LHQT), where L is the number of layers, H the number
of attention heads, Q the attention head size, and T the sequence length. Note that Q × H is
equal to the hidden layer size of the model.

class HardwareType(Enum):
A100 = "a100"
H100 = "h100"
RTX3090 = "rtx3090"

@property
def max_tflops(self):

"""
Mappings for Maximum Throughput numbers of each GPU.
Only includes FP16 for now.
"""
max_tflop_mapping = {"a100": 312e12, "h100": 989.4e12, "rtx3090": 35.58e12}
return max_tflop_mapping[self.value]

def get_model_flop_utilizations_palm(
iter_time_s: float,
parameter_count: int,
topology: Any,
architecture: Any,
hardware: HardwareType = HardwareType.A100,

):
tokens_per_second = (

topology.config.global_batch_size * architecture.sequence_length
) / iter_time_s
theoretical_peak_matmul_throughput = (

hardware.max_tflops * topology.config.world_size
)
attention_flops = (

12
* architecture.num_layers
* architecture.hidden_size
* architecture.sequence_length

)
model_flops = 6 * parameter_count + attention_flops
theoretical_peak_throughput = theoretical_peak_matmul_throughput / model_flops
model_flops_utilization = tokens_per_second / theoretical_peak_throughput
return model_flops_utilization

A.2 LLAMA MFU

From LLAMA paper (Touvron et al., 2023a):

"When training a 65B-parameter model, our code processes around 380
tokens/sec/GPU on 2048 A100 GPU with 80GB of RAM. This means that
training over our dataset containing 1.4T tokens takes approximately 21
days."

LLAMA 65B model FLOPs utilization (MFU):

tokens_per_second = 380 * 2048
theoretical_peak_matmul_throughput = (

312e12 * 2048
)
attention_flops = (

12
* 80
* 8192
* 2048

)
model_flops = 6 * 65e9 + attention_flops
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theoretical_peak_throughput = theoretical_peak_matmul_throughput / model_flops
model_flops_utilization = tokens_per_second / theoretical_peak_throughput

LLAMA 65B MFU = 49.46%

A.3 Megatron-LM MFU

Based on Megatron-LM’s (Narayanan et al., 2021b) provided formula, the end-to-end
training time is given by ≈ 8TP

nX , where T represents the number of tokens, P the number
of parameters, n the number of GPUs, and X the achieved TFLOPs per GPU. Since they
provide the achieved TFLOPs per GPU, we can determine the step time through the formula.
Subsequently, we can compute the MFU using the specified architecture configuration of
the model.

Megatron-LM 18B:

Step time = 8·1024·2048·18.4·109

256·135·1012 s = 8.93s

tokens_per_second = (1024 * 2048) / 8.93
theoretical_peak_matmul_throughput = (

312e12 * 256
)
attention_flops = (

12
* 40
* 6144
* 2048

)
model_flops = 6 * 18.4e9 + attention_flops
theoretical_peak_throughput = theoretical_peak_matmul_throughput / model_flops
model_flops_utilization = tokens_per_second / theoretical_peak_throughput

Megatron-LM 18B MFU = 34.24%

Megatron-LM 39B:

Step time = 8·1536·2048·39.1·109

512·138·1012 s = 13.92s

tokens_per_second = (1536 * 2048) / 13.92
theoretical_peak_matmul_throughput = (

312e12 * 512
)
attention_flops = (

12
* 48
* 8192
* 2048

)
model_flops = 6 * 39.1e9 + attention_flops
theoretical_peak_throughput = theoretical_peak_matmul_throughput / model_flops
model_flops_utilization = tokens_per_second / theoretical_peak_throughput

Megatron-LM 39B MFU = 34.56%

Megatron-LM 76B:

Step time = 8·1792·2048·76.1·109

1024·140·1012 s = 15.59s

tokens_per_second = (1792 * 2048) / 15.59
theoretical_peak_matmul_throughput = (

312e12 * 1024
)
attention_flops = (

12
* 60
* 10240
* 2048

)
model_flops = 6 * 76.1e9 + attention_flops
theoretical_peak_throughput = theoretical_peak_matmul_throughput / model_flops
model_flops_utilization = tokens_per_second / theoretical_peak_throughput

Megatron-LM 76B MFU = 34.76%
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B Training Efficiency Sweeps

B.1 End-to-End Best-Performing Runs

Model GPUs Step Time MFU MB Size TP size PP Size Sequence Parallel

AA-Scaling LLAMA 13B 64 3.32 70.57 1 1 1 False
AA-Scaling LLAMA 13B 8k seq len 64 34.84 62.78 1 1 2 True
AA-Scaling LLAMA 30B 64 72.00 61.98 1 1 4 False
AA-Scaling LLAMA 30B 8k seq len 64 84.37 60.22 1 4 2 True
AA-Scaling LLAMA 65B 64 147.02 59.62 1 2 4 True

Table 3: Configurations for the end-to-end performance results of Table 2. All best-
performing layouts use FLASHATTENTION-2, the RMS norm kernel, and do not make
use of activation checkpointing.

B.2 LLAMA 13B

Step Time MFU Activation Kernel MB Size TP Size PP Size

26.54 70.57 disabled flash_attn2 + RMS kern. 1 1 1
29.70 63.05 disabled flash_attn2 + RMS kern. 2 2 1
31.06 60.26 disabled flash_attn2 + RMS kern. 1 1 2
31.29 59.82 disabled flash_attn2 + RMS kern. 1 2 1
33.11 56.55 disabled flash_attn2 + RMS kern. 2 1 2
33.58 55.71 disabled flash_attn1.0.8 1 1 2
33.70 55.53 disabled flash_attn2 1 1 2
33.90 55.19 disabled flash_attn2 2 2 1
34.84 53.69 disabled flash_attn2 + RMS kern. 1 2 2
35.05 53.37 disabled flash_attn2 + RMS kern. 2 2 2
35.54 52.64 disabled flash_attn2 1 2 1
36.66 51.04 every_layer flash_attn2 4 1 1
36.69 51.02 every_layer flash_attn2 2 1 1
37.51 49.89 every_layer flash_attn2 1 1 1
37.57 49.80 disabled flash_attn2 + RMS kern. 4 2 2
37.71 49.59 disabled flash_attn1.0.8 2 2 2
38.27 48.86 disabled flash_attn2 2 1 2
39.64 47.19 disabled flash_attn2 1 2 2
39.83 46.97 disabled flash_attn2 2 2 2
40.25 46.46 disabled flash_attn1.0.8 1 2 2
40.56 46.11 disabled flash_attn1.0.8 1 2 1
41.81 44.74 disabled flash_attn1.0.8 2 2 1
42.30 44.21 every_layer flash_attn1.0.8 2 1 2
42.36 44.14 every_layer flash_attn1.0.8 1 1 2
42.54 43.96 every_layer flash_attn1.0.8 4 1 2
43.13 43.36 every_layer flash_attn1.0.8 4 1 1
43.24 43.26 every_layer flash_attn2 8 2 1
43.36 43.13 disabled fused 1 2 2
43.89 42.61 every_layer flash_attn1.0.8 2 1 1
44.10 42.40 every_layer flash_attn2 4 2 1
44.13 42.39 every_layer flash_attn2 1 1 2
44.35 42.18 every_layer flash_attn1.0.8 1 1 1
44.45 42.09 every_layer flash_attn2 2 2 1
44.72 41.82 every_layer flash_attn1.0.8 8 1 2
45.96 40.69 disabled fused 1 2 1
46.86 39.90 every_layer fused 2 1 2
47.12 39.72 every_layer flash_attn2 1 2 1
47.09 39.71 every_layer flash_attn1.0.8 4 2 1
47.17 39.64 every_layer fused 4 1 2
47.37 39.51 every_layer flash_attn2 2 1 2
47.50 39.36 every_layer flash_attn1.0.8 2 2 1
47.82 39.11 every_layer fused 4 1 1
47.95 39.00 every_layer fused 1 1 2
48.93 38.23 every_layer fused 1 1 1
49.35 37.89 disabled torch 1 2 2
49.39 37.87 every_layer fused 2 1 1
49.77 37.57 every_layer flash_attn1.0.8 4 2 2
50.05 37.37 every_layer flash_attn1.0.8 1 2 1
50.16 37.28 every_layer flash_attn1.0.8 8 2 2
51.44 36.41 every_layer flash_attn1.0.8 2 2 2
51.79 36.11 every_layer fused 4 2 1
52.55 35.59 disabled torch 1 2 1
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53.50 34.95 every_layer flash_attn1.0.8 1 2 2
53.57 34.94 every_layer flash_attn2 2 2 2
54.17 34.52 every_layer torch 1 1 2
54.35 34.40 every_layer fused 2 2 1
54.56 34.27 every_layer fused 2 2 2
55.13 33.95 every_layer fused 4 2 2
55.35 33.78 every_layer torch 4 1 2
55.61 33.64 every_layer flash_attn2 4 1 2
56.21 33.41 every_layer torch 2 1 2
55.99 33.40 every_layer torch 1 1 1
56.61 33.06 every_layer flash_attn2 4 2 2
57.07 32.78 every_layer torch 2 1 1
57.25 32.66 every_layer fused 1 2 1
58.92 31.77 every_layer fused 1 2 2
60.24 31.04 every_layer torch 4 2 1
60.75 30.78 every_layer torch 2 2 1
62.60 29.87 every_layer torch 1 2 1
62.69 29.83 every_layer torch 2 2 2
63.28 29.58 every_layer torch 4 2 2
65.25 28.66 every_layer torch 1 2 2
65.47 28.57 every_layer flash_attn2 8 2 2
72.82 25.69 every_layer flash_attn2 8 1 2
OOM Error disabled flash_attn2 + RMS kern. 8 2 1
OOM Error disabled flash_attn2 + RMS kern. 8 1 2
OOM Error disabled flash_attn2 + RMS kern. 4 1 2
OOM Error disabled flash_attn2 + RMS kern. 2 1 1
OOM Error disabled flash_attn2 + RMS kern. 4 1 1
OOM Error disabled flash_attn2 + RMS kern. 4 2 1
OOM Error disabled flash_attn2 + RMS kern. 8 1 1
OOM Error disabled flash_attn2 8 2 2
OOM Error disabled flash_attn2 4 2 1
OOM Error disabled flash_attn2 8 1 2
OOM Error disabled flash_attn2 4 1 2
OOM Error disabled flash_attn2 4 1 1
OOM Error disabled flash_attn2 8 2 1
OOM Error disabled flash_attn2 2 1 1
OOM Error disabled flash_attn2 1 1 1
OOM Error disabled flash_attn2 4 2 2
OOM Error every_layer torch 8 2 2
OOM Error disabled torch 8 2 2
OOM Error every_layer fused 8 2 2
OOM Error disabled fused 8 2 2
OOM Error disabled flash_attn1.0.8 8 2 2
OOM Error disabled torch 4 2 2
OOM Error disabled fused 4 2 2
OOM Error disabled flash_attn1.0.8 4 2 2
OOM Error disabled torch 2 2 2
OOM Error disabled fused 2 2 2
OOM Error every_layer torch 8 1 2
OOM Error disabled torch 8 1 2
OOM Error every_layer fused 8 1 2
OOM Error disabled fused 8 1 2
OOM Error disabled flash_attn1.0.8 8 1 2
OOM Error disabled torch 4 1 2
OOM Error disabled fused 4 1 2
OOM Error disabled flash_attn1.0.8 4 1 2
OOM Error disabled torch 2 1 2
OOM Error disabled fused 2 1 2
OOM Error disabled flash_attn1.0.8 2 1 2
OOM Error disabled torch 1 1 2
OOM Error disabled fused 1 1 2
OOM Error every_layer torch 8 2 1
OOM Error disabled torch 8 2 1
OOM Error every_layer fused 8 2 1
OOM Error disabled fused 8 2 1
OOM Error every_layer flash_attn1.0.8 8 2 1
OOM Error disabled flash_attn1.0.8 8 2 1
OOM Error disabled torch 4 2 1
OOM Error disabled fused 4 2 1
OOM Error disabled flash_attn1.0.8 4 2 1
OOM Error disabled torch 2 2 1
OOM Error disabled fused 2 2 1
OOM Error every_layer torch 8 1 1
OOM Error disabled torch 8 1 1
OOM Error every_layer fused 8 1 1
OOM Error disabled fused 8 1 1
OOM Error every_layer flash_attn1.0.8 8 1 1
OOM Error disabled flash_attn1.0.8 8 1 1
OOM Error every_layer torch 4 1 1
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OOM Error disabled torch 4 1 1
OOM Error disabled fused 4 1 1
OOM Error disabled flash_attn1.0.8 4 1 1
OOM Error disabled torch 2 1 1
OOM Error disabled fused 2 1 1
OOM Error disabled flash_attn1.0.8 2 1 1
OOM Error disabled torch 1 1 1
OOM Error disabled fused 1 1 1
OOM Error disabled flash_attn1.0.8 1 1 1

Table 4: Performance analysis of a LLAMA 13B model trained on 64 A100 GPUs with the
AA-Scaling codebase: A comprehensive sweep of 3D parallel layout configurations. The
table displays variations in step time and MFU across different activation checkpointing
types, kernels, micro batch (MB) sizes, tensor parallel (TP) sizes, and pipeline parallel (PP)
sizes. The analysis also includes Out of Memory (OOM) error occurrences.

B.3 LLAMA 13B with 8k sequence length

Step Time MFU Activation Kernel MB Size TP Size PP Size

18.41 59.41 disabled flash_attn2 + RMS kern. 1 2 2
19.32 56.61 disabled flash_attn2 + RMS kern. 1 2 4
21.36 51.21 disabled flash_attn2 + RMS kern. 1 4 1
21.94 49.93 disabled flash_attn2 + RMS kern. 1 4 2
21.93 49.88 disabled flash_attn2 1 2 4
23.46 46.90 disabled flash_attn2 + RMS kern. 1 4 4
23.78 46.27 disabled flash_attn2 + RMS kern. 2 4 4
24.62 44.42 every_layer flash_attn2 1 1 2
24.84 44.03 disabled flash_attn1.0.8 1 2 4
25.99 42.08 disabled flash_attn2 1 4 2
26.29 41.81 every_layer flash_attn2 1 1 4
26.63 41.08 every_layer flash_attn2 1 2 1
26.94 40.59 disabled flash_attn2 1 4 4
27.42 39.89 every_layer flash_attn2 1 2 2
27.53 39.73 every_layer flash_attn2 2 1 2
28.08 38.94 every_layer flash_attn2 1 2 4
28.15 38.85 every_layer flash_attn2 1 1 1
28.52 38.34 disabled flash_attn1.0.8 1 4 2
28.73 38.06 every_layer flash_attn1.0.8 1 1 2
29.08 37.60 every_layer flash_attn2 2 1 4
29.19 37.49 every_layer flash_attn2 2 2 2
29.21 37.43 disabled flash_attn1.0.8 1 4 4
30.03 36.42 every_layer flash_attn1.0.8 1 1 4
30.08 36.36 every_layer flash_attn2 2 2 4
30.14 36.28 every_layer flash_attn1.0.8 1 2 1
31.65 34.55 every_layer flash_attn1.0.8 2 1 2
31.86 34.32 every_layer flash_attn1.0.8 1 2 2
32.13 34.04 every_layer flash_attn2 2 4 1
32.57 33.58 every_layer flash_attn2 1 4 1
32.91 33.23 every_layer flash_attn1.0.8 2 2 2
34.75 32.47 every_layer flash_attn1.0.8 1 2 4
34.33 31.85 every_layer flash_attn1.0.8 2 1 4
34.61 31.60 every_layer flash_attn1.0.8 2 2 4
34.64 31.58 every_layer flash_attn2 2 4 2
34.76 31.46 every_layer flash_attn2 1 4 2
35.86 30.49 every_layer flash_attn1.0.8 2 4 1
36.07 30.32 every_layer flash_attn2 2 4 4
36.33 30.10 every_layer flash_attn1.0.8 1 4 1
36.71 29.92 every_layer flash_attn2 1 4 4
37.63 29.06 every_layer flash_attn1.0.8 1 4 2
38.26 28.59 every_layer flash_attn1.0.8 2 4 2
38.61 28.33 every_layer flash_attn1.0.8 1 4 4
39.76 27.50 every_layer flash_attn1.0.8 2 4 4
51.95 21.05 every_layer torch 1 2 1
54.97 19.89 every_layer torch 1 2 2
55.08 19.85 every_layer torch 1 1 2
58.37 18.73 every_layer torch 1 4 1
58.61 18.66 every_layer torch 1 2 4
59.00 18.56 every_layer torch 1 1 4
60.64 18.03 every_layer torch 1 4 2
62.00 17.64 every_layer torch 2 4 2
64.25 17.02 every_layer torch 2 2 4
64.48 16.96 every_layer torch 1 4 4
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66.48 16.45 every_layer torch 2 4 4
OOM Error disabled flash_attn2 + RMS kern. 4 4 1
OOM Error disabled flash_attn2 + RMS kern. 2 4 2
OOM Error disabled flash_attn2 + RMS kern. 4 2 4
OOM Error disabled flash_attn2 + RMS kern. 4 4 2
OOM Error disabled flash_attn2 + RMS kern. 2 4 1
OOM Error disabled flash_attn2 + RMS kern. 2 2 4
OOM Error disabled flash_attn2 + RMS kern. 4 1 1
OOM Error disabled flash_attn2 + RMS kern. 4 2 2
OOM Error disabled flash_attn2 + RMS kern. 4 1 2
OOM Error disabled flash_attn2 + RMS kern. 2 2 2
OOM Error disabled flash_attn2 + RMS kern. 2 2 1
OOM Error disabled flash_attn2 + RMS kern. 4 2 1
OOM Error disabled flash_attn2 + RMS kern. 4 1 4
OOM Error disabled flash_attn2 + RMS kern. 2 1 4
OOM Error disabled flash_attn2 + RMS kern. 2 1 2
OOM Error disabled flash_attn2 + RMS kern. 2 1 1
OOM Error disabled flash_attn2 + RMS kern. 1 2 1
OOM Error disabled flash_attn2 + RMS kern. 1 1 4
OOM Error disabled flash_attn2 + RMS kern. 1 1 2
OOM Error disabled flash_attn2 + RMS kern. 1 1 1
OOM Error every_layer flash_attn2 4 1 1
OOM Error every_layer flash_attn2 4 4 1
OOM Error every_layer flash_attn2 4 2 2
OOM Error every_layer flash_attn2 4 4 2
OOM Error every_layer flash_attn2 4 1 2
OOM Error every_layer flash_attn2 4 4 4
OOM Error every_layer flash_attn2 2 2 1
OOM Error every_layer flash_attn2 4 2 1
OOM Error every_layer flash_attn2 4 1 4
OOM Error every_layer flash_attn2 4 2 4
OOM Error every_layer flash_attn2 2 1 1
OOM Error disabled flash_attn2 4 4 4
OOM Error disabled flash_attn2 4 4 2
OOM Error disabled flash_attn2 4 4 1
OOM Error disabled flash_attn2 4 2 4
OOM Error disabled flash_attn2 4 2 2
OOM Error disabled flash_attn2 4 2 1
OOM Error disabled flash_attn2 4 1 4
OOM Error disabled flash_attn2 4 1 2
OOM Error disabled flash_attn2 4 1 1
OOM Error disabled flash_attn2 2 4 4
OOM Error disabled flash_attn2 2 4 2
OOM Error disabled flash_attn2 2 4 1
OOM Error disabled flash_attn2 2 2 4
OOM Error disabled flash_attn2 2 2 2
OOM Error disabled flash_attn2 2 2 1
OOM Error disabled flash_attn2 2 1 4
OOM Error disabled flash_attn2 2 1 2
OOM Error disabled flash_attn2 2 1 1
OOM Error disabled flash_attn2 1 4 1
OOM Error disabled flash_attn2 1 2 2
OOM Error disabled flash_attn2 1 2 1
OOM Error disabled flash_attn2 1 1 4
OOM Error disabled flash_attn2 1 1 2
OOM Error disabled flash_attn2 1 1 1
OOM Error every_layer flash_attn1.0.8 4 4 4
OOM Error every_layer flash_attn1.0.8 4 4 1
OOM Error every_layer flash_attn1.0.8 4 2 2
OOM Error every_layer flash_attn1.0.8 4 1 4
OOM Error every_layer flash_attn1.0.8 2 2 1
OOM Error every_layer flash_attn1.0.8 4 1 1
OOM Error every_layer flash_attn1.0.8 4 2 1
OOM Error every_layer flash_attn1.0.8 4 4 2
OOM Error every_layer flash_attn1.0.8 4 1 2
OOM Error every_layer flash_attn1.0.8 4 2 4
OOM Error every_layer flash_attn1.0.8 2 1 1
OOM Error every_layer flash_attn1.0.8 1 1 1
OOM Error disabled flash_attn1.0.8 4 4 4
OOM Error disabled flash_attn1.0.8 4 4 2
OOM Error disabled flash_attn1.0.8 4 4 1
OOM Error disabled flash_attn1.0.8 4 2 4
OOM Error disabled flash_attn1.0.8 4 2 2
OOM Error disabled flash_attn1.0.8 4 2 1
OOM Error disabled flash_attn1.0.8 4 1 4
OOM Error disabled flash_attn1.0.8 4 1 2
OOM Error disabled flash_attn1.0.8 4 1 1
OOM Error disabled flash_attn1.0.8 2 4 4
OOM Error disabled flash_attn1.0.8 2 4 2
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OOM Error disabled flash_attn1.0.8 2 4 1
OOM Error disabled flash_attn1.0.8 2 2 4
OOM Error disabled flash_attn1.0.8 2 2 2
OOM Error disabled flash_attn1.0.8 2 2 1
OOM Error disabled flash_attn1.0.8 2 1 4
OOM Error disabled flash_attn1.0.8 2 1 2
OOM Error disabled flash_attn1.0.8 2 1 1
OOM Error disabled flash_attn1.0.8 1 4 1
OOM Error disabled flash_attn1.0.8 1 2 2
OOM Error disabled flash_attn1.0.8 1 2 1
OOM Error disabled flash_attn1.0.8 1 1 4
OOM Error disabled flash_attn1.0.8 1 1 2
OOM Error disabled flash_attn1.0.8 1 1 1
OOM Error every_layer torch 4 4 4
OOM Error every_layer torch 4 2 2
OOM Error every_layer torch 4 4 2
OOM Error every_layer torch 4 4 1
OOM Error every_layer torch 4 1 2
OOM Error every_layer torch 4 2 4
OOM Error every_layer torch 2 4 1
OOM Error every_layer torch 2 1 4
OOM Error every_layer torch 2 2 2
OOM Error every_layer torch 4 1 1
OOM Error every_layer torch 4 1 4
OOM Error every_layer torch 4 2 1
OOM Error every_layer torch 2 2 1
OOM Error every_layer torch 2 1 2
OOM Error every_layer torch 2 1 1
OOM Error every_layer torch 1 1 1
OOM Error disabled torch 4 4 4
OOM Error disabled torch 4 4 2
OOM Error disabled torch 4 4 1
OOM Error disabled torch 4 2 4
OOM Error disabled torch 4 2 2
OOM Error disabled torch 4 2 1
OOM Error disabled torch 4 1 4
OOM Error disabled torch 4 1 2
OOM Error disabled torch 4 1 1
OOM Error disabled torch 2 4 4
OOM Error disabled torch 2 4 2
OOM Error disabled torch 2 4 1
OOM Error disabled torch 2 2 4
OOM Error disabled torch 2 2 2
OOM Error disabled torch 2 2 1
OOM Error disabled torch 2 1 4
OOM Error disabled torch 2 1 2
OOM Error disabled torch 2 1 1
OOM Error disabled torch 1 4 4
OOM Error disabled torch 1 4 2
OOM Error disabled torch 1 4 1
OOM Error disabled torch 1 2 4
OOM Error disabled torch 1 2 2
OOM Error disabled torch 1 2 1
OOM Error disabled torch 1 1 4
OOM Error disabled torch 1 1 2
OOM Error disabled torch 1 1 1

Table 5: Performance analysis of a LLAMA 13B model with a sequence length of 8k trained on
128 A100 GPUs with the AA-Scaling codebase. All measurements use the FLASHATTENTION
or PyTorch kernel. The analysis also includes Out of Memory (OOM) error occurrences.

B.4 LLAMA 30B

Step Time MFU Activation Kernel MB Size TP Size PP Size

22.67 49.22 disabled flash_attn2 + RMS kern. 1 2 4
24.00 46.76 disabled flash_attn2 + RMS kern. 1 1 4
24.26 46.01 disabled flash_attn2 + RMS kern. 2 2 4
24.70 45.16 disabled flash_attn2 1 2 4
25.05 44.55 disabled flash_attn2 + RMS kern. 4 4 4
25.32 44.06 disabled flash_attn2 + RMS kern. 2 4 4
26.06 42.80 disabled flash_attn1.0.8 1 2 4
26.26 42.48 disabled flash_attn2 + RMS kern. 2 4 2
26.28 42.45 disabled flash_attn2 + RMS kern. 1 4 4
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26.94 41.42 disabled flash_attn2 + RMS kern. 1 4 2
28.34 39.39 disabled flash_attn2 + RMS kern. 1 2 2
29.08 38.37 every_layer flash_attn2 1 1 4
29.13 38.32 disabled flash_attn2 1 2 2
29.16 38.26 every_layer flash_attn1.0.8 1 1 4
29.45 37.88 disabled flash_attn2 2 4 4
29.55 37.75 disabled flash_attn1.0.8 2 4 4
29.64 37.67 disabled flash_attn1.0.8 1 2 2
29.76 37.48 every_layer flash_attn2 2 1 4
29.96 37.23 every_layer flash_attn1.0.8 2 1 4
30.08 37.09 disabled flash_attn2 1 4 4
31.13 35.84 every_layer flash_attn2 2 2 4
31.38 35.54 disabled flash_attn1.0.8 1 4 4
31.47 35.46 disabled flash_attn2 1 4 2
31.66 35.24 disabled flash_attn2 2 4 2
31.77 35.15 disabled flash_attn2 + RMS kern. 1 4 1
31.81 35.08 every_layer flash_attn2 1 2 4
31.94 34.93 every_layer flash_attn2 1 2 2
32.17 34.68 every_layer flash_attn1.0.8 2 2 4
32.27 34.57 every_layer flash_attn2 2 2 2
32.42 34.41 disabled flash_attn1.0.8 1 4 2
32.73 34.08 every_layer fused 1 1 4
32.84 33.96 every_layer flash_attn1.0.8 1 2 2
33.08 33.72 every_layer fused 2 1 4
33.29 33.51 every_layer flash_attn1.0.8 1 2 4
33.47 33.33 every_layer flash_attn1.0.8 4 2 2
33.70 33.11 every_layer flash_attn2 4 2 4
33.75 33.05 every_layer flash_attn1.0.8 4 1 4
33.79 33.01 every_layer flash_attn1.0.8 4 2 4
33.97 32.85 disabled flash_attn1.0.8 2 4 2
34.22 32.61 every_layer flash_attn2 4 1 4
34.45 32.39 every_layer flash_attn2 4 2 2
35.07 31.84 every_layer flash_attn2 1 1 2
35.23 31.67 every_layer flash_attn1.0.8 2 2 2
35.32 31.61 disabled flash_attn2 + RMS kern. 2 4 1
35.88 31.09 every_layer fused 2 2 4
36.42 30.66 every_layer flash_attn1.0.8 1 1 2
36.48 30.58 every_layer fused 4 2 4
37.12 30.06 every_layer flash_attn2 4 4 2
37.76 29.58 every_layer flash_attn2 2 1 2
37.81 29.50 every_layer flash_attn1.0.8 4 4 2
37.94 29.40 every_layer fused 4 1 4
37.99 29.38 every_layer fused 1 1 2
38.07 29.32 every_layer flash_attn1.0.8 2 1 2
38.28 29.15 every_layer flash_attn2 4 4 4
38.51 28.97 every_layer flash_attn2 2 4 4
38.60 28.90 every_layer flash_attn1.0.8 4 4 4
39.57 28.19 every_layer flash_attn2 2 4 2
39.61 28.17 every_layer fused 4 2 2
39.65 28.14 every_layer flash_attn1.0.8 2 4 4
39.70 28.10 every_layer flash_attn2 1 2 1
39.74 28.07 every_layer fused 2 1 2
39.81 28.03 disabled flash_attn2 1 4 1
40.07 27.84 every_layer flash_attn2 1 4 2
40.22 27.73 every_layer fused 4 4 2
40.29 27.68 every_layer flash_attn1.0.8 2 4 2
41.01 27.20 every_layer flash_attn2 1 4 4
41.74 26.73 every_layer fused 4 4 4
41.80 26.69 every_layer flash_attn1.0.8 1 2 1
41.84 26.66 every_layer flash_attn1.0.8 4 4 1
41.94 26.60 every_layer flash_attn1.0.8 1 4 4
42.13 26.48 every_layer flash_attn2 2 4 1
42.22 26.42 every_layer fused 4 4 1
42.41 26.30 every_layer flash_attn1.0.8 1 4 2
43.24 25.80 disabled flash_attn1.0.8 1 4 1
43.51 25.64 every_layer flash_attn1.0.8 2 4 1
43.92 25.40 every_layer flash_attn2 4 4 1
44.09 25.30 every_layer flash_attn2 1 4 1
45.56 24.49 every_layer flash_attn1.0.8 1 4 1
OOM Error disabled flash_attn2 + RMS kern. 4 2 4
OOM Error disabled flash_attn2 + RMS kern. 4 4 1
OOM Error disabled flash_attn2 + RMS kern. 2 2 1
OOM Error disabled flash_attn2 + RMS kern. 4 1 2
OOM Error disabled flash_attn2 + RMS kern. 4 1 1
OOM Error disabled flash_attn2 + RMS kern. 4 4 2
OOM Error disabled flash_attn2 + RMS kern. 2 2 2
OOM Error disabled flash_attn2 + RMS kern. 4 2 2
OOM Error disabled flash_attn2 + RMS kern. 2 1 4
OOM Error disabled flash_attn2 + RMS kern. 4 1 4
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OOM Error disabled flash_attn2 + RMS kern. 2 1 2
OOM Error disabled flash_attn2 + RMS kern. 2 1 1
OOM Error disabled flash_attn2 + RMS kern. 1 2 1
OOM Error disabled flash_attn2 + RMS kern. 1 1 2
OOM Error disabled flash_attn2 + RMS kern. 1 1 1
OOM Error every_layer flash_attn2 2 2 1
OOM Error every_layer flash_attn2 4 2 1
OOM Error every_layer flash_attn2 4 1 2
OOM Error every_layer flash_attn2 4 1 1
OOM Error every_layer flash_attn2 2 1 1
OOM Error every_layer flash_attn2 1 1 1
OOM Error disabled flash_attn2 4 4 4
OOM Error disabled flash_attn2 4 4 2
OOM Error disabled flash_attn2 4 4 1
OOM Error disabled flash_attn2 4 2 4
OOM Error disabled flash_attn2 4 2 2
OOM Error disabled flash_attn2 4 2 1
OOM Error disabled flash_attn2 4 1 4
OOM Error disabled flash_attn2 4 1 2
OOM Error disabled flash_attn2 4 1 1
OOM Error disabled flash_attn2 2 4 1
OOM Error disabled flash_attn2 2 2 4
OOM Error disabled flash_attn2 2 2 2
OOM Error disabled flash_attn2 2 2 1
OOM Error disabled flash_attn2 2 1 4
OOM Error disabled flash_attn2 2 1 2
OOM Error disabled flash_attn2 2 1 1
OOM Error disabled flash_attn2 1 2 1
OOM Error disabled flash_attn2 1 1 4
OOM Error disabled flash_attn2 1 1 2
OOM Error disabled flash_attn2 1 1 1
OOM Error every_layer fused 4 2 1
OOM Error every_layer fused 4 1 2
OOM Error every_layer fused 4 1 1
OOM Error every_layer fused 2 2 1
OOM Error every_layer fused 2 1 1
OOM Error every_layer fused 1 1 1
OOM Error every_layer flash_attn1.0.8 4 2 1
OOM Error every_layer flash_attn1.0.8 4 1 2
OOM Error every_layer flash_attn1.0.8 4 1 1
OOM Error every_layer flash_attn1.0.8 2 2 1
OOM Error every_layer flash_attn1.0.8 2 1 1
OOM Error every_layer flash_attn1.0.8 1 1 1
OOM Error disabled fused 4 4 4
OOM Error disabled fused 4 4 2
OOM Error disabled fused 4 4 1
OOM Error disabled fused 4 2 4
OOM Error disabled fused 4 2 2
OOM Error disabled fused 4 2 1
OOM Error disabled fused 4 1 4
OOM Error disabled fused 4 1 2
OOM Error disabled fused 4 1 1
OOM Error disabled fused 2 2 4
OOM Error disabled fused 2 2 2
OOM Error disabled fused 2 2 1
OOM Error disabled fused 2 1 4
OOM Error disabled fused 2 1 2
OOM Error disabled flash_attn1.0.8 4 4 4
OOM Error disabled flash_attn1.0.8 4 4 2
OOM Error disabled flash_attn1.0.8 4 4 1
OOM Error disabled flash_attn1.0.8 4 2 4
OOM Error disabled flash_attn1.0.8 4 2 2
OOM Error disabled flash_attn1.0.8 4 2 1
OOM Error disabled flash_attn1.0.8 4 1 4
OOM Error disabled flash_attn1.0.8 4 1 2
OOM Error disabled flash_attn1.0.8 4 1 1
OOM Error disabled flash_attn1.0.8 2 4 1
OOM Error disabled flash_attn1.0.8 2 2 4
OOM Error disabled flash_attn1.0.8 2 2 2
OOM Error disabled flash_attn1.0.8 2 2 1
OOM Error disabled flash_attn1.0.8 2 1 4
OOM Error disabled flash_attn1.0.8 2 1 2
OOM Error disabled flash_attn1.0.8 2 1 1
OOM Error disabled flash_attn1.0.8 1 2 1
OOM Error disabled flash_attn1.0.8 1 1 4
OOM Error disabled flash_attn1.0.8 1 1 2
OOM Error disabled flash_attn1.0.8 1 1 1
Kernel unavail. every_layer fused 2 4 4
Kernel unavail. every_layer fused 2 4 2
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Kernel unavail. every_layer fused 2 4 1
Kernel unavail. every_layer fused 2 2 2
Kernel unavail. every_layer fused 1 4 4
Kernel unavail. every_layer fused 1 4 2
Kernel unavail. every_layer fused 1 4 1
Kernel unavail. every_layer fused 1 2 4
Kernel unavail. every_layer fused 1 2 2
Kernel unavail. every_layer fused 1 2 1
Kernel unavail. disabled fused 2 4 4
Kernel unavail. disabled fused 2 4 2
Kernel unavail. disabled fused 2 4 1
Kernel unavail. disabled fused 1 4 4
Kernel unavail. disabled fused 1 4 2
Kernel unavail. disabled fused 1 4 1
Kernel unavail. disabled fused 1 2 4
Kernel unavail. disabled fused 1 2 2
Kernel unavail. disabled fused 1 2 1

Table 6: Performance analysis of a LLAMA 30B model trained on 256 A100 GPUs with the
AA-Scaling codebase. The analysis also includes Out of Memory (OOM) error occurrences
and errors where the fused kernel does not support this specific tensor parallel configuration.

B.5 LLAMA 30B with 8k sequence length

Step Time MFU Activation Kernel MB Size TP Size PP Size

49.43 51.40 disabled flash_attn2 + RMS kern. 1 4 4
50.23 50.57 disabled flash_attn2 + RMS kern. 1 4 8
54.78 46.37 disabled flash_attn2 + RMS kern. 1 4 16
62.84 40.43 every_layer flash_attn2 1 2 4
62.99 40.33 every_layer flash_attn2 1 2 2
63.99 39.70 every_layer flash_attn2 1 2 8
66.69 38.09 every_layer flash_attn2 1 2 16
66.71 38.08 every_layer flash_attn2 2 2 4
68.99 36.82 every_layer flash_attn2 2 2 8
69.45 36.58 every_layer flash_attn1.0.8 1 2 2
70.01 36.29 every_layer flash_attn1.0.8 1 2 4
71.81 35.38 every_layer flash_attn2 2 2 16
71.87 35.34 every_layer flash_attn1.0.8 1 2 8
72.42 35.08 every_layer flash_attn2 1 4 2
73.33 34.64 every_layer flash_attn2 2 4 2
75.02 33.86 every_layer flash_attn1.0.8 2 2 4
75.53 33.64 every_layer flash_attn2 1 4 4
76.53 33.20 every_layer flash_attn2 2 4 4
77.42 32.81 every_layer flash_attn1.0.8 2 2 8
77.86 32.63 every_layer flash_attn2 1 4 8
79.71 31.87 every_layer flash_attn1.0.8 1 4 2
79.74 31.86 every_layer flash_attn2 2 4 8
80.25 31.65 every_layer flash_attn1.0.8 2 4 2
82.16 30.92 every_layer flash_attn1.0.8 1 4 4
82.62 30.75 every_layer flash_attn2 1 4 16
84.01 30.24 every_layer flash_attn1.0.8 2 4 4
85.34 29.77 every_layer flash_attn2 2 4 16
85.53 29.70 every_layer flash_attn1.0.8 1 4 8
87.18 29.14 every_layer flash_attn1.0.8 2 4 8
OOM Error disabled flash_attn2 + RMS kern. 4 4 16
OOM Error disabled flash_attn2 + RMS kern. 2 2 8
OOM Error disabled flash_attn2 + RMS kern. 2 4 8
OOM Error disabled flash_attn2 + RMS kern. 2 2 16
OOM Error disabled flash_attn2 + RMS kern. 1 2 16
OOM Error disabled flash_attn2 + RMS kern. 4 2 16
OOM Error disabled flash_attn2 + RMS kern. 2 4 16
OOM Error disabled flash_attn2 + RMS kern. 4 4 8
OOM Error disabled flash_attn2 + RMS kern. 1 2 8
OOM Error every_layer flash_attn2 4 4 16
OOM Error every_layer flash_attn2 4 2 2
OOM Error every_layer flash_attn2 4 2 4
OOM Error every_layer flash_attn2 4 2 16
OOM Error every_layer flash_attn2 4 4 2
OOM Error every_layer flash_attn2 4 2 8
OOM Error every_layer flash_attn2 4 4 4
OOM Error every_layer flash_attn2 2 2 2
OOM Error every_layer flash_attn2 4 4 8
OOM Error disabled flash_attn2 4 4 16
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Step Time MFU Activation Kernel MB Size TP Size PP Size

OOM Error disabled flash_attn2 4 4 8
OOM Error disabled flash_attn2 4 4 4
OOM Error disabled flash_attn2 4 4 2
OOM Error disabled flash_attn2 4 2 16
OOM Error disabled flash_attn2 4 2 8
OOM Error disabled flash_attn2 4 2 4
OOM Error disabled flash_attn2 4 2 2
OOM Error disabled flash_attn2 2 4 16
OOM Error disabled flash_attn2 2 4 8
OOM Error disabled flash_attn2 2 4 4
OOM Error disabled flash_attn2 2 4 2
OOM Error disabled flash_attn2 2 2 16
OOM Error disabled flash_attn2 2 2 8
OOM Error disabled flash_attn2 2 2 4
OOM Error disabled flash_attn2 2 2 2
OOM Error disabled flash_attn2 1 4 16
OOM Error disabled flash_attn2 1 4 8
OOM Error disabled flash_attn2 1 4 4
OOM Error disabled flash_attn2 1 4 2
OOM Error disabled flash_attn2 1 2 16
OOM Error disabled flash_attn2 1 2 8
OOM Error disabled flash_attn2 1 2 4
OOM Error disabled flash_attn2 1 2 2
OOM Error disabled flash_attn1.0.8 4 4 4
OOM Error disabled flash_attn1.0.8 4 2 8
OOM Error every_layer flash_attn1.0.8 4 2 4
OOM Error every_layer flash_attn1.0.8 4 2 2
OOM Error every_layer flash_attn1.0.8 4 4 2
OOM Error every_layer flash_attn1.0.8 4 4 4
OOM Error every_layer flash_attn1.0.8 4 4 8
OOM Error every_layer flash_attn1.0.8 4 2 8
OOM Error every_layer flash_attn1.0.8 2 2 2
OOM Error disabled flash_attn1.0.8 4 4 8
OOM Error disabled flash_attn1.0.8 4 4 2
OOM Error disabled flash_attn1.0.8 4 2 4
OOM Error disabled flash_attn1.0.8 4 2 2
OOM Error disabled flash_attn1.0.8 2 4 8
OOM Error disabled flash_attn1.0.8 2 4 4
OOM Error disabled flash_attn1.0.8 2 4 2
OOM Error disabled flash_attn1.0.8 2 2 8
OOM Error disabled flash_attn1.0.8 2 2 4
OOM Error disabled flash_attn1.0.8 2 2 2
OOM Error disabled flash_attn1.0.8 1 4 8
OOM Error disabled flash_attn1.0.8 1 4 4
OOM Error disabled flash_attn1.0.8 1 4 2
OOM Error disabled flash_attn1.0.8 1 2 8
OOM Error disabled flash_attn1.0.8 1 2 4
OOM Error disabled flash_attn1.0.8 1 2 2
OOM Error disabled flash_attn2 + RMS kern. 4 4 4
OOM Error disabled flash_attn2 + RMS kern. 4 2 2
OOM Error disabled flash_attn2 + RMS kern. 2 4 4
OOM Error disabled flash_attn2 + RMS kern. 4 4 2
OOM Error disabled flash_attn2 + RMS kern. 4 2 4
OOM Error disabled flash_attn2 + RMS kern. 2 2 4
OOM Error disabled flash_attn2 + RMS kern. 2 4 2
OOM Error disabled flash_attn2 + RMS kern. 1 2 2
OOM Error disabled flash_attn2 + RMS kern. 1 2 4
OOM Error disabled flash_attn2 + RMS kern. 1 4 2
OOM Error disabled flash_attn2 + RMS kern. 2 2 2

Table 7: Performance analysis of a LLAMA 30B model with 8k sequence length trained on
128 A100 GPUs with the AA-Scaling codebase. All measurements use the FLASHATTENTION
kernel. The analysis also includes Out of Memory (OOM) error occurrences.

B.6 LLAMA 65B

Step Time MFU Activation Kernel MB Size TP size PP Size

79.31 55.26 disabled flash_attn2 + RMS kern. 1 2 4
79.54 55.10 disabled flash_attn2 + RMS kern. 1 2 8
82.88 52.88 disabled flash_attn2 + RMS kern. 2 4 4
86.55 50.63 disabled flash_attn2 + RMS kern. 2 4 8
86.61 50.60 disabled flash_attn2 + RMS kern. 1 4 4
87.14 50.30 disabled flash_attn2 + RMS kern. 1 4 2
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Step Time MFU Activation Kernel MB Size TP size PP Size

88.16 49.71 disabled flash_attn2 1 2 8
92.61 47.32 disabled flash_attn2 + RMS kern. 1 4 8
101.28 43.28 disabled flash_attn2 + RMS kern. 2 8 2
101.97 42.98 disabled flash_attn2 1 4 4
103.17 42.48 disabled flash_attn2 + RMS kern. 2 8 4
106.59 41.11 disabled flash_attn1.0.8 1 4 4
107.39 40.81 every_layer flash_attn2 2 2 4
107.85 40.64 disabled flash_attn2 + RMS kern. 1 8 2
107.97 40.59 disabled flash_attn2 1 4 8
108.59 40.36 disabled flash_attn1.0.8 1 4 8
109.04 40.19 every_layer flash_attn2 4 2 4
110.87 39.53 every_layer flash_attn1.0.8 2 2 4
111.35 39.36 every_layer flash_attn2 1 2 4
111.83 39.19 disabled flash_attn2 + RMS kern. 1 8 4
111.83 39.19 every_layer flash_attn1.0.8 4 2 4
112.77 38.86 every_layer flash_attn2 2 2 8
114.42 38.30 every_layer flash_attn2 4 2 8
115.05 38.09 every_layer flash_attn1.0.8 1 2 4
115.58 37.92 disabled flash_attn2 + RMS kern. 2 8 8
116.25 37.70 every_layer flash_attn1.0.8 4 2 8
116.27 37.69 every_layer flash_attn1.0.8 2 2 8
118.39 37.02 every_layer flash_attn2 1 2 8
118.68 36.93 every_layer flash_attn2 1 2 2
121.70 36.01 every_layer flash_attn1.0.8 1 2 8
121.93 35.95 disabled flash_attn2 + RMS kern. 1 8 8
125.11 35.03 every_layer flash_attn2 4 4 4
126.61 34.61 every_layer flash_attn2 4 4 2
128.06 34.22 every_layer flash_attn1.0.8 4 4 2
129.68 33.80 every_layer flash_attn2 2 4 4
129.92 33.73 every_layer flash_attn1.0.8 4 4 4
132.34 33.11 every_layer flash_attn1.0.8 2 4 2
133.07 32.93 every_layer flash_attn1.0.8 2 4 4
133.56 32.81 every_layer flash_attn2 4 4 8
136.43 32.12 every_layer flash_attn2 1 4 2
137.73 31.82 every_layer flash_attn1.0.8 4 4 8
139.67 31.38 disabled flash_attn2 1 8 2
140.15 31.28 disabled flash_attn1.0.8 1 8 2
140.12 31.28 every_layer flash_attn1.0.8 1 4 2
140.95 31.09 every_layer flash_attn2 1 4 4
141.87 30.89 every_layer flash_attn2 2 4 8
142.77 30.70 disabled flash_attn2 1 8 4
144.59 30.31 every_layer flash_attn1.0.8 1 4 4
144.83 30.26 every_layer flash_attn1.0.8 2 4 8
151.95 28.84 disabled flash_attn2 1 8 8
153.61 28.53 disabled flash_attn1.0.8 1 8 8
156.54 28.00 every_layer flash_attn2 1 4 8
159.57 27.46 every_layer flash_attn1.0.8 1 4 8
164.21 26.69 every_layer flash_attn2 4 8 2
168.64 25.99 every_layer flash_attn1.0.8 4 8 2
168.97 25.94 every_layer flash_attn2 4 8 4
173.16 25.31 every_layer flash_attn1.0.8 4 8 4
174.43 25.13 every_layer flash_attn2 2 8 2
178.66 24.53 every_layer flash_attn1.0.8 2 8 2
180.93 24.22 every_layer flash_attn2 2 8 4
184.98 23.69 every_layer flash_attn2 4 8 8
187.81 23.33 every_layer flash_attn1.0.8 2 8 4
192.53 22.76 every_layer flash_attn1.0.8 4 8 8
192.69 22.75 every_layer flash_attn2 1 8 2
200.12 21.90 every_layer flash_attn1.0.8 1 8 2
203.08 21.58 every_layer flash_attn2 2 8 8
209.24 20.95 every_layer flash_attn2 1 8 4
210.89 20.78 every_layer flash_attn1.0.8 2 8 8
215.12 20.37 every_layer flash_attn1.0.8 1 8 4
237.99 18.42 every_layer flash_attn2 1 8 8
247.97 17.67 every_layer flash_attn1.0.8 1 8 8
OOM Error disabled flash_attn2 + RMS kern. 4 8 8
OOM Error disabled flash_attn2 + RMS kern. 4 2 8
OOM Error disabled flash_attn2 + RMS kern. 4 8 4
OOM Error disabled flash_attn2 + RMS kern. 4 4 2
OOM Error disabled flash_attn2 + RMS kern. 4 2 4
OOM Error disabled flash_attn2 + RMS kern. 4 8 2
OOM Error disabled flash_attn2 + RMS kern. 4 2 2
OOM Error disabled flash_attn2 + RMS kern. 4 4 4
OOM Error disabled flash_attn2 + RMS kern. 2 4 2
OOM Error disabled flash_attn2 + RMS kern. 2 2 8
OOM Error disabled flash_attn2 + RMS kern. 2 2 4
OOM Error disabled flash_attn2 + RMS kern. 2 2 2
OOM Error disabled flash_attn2 + RMS kern. 1 2 2
OOM Error every_layer flash_attn2 4 2 2
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Step Time MFU Activation Kernel MB Size TP size PP Size

OOM Error every_layer flash_attn2 2 2 2
OOM Error disabled flash_attn2 4 8 8
OOM Error disabled flash_attn2 4 8 4
OOM Error disabled flash_attn2 4 8 2
OOM Error disabled flash_attn2 4 4 8
OOM Error disabled flash_attn2 4 4 4
OOM Error disabled flash_attn2 4 4 2
OOM Error disabled flash_attn2 4 2 8
OOM Error disabled flash_attn2 4 2 4
OOM Error disabled flash_attn2 4 2 2
OOM Error disabled flash_attn2 2 8 8
OOM Error disabled flash_attn2 2 8 4
OOM Error disabled flash_attn2 2 8 2
OOM Error disabled flash_attn2 2 4 8
OOM Error disabled flash_attn2 2 4 4
OOM Error disabled flash_attn2 2 4 2
OOM Error disabled flash_attn2 2 2 8
OOM Error disabled flash_attn2 2 2 4
OOM Error disabled flash_attn2 2 2 2
OOM Error disabled flash_attn2 1 4 2
OOM Error disabled flash_attn2 1 2 4
OOM Error disabled flash_attn2 1 2 2
OOM Error disabled flash_attn1.0.8 1 2 8
OOM Error disabled flash_attn1.0.8 1 2 4
OOM Error disabled flash_attn1.0.8 1 2 2
OOM Error every_layer flash_attn1.0.8 4 2 2
OOM Error every_layer flash_attn1.0.8 2 2 2
OOM Error disabled flash_attn1.0.8 4 8 8
OOM Error disabled flash_attn1.0.8 4 4 8
OOM Error disabled flash_attn1.0.8 4 2 4
OOM Error disabled flash_attn1.0.8 4 4 4
OOM Error disabled flash_attn1.0.8 2 8 4
OOM Error disabled flash_attn1.0.8 2 8 8
OOM Error disabled flash_attn1.0.8 4 2 2
OOM Error disabled flash_attn1.0.8 2 4 4
OOM Error disabled flash_attn1.0.8 2 8 2
OOM Error disabled flash_attn1.0.8 2 4 2
OOM Error disabled flash_attn1.0.8 4 8 4
OOM Error disabled flash_attn1.0.8 2 2 8
OOM Error disabled flash_attn1.0.8 4 4 2
OOM Error disabled flash_attn1.0.8 4 8 2
OOM Error disabled flash_attn1.0.8 4 2 8
OOM Error disabled flash_attn1.0.8 2 4 8
OOM Error disabled flash_attn1.0.8 2 2 4
OOM Error disabled flash_attn1.0.8 2 2 2
OOM Error disabled flash_attn1.0.8 1 4 2

Table 8: Performance analysis of a LLAMA 65B model trained on 128 A100 GPUs with the
AA-Scaling codebase. All measurements use the FLASHATTENTION kernel. The analysis
also includes Out of Memory (OOM) error occurrences.
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C Sequence Parallelism Training Efficiency Sweep

C.1 Sweep Configurations

Model Seq. Len. GPUs TP sizes PP sizes MB Sizes Seq. Parallelism

13B 2k 32 {1, 2} {1, 2} {1, 2, 4, 8} {yes, no}

13B 8k 64 {1, 2, 4} {1, 2, 4} {1, 2, 4} {yes, no}

30B 2k 64 {1, 2, 4} {1, 2, 4} {1, 2, 4} {yes, no}

30B 8k 64 {2, 4} {2, 4, 8, 16} {1, 2, 4} {yes, no}

65B 2k 64 {2, 4, 8} {2, 4, 8} {1, 2, 4} {yes, no}

Table 9: Search space of additional sequence parallel training efficiency sweep. We sweep
over the Cartesian product of all mentioned options similar to Table 1. All runs use
FLASHATTENTION-2, the RMSNorm kernel, and do not use activation checkpointing.

C.2 LLAMA 13B

Step Time MFU MB Size TP size PP Size Sequence Parallel

53.81 69.66 1 1 1 False
53.99 69.45 1 1 1 True
57.61 65.04 2 2 1 False
58.01 64.54 1 1 2 True
58.62 63.88 1 1 2 False
59.55 62.86 2 1 2 True
61.12 62.28 2 2 1 True
60.23 62.15 2 1 2 False
60.96 61.43 1 2 1 True
62.09 60.34 1 2 1 False
65.04 57.55 2 2 2 True
66.13 56.59 2 2 2 False
66.26 56.47 1 2 2 True
67.47 55.44 4 2 2 True
67.94 55.08 1 2 2 False
68.48 54.62 4 2 2 False
OOM Error 4 1 2 True
OOM Error 8 2 2 True
OOM Error 4 1 1 True
OOM Error 8 1 2 True
OOM Error 8 2 1 True
OOM Error 4 2 1 True
OOM Error 2 1 1 True
OOM Error 2 1 1 False
OOM Error 8 2 2 False
OOM Error 8 2 1 False
OOM Error 8 1 1 False
OOM Error 4 2 1 False
OOM Error 4 1 2 False
OOM Error 8 1 2 False
OOM Error 4 1 1 False

Table 10: Performance analysis of a LLAMA 13B model trained on 32 A100 GPUs, with and
without sequence parallelism. All measurements use FLASHATTENTION-2, the RMS norm
kernel, and do not make use of activation checkpointing. The analysis also includes Out of
Memory (OOM) error occurrences.

C.3 LLAMA 13B 8k sequence length

Step Time MFU MB Size TP size PP Size Sequence Parallel

34.84 62.78 1 2 2 True
34.85 62.76 1 2 2 False
35.80 61.10 1 2 4 True
36.60 59.76 1 2 4 False
36.99 59.13 1 4 1 True
38.85 56.31 1 4 2 True
38.90 56.23 1 4 1 False
40.70 53.74 1 4 2 False
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Step Time MFU MB Size TP size PP Size Sequence Parallel

40.82 53.58 1 4 4 True
41.06 53.27 2 4 4 True
43.49 50.29 1 4 4 False
44.03 49.68 2 4 4 False
46.37 47.18 1 8 1 True
46.89 46.65 2 8 2 True
49.96 43.79 1 8 2 True
51.03 42.87 1 8 1 False
51.91 42.14 2 8 4 True
54.78 39.93 1 8 4 True
56.23 38.90 1 8 2 False
59.62 36.69 2 8 4 False
62.04 35.26 1 8 4 False
OOM Error 4 1 1 True
OOM Error 4 8 2 True
OOM Error 4 8 4 True
OOM Error 4 4 1 True
OOM Error 4 8 1 True
OOM Error 4 4 4 True
OOM Error 4 4 2 True
OOM Error 4 2 4 True
OOM Error 4 1 2 True
OOM Error 4 2 1 True
OOM Error 4 1 4 True
OOM Error 4 8 2 False
OOM Error 4 4 4 False
OOM Error 4 4 1 False
OOM Error 4 2 4 False
OOM Error 4 2 2 False
OOM Error 4 1 2 False
OOM Error 4 2 1 False
OOM Error 4 8 4 False
OOM Error 4 8 1 False
OOM Error 4 4 2 False
OOM Error 4 1 4 False
OOM Error 4 1 1 False
OOM Error 2 8 1 True
OOM Error 2 2 1 True
OOM Error 2 2 4 True
OOM Error 2 4 2 True
OOM Error 2 2 2 True
OOM Error 2 4 1 True
OOM Error 1 2 1 True
OOM Error 2 2 1 False
OOM Error 2 2 4 False
OOM Error 2 8 2 False
OOM Error 2 8 1 False
OOM Error 2 4 1 False
OOM Error 2 2 2 False
OOM Error 2 4 2 False
OOM Error 1 2 1 False

Table 11: Performance analysis of a LLAMA 13B model with 8k sequence length trained
on 64 A100 GPUs, with and without sequence parallelism. All measurements use
FLASHATTENTION-2, the RMS norm kernel, and do not make use of activation check-
pointing. The analysis also includes Out of Memory (OOM) error occurrences.

C.4 LLAMA 30B

Step Time MFU MB Size TP size PP Size Sequence Parallel

72.00 61.98 1 1 4 False
72.60 61.47 1 1 4 True
72.66 61.42 2 2 4 True
74.86 59.61 2 2 4 False
76.58 58.27 1 2 4 True
76.84 58.07 1 2 2 True
77.59 57.52 4 4 4 True
78.43 56.89 1 2 4 False
80.17 55.66 1 2 2 False
81.06 55.05 2 4 2 True
82.22 54.28 2 4 4 True
83.11 53.71 4 4 2 True
83.76 53.30 4 4 2 True
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Step Time MFU MB Size TP size PP Size Sequence Parallel

84.88 52.57 2 4 2 False
85.21 52.37 2 4 1 True
85.47 52.21 1 4 2 True
86.44 51.63 4 4 4 False
86.67 51.49 4 4 4 False
87.68 50.89 1 4 4 True
89.33 49.95 1 4 1 True
89.76 49.71 2 4 4 False
89.86 49.66 1 4 2 False
94.12 47.42 1 4 1 False
95.52 46.72 1 4 4 False
OOM Error 4 4 1 True
OOM Error 4 1 1 True
OOM Error 4 1 4 True
OOM Error 4 2 2 True
OOM Error 4 1 2 True
OOM Error 4 2 1 True
OOM Error 4 2 4 True
OOM Error 4 4 1 True
OOM Error 2 4 1 False
OOM Error 4 4 2 False
OOM Error 4 4 1 False
OOM Error 4 4 2 False
OOM Error 4 2 2 False
OOM Error 4 4 1 False
OOM Error 4 1 4 False
OOM Error 4 2 1 False
OOM Error 4 1 2 False
OOM Error 4 1 1 False
OOM Error 4 2 4 False
OOM Error 2 1 2 True
OOM Error 2 1 4 True
OOM Error 2 2 2 True
OOM Error 1 1 2 True
OOM Error 2 1 2 False
OOM Error 2 1 4 False
OOM Error 2 2 2 False
OOM Error 1 1 2 False

Table 12: Performance analysis of a LLAMA 30B model trained on 64 A100 GPUs, with and
without sequence parallelism. All measurements use FLASHATTENTION-2, the RMS norm
kernel, and do not make use of activation checkpointing. The analysis also includes Out of
Memory (OOM) error occurrences.

C.5 LLAMA 30B 8k sequence length

Step Time MFU MB Size TP size PP Size Sequence Parallel

84.37 60.22 1 4 2 True
85.69 59.35 1 4 4 True
86.16 58.97 1 4 16 True
86.17 58.97 1 4 8 True
93.84 54.15 1 4 4 False
96.70 52.54 1 4 8 False
98.37 51.65 1 4 16 False
OOM Error 1 2 2 True
OOM Error 2 2 4 True
OOM Error 1 2 4 True
OOM Error 4 2 4 True
OOM Error 4 2 2 True
OOM Error 2 2 2 True
OOM Error 4 4 4 True
OOM Error 4 4 2 True
OOM Error 2 4 2 True
OOM Error 4 4 8 False
OOM Error 4 2 16 False
OOM Error 4 2 8 False
OOM Error 4 4 16 False
OOM Error 4 4 4 False
OOM Error 4 4 2 False
OOM Error 2 2 4 False
OOM Error 2 4 2 False
OOM Error 1 2 2 False
OOM Error 4 2 2 False
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Step Time MFU MB Size TP size PP Size Sequence Parallel

OOM Error 2 2 2 False
OOM Error 1 2 4 False
OOM Error 2 4 4 False
OOM Error 4 2 4 False
OOM Error 1 4 2 False
OOM Error 4 4 16 False
OOM Error 4 2 16 False
OOM Error 4 2 8 False
OOM Error 4 4 8 False

Table 13: Performance analysis of a LLAMA 30B model with 8k sequence length trained
on 64 A100 GPUs, with and without sequence parallelism. All measurements use
FLASHATTENTION-2, the RMS norm kernel, and do not make use of activation check-
pointing. The analysis also includes Out of Memory (OOM) error occurrences.

C.6 LLAMA 65B

Step Time MFU MB Size TP size PP Size Sequence Parallel

147.02 59.62 1 2 4 True
149.92 58.47 2 4 4 True
149.97 58.44 1 2 8 True
152.65 57.42 1 2 8 False
156.40 56.04 2 4 8 True
158.74 55.22 2 4 4 False
159.57 54.93 1 4 4 True
162.32 54.00 1 4 2 True
166.36 52.69 1 4 8 True
166.49 52.65 4 8 4 False
167.70 52.27 4 8 8 False
168.70 51.96 2 4 8 False
169.39 51.75 1 4 2 False
172.11 50.93 1 4 4 False
178.64 49.07 2 8 2 True
179.78 48.76 1 4 8 False
179.87 48.74 2 8 4 True
186.54 47.16 2 8 8 True
192.45 45.55 1 8 2 True
193.69 45.26 2 8 2 False
198.11 44.25 1 8 4 True
201.44 43.52 1 8 8 True
202.20 43.35 2 8 4 False
207.26 42.29 1 8 2 False
220.27 39.80 1 8 4 False
223.09 39.29 2 8 8 False
233.00 37.62 1 8 8 False
OOM Error 4 4 2 True
OOM Error 4 2 2 True
OOM Error 4 2 4 True
OOM Error 2 4 2 True
OOM Error 2 2 8 True
OOM Error 2 2 4 True
OOM Error 2 2 2 True
OOM Error 1 2 2 True
OOM Error 2 2 2 False
OOM Error 2 4 2 False
OOM Error 2 2 4 False
OOM Error 2 2 8 False
OOM Error 1 2 4 False
OOM Error 1 2 2 False
OOM Error 4 8 2 False
OOM Error 4 4 2 False
OOM Error 4 4 8 False
OOM Error 4 2 8 False
OOM Error 4 4 4 False
OOM Error 4 2 2 False
OOM Error 4 2 4 False

Table 14: Performance analysis of a LLAMA 65B model trained on 64 A100 GPUs, with and
without sequence parallelism. All measurements use FLASHATTENTION-2, the RMS norm
kernel, and do not make use of activation checkpointing. The analysis also includes Out of
Memory (OOM) error occurrences.
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