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Abstract

Goal-Conditioned Reinforcement Learning (GCRL) is about learning to reach
predefined goal states. GCRL in the real world is crucial for adaptive robotics.
Existing GCRL methods, however, suffer from low sample efficiency and high cost
of collecting real-world data. Here we introduce the Compositional Optimality
Equation (COE) for a widely used class of deterministic environments in which
the reward is obtained only upon reaching a goal state. COE represents a novel
alternative to the standard Bellman Optimality Equation, leading to more sample-
efficient update rules. The Bellman update combines the immediate reward and the
bootstrapped estimate of the best next state. Our COE-based update rule, however,
combines the best composition of two bootstrapped estimates reflecting an arbitrary
intermediate subgoal state. In tabular settings, the new update rule guarantees
convergence to the optimal value function exponentially faster than the Bellman
update! COE can also be used to derive compositional variants of conventional
(deep) RL. In particular, our COE-based version of DDPG is more sample-efficient
than DDPG in a continuous grid world.

1 Introduction

Reinforcement Learning (RL) [43] in the real world (for robotics, etc.) remains difficult [40]. A
major obstacle is the low sample efficiency of most RL algorithms, compounded by the high cost of
data acquisition. Here, we focus on goal-conditional RL (GCRL), where a reward is received upon
reaching a specified goal given in advance [15, 32, 33].

When goals are distant and widely distributed across the space [12, 14, 27], credit for reaching them
should be rapidly assigned across long-time lags to relevant, previously executed actions. To achieve
this, multi-step methods estimate the value after unrolling the trajectory for a chosen number of steps.
[30, 38] These methods, however, have been show to suffer from high variance [5].

Multi-step methods construct value targets from rewards observed during rollout and the estimated
value of the state achieved at the end of the rollout. This can be seen as a combination of Monte-Carlo
estimate achieved through the rollout with bootstrapping in estimating the value of the last achieved
state. Here, we propose an alternative approach that uses two bootstrapped estimated values–from the
current state to a subgoal, and from the subgoal to the goal–to design updates.

Specifically, we derive a method tailored to GCRL that improves sample efficiency and enables
exponentially faster convergence than the traditional Bellman update for a class of deterministic
tabular environments. It injects hierarchical inductive bias into the value function to utilize long-
distance information in the update. We extend this result to model-free algorithms with function
approximators and empirically demonstrate its convergence in a continuous gridworld environment.
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2 Method

Smart decomposition of large problems into smaller subproblems is the foundation of many efficient
algorithms. Here we investigate the classic Bellman Optimality Equation and propose a more
efficient, adaptive decomposition method designed specifically for a large class of GCRL problems.
The augmented state space S = SS × SG is defined as the cartesian product of the original state
space SS of the environment and the goal space SG. Here, we assume that the original state space is
the same as the goal space: SS = SG.

An agent interacts with a Markov Decision Process (MDP) by taking actions At ∈ A based on the
current state St ∈ SS and goal G ∈ SG. Concretely, actions are sampled from a policy that maps
states and goals to a distribution over actions π : SS × SG → ∆(A). In response to the agent’s
action, the MDP provides a new state St+1, sampled from the distribution over states output by a
transition function T : SS × A → ∆(SS). The MDP also provides rewards Rt+1 based on the
state and goal. We assume that the agent receives a reward from s to g equal to r(s, g) = γ1{s=g},
where γ ∈ (0, 1] is a discount factor. The optimal value function from state to goal V ∗(s, g) =
maxπ Eπ[

∑∞
i=0 γ

iRt+i+1|St = s,G = g] is the highest expected cumulative discounted sum of
rewards that the agent can obtain from state s. Analogously, we consider action-value functions and
optimal action-value functions, Q∗(s, a, g) = maxπ Eπ[

∑∞
i=0 γ

iRt+i+1|St = s,At = a,G = g].
Under these assumptions, we introduce our Compositional Optimality Equation (COE):

V ∗(s, g) = max
subg∈SS

V ∗(s, subg)V ∗(subg, g).

The equation composes two value functions using the information from a subgoal state. This equation
is formally motivated(App. B.1) and is satisfied by the optimal policy(App. B.1). From the COE, we
derive popular COE-based versions of RL algorithms such as COE Value Iteration (COE-VI) (App.
2.1) or Deep RL algorithms COE-DDPG and COE-DQN (App. D). Moreover, we prove that COE-VI
converges in a logarithmic number of steps in terms of distance to the goal (App. B.1.1).

