
Under review as a conference paper at ICLR 2024

Hyperion: FUSED MULTI-TRIAL AND GRADIENT DE-
SCENT FOR JOINT HYPERPARAMETER AND NEURAL
ARCHITECTURE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the fusion of multi-trial optimizers and gradient descent based one-
shot algorithms to jointly optimize neural network hyperparameters and archi-
tectures. To combine strengths of optimizers from both categories, we propose
Hyperion, which smartly distributes searched parameters into different involved
optimizers, efficiently samples sub-search-spaces to reduce exploration costs of
one-shot algorithms, and orchestrates co-optimization of both hyperparameters
and network architectures. We demonstrate with open and industrial datasets that
Hyperion outperforms non-fused optimization algorithms in optimized metrics,
while significantly reducing GPU resources required for one-shot algorithms.

1 INTRODUCTION

Hyperparameter optimization (HPO) (Bischl et al., 2023) and neural architecture search
(NAS) (White et al., 2023) are two important and often separately performed tasks for AutoML.
Typically, one first selects hyperparameters for data pre-processing options, feature engineering
methods and training configurations. As a second step, neural architecture search is triggered to
construct a corresponding machine learning pipeline, perform training and identify best performing
network architectures. After those steps, hyperparameters can be further tuned for best performing
architectures.

The separation of HPO and NAS could lead to sub-optimal results, as best performing architectures
tend to depend on the selected hyperparameters (He et al., 2021). To automate hyperparameter and
neural architecture selection and jointly optimize them together, one could extend common multi-
trial or one-shot methods (White et al., 2023; He et al., 2021) for neural architecture search to cover
additionally the search space of hyperparameters. Indeed, the underlying optimization algorithms
adopted for NAS like random search, bayesian optimization, reinforcement learning, etc. are already
applied alone to hyperparameter optimization (Bischl et al., 2023; Falkner et al., 2018b).

Extending NAS algorithms to co-optimize hyperparameters, however, is not straightforward to be
done in an efficient and effective manner. Multi-trial algorithms (Suganuma et al., 2017; Zoph & Le,
2017; Li & Talwalkar, 2019), while being typically generic, assume training from scratch in each
trial for new hyperparameters and network architectures. This could introduce inefficiency into op-
timization as learnt network parameters are discarded across different trials. Gradient descent based
one-shot algorithms (Liu et al., 2019; Chen et al., 2021; Cai et al., 2019), on the other hand, sample
new architectures from a shared supernet and optimize network weights and architectures simulta-
neously in the training loop. This could greatly help to improve optimization as (1) network weights
are kept and continuously explored for different model architectures and (2) network architectures
are optimized following calculated gradients. However, one-shot algorithms can require more GPU
resources to train the super network. Moreover, it is non-trivial or infeasible to incorporate many
conventional hyperparameters like data cleaning methods, learning rate, batch size, etc., into gra-
dient descent based one-shot algorithms due to the difficulty to backpropagate gradients to these
hyperparameters.

We present in this paper Hyperion to perform joint hyperparameter and neural architecture search
in an efficient manner. Hyperion achieves this by fusing multi-trial and gradient descent based one-
shot algorithms together to cover a large search space while intelligently reducing GPU resources

1

Under review as a conference paper at ICLR 2024

needed. Our detailed contributions are as follows: (i) We introduce a smart splitter – a learning-
based algorithm that automatically finds distributions of searched parameters to multi-trial and one-
shot algorithms to search for best performing neural network models. (ii) We design a smart sub-
search-space sampler that automatically learns the best sub-search-spaces for one-shot algorithms
to reduce their GPU resource usage. (iii) We integrate the smart splitter, smart sub-search-space
sampler, multi-trial optimizers like TPE (Bergstra et al., 2011), Anneal (Fischetti & Stringher, 2019)
and BlendSearch (Wang et al., 2021), and the popular gradient descent based one-shot algorithm
DARTS into Hyperion to orchestrate co-optimization of hyperparameters and neural architectures.
We demonstrate with extensive experiments that Hyperion outperforms standalone non-fused multi-
trial and one-shot algorithms in terms of optimization metrics, while at the same time significantly
reducing GPU resource utilization.

2 RELATED WORK AND BACKGROUND

2.1 HYPERPARAMETER OPTIMIZATION AND NEURAL ARCHITECTURE SEARCH

To set up a machine learning pipeline, many parameters need to be configured besides network
architecture parameters, e.g data pre-processing options like data cleaning (Chu et al., 2016) and
augmentation (Mikołajczyk & Grochowski, 2018), feature engineering techniques (Zheng & Casari,
2018) including selection, construction and extraction of features and training related hyperparam-
eters (Feurer & Hutter, 2019) like batch size, learning rate schedule, stochastic gradient decent op-
timizers, etc. Well known optimization techniques like random search (RS), bayesian optimization
(BO) (Shahriari et al., 2015), evolutionary algorithms (EA) (Bäck & Schwefel, 1993), reinforcement
learning (RL) (Sutton & Barto, 2018), etc., have already been successfully applied here.

Most neural architecture search (NAS) methods assume fixed hyperparameters during their search
processes (White et al., 2023; He et al., 2021). In terms of underlying optimization algorithms,
we see indeed many popular algorithms adopted for hyperparameter optimization are also applied
to NAS, e.g. EA, RL and BO (He et al., 2021). For sampling neural network architectures, state-
of-the-art techniques differ in whether they sample a new network architecture and train it from
scratch or train a common super network and consequently sample and reuse the weights from
this super network (White et al., 2023). In the former case, multiple trials of complete training of
different network architectures have to be performed, giving rise to the name multi-trial. In the latter
case, architecture search and training are tightly coupled or entirely unified; due to this, they are
often termed as one-shot algorithms. We focus on gradient descent based one-shot algorithms like
DARTS (Liu et al., 2019), P-DARTS (Chen et al., 2021) and ProxylessNAS (Cai et al., 2019), which
unify architecture searching and weight update in the same training loop, further enhancing NAS.

Joint optimization of hyperparameters and neural architectures remains little explored even though
the best network architecture could depend on the chosen machine learning pipeline hyperparame-
ters. AutoHAS (Dong et al., 2020) proposed to extend reinforcement learning to not only sample
architecture parameters but also hyperparameters. NARS (Dai et al., 2021) trained a single pre-
dictor to jointly score architecture and hyperparameters. Extensions of several existing multi-trial
techniques for joint HPO and NAS were proposed in (Guerrero-Viu et al., 2021; Zela et al., 2018).
To our best knowledge, Hyperion is the first to propose a generic framework fusing multi-trial and
one-shot optimizers in joint HPO and NAS, while addressing their respective shortcomings.

2.2 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

DARTS incorporates architecture search into the training process of neural networks by creating a
super network (supernet) with edges that can be turned “on and off”. Essentially, between a pair
of nodes (tensors), there can be multiple parallel edges, each specifying a different operation (e.g.
combination of different operators, kernel size, activation function, etc.). To sample edges from
this network and create new architectures, each edge is additionally assigned a weight, such that
the parallel operations output a weighted sum of individual operations. By backpropagating loss to
architecture weights, their contributions to the final model accuracy can be determined and the best
operation/edge can be selected. Formally, assuming parallel edges from node i to j, the averaged
operation for all those operations applied to tensor x(i), ō(i,j)(x(i)), becomes

2

Under review as a conference paper at ICLR 2024

Super Network

0 2

1

I1

I2

O
0 2

1

I1

I2

O
0 2

1

I1

I2

O
0 2

1

I1

I2

OInput Output

Cell 1 Cell 2 Cell 3 Cell 4

Figure 1: An example super network in DARTS with 3 nodes for each cell, 3 candidate operations
between any pair of nodes (red, green and blue) and a depth of 4 stacked cells. In each cell, I1 and I2
are the two input nodes created by copying the input in two branches. O is the output of the cell that
is the concatenation of the output of all nodes (excluding input nodes). After training, only edges
with top weights are kept to sample a final network, e.g. in the original DARTS implementation, 2
incoming edges with the highest weights are kept for each node.

ō(i,j)(x(i)) =
∑
o∈O

exp(α
(i,j)
o)∑

o′∈O exp(α
(i,j)
o′)

o(x(i)) (1)

Here, for each operator o ∈ O, there is an associated architecture weight α(i,j)
o . Note that, gra-

dients are backpropagated to both architecture and operator weights in training and, in the end,
the best network architecture can be selected by keeping the edges with highest weights, i.e.
o(i,j) = argmaxo∈O α

(i,j)
o . Note that, DARTS-based algorithms do not construct a search space

for the entire network, but rather on the cell level, see Figure 1. This is inspired by the fact that
most successful networks like ResNet (He et al., 2016) and Transformer (Vaswani et al., 2017) are
composed by stacking identical layers. In practice, this also helps to reduce search complexity by
focusing on a small proven search space.

3 Hyperion

In this section, we first present the challenges in fusing multi-trial and one-shot optimizers. This
is followed by an in-depth explanation of each learning-based algorithm involved in Hyperion and
how they jointly solve the challenges in fusion.

3.1 CHALLENGES AND SOLUTION OVERVIEW

Although with the fusion of multi-trial and one-shot algorithms we could potentially combine their
strengths while circumventing individual shortcomings, a few important intertwined challenges arise
during this process:

1. Distribution: In fusion, neural architecture related parameters can be optimized by either
type of optimizers. It is not straightforward to distribute those parameters to the involved
optimizers as (1) it is unclear which type of optimizers could yield the best final model
accuracy (Li & Talwalkar, 2019) and (2) there exists a non-trivial trade-off between op-
timization efficiency and resource usage for the two types of optimizers. It is therefore
critical to distribute the hyperparameters between them while addressing those concerns.

2. Computational Resource: For performing neural architecture search, DARTS would re-
quire huge GPU memory as a supernet is trained to incorporate all possible network archi-
tectures. Therefore, it is necessary to reduce the required resource usage while ensuring
best performing network architectures can be still found.

3. Orchestration: One last challenge we would like to highlight is the orchestration of multi-
trial and one-shot algorithms, as in fusion, they need to work together to create and optimize
the supernet and search for best performing architectures.

We present in this paper a generic framework Hyperion to address the above-mentioned challenges,
as shown in Figure 2. We have as input the collected dataset and the search space covering both
hyperparameters and network architectures, specified by a configuration file. Additionally, this file
contains various settings for the experiment, such as time budget for searching, optimizer used when
training, optimization objectives, etc.

3

Under review as a conference paper at ICLR 2024

Optimized
Architecture

Smart
Splitter

Smart Sub-
search-space

Sampler

Pipeline
Optimizer

. .
.

Input
Datasets

Training
Pipeline

Config.
File

Arch.

Super Network
Development

0 1

2

Network Optimization

Training Evaluation

Super-network

Hyperion

Pipeline
Search Space

One-shot
Search Space Sampled Sub-

search-space

Sampled Arch.
Parameters

Model
Evaluation

Network
Architecture

Optimizer

Multi-trial
Network

Architecture
Search Space

Sampled Pipeline
Parameters

Multi-trial Optimizer One-shot Optimizer

Figure 2: Overview of Hyperion: Different searched parameters are shown with different stacks of
squares. The number of choices for each parameter is indicated by the number of squares in the
stack (color coded with different brightness to reflect various choices). Blue-colored stacks refer to
ML pipeline hyperparameters, such as the number of epochs, learning rate, etc., that the one-shot
optimizer cannot optimize. Red, green and yellow colored stacks refer to parameters that can be
optimized by both multi-trial and one-shot optimizers, such as kernel size, layer operation, etc.

In Hyperion, one can view the multi-trial optimizer as the outer optimization loop, and the one-
shot optimizer as the inner optimization loop. First, the entire search space is processed by the
learning-based smart splitter, which distributes parameters between the outer and inner optimization
loops. In Figure 2, all blue-colored stacks (searched parameters) are distributed to the multi-trial
optimizer, which samples values for hyperparameters that the one-shot optimizer cannot optimize.
Additionally, there are searched parameters, which the inner optimization loop can optimize, but
nevertheless are assigned to the outer loop optimizer by the smart splitter (color-coded in yellow).
After distribution, the learning-based sub-search-space sampler extracts a sub-search-space from
the original search space assigned to the one-shot optimizer, in an attempt to reduce resource usage
required in the inner optimization loop. Subsequently, a machine learning pipeline is constructed
according to selected hyperparameters and a supernet is created with configured parameters by the
multi-trial optimizer and a sampled sub-search-space. This supernet is trained using the constructed
training pipeline by the one-shot optimizer to simultaneously search model weights and architecture.
Final evaluation results of the optimized model are fed back to the smart splitter, smart sub-search-
space sampler, and multi-trial pipeline and network architecture optimizers to learn better parameter
distribution, sub-search-space sampling and network and pipeline choices for subsequent trials.

3.2 MULTI-TRIAL OPTIMIZERS IN Hyperion

Multi-trial optimizers in Hyperion are responsible to (1) distribute searched parameters between
multi-trial and one-shot optimizers, (2) sample machine learning pipeline related hyperparameters
(data cleaning, feature engineering, training setups like number of epochs and learning schedule,
etc.), (3) optimize architecture related parameters not covered by the one-shot optimizer and (4)
automatically reduce the search space for the one-shot optimizer.

Smart Splitter. To solve the distribution challenge and balance between optimization efficiency and
resource usage, we adopt a smart splitter as also shown in Figure 2. We create a search space for
smart splitter by assigning a binary variable for each parameter in our search space Θ to indicate
whether it is distributed to the multi-trial or one-shot optimizer: Θsplit = {spθ ∈ {0, 1} | θ ∈ Θ}.
Invalid distributions are simply discarded. One challenge for splitting is to divide the architecture
search among multi-trial and one-shot optimizers. A simple way would be to assign a subset of
parallel edges among nodes (see Figure 1) to the multi-trial optimizer and the rest to the one-shot
optimizer. However, this would mean many potential searched architecture parameters for the multi-
trial optimizer with large networks. We instead do a splitting on a coarse granularity by assigning
high-level architecture parameters like kernel size and operator type. This helps to simplify the
design space for multi-trial optimizers while still allowing complete cell structure exploration.

Pipeline and Multi-trial Architecture Optimizers. After splitting, both machine learning pipeline
related parameters and a subset of neural architecture related parameters are assigned to the outer
optimization loop with multi-trial optimizers. The pipeline search space Θpipeline can be straight-
forwardly constructed for involved categorical (e.g. data cleaning methods) or numerical parameters
(e.g. weight decay) by joining their individual search spaces together.

4

Under review as a conference paper at ICLR 2024

Kernel - 3, 5, 7
Operator – Conv2D, Dilated Conv2D, Max Pool, Avg Pool

Smart
Splitter

Kernel Operator

Node 1 - 3
Node 2 - 5
Node 3 - 3

Multi-trial
Network

Optimizer

Smart
Sub-search-

space Sampler

Operator
Conv2D, Max Pool

Super
Network

Generation

(a)

Kernel 3 Conv 2D
Kernel 5 Conv 2D
Kernel 7 Conv 2D

Kernel 3 Dilated
Kernel 5 Dilated
Kernel 7 Dilated

0

1

2

3

(b)

Kernel 3 Max Pool
Kernel 5 Max Pool
Kernel 7 Max Pool

Kernel 3 Avg Pool
Kernel 5 Avg Pool
Kernel 7 Avg Pool

0

1

2

3

(c)

Figure 3: Cell construction for a super network in Hyperion. Example shows 3 kernels {3,5,7} and 4
layer operations {Conv2D, Dilated Conv2D, Max Pool, Avg Pool} as architecture parameters. (a) In
Hyperion, the search space is divided between multi-trial and one-shot optimizers, with network ar-
chitecture parameters jointly searched and reduced. (b) Original DARTS cell structure is composed
using all available parameter combinations. (c) In Hyperion, a reduced cell structure is constructed
using proposed parameters by both the multi-trial network optimizer and the smart sub-search-space
sampler, as shown in (a).

The architecture optimization at this stage is a bit more involved. As discussed, the smart splitter
assigns high-level architecture parameters like kernel size and activation function to the optimizers.
Given such information, for performing architecture optimization during multi-trial optimization, we
search these parameters for each node in the basic cell structure, see Figure 3. This means that for
each node, the multi-trial optimizer will individually configure the assigned parameter like operation
type and activation function. Equivalently, this helps to reduce the number of parallel edges between
each pair of nodes by offloading the search of certain high-level architecture parameters to the outer
optimization loop. In the example, kernel sizes for each node are directly configured by the multi-
trial optimizer. After training the super network in each trial, the final network can be sampled using
architecture weights in the super network. In the corner case when all architecture parameters are
assigned to the multi-trial optimizer, sampling a final cell structure is exclusively done at this stage
as there is no involved one-shot optimizer.

Smart Sub-search-space Sampler. The smart splitter assigns a subset of architecture search spaces
to the one-shot optimizer DARTS. Nevertheless, for large number of parallel edges and nodes in a
cell, it would require significant GPU memory for training the super network. To further improve
resource efficiency of DARTS, we use a sub-search-space sampler to extract a subset of design
choices available for those parameters distributed to the one-shot optimizer. For our example in
Figure 3, it samples operators {Conv2D, Max Pool} from the original search space {Conv2D, Di-
lated Conv2D, Max Pool, Avg Pool}, which is then used for constructing a super network with
reduced size in Hyperion. This reduced search space for the one-shot optimizer should still contain
design choices that can produce the best results. However, determining this sub-search-space is non-
trivial as there are in general no clear rules to follow. Therefore, multi-trial optimization algorithms
(e.g. reinforcement learning or Bayesian optimization based), which on the fly learn the optimized
sub-search-space based on past trials, are preferred. Technically, we encode for each parameter its
possible values with a multi-hot vector: a value 1 in this vector means that the corresponding value is
considered in the one-shot optimizer. Our proposed sub-search-space sampler learns automatically
with progressing trials best choices for those multi-hot vectors.

3.3 ONE-SHOT OPTIMIZER IN Hyperion

The Hyperion framework shown in Figure 2 is generic and can work with different one-shot opti-
mizers. We focus in this paper on DARTS as our chosen one-shot optimizer, the family of which
would be regarded as most effective among NAS techniques due to its capability to optimize model
architecture and operator weights simultaneously (White et al., 2023).

To integrate DARTS in Hyperion, the main task is to construct a modified super network in tandem
with the multi-trial optimizers, as they share the responsibility for optimizing network architectures.
We thus extended DARTS to construct a supernet using outputs of smart splitter, smart sub-search-

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Hyperion for joint hyperparameter and neural architecture optimization
Input: dataset D, target function F , search space Θ, allowed number of trials T , number of trials ninit for

initialization
Output: Optimized ML configurations θ∗ = [θ∗

split,θ
∗
pipeline,θ

∗
subspace,θ

∗
arch m,θ∗

arch o]
for t = 1 to ninit do ▷ Initial Exploration

generate random split θ(split,t)

Θpipeline,Θarch m,Θsubspace,Θarch o ← GetSearchSpaces(Θ,θ(split,t))
initialize randomly θx,t, ∀x ∈ {pipeline, arch m, subspace}
if Θarch o,t ̸= ∅ then

S ← GenerateModifiedSuperNetwork(θ(arch m,t),θ(subspace,t),Θarch o)
while not converged do ▷ One-shot Optimizer

perform gradient descent to update α and w of supernet S
et ← F (D, [θ(pipeline,t),θ(arch m,t),θ(arch o,t)]) ▷ Model Evaluation
Hx ← Hx ∪ (θ(x,t), et), ∀x ∈ {split, pipeline, arch m, subspace}

for t = ninit + 1 to T do ▷ Exploration + Exploitation
Msplit ← FitModel(Hsplit) ▷ Smart Splitter Multi-trial Optimizer
θ(split,t) ← argmaxθsplit∈Θsplit

A(θsplit,Msplit)

Θpipeline,Θarch m,Θsubspace,Θarch o ← GetSearchSpaces(Θ,θ(split,t))
Mpipeline ← FitModel(Hpipeline) ▷ Multi-trial Optimizer
θ(pipeline,t) ← argmaxθpipeline∈Θpipeline

A(θpipeline,Mpipeline)

March m ← FitModel(Harch m) ▷ Multi-trial Optimizer
θ(arch m,t) ← argmaxθarch m∈Θarch m

A(θarch,March)

Msubspace ← FitModel(Hsubspace) ▷ Smart Sub-search-space Sampler Multi-trial
θ(subspace,t) ← argmaxθsubspace∈Θsubspace

A(θsubspace,Msubspace)

if Θarch o,t ̸= ∅ then
S ← GenerateModifiedSuperNetwork(θ(arch m,t),θ(subspace,t),Θarch o)
while not converged do ▷ One-shot Optimizer

perform gradient descent to update α and w of supernet S
et ← F (D, [θ(pipeline,t),θ(arch m,t),θ(arch o,t)]) ▷ Model Evaluation
Hx ← Hx ∪ (θ(x,t), et), ∀x ∈ {split, pipeline, arch m, subspace}

i∗ ← argmini{ei} ▷ {ei} is the set of all evaluations
return [θ(split,i∗),θ(pipeline,i∗),θ(subspace,i∗),θ(arch m,i∗),θ(arch o,i∗)]

space sampler, and network optimizer in the outer optimization loop. Taking again our running
example in Figure 3, between each pair of nodes, the available parallel edges are determined by
the chosen kernel sizes for each node and the reduced search space on operator. For example,
for node 1, only Conv2D and Max Pool with kernel size 3 are available. By traversing all nodes
and keeping edges for available combinations of architecture parameters in the reduced cell search
space, Hyperion’s DARTS cell structure is constructed. The super network is then constructed by
repeatively stacking those cells, as shown in Figure 1. Finally, the original DARTS training and
architecture optimization are performed on this supernet.

Hyperion intelligently engages one-shot optimizers and significantly reduces search space for such
optimizers. This leads to greatly reduced GPU resource usage and improved overall optimization
efficiency. A detailed analysis for this is given in Appendix B.

3.4 Hyperion ALGORITHM

Formally, we notate the supernet as S, its architecture weights as α, and model weights as w. We
use t to index the tth trial as initiated by the outer optimization loop, and in each trial, we adopt a
corresponding acquisition function A for the smart splitter, the smart sub-search-space sampler and
multi-trial optimizers to acquire new searched configurations: θ(split,t) as the tth sampled parameter
distribution, θ(pipeline,t) as the tth sampled machine learning pipeline configuration, θ(arch m,t) as
the tth sampled neural architecture parameters by the multi-trial optimizer and θ(subspace,t) as the tth
sampled sub-search-space for the inner optimization loop. Accordingly, for the inner optimization
loop, θ(arch o,t) is the tth sampled architecture parameter by DARTS. Note again here that in Hyper-
ion both multi-trial and one-shot optimizers participate in neural architecture optimization such that
θ(arch m,t) and θ(arch o,t) jointly determines the tth best neural architecture. We record with et the
evaluated result for the tth trial. We use Hsplit to keep history of all the explored parameter distribu-
tions by the smart splitter and their evaluations i.e., Hsplit = {(θ(split,1), e1), . . . , (θ(split,T), eT)},

6

Under review as a conference paper at ICLR 2024

which is used to train and update the smart splitter’s internal model Msplit in each trial to improve
its performance. Similarly, Hsubspace, Hpipeline and Harch m keep histories of all the explored
configurations by the respective optimizers in the outer optimization loop, which are used to train
and improve their internal models (Msubspace, Mpipeline and March m) in each trial for better op-
timization. With the introduced notations, Hyperion framework as shown in Algorithm 1 can be
explained as follows:

We initialize the entire search space by randomly generating ninit samples. The initialization is
required to bootstrap the internal models used by various multi-trial optimizers involved. Selection
of ninit depends on the search space size. For a larger search space, ninit should be also be larger
for bootstrapping. If no parameter is distributed to the one-shot optimizer, the multi-trial network
optimizer samples directly a final cell structure for the super network. Otherwise, Hyperion gen-
erates a modified supernet as explained in Section 3.3. This supernet is generated using proposed
configurations of the smart splitter, smart sub-search-space sampler, model architecture parameters
decided by the multi-trial network optimizer, and search space assigned to the one-shot optimizer
as decided by the smart sub-search-space sampler. Hyperion optimizes the model architecture and
weights in a single training process, similar to the original DARTS. After this, it samples the best
model architecture configuration from the super network. Hyperion evaluates the final model and
stores all parameter configurations and evaluation results in the exploration history.

Once initialized, for subsequent trials, Hyperion fits probabilistic models for different involved
multi-trial optimizers like the smart splitter and smart sub-search-space sampler on the explored
history. Those models help the involved optimizers to quickly suggest what next parameter config-
urations to search. Learning such models to guide exploration are done differently for the different
underling optimizers. For random search, one keeps simply a list of all explored configurations
without any model. For machine learning based surrogate models, they fit machine learning mod-
els to predict from sampled configurations to final model performance. For Bayesian optimization
methods like TPE, they fit a probability distribution function over the history to estimate the per-
formance of new configurations. In multi-trial optimizers based on heuristics like Anneal, specially
designed rules are used for extracting new configurations. Based on new proposed parameter con-
figurations, if any is distributed to the one-shot optimizer, then Hyperion generates a modified super
network. For this step, Hyperion requires the extracted configurations in the current trial and the
search space of neural architectures. After training the super network, the best model architecture is
determined and consequently evaluated and added to the history. Note that in case of multi-objective
optimization, all objectives are evaluated and their weighted sum is used by both the outer and inner
optimization loops. After all trials are explored, the final best sample from the considered search
space and the corresponding model architecture are returned.

4 EXPERIMENTS AND RESULTS

In this section we experimentally evaluate Hyperion with open image datasets and an industrial
use case. After presenting our experiment setup, we first evaluate the effectiveness of Hyperion in
optimizing neural networks. We then study optimization reproducibility and efficiency of Hyperion
with open datasets. Lastly, we ablate the design of Hyperion by experimenting with smart splitter
and smart sub-search-space sampler.

4.1 EXPERIMENTAL SETUP

Baselines. We used three different types of multi-trial optimization algorithms - TPE (based on
Bayesian optimization), Anneal (based on heuristics), and BlendSearch (based on a combination of
global Bayesian optimization and reinforcement learning), and a one-shot NAS algorithm - DARTS.
We use a single multi-trial optimizer for the entire outer optimization loop of Hyperion.

Configuration. For a fair comparison, we ensure that the search space and run time are identical for
all algorithms in each experiment. To ensure that the total experiment time is feasible, we optimize
parameters which can be optimized by both multi-trial and one-shot optimizers, such as kernel size,
activation function, layer operation and model architecture. We fix hyperparameters defining data
preprocessing, feature engineering and training. We use the industrial motor dataset to show the
impact of joint hyperparameter and neural architecture optimization. Our detailed experiment setup
is shown in Appendix C and D. The experiments of CIFAR10 (Krizhevsky, 2009) run for 96 hours
each, MNIST (LeCun & Cortes, 2010) run for 72 hours each, Fashion-MNIST (Xiao et al., 2017)

7

Under review as a conference paper at ICLR 2024

run for 20 hours each, EuroSAT (Helber et al., 2019) run for 20 hours each and the industrial motor
dataset run for 20 hours each on a NVIDIA A6000 GPU with 48 GB memory.

4.2 OPTIMIZATION EFFECTIVENESS

We apply Hyperion and its baseline algorithms to five different datasets/problems, where both the
model size and accuracy are jointly optimized with a weighted sum for CIFAR10 (Equation 2) and
industrial motor (Equation 3) datasets, and only model accuracy is optimized for MNIST, Fashion-
MNIST and EuroSAT datasets. We report the best model found for each algorithm and dataset
(details in Appendix E). We observe that for all datasets Hyperion outperforms the baseline multi-
trial optimizer (BlendSearch) by 1.1% - 19.0%, and it outperforms the baseline one-shot optimizer
DARTS by 1.6% - 6.8%. Hyperion fuses both types of optimizers together and in comparison to
the baseline multi-trial optimizer, it explores more search space during the same experiment time as
DARTS is adopted as the inner loop optimizer. We hypothesize that the improvement over DARTS
is due to the fact that Hyperion works in a way similar to DARTS due to its inner optimization loop
but forces restart through multi-trials such that it can avoid getting stuck in a local minima.

0.048

0.049

0.050

0.051

0.052

0.053

0.054

Op
tim

iza
tio

n
M

et
ric

(a) MNIST

0.86

0.87

0.88

0.89

0.90

0.91

W
ei

gh
te

d
Su

m
 M

et
ric

(b) CIFAR10

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Op
tim

iza
tio

n
M

et
ric

(c) EuroSAT

0.340

0.342

0.344

0.346

0.348

0.350

0.352

Op
tim

iza
tio

n
M

et
ric

(d) Fashion-MNIST

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

0.0110

W
ei

gh
te

d
Su

m
 M

et
ric

(e) Motor

Figure 4: Comparison of BlendSearch, its fusion Hyperion and DARTS for different datasets.

It is important to note that DARTS is not capable of optimizing the joint hyperparameter and neural
architecture search space (details in Table 1) for Motor dataset (explained in Appendix C). We
further show the impact and the necessity of performing joint hyperparameter and neural architecture
optimization for the industrial use case in Appendix C.

4.3 OPTIMIZATION REPRODUCIBILITY

We continue to investigate whether the improvement Hyperion brings in optimization is reproducible
across different baseline multi-trial algorithms and across repeated experiment runs. To achieve this,
we implemented Anneal and TPE additionally to BlendSearch as well as their extensions in Hyper-
ion. We focus on MNIST and CIFAR10 datasets here; for each algorithm and dataset combination,
we report the best model found for each run while repeating each experiment 10 times. We present
the results in Figure 5, which finished in around 35 days on two A6000 GPUs (details shown in
Appendix F). For MNIST, we only optimize model accuracy while for CIFAR10 we optimize both
model accuracy and size with a weighted sum. We observe that Hyperion improves reliably over
all three baseline multi-trial algorithms in terms of optimization metric 3.1% - 8.7%, top-1 accuracy
for MNIST 0.07% - 0.17%, weighted sum metric (Equation 2) 2.3% - 3.1%, model size 13.8% -
30.4% and top-1 accuracy for CIFAR10 1.56% - 2.49%. Furthermore, we observe that Hyperion
improves reliably over the baseline one-shot algorithm in terms of optimization metric 1.9% - 9.3%,
top-1 accuracy for MNIST 0.028% - 0.12%, weighted sum metric 2.3% - 3.01%, model size 23.9%
- 33.5% and top-1 accuracy for CIFAR10 0.6% - 2.06%. We note that the accuracy improvement is
not big as the baseline algorithms can already find good models. However, Hyperion consistently
improves over 10 separate experiments.

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Op
tim

iza
tio

n
M

et
ric

H

H

H

AutoML Algorithms

(a) MNIST opt. metric

98.0

98.1

98.2

98.3

98.4

98.5

To
p-

1
Ac

cu
ra

cy

H

H H

AutoML Algorithms

(b) MNIST top-1 accuracy

0.84

0.86

0.88

0.90

0.92

0.94

W
ei

gh
te

d
Su

m
 M

et
ric

H
H

H

AutoML Algorithms

(c) CIFAR10 weighted sum

10000

12000

14000

16000

18000

20000

22000

Pa

ra
m

et
er

s

H H

H

AutoML Algorithms

(d) CIFAR10 # parameters

Figure 5: Average and standard deviation of optimization metrics for MNIST and CIFAR10 datasets
with Anneal, TPE, BlendSearch, their fused versions Hyperion (marked with H) and DARTS.

8

Under review as a conference paper at ICLR 2024

4.4 OPTIMIZATION EFFICIENCY

Standalone one-shot algorithms typically have high demand on GPU resources as they optimize a
super network containing many candidate architectures. Hyperion overcomes this by using the smart
splitter and smart sub-search-space sampler as explained in Section 3. To evaluate this, we define a
search space with 5 operations, 2 activation functions and 3 kenrnel sizes (details in Table 3). We
compare the GPU consumption of DARTS and Hyperion, see Figure 6. We observe that Hyperion
reduces GPU resource usage by 52.17% - 61.97%, demonstrating its great resource efficiency. For
Hyperion based on other multi-trial algorithms, similar reductions of GPU usage are observed, see
Appendix G. We believe this result is important as Hyperion delivers better optimization perfor-
mance while consuming much less resources.

MNIST CIFAR10 EuroSAT Fashion-
MNIST

Motor
Dataset

Datasets

0

20

40

GP
U

Us
ag

e
(G

B)

Figure 6: GPU consumptions of DARTS and Hyperion (with Anneal) across different datasets.

4.5 ABLATING Hyperion’S DESIGN

We ablate the design of Hyperion by presenting the learnt splitting of architecture parameters be-
tween multi-trial and one-shot optimizers, as well as the learnt sub-search-space for the one-shot
optimizer. We plot how the learnt splitting and sub-search-space evolve as Hyperion progresses in
Figure 7(a) and Figure 7(b), respectively. We select the industrial use case (motor dataset) for ex-
periments here due to its large search space regarding both hyperparameters and neural architecture
parameters. This would help us to identify emerging splitting and downsampling patterns.

Smart Splitter. We observe it quickly learns to discard assigning all architecture parameters to the
one-shot optimizer, which would be costly to run. It learns to focus on assigning two network
parameters to the one-shot optimizer, with the rest assigned to the multi-trial optimizer.

0 20 40 60 80 100
Trial Iteration

0

1

2

3

Pa

ra
m

et
er

s
di

st
rib

ut
ed

 to
On

e-
sh

ot
 O

pt
im

ize
r

(a) Smart splitter

0 20 40 60 80 100
Trial Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
of

 k
er

ne
l s

ize
in

 S
ub

-s
ea

rc
h-

sp
ac

e

3 5 7 9 11 13 15

(b) Smart sub-search-space sampler

Figure 7: Number of parameters assigned to the one-shot optimizer by the smart splitter and sub-
sampled kernel values by the smart sub-search-space sampler as Hyperion optimization progresses.

Smart Sub-search-space sampler. Our results show that Hyperion learns to focus on trying a con-
verged subset of kernel sizes in the one-shot optimizer by eventually focusing on sampling sub-
search-space {3,9,15} for kernel sizes, which would still contain best kernel choices.

5 CONCLUSION

We present Hyperion, which combines the strengths of multi-trial and one-shot NAS algorithms in
joint hyperparameter and neural architecture optimization. Hyperion consists of different learning-
based optimizers working in tandem to solve the joint optimization problem. We conduct extensive
experiments by applying Hyperion to CIFAR10, MNIST, EuroSAT, Fashion-MNIST and an indus-
trial use case on motor health prediction. Based on our evaluation, Hyperion requires significantly
less GPU memory compared to DARTS, while achieving better optimization effectiveness compared
to standalone multi-trial and one-shot algorithms.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems, volume 24, 2011.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
mization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 2023.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware, 2019.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive darts: Bridging the optimization gap for
nas in the wild, 2021.

Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning: Overview and emerging
challenges. In SIGMOD’16, 2016.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong
Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search using predictor
pretraining. In CVPR’21, 2021.

Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng, Bogdan Gabrys, and Quoc V Le. Auto-
has: Efficient hyperparameter and architecture search. arXiv preprint arXiv:2006.03656, 2020.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale, 2018a. URL https://arxiv.org/abs/1807.01774.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale, 2018b.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pp. 3–33, 2019.

Matteo Fischetti and Matteo Stringher. Embedded hyper-parameter tuning by simulated annealing,
2019. URL https://arxiv.org/abs/1906.01504.

Julia Guerrero-Viu, Sven Hauns, Sergio Izquierdo, Guilherme Miotto, Simon Schrodi, Andre
Biedenkapp, Thomas Elsken, Difan Deng, Marius Lindauer, and Frank Hutter. Bag of base-
lines for multi-objective joint neural architecture search and hyperparameter optimization. arXiv
preprint arXiv:2105.01015, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR’16, pp. 770–778, 2016.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In LION’05, pp. 507–523, 2011.

Alex Krizhevsky. The cifar-10 dataset, 2009. URL https://www.cs.toronto.edu/
˜kriz/cifar.html.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

10

https://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1906.01504
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2024

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search,
2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2019.

Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving deep learning
in image classification problem. In IIPhDW’18, pp. 117–122, 2018.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach
to designing convolutional neural network architectures, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS’17, pp. 6000–6010,
2017.

Chi Wang, Qingyun Wu, Silu Huang, and Amin Saied. Economical hyperparameter optimization
with blended search strategy. In ICLR 2021, May 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning:
Efficient joint neural architecture and hyperparameter search. arXiv preprint arXiv:1807.06906,
2018.

Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles and tech-
niques for data scientists. ” O’Reilly Media, Inc.”, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.

11

Under review as a conference paper at ICLR 2024

A CHOICE OF SEARCH ALGORITHMS FOR MULTI-TRIAL OPTIMIZERS

For multi-trial optimizers in Hyperion, in principle, one can choose freely the underlying optimiza-
tion algorithms to be integrated, for each of the involved optimizers (smart splitter, sub-search-space
sampler, pipeline and architecture optimizers). To get a good coverage and to compare performances
of different state-of-the-art multi-trial algorithms applied to Hyperion, we integrated a few typical
algorithms, which allow the user to select during optimization. Specifically, Hyperion supports grid
and random search as a baseline reference. It also supports popular Bayesian optimization based
algorithms like TPE (Bergstra et al., 2011), SMAC (Hutter et al., 2011) and BOHