
Published as a conference paper at ICLR 2025

BEYOND TOP-K: STRUCTURED SPARSIFICATION FOR
COMPRESSION IN PIPELINE PARALLEL

Sameera Ramasinghe, Thalaiyasingam Ajanthan, Gil Avraham, Yan Zuo, & Alexander Long
Pluralis Research
{sameera, aj,gil,yan,alexander}@pluralis.ai

ABSTRACT

In decentralized training, efficient communication is critical, particularly when
training large-scale models over low-bandwidth, heterogeneous networks. Al-
though gradient compression techniques have proven effective in Distributed
Data-Parallel (DDP) settings, extending them to pipeline parallel (PP) training
is challenging due to cumulative compression errors that exacerbate with network
depth. In this work, we introduce a novel compression framework for PP that
preserves the column space of activations and gradients instead of compressing
individual elements. We derive tight theoretical error bounds and demonstrate
the effectiveness of our method by training models over 80 Mbps connections,
achieving up to 90% compression along with around 2× training and 12× infer-
ence throughput improvements.

1 INTRODUCTION

In decentralized training environments, particularly when training large-scale models over low-
bandwidth and heterogeneous networks, efficient communication between nodes is critical. Tra-
ditionally, most research has concentrated on compressing gradients in Distributed Data-Parallel
(DDP) settings, motivated by the observation that weight gradients are highly redundant and can be
aggressively compressed—via techniques such as TopK sparsification Lin et al. (2017), low-rank
projections Vogels et al. (2019), and quantization Seide et al. (2014)—without significantly affect-
ing convergence. These methods have demonstrated impressive compression rates and have been
widely adopted in DDP.

However, extending these compression techniques to pipeline parallel (PP) training presents unique
challenges. Recent studies Bian et al. (2024); Song et al. (2023) have shown that sparsification
strategies effective in DDP do not translate well to PP settings. In PP, both the forward and backward
passes involve transmitting intermediate activations and gradients between layers rather than simply
sharing gradients between model replicas. Consequently, each layer introduces its own compression
error, and these errors can accumulate Song et al. (2023). We show that the compound error can
potentially growing exponentially with network depth, which can severely degrade convergence.

Further, we argue that preserving the column space of activations and gradients is more critical in
PP than retaining individual elements, as is the focus in DDP. Our analysis reveals that element-
wise sparsification methods, such as TopK, disrupt the column space, leading to greater cumulative
errors. Instead, we propose a column-wise sparsification strategy that better maintains the structural
integrity of the information passed between layers, while achieving a better compression rate.

We derive tight upper bounds on the errors incurred under different compression schemes and
provide theoretical insights into their behavior in PP settings. To validate our theoretical find-
ings, we conduct experiments by training models in a decentralized environment characterized
by low-bandwidth (80 Mbps) connections with stochastic variability. Our results demonstrate that
the proposed method achieves up to a 90% compression rate—substantially surpassing traditional
TopK—and translates into around 2× overall throughput gain during training and a 12× gain dur-
ing inference. Our findings suggest that rethinking compression strategies for PP—by focusing on
preserving structural information rather than individual elements—can lead to substantial improve-
ments in both training and inference efficiency.

1

Published as a conference paper at ICLR 2025

This paper makes the following contributions:

• We identify and analyze the challenges associated with applying gradient compression
techniques in pipeline parallel training, highlighting the role of error accumulation.

• We propose a novel compression framework that better preserves the column space of ac-
tivations and gradients, improving convergence.

• We provide theoretical analysis with tight error bounds and validate our approach on low
bandwidth, decentralized settings.

2 RELATED WORKS

Model Parallelism and Data Parallelism. Data parallelism (DP) replicates the model across mul-
tiple devices, with each worker processing different data batches and synchronizing gradients Li
et al. (2014); Sergeev & Del Balso (2020). While effective, DP faces communication bottlenecks as
models scale, prompting research into gradient compression methods like quantization Seide et al.
(2014), sparsification Lin et al. (2017), and low-rank updates Vogels et al. (2019). Model paral-
lelism (MP) instead partitions the model across devices, allowing training of large models beyond
single-device memory limits Shoeybi et al. (2019). It is commonly implemented as tensor model par-
allelism (TP), which splits computations within layers, or pipeline parallelism (PP), which assigns
different layers to different workers Narayanan et al. (2019). Both strategies introduce communica-
tion overhead, making compression a key optimization.

Compression in Parallel Training. Unlike DP, where gradient compression is widely studied, MP
requires activation compression, which poses unique challenges since activations are not inherently
low-rank Li et al. (2022); Bian et al. (2024). Recent approaches have explored autoencoder-based
Hinton & Zemel (1993) and quantization-based Wang et al. (2022) compression, but excessive com-
pression can degrade accuracy. Furthermore, existing system optimizations that improve DP effi-
ciency may not translate to MP due to differences in communication patterns Agarwal et al. (2022).
Understanding these trade-offs Song et al. (2023) is crucial for designing communication-efficient
MP strategies that balance compression benefits with computational cost and accuracy retention.

3 ANALYSIS

3.1 COMPRESSION ERRORS IN PIPELINE PARALLEL TRAINING

A key distinction between DDP training and PP training lies in the nature of the information ex-
changed and the way compression is applied. In DDP, model weight gradients are exchanged after
a number of training steps, allowing compression to be applied across the entire parameter gradient
vector at once. Conversely, in PP training, activations and activation gradients must be exchanged
between the layers of the model. This means that, unlike in DDP, each layer in PP training con-
tributes independently to the overall compression error during each training iteration. As a result,
the compression error is accumulated across layers, which poses unique challenges in maintaining
model accuracy and stability. Given these differences, it is intriguing to analyze PP training under
the specific constraints imposed by activation and acivation gradient compression. First, we show
that the compound error in PP training can grow exponentially with the number of layers.
Theorem 3.1. Consider a feedforward neural network with L layers, where layer l applies a (dif-
ferentiable) function

xl+1 = fl(xl), l = 1, . . . , L.

Let ∇L(xl) denote the gradient of the final loss L with respect to the layer’s input xl. Suppose
that: 1) The spectral norm of the Jacobian ∇fl(xl) is bounded above by ν > 0 for all l, i.e.
∥∇fl(xl)∥ ≤ ν. 2) In backpropagation, an additional error el is introduced at each layer l, with
∥el∥ ≤ e for some constant e > 0. Further, define εl to be the cumulative error in the gradient at
layer l. Then for ν > 1, εl can grow exponentially with the total number of layers L; in particular,

∥εl∥ ≤ e
ν L−l+1 − 1

ν − 1
,

which is an exponential function of L when ν > 1.

2

Published as a conference paper at ICLR 2025

3.2 COLUMN-SPACE PRESERVATION IN PIPELINE PARALLELISM

We refer to the notation provided in Appendix 7.3 from here onward.

Forward Pass. Recall that the column space of the product AB of any two matrices A and B
always lies in the column space of A. Therefore, every subsequent linear transformation or attention
mechanism operates within the column space of the activation matrix, and thus, preserving that space
in compression is essential. Specifically, if Xl ∈ Rb×n×d is replaced by some compressed X̃l, then
every projection (X̃lWl

∗,h) will remain within the subspace spanned by X̃l. If the subspace of X̃l

deviates significantly from that of Xl, the transformed representations—queries, keys, values, and
subsequent feed-forward inputs—will be misaligned.

Backward Pass. Similarly, on the backward pass, let ∇l(X
l
hidden) = ∇l(X

l+1) (Wl
p2
)⊤. Any

deviation in the column space of ∇l(X
l) will adversely affect the propagation of gradients, leading

to inaccurate updates in earlier layers. Thus, maintaining fidelity in the column spaces becomes
paramount to preserve accurate gradient flow.

3.2.1 A SUBSPACE-BASED METRIC FOR COMPRESSION QUALITY

To quantify the misalignment of the column space in a compressed activation (or gradient) matrix,
consider a single instance G ∈ Rn×d from a batch. Let G̃ be its compressed version. Denote by
Ur the top r left singular vectors of G, and by Ũr the top r left singular vectors of G̃. We assess
subspace preservation via the principal angles between these subspaces:∥∥sinΘ(Ur, Ũr)

∥∥, (1)

where Θ(Ur, Ũr) is the diagonal matrix whose entries are the principal angles between the column
spaces of Ur and Ũr. Intuitively, this term captures the extent to which the compressed matrix
G̃ is “rotated” relative to G. If the principal angles are large, the subspaces are significantly mis-
aligned, implying higher risk of distortion in both forward and backward passes. Consequently,
∥ sinΘ(Ur, Ũr)∥ serves as a concise, direct measure of the error introduced by compression.

By ensuring that compression schemes maintain small principal angles between the uncompressed
and compressed subspaces, one can more effectively preserve the representational and gradient flow
characteristics critical to stable training in pipeline-parallel architectures.

3.3 ON THE ERROR OF TOPK SPARSIFICATION

A common strategy for compressing gradients in DDP training is Top-K sparsification. In this
method, only the top k% elements (by absolute value) of the gradient tensor are retained while
the remaining entries are set to zero. When combined with error correction mechanisms, Top-K
sparsification has been highly effective in DDP, achieving compression rates as high as 99% without
degrading convergence.

However, in PP training, Top-K sparsification is considerably less effective. Recent studies Bian
et al. (2024); Song et al. (2023) have shown that aggressive Top-K compression can significantly
degrade convergence in PP. In the following, we derive a rigorous upper bound on the error induced
by Top-K sparsification on the column space, confirming that this error can increase rapidly at high
compression rates.

Theorem 3.2. Let G ∈ Rn×d be a random matrix whose entries {Gij}1≤i≤n, 1≤j≤d are i.i.d. sub-
Gaussian with mean zero and variance proxy σ2. Assume G has rank r, and that its rth singular
value satisfies

σr(G) ≥ β > 0.

For any fraction 0 < x < 1, define G̃ by masking (setting to zero) all entries of G whose absolute
value does not exceed the (xn d)th order statistic:

|G(1)| ≤ |G(2)| ≤ · · · ≤ |G(nd)|, tx := |G(⌈xn d⌉)|.

3

Published as a conference paper at ICLR 2025

Then set

G̃ij =

{
0, if |Gij | ≤ tx,

Gij , if |Gij | > tx.

With high probability (in n, d), the Frobenius norm of the sine of the principal angles between the
top-r left singular vectors of G (denoted Ur) and those of G̃ (denoted Ũr) is bounded by

∥ sinΘ(Ũr, Ur)∥F ≤ C σ

√
r x n d

β2

√
log
(2

1− x

)
,

where C > 0 is a universal constant (independent of n, d, x, σ, β).

Discussion. The error bound in Theorem 3.2 C σ
√

r x n d
β2

√
log
(

2
1−x

)
captures several impor-

tant factors influencing the accuracy of the masked matrix approximation. The dependence on
√
r

suggests that a lower-rank approximation of G leads to a smaller error, meaning that if G is well-
approximated by a low-rank structure, the impact of the masking is less severe. Furthermore, the
parameter β reflects the minimum separation among the nonzero singular values of G; a larger β
indicates a clearer distinction between significant and insignificant singular values, which in turn
reduces the error bound.

A critical aspect of the bound is the term
√
x log

(
1

1−x

)
, which represents the effect of the fraction

x of masked entries. As more aggressive compression is applied—meaning that x approaches 1 and
almost all entries are masked—the logarithmic term log

(
2

1−x

)
diverges. In the limit as x → 1,

this divergence causes the overall bound to grow without bound, indicating that the error in approx-
imating the subspace becomes arbitrarily large. Such an unbounded increase in error under extreme
compression is particularly concerning in PP settings, where errors introduced at each layer can
accumulate and significantly degrade convergence.

4 IMPROVING THE ERROR BOUND WITH COLUMN-SPARSIFICATION

In contrast to element-wise compression methods, such as Top-K sparsification which can induce to
severe errors in the resultant column space, we show that leveraging column-sparsification to better
preserves the structural properties of the data. Instead of masking individual entries of the gradient
or activation matrices, we mask entire columns—specifically, those with the smallest ℓ2 norms.
This strategy aims to maintain the integrity of the column space, which is critical for preserving the
overall subspace structure during the training process.

The following theorem formalizes the error bound when column-sparsification is applied.
Theorem 4.1. Let G ∈ Rn×d be a matrix of rank r whose nonzero singular values are all at least
β > 0. Consider masking the x% columns of G having the smallest ℓ2 norm, resulting in a matrix
Ĝ. Denote by Ur and Ũr the matrices containing the top r left singular vectors of G and Ĝ,
respectively. Then,

∥ sin θ(Ũr,Ur)∥F ≤
√
2rx d maxi∈I ∥G:,i∥2

β
,

where I denotes the (masked) column indices.

Discussion. This theorem shows that by masking columns with small ℓ2 norms, the deviation be-
tween the subspaces spanned by the top r singular vectors of G and Ĝ is controlled by the term

√
x d

multiplied by the maximum norm of the masked columns, normalized by the spectral lower bound β.
In other words, if the columns being discarded are indeed of small magnitude (i.e., maxi∈I ∥G:,i∥
is small), then the subspace perturbation is guaranteed to be small, even if a non-negligible fraction
x of the columns is masked.

This result contrasts sharply with the behavior observed in element-wise Top-K sparsification, where
the error bound may grow rapidly—indeed, diverging in the limit of aggressive compression. Here,

4

Published as a conference paper at ICLR 2025

the column-sparsification method maintains a more stable error behavior: the error scales as
√
x d,

which grows more gracefully with the compression rate. Consequently, this approach mitigates the
cumulative error problem inherent in PP training, where repeated compression across layers could
otherwise lead to significant degradation in convergence.

Thus, column-sparsification offers a promising alternative for reducing communication overhead
while preserving essential structural information, enhancing both the theoretical and practical per-
formance of large-scale decentralized training systems.

5 EXPERIMENTS

(a) Top-K (f/ pass). (b) Top-K (f/ & b/ pass). (c) Column masking (f/ & b/ pass).

Figure 1: Comparison with Top-K: (a) Compressing only the forward pass (activations) with Top-
K allows higher compression rates. (b) Compressing both the forward and backward passes (activa-
tions and gradients) with Top-K leads to severe performance degradation. (c) Our proposed column-
masking approach enables compressing both forward and backward passes with higher compression
rates while maintaining performance.

(a) Training (b) Inference

Figure 2: Throughput gain with 90% compression. We achieve around 2× and 12× gains over
the non-compressed model.

5.1 EXPERIMENTAL SETUP

We evaluate our method on language-modeling tasks using decoder-only architectures Brown et al.
(2020) trained on the C4 dataset Raffel et al. (2019). The model configurations are based on the
Llama 3 architecture Dubey et al. (2024). Specifically, we employ a context length of 1024, an
embedding dimension of 512, 24 attention heads, and 8 layers. For optimization, we use a base
learning rate η = 3× 10−4 with a warm-up phase followed by linear decay, a weight decay of 0.01,
and a batch size of 32.

We adopt GPipe Huang et al. (2019) for pipeline parallelism (via
torch.distributed.pipelining) and integrate our compression method directly
into its dataflow. The model is partitioned across 8 A10g GPUs, assigning one layer per GPU. To
simulate heterogeneous network conditions, We designate the connections between the 2nd–3rd,
4th–5th, and 6th–7th GPUs as low-bandwidth links, with bandwidth sampled from N (80, 16) (Mb/s),

5

Published as a conference paper at ICLR 2025

Figure 3: Comparison against row-masking. Validating our argument that the preservation of
the column space is more critical, the model convergence is disrupted severely when the rows are
masked.

while all other links operate at higher bandwidth sampled from N (1024, 200). Note that in PP, the
lowest link bottlnecks the training.

5.2 COMPARISON WITH TOP-K

We compare the performance of our proposed method against top-K under varying compression
rates. Fig. 3 presents the results. As shown in Fig. 3, even with top-K, compressing only the
forward pass maintains good convergence, even at aggressive compression rates. However, when
backward gradients are also compressed, training diverges significantly—even at mild compression
rates (e.g., 10%). This highlights the greater sensitivity of gradients to compression errors compared
to activations. In contrast, our column-based compression preserves convergence and matches the
performance of the uncompressed baseline, even at a 90% compression rate. Note that this aligns
with our theoretical predictions in Theorem 3.2 and 4.1.

5.3 THROUGHPUT GAINS

Achieving a 90% compression rate leads to significant throughput improvements over the baseline.
Fig. 2b presents the results, showing that our method achieves approximately a 2× increase in train-
ing throughput and a 20× boost in inference throughput. These gains can substantially reduce latency
in decentralized settings, making large-scale training and deployment more efficient.

5.4 COMPARISON WITH ROW MASKING

Our compression method is based on the premise that preserving the column space of activations
and gradients is critical. This is already supported by our results in Fig. 2. To further validate
this, we apply masking over rows instead of columns. Fig. 3 presents the results, showing that row
masking leads to significant performance degradation, reinforcing the importance of column-space
preservation.

6 CONCLUSION

We introduced a novel compression framework for pipeline parallel training that preserves the col-
umn space of activations and gradients, mitigating cumulative compression errors. Our approach
achieves up to 90% compression, leading to a 2× training throughput and 12× inference speedup
over low-bandwidth networks. Theoretical analysis and large-scale experiments validate its effec-
tiveness, highlighting the importance of structural preservation in PP compression.

6

Published as a conference paper at ICLR 2025

REFERENCES

Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papailiopoulos. On the
utility of gradient compression in distributed training systems. Proceedings of Machine Learning
and Systems, 4:652–672, 2022.

Song Bian, Dacheng Li, Hongyi Wang, Eric Xing, and Shivaram Venkataraman. Does compressing
activations help model parallel training? Proceedings of Machine Learning and Systems, 6:239–
252, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length and helmholtz
free energy. Advances in neural information processing systems, 6, 1993.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. Amp: Automatically finding model parallel
strategies with heterogeneity awareness. Advances in Neural Information Processing Systems, 35:
6630–6639, 2022.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the
parameter server. In 11th USENIX Symposium on operating systems design and implementation
(OSDI 14), pp. 583–598, 2014.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gre-
gory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline par-
allelism for dnn training. In Proceedings of the 27th ACM symposium on operating systems
principles, pp. 1–15, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Interspeech, volume 2014,
pp. 1058–1062. Singapore, 2014.

Alexander Sergeev and M Horovod Del Balso. Fast and easy distributed deep learning in tensorflow.
arxiv 2018. arXiv preprint arXiv:1802.05799, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun Jang, Hyung-Jin Kim, Youngsok Kim, and Jinho
Lee. Optimus-cc: Efficient large nlp model training with 3d parallelism aware communication
compression. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pp. 560–573, 2023.

7

Published as a conference paper at ICLR 2025

GW Stewart. Matrix perturbation theory. Computer Science and Scientific Computing/Academic
Press, Inc, 1990.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
32, 2019.

Jue Wang, Binhang Yuan, Luka Rimanic, Yongjun He, Tri Dao, Beidi Chen, Christopher Re, and
Ce Zhang. Fine-tuning language models over slow networks using activation compression with
guarantees. arXiv preprint arXiv:2206.01299, 2022.

8

Published as a conference paper at ICLR 2025

7 APPENDIX

7.1 THEORETICAL RESULTS

7.1.1 PROOF FOR THEOREM 3.1

Proof. Recall the usual chain rule for the gradient of the final loss L with respect to the input xl of
layer l:

∇L(xl) = ∇L

(
xl+1

)
∇fl

(
xl

)
.

Assume that at each layer we introduce an error in the gradient. Let

εl =
(
true gradient at layer l

)
−
(
observed/propagated gradient at layer l

)
.

When moving from layer l to layer l − 1, the error recursion becomes:

εl−1 = εl ∇fl−1(xl−1) + el−1,

where el−1 is the newly introduced error at layer l − 1. Unfolding this backwards gives a general
expansion:

εl = el +

L∑
j=l+1

(
j−1∏
i=l

∇fi(xi)

)
ej .

Taking the norm and using the assumption ∥∇fi(xi)∥ ≤ ν and ∥ej∥ ≤ e, we get:

∥εl∥ ≤
L∑
j=l

(j−1∏
i=l

∥∇fi(xi)∥
)
∥ ej∥ ≤

L∑
j=l

ν j−l e = e

L−l∑
k=0

ν k,

where k = j − l. This geometric sum is
L−l∑
k=0

νk =
ν L−l+1 − 1

ν − 1
(valid for ν ̸= 1).

Hence,

∥εl∥ ≤ e
ν L−l+1 − 1

ν − 1
.

Since ν > 1, ν L−l+1 grows exponentially in L.

7.1.2 PROOF FOR THEOREM 3.2

Proof. By Wedin’s Theorem Stewart (1990), we get

∥ sin θ(Ur, Ũr)∥2F + ∥ sin θ(Vr, Ṽr)∥2F ≤ ∥UT
r ∆∥2F + ∥∆Vr∥2F

δ2
(2)

where

δ = min{ min
1≤i≤r,r+1≤j≤n

|σi − σ̃j |, min
i≤i≤r

σi} > 0.

, ∆ = G− Ĝ, and Vr, Ṽr are the right singular vectors of the rank-r SVD of G and Ĝ, respectively.
Then, we get,

∥ sin θ(Ũr,Ur)∥2F ≤ 2r∥∆∥2F
δ2

, (3)

since ∥Ur∆||2F ≤ ∥Ur∥2F ∥∆∥2F , ∥Vr∆||2F ≤ ∥Vr∥2F ∥∆∥2F , and ∥Ur∥2F , ∥Vr∥2F = ∥Ir∥2F = r.

Note that,
∥∆∥2F =

∑
i,j

|Gij |≤tx

∆2
ij ≤

∑
i,j

|Gij |≤tx

t2x =
∣∣{(i, j) : |Gij | ≤ tx}

∣∣ t2x.

9

Published as a conference paper at ICLR 2025

By definition of tx, it is the (xn d)-th smallest absolute value. Thus exactly xn d of the entries (up
to rounding) satisfy |Gij | ≤ tx. Hence∣∣{(i, j) : |Gij | ≤ tx}

∣∣ ≤ xn d.

Therefore,
∥∆∥2F ≤ (xn d) t2x, and ∥∆∥F ≤

√
xn d tx.

Consequently,
∥G− G̃∥ = ∥∆∥ ≤ ∥∆∥F ≤

√
xn d tx.

Since Gij are i.i.d. sub-Gaussian(σ2), the random variable |Gij | has a sub-exponential tail with
parameter proportional to σ. Thus:

P(|Gi,j | > t) ≤ 2 exp
(
− ct2

σ2

)
. (4)

Inverting this for the event Gi,j ≤ t at probability x gives,

x = P(|Gi,j | < t) = 1− P(|Gi,j | > t) ≥ 1− 2 exp
(
− ct2

σ2

)
(5)

with high probability. Then,

1− x ≤ 2 exp
(
− ct2

σ2

)
(6)

exp
(ct2
σ2

)
≤ 2

1− x
(7)

tx ≤
σ

√
log
(

2
1−x

)
c

(8)

∥∆∥F ≤ σ
√
xn d

√
log
(

2
1−x

)
c

. (9)

∥ sinΘ(Ũr, Ur)∥F ≤ C σ

√
r x n d

β2

√
log
(2

1− x

)
, (10)

with high probability.

7.1.3 PROOF FOR THEOREM 4.1

Proof. Let ∆ = G − Ĝ. By construction, ∆:,i = 0 for unmasked columns and ∆:,i = G:,i

for columns i ∈ I. Hence all columns of ∆ are exactly the x% fraction of G’s columns with the
smallest norms. In particular,

∥∆∥2F =
∑
i∈I

∥G:,i∥22 ≤
∣∣I∣∣ max

i∈I
∥G:,i∥22.

Since I is of size x% of d columns, we get |I| = x d (assuming for simplicity that x d is an integer),
thus

∥∆∥2F ≤ x d max
i∈I

∥G:,i∥22.

10

Published as a conference paper at ICLR 2025

Next, we use a standard subspace perturbation bound (a variant of Wedin’s theorem or Davis–
Kahan). In one of its common forms, for matrices G and Ĝ both of rank at least r,

∥ sin θ(Ũr,Ur)∥F ≤
√
2r ∥∆∥2

σr(G)− σr+1(G)
,

when σr(G) is well separated from σr+1(G). In the simpler scenario where G has rank ≥ r and
σr(G) ≥ β > 0, we can take σr+1(G) = 0 (or β is the gap). Then

∥ sin θ(Ũr,Ur)∥F ≤
√
2 ∥∆∥2
β

√
r ≤

√
2r ∥∆∥F

β
,

since ∥∆∥2 ≤ ∥∆∥F .

we can proceed by simply noting:

∥∆∥F ≤
√
x d max

i∈I
∥G:,i∥2.

Then,

∥ sin θ(Ũr,Ur)∥F ≤
√
2r∥∆∥F

β
≤

√
2rx d maxi∈I ∥G:,i∥2

β
,

7.2 TIGHTNESS ANALYSIS OF THE PERTURBATION BOUND

In our analysis, we utilize a version of Wedin’s sin theorem which provides the following bound on
the perturbation of the singular subspaces:

∥ sinΘ(Ur, Ũr)∥2F + ∥ sinΘ(Vr, Ṽr)∥2F ≤ ∥UT
r ∆∥2F + ∥∆Vr∥2F

δ2
, (11)

where ∆ = G− Ĝ is the perturbation, and

δ = min
{

min
1≤i≤r

r+1≤j≤n

∣∣σi − σ̃j

∣∣, min
1≤i≤r

σi

}
> 0.

Above, Ur (resp. Vr) and Ũr (resp. Ṽr) are the left (resp. right) singular vectors of G and Ĝ corre-
sponding to the top r singular values, and σi (σ̃j) denotes the singular values of G (Ĝ).

A standard approach to further bound the right-hand side of equation 11 is to invoke a norm inequal-
ity for products of matrices. Specifically, for the term involving Ur, we can write:

∥UT
r ∆∥2F ≤ ∥UT

r ∥2F ∥∆∥2F . (12)

Since Ur is an m× r matrix with orthonormal columns, its Frobenius norm satisfies

∥Ur∥2F =

r∑
j=1

∥∥(Ur)j
∥∥2
2

= r.

Thus, equation 12 becomes
∥UT

r ∆∥2F ≤ r ∥∆∥2F .
A similar bound holds for the term ∥∆Vr∥2F , because Vr is also an orthonormal basis (this time of
size d× r), yielding

∥∆Vr∥2F ≤ r ∥∆∥2F .
Combining these estimates in equation 11 gives

∥ sinΘ(Ur, Ũr)∥2F + ∥ sinΘ(Vr, Ṽr)∥2F ≤ 2r ∥∆∥2F
δ2

.

It is important to note that this inequality is sharp in the worst-case sense. Indeed, the inequality

∥Ur∆∥2F ≤ ∥Ur∥2F ∥∆∥2F

11

Published as a conference paper at ICLR 2025

is a direct consequence of the submultiplicative property of the Frobenius norm when Ur has or-
thonormal columns. Furthermore, it becomes an equality when the columns of ∆ lie entirely in the
column space spanned by Ur. In other words, if ∆ is chosen such that range(∆) ⊆ R(Ur), then

∥Ur∆∥2F = ∥Ur∥2F ∥∆∥2F = r ∥∆∥2F .

Moreover, one can construct perturbations where the entire contribution in the bound of equation 11
is accounted for by only one of the subspaces. For instance, it is possible to have

∥ sinΘ(Vr, Ṽr)∥2F = 0

while

∥ sinΘ(Ur, Ũr)∥2F ≈ 2r ∥∆∥2F
δ2

.

This scenario demonstrates that the bound is tight in the sense that, even if the perturbation affects
only one of the two subspaces (Ur or Vr), the dependence on r, ∥∆∥F , and δ cannot be significantly
improved without additional assumptions (e.g. spectral gaps, specific structures in ∆, etc.).

In summary, the derived bound

∥ sinΘ(Ur, Ũr)∥2F ≤ 2r ∥∆∥2F
δ2

,

as well as the intermediate inequality

∥Ur∆∥2F ≤ ∥Ur∥2F ∥∆∥2F ,
are indeed tight in a worst-case scenario. This tightness implies that our perturbation analysis accu-
rately captures the potential sensitivity of the singular subspaces to adversarial or maximally aligned
perturbations.

7.3 TRANSFORMER BLOCK

In this section, we briefly review the structure of a transformer block before introducing our com-
pression approach. Let Xl ∈ Rb×n×d represent the input to the lth layer, where b is the batch size, n
the sequence length, and d the embedding dimension. For each attention head h (with h = 1, . . . ,H
and dH = d/H), the input is projected into query, key, and value spaces via linear transformations:

Xl
Q,h = Xl Wl

Q,h, Xl
K,h = Xl Wl

K,h, Xl
V,h = Xl Wl

V,h,

where Wl
Q,h,W

l
K,h,W

l
V,h ∈ Rd×dH . Since the product of any matrix with a weight matrix lies in

the column space of the original matrix, each of Xl
Q,h, Xl

K,h, and Xl
V,h resides in the column space

of Xl.

For each head, the attention output is computed by applying the softmax function to the scaled
dot-product of queries and keys, and then multiplying by the values:

Xl
head,h = softmax

(
Xl

Q,h(X
l
K,h)

⊤
√
dH

)
Xl

V,h.

The outputs from all H heads are concatenated and fed through a feed-forward network with a
residual connection:

Xl
concat = Concat

(
Xl

head,1, X
l
head,2, . . . , X

l
head,H

)
,

Xl
attn = Xl

concat W
l
p1

+Xl,

Xl
hidden = frelu

(
Xl

attn W
l
1

)
,

Xl+1 = Xl
hidden W

l
p2

+Xl
attn,

with weight matrices Wl
p1

∈ Rd×d, Wl
1 ∈ Rd×dff , and Wl

p2
∈ Rdff×d. For simplicity, we have

omitted layer normalization steps, which do not affect our derivations. Typically, the feed-forward
dimension dff is chosen to be an integer multiple of d.

12

	Introduction
	Related works
	Analysis
	Compression errors in pipeline parallel training
	Column-Space Preservation in Pipeline Parallelism
	A Subspace-Based Metric for Compression Quality

	On the error of TopK sparsification

	Improving the Error Bound with Column-Sparsification
	Experiments
	Experimental Setup
	Comparison with Top-K
	Throughput Gains
	Comparison with Row Masking

	Conclusion
	Appendix
	Theoretical results
	Proof for Theorem 3.1
	Proof for Theorem 3.2
	Proof for Theorem 4.1

	Tightness Analysis of the Perturbation Bound
	Transformer block