2.1 COE-Value Iteration

The new optimality equation enables the definition of a new Compositional update rule for value
iteration. Here we consider a deterministic transition function T : SS ×A → SS .

Algorithm 1 Generalized Compositional Value Iteration

1: Initialize V = 0
2: for s ∈ S, a ∈ A do
3: V (s, T (s, a)) = γ
4: V (s, s) = 1
5: end for
6: repeat
7: for s ∈ S, g ∈ S do
8: subg ← ProduceSubgoal
9: V2 ← V (s, subg)V (subg, g)

10: end for
11: V ← V2

12: until convergence

Value iteration as a special case of Generalized Compositional Value Iteration If ProduceSubgoal
yields subg ← argmaxa∈A V (s, T (s, a))V (T (s, a), g) then it is equivalent to the standard
Bellman-based Value Iteration.

COE-Value iteration COE-Value Iteration (COE-VI) is achieved when for ProduceSubgoal we
select subg ← argmaxsubg∈S V (s, subg)V (subg, g). Therefore, for COE-Value Iteration, lines 6
and 7 can be rewritten shortly as V2 ← maxsubg∈S V (s, subg)V (subg, g).

For COE-VI, it is necessary that the value estimates are initialized with values smaller than the
optimal values because V (s, g) can not decrease after an iteration of COE-VI. As a consequence,
apart from the values that we a priori know, we initialize the value function estimate with zeros.
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3 Generalization to Deep RL

Analogously to how popular Deep RL algorithms are derived from the Bellman Optimality Equation,
it is possible to derive COE-based equivalents. In this section, we describe the process of obtaining
deep RL algorithms from our tabular COE Value Iteration algorithm (refer to algorithm 1). We
provide examples with pseudocode for COE-DDPG and COE-DQN, detailed further in appendix D.

3.1 Action-value function

Transitioning from a planning approach to a model-free learning algorithm requires adapting COE
into a state-action value function update capable of directly utilizing experience samples.

The definition of optimal trajectories can be subtle. In the expression Q(s, a, g), committing to the
action a might lead to inconsistencies if the discovered subgoal that maximizes V (s, subg)V (subg, g)
does not entail selecting action a. Therefore, it is necessary to use optimal trajectories from state
s to goal g that select a as the initial action. In deterministic model-based setups, this expression
can be simplified with V (s′, subg), where s′ = T (s, a). Nonetheless, to ensure our update remains
model-free, we condition our subgoal generator function, ProduceSubgoal, on action a as well. The
new declaration becomes ProduceSubgoal: S ×A× S → S:

Q(s, a, g)← Q(s, a, subg)max
a2

Q(subg, a2, g) for subg in optimal trajectories from s′ to g

3.2 Subgoal Generator

The main difference between Bellman-based algorithms and COE-based algorithms is their boot-
strapped estimator. Traditional algorithms following the Bellman style decompose rewards into
immediate next steps combined with an estimate of the remaining rewards. Contrarily, COE-based
algorithms utilize two bootstrapped estimates of subproblem values, as described above.

A critical aspect of the algorithm is the decomposition of the problem. Specifically, selecting an
appropriate subgoal. In gridworld scenarios, this selection is guided by the maximization of the
product of value estimates. The state that maximizes this product is chosen as the subgoal, and its
estimate is subsequently used for the update. However, in continuous state environments, attempting
direct maximization is infeasible due to the extensive nature of the space, which could lead to an
extreme overestimation bias, as mentioned by Van Hasselt et al. [45]. To tackle this, we introduce
a separate neural network aimed at predicting the state where the product of value functions is
maximized.

We call this network the Generator, denoted as G : SS ×A× SG → SS , as it generates a subgoal
state based on the current state, action and goal. The Generator is parametrized by θg . It is trained by
maximizing the state-action version of the product of values defined in COE 2. Therefore, at each
step, the generator is updated via gradient ascent according to the following gradient expression:

∇θg

1

|B|
∑

(s,a,r,s′,g,d)∈B

(1− d)Q(s′, a, subg)Q(subg, π(subg, g), g) where subg = G(s, a, g),

where d is the flag signalizing whether s′ is terminal.

3.3 Grounding update

In the Algorithm 1, the initialization with V (s, T (s, a)) = γ is crucial for the algorithm to work. It
actually gives the algorithm information about the environment dynamics as well as works as a basis
for the induction from which all combined values between pairs of states and goals are derived in the
proof B.1.1.

To mimic this basis for composition in deep RL, we create the so-called "Grounding Update". We
train the value function to equal γ for the transitions from the experience replay buffer with the next
state as a goal. Therefore, at each step, apart from the standard COE update, we also perform the
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Figure 1: Histogram of first epochs that solved
continuous gridworld. COE-DDPG converges
significantly faster than DDPG.

Dist. to
the goal

#steps to
Opt. Value

#steps to
Opt. Policy

VI COE-VI VI COE-VI

Empirical results
2 2 1 2 1
10 10 4 6.33 4
25 25 5 19.8 5
50 50 6 38.14 6

Theoretical guarantees
100 100 7 100 7
1000 1000 10 1000 10
10000 10000 14 10000 14

Table 1: Comparison of COE-based Value Iter-
ation (COE-VI) to Value Iteration (VI) in terms
of learning speed on the gridworld environment.

grounding update by taking a step in the direction of descent with the following gradient:

∇θq

1

|B|
∑

(s,a,r,s′,g,d)∈B

(Q(s, a, s′)− γ),

where θq is the parametrization of Q.

Note, that for the grounding update, we don’t use the goal from the buffer, but we treat the next state
s′ as a goal, so we push all direct transitions to have a value γ in the value function.

4 Results

In this section, we describe the experimental setup used to demonstrate the empirical results of our
algorithm, together with the implementation details. We compare the sample efficiency of COE Value
iteration with Bellman Value Iteration, and COE-DDPG with DDPG. We evaluate them on gridworld
environments - discrete gridworld for value iteration and continuous gridworld for DDPG. Our results
in both settings show that our COE-based algorithms are superior to their Bellman counterparts in
terms of the number of updates required to solve the environment.

We evaluate COE-VI on 2-dimensional gridworld environments, each composed of 50× 50 tiles. For
each board, we choose with probability 0.3 whether each tile should be a wall or a floor. Next, we
randomly sample the start state and the goal state from all possible floors and check whether the goal
is reachable from the start state. The results in Figure 1 are consistent with the theoretical derivations.

To understand COE’s generalization to Deep RL, we also evaluate COE-DDPG in the continuous
grid world environment and compare it to standard Bellman-based DDPG. We evaluate how quickly
both algorithms achieve an entire epoch where all goals are reached within a specific time frame. We
repeat this 32 times to obtain a measure of sample efficiency. The histogram of the first epochs solved
in each run is shown in Figure 1. COE-DDPG, on average, requires 40.6% fewer epochs than DDPG.
Details of both experiments and an extended discussion of the results can be found in the (App. C).

5 Summary

Our novel Compositional Optimality Equation (COE) allows for Reinforcement Learning based on
value decomposition, yielding algorithms significantly more sample-efficient than the traditional
Bellman update.

Our experiments confirm COE’s significant speed-ups. The remaining limitations include: (1) we
assume identical state and goal spaces; (2) our theoretical derivation is restricted to deterministic
MDPs; (3) there are no results for partially observable environments; (4) the direct operation on states
becomes infeasible in higher dimensions. Extending COE’s applicability to real-world environments
is a promising direction for future research.
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A Related Work

Deep Reinforcement Learning (RL)[43] has emerged as a powerful paradigm for training intelligent
agents across a wide variety of applications, ranging from gaming [23, 39, 46] to natural language
processing[4, 25] and robotics [17, 29, 31]. However, training Reinforcement learning agents
continues to be a challenging endeavor due to its substantial energy consumption and intensive
computational requirements. These challenges amplify when RL is applied in real-life scenarios,
where each sample is considerably more costly compared to simulated samples [21, 26, 40].

To alleviate the training costs for real-life robots and RL agents, a series of research papers have
proposed strategies to improve sample efficiency. Dearden et al. [7], Mai et al. [22] leverage
uncertainty to better utilize information from the value functions, while Arjona-Medina et al. [3],
Faccio et al. [9], Guo et al. [11], Liu et al. [20] tackle the credit assignment problem by explicitly
identifying crucial states. Wang et al. [47] propose an alternative to the Bellman Equation, aiming
for rapid credit assignment in the context of multi-step off-policy RL. Our method does not involve
multi-step updates; instead, it applies value function compositions. Sample efficiency is also related
to the problem of exploration in RL [1, 36, 42, 44]

In goal-reaching tasks [2, 15, 32, 33], goals are typically distant and widely distributed. Thus, efficient
information propagation is crucial to perform well in such environments—a challenge known as
the long-horizons problem [10, 12]. Park et al. [27], like us, addresses the long-horizons problem
by creating a flat policy from a single value function. However, it does not introduce a hierarchical
inductive bias in the value function to accelerate value propagation.

Our method is closely related to hierarchical RL[6, 28, 34, 35, 37, 48]. Hierarchical RL generates
subgoals to aid in problem-solving—after identifying a subgoal, it focuses on reaching the subgoal,
thereby forming a hierarchical policy. In contrast, our method employs a flat policy, utilizing subgoals
solely for more efficient information propagation through better problem decomposition. In this

7



context the closest related work to us are Dhiman et al. [8], Kaelbling [15]. Our formulation, however,
allows to generalize the algorithm into deep RL case.

Our algorithm can also be easily integrated with hierarchical methods, serving as a subgoal discovery
mechanism [49].

B Method

The Bellman equation decomposes the value function into two parts: the reward obtained at the
immediate next step, and the expected discounted reward gathered over all subsequent steps (γV (s′)).
This intuitive formulation makes learning possible even in scenarios with infinite episodes. However,
methods based on the direct application of the Bellman optimality equation necessitate accurate
estimates for neighboring states to obtain a reliable estimate for the updated states. Therefore,
information propagates linearly in terms of loop iterations or target network updates.

A viable strategy to increase the speed of information propagation is employing multi-step updates
that roll out the Bellman equation beyond a single step and use nearer estimates for the update.
However, multi-step methods, when applied with off-policy algorithms [30, 41], suffer from high-
variance [5]. Methods, such as Harutyunyan et al. [13], Munos et al. [24], have been proposed
to reduce the variance of multi-step methods. We propose an alternative approach that uses the
philosophy of multi-step methods but, by bootstrapping, avoids high variance related to the sampled
rollout.

In the context of goal-conditioned RL, the agent knows the goal it is trying to reach from the start of
the episode. We leverage this information to derive a method that significantly accelerates information
propagation, achieved by revisiting the Bellman equation. Our Compositional Optimality Equation
also partitions the problem into two subproblems that are connected by an interim state that we call a
subgoal. Unlike the Bellman optimality equation, our intermediate states (subgoals) do not have to be
adjacent to the state being updated. Therefore, they can segment the trajectory into more equidistant
parts, thereby enabling exponentially faster value propagation.

B.1 Compositional Optimality Equation

We focus on Goal-conditioned RL. We make the assumption that the state space is the same as
the goal space, denoted as SS = SG. Recall the extended state space S = SS × SG. Assume
that the underlying MDP is deterministic. In other words, T is not a distribution, but a function
T : S × A → S. Let Πopt represent the set of all deterministic policies that are optimal, such that
∀s,g∈S,π∈Πopt

V π(s, g) = V ∗(s, g). Moreover, Πopt is not empty as a global optimal policy always
exists. Let Tπ(s, g) denote a trajectory (a set of visited states) of π when run on state s and goal g.

A state subg is called a subgoal of (s, g) if there exists a deterministic optimal policy that visits subg
on the way from s to g. In other words, subg is a subgoal from s to g if it is on some optimal path
from s to g. Formally:

subg is a subgoal from s to g ⇐⇒ subg ∈
⋃

π∈Πopt

Tπ(s, g)

. We define SUBG(s,g) =
⋃

π∈Πopt
Tπ(s, g) as the set of subgoals from s to g.

An alternative way to define the same set SUBG involves value functions instead of trajectories.
Specifically:

SUBGV (s, g) = {s′ ∈ SS : V ∗(s, g) = V ∗(s, s′)V ∗(s′, g)}

.

Lemma 1: Equivalence of definitions:

SUBG(s, g) = SUBGV (s, g)

.
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Proof First, we demonstrate why, in Goal-conditioned deterministic environments, we can examine
distance functions instead of value functions.

Let dπ(s, g) be a random variable representing a distance from s to g under policy π. In other words,
if Tπ(s, g) is a sample rollout of π from s to g, then dπ(s, g) = |Tπ(s, g)| − 1. We also define
d(s, g) := minπ dπ(s, g) as the optimal distance from s to g.

from the Bellman expectation equation, we derive V π(s, g) = E[γdπ(s,g)]. Since we operate
on deterministic environments and focus on deterministic policies, V π(s, g) = γdπ(s,g). Thus,
V ∗(s, g) = maxπ V

π(s, g) = γminπ dπ(s,g) = γd(s,g).

To show that SUBG(s, g) = SUBGV (s, g) we must demonstrate:

V ∗(s, g) = V ∗(s, subg)V ∗(subg, g) ⇐⇒ ∃π∈Πopt
subg ∈ Tπ(s, g).

Starting with the left-to-right implication. Let π be a deterministic, optimal policy. Then from the
assumption we have that V π(s, g) = V π(s, subg)V π(subg, g), which is equivalent to dπ(s, g) =
dπ(s, subg) + dπ(subg, g). Therefore, subg must belong to Tπ(s, g), as otherwise dπ(s, g) ≤
dπ(s, subg) contradicts the sum of distances. Thus, π is the policy from Πopt such that subg ∈
Tπ(s, g)

The proof in the opposite direction is also straightforward. Let π be a policy that satis-
fies the right-hand side assumptions, with π ∈ Πopt such that subg ∈ Tπ(s, g). Note that
Tπ(s, subg)

⋃
Tπ(subg, g) does not necessarily have to be equal to Tπ(s, g). However, because

π is optimal everywhere, we must have dπ(s, g) = dπ(s, subg)+dπ(subg, g) for subg is in Tπ(s, g).
Otherwise, π would not be optimal at (s, subg) or at (subg, g). Therefore, V ∗(s, g) = V π(s, g) =
γdπ(s,subg)+dπ(subg,g) = V π(s, subg)V π(subg, g) = V ∗(s, subg)V ∗(subg, g).

Triangle inequality The decomposition of the value function into the product of values at any state
(not necessarily optimal) satisfies the triangle inequality.

∀s′V ∗(s, g) ≥ V ∗(s, s′)V ∗(s′, g). (1)

This emerges from the triangle inequality of distances expressed in the exponential form: V ∗(s, g) =

γd(s,g) ≥ γd(s,s′)+d(s′,g) = γd(s,s′)γd(s′,g) = V ∗(s, s′)V ∗(s′, g).

Consequently, we obtain an alternative optimality equation.

Compositional Optimality Equation

V ∗(s, g) = V ∗(s, subg)V ∗(subg, g) for any subg ∈ SUBG(s, g) = max
subg∈S

V ∗(s, subg)V ∗(subg, g)

We base our algorithm for subgoal discovery and an alternative update rule on this equation.

B.1.1 Proof of convergence of Compositional Value Iteration

Let V k(s, g) be the estimate of V ∗(s, g) after k steps. We will show by induction that after k
iterations of the algorithm, all pairs of states that are closer to each other than 2k have already reached
optimal value function as their V k(s, g) estimates. We will also show that all estimates are smaller
than or equal to the optimal value function. In other words, after k iterations we have two conditions
satisfied: 1) ∀(s,g):d(s,g)≤2k : V k(s, g) = V ∗(s, g) and 2) ∀(s,g)V k(s, g) ≤ V ∗(s, g).

After 0 iterations (upon the first time visiting line 7), we have ∀(s,g):d(s,g)=1V
0(s, g) = γ and

∀(s,g):d(s,g)=0, also ∀(s,g):s ̸=gV
0(s, g) = 0 ≤ V ∗(s, g),∀sV 0(s, s) = 1 ≤ V ∗(s, s). Thus, the base

of the induction is satisfied.

Now for the k’th step, assume that our assumption holds for k− 1. First, ∀s,gV k−1(s, g) ≤ V ∗(s, g),
so as a consequence of triangle inequality 1 after the update V will also satisfy V k(s, g) ≤ V ∗(s, g).

Let us consider (s, g) : d(s, g) ≤ 2k. Then, let us choose a subgoal from some optimal trajectory
that is in the middle, such that d(s, subg) ≤ 2k−1 and d(subg, g) ≤ 2k−1. From our assumption
V k−1(s, subg) = V ∗(s, subg), V k−1(subg, g) = V ∗(subg, g). Therefore if subg is selected for
an update, we will have V k−1(s, subg)V k−1(subg, g) = V ∗(s, subg)V ∗(subg, g) = V ∗(s, g).
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Mean Min Max

COE-DDPG 19.125 11 35

DDPG 32.187 24 38

Relative gain 40.6% 54.2% 7.9%
Table 2: Comparison of sample efficiency of COE-DDPG with DDPG on the continuous gridworld.
The table is a summary of 32 runs per algorithm. For each run, we calculate the first epoch in which
all episodes were solved. Relative gain is the percentage difference between COE-DDPG and DDPG.
Both average-case and best-case are significantly better for COE-DDPG than DDPG.

However, as we are maximizing over all possible subgoal states, it follows that V k(s, g) ≥ V ∗(s, g),
since we have to choose a state that yields a product at least as large as subg.

In summary, V k(s, g) ≥ V ∗(s, g), but also V k(s, g) ≤ V ∗(s, g). So V k(s, g) = V ∗(s, g) which
proves the inductive step.

C Experimental details

C.1 Gridworld

We evaluate our COE Value Iteration (COE-VI) on a two-dimensional gridworld environment
composed of 50 × 50 tiles and compare it to standard Value Iteration (VI). For each generated
board, each position is designated as a wall with a probability of 0.3, and as a floor tile otherwise.
Subsequently, we sample the start state and the goal state uniformly from all floor positions. Next,
we check algorithmically whether the goal is reachable from the start state. If not, then we repeat the
sampling procedure. Otherwise the RL agent receives it as a task. Our results are consistent with
theoretical derivations and confirm that COE Value Iteration is exponentially faster in terms of the
number of updates. The results are presented in Table 1. Notice that COE-VI requires fewer updates
to solve a problem with a state-to-goal distance of 10000 than VI requires to solve one of distance
25. The number of steps necessary to learn to reach the goal at a distance d with COE-VI is exactly
⌈log2(d)⌉, whereas for standard VI, it is d.

C.2 Continuous gridworld

To evaluate the sample efficiency of Deep RL methods derived from COE, we compare COE-DDPG
with DDPG in a continuous gridworld environment to determine the speed at which each solves the
environment. The continuous gridworld used for the comparison has a state space of [−20, 20]2, and
an action space of [−1, 1]2. In each episode, the start and the goal states are uniformly sampled from
the state space. A small centralized Gaussian noise with a standard deviation of 0.1 is added to the
action at each step. The goal is considered achieved if the distance between the player’s position and
the goal position is less than 0.5.

For our agent, we use COE-DDPG (3).We compare the results of COE-DDPG to the standard DDPG
[18]. All models—policy, state-action value functions, and generator—are dense neural networks.
Both the policy and generator contain three hidden layers, whereas the value function has four. All
models have the same hidden dimension of 512. The generator and policy employ the tanh activation
function with suitable scaling. For the value function, the sigmoid activation function is used. The
learning rates, denoted as lrq, lrπ, lrG are consistent and set to 10−5. All models are trained with the
Adam optimizer [16].

To evaluate the performance, we execute 32 experiments for each algorithm and study the convergence
speed of both. Training starts with 50,000 explorative steps. During this phase, the agent interacts
with the environment using a randomly initialized policy without improvement, solely collecting data
for the experience replay buffer, which has a capacity of 50, 000. Subsequently, the initial epoch of
training begins. This epoch comprises 3000 network update steps and 5000 steps of interaction with
the environment, accumulating data for the experience replay [19]. Each episode is limited to 50
steps, after which it is truncated. We measure the number of epochs necessary to solve the problem.
Specifically, we record the initial epoch that achieves a 100% success rate across its episodes.
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The results are shown in Table 2. On average, COE-DDPG proves to be 40.6% faster than its
conventional counterpart, with the fastest run being 54.2% faster than the original. In the least
favorable scenarios, the advantage is smaller, although closer inspection reveals that these least
favorable runs are outliers for COE-DDPG. A more in-depth view of the distribution of runs can be
seen in Figure 1. This Figure indicates that the distribution associated with COE-DDPG is distinctly
skewed to the left.

While we observe significant improvements from using COE-DDPG over using standard DDPG in
this setting, they do not match the exponential speedup witnessed in the discrete case. This disparity
results from three factors. First, due to their smoothness, neural networks propagate value updates
into nearby states, mitigating the exponential speedup effect. Next, in a discrete environment, the
update encompasses all states. In contrast, in a continuous setting, the variance introduced by the
generator increases the variance of the entire method. Finally, the discrete algorithm assumes that the
values are initialized at 0. This assumption is problematic in function approximation as it may lead to
either vanishing gradients or other complex formulations.
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D COE-based Deep RL algorithms

Algorithm 2 COE-DQN

1: Input: Q-function parameters θq , generator parameters θg , empty replay buffer D
2: Set target parameters equal to main parameters θq,t ← θq, θg,t ← θg
3: repeat
4: Observe state s and goal g and select action a = maxa Qθq,t(s, a, g)
5: Execute a in the environment
6: Observe next state s′, reward r, goal g, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, g, d) in replay buffer D
8: if s′ is terminal, reset environment state.
9: if it’s time to update then

10: if first time updated then
11: Initialize generator with Bellman Generator Initialization (See ??)
12: end if
13: for however many updates do
14: Randomly sample a batch of transitions, B = {(s, a, r, s′, g, d)} from D
15: Generate a subgoal for the update subg = Gθg,t(s, a)
16: Compute targets

y(s, a, subg, g) = Qθq,t(s, a, subg)max
a′

Qθq,t(subg, a
′, g)

17: Update Q-function by one step of gradient descent using

∇θq

1

|B|
∑

s,a,r,s′,g,d)∈B

(Qθq (s, a, g)− y(s, a, subg, g))

18: Update the generator by one step of gradient ascent using

∇θg

1

|B|
∑

(s,g)∈B

(1−d)Qθq,t(s
′, a, subg)max

a′
Qθq,t(subg, a

′, g) where subg = Gθg (s, a)

19: Update the Q-function by one step of gradient descent on next states from the batch

∇θq

1

|B|
∑

(s,a,s′)∈B

(Qθq (s, a, s
′)− γ)

20: Update target networks
21: end for
22: end if
23: until convergence
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Algorithm 3 COE-DDPG

1: Input: initial policy parameters θp, Q-function parameters θq, generator parameters θg, empty
replay buffer D

2: Set target parameters equal to main parameters θp,t ← θp, θq,t ← θq, θg,t ← θg
3: repeat
4: Observe state s and goal g and select action a = clip(µθp(s, g) + ϵ, aLow, aHigh), where

ϵ ∼ N
5: Execute a in the environment
6: Observe next state s′, reward r, goal g, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, g, d) in replay buffer D
8: if s′ is terminal, reset environment state.
9: if it’s time to update then

10: if first time updated then
11: Initialize generator with Bellman Generator Initialization (See ??)
12: end if
13: for however many updates do
14: Randomly sample a batch of transitions, B = {(s, a, r, s′, g, d)} from D
15: Generate a subgoal for the update subg = Gθg,t(s, a)
16: Compute targets

y(s, a, subg, g) = Qθq,t(s, a, subg)Qθq,t(subg, µθp,t(subg, g), g)

17: Update Q-function by one step of gradient descent using

∇θq

1

|B|
∑

s,a,r,s′,g,d)∈B

(Qθq (s, a, g)− y(s, a, subg, g))

18: Update policy by one step of gradient ascent using

∇θp

1

|B|
∑

(s,g)∈B

Qθq (s, µθp , g)

19: Update the generator by one step of gradient ascent using

∇θg

1

|B|
∑

(s,g)∈B

(1−d)Qθq,t(s
′, a, subg)Qθq,t(subg, µθp,t(subg, g), g) where subg = Gθg (s, a)

20: Update the Q-function by one step of gradient descent on next states from the batch

∇θq

1

|B|
∑

(s,a,s′)∈B

(Qθq (s, a, s
′)− γ)

21: Update target networks
22: end for
23: end if
24: until convergence
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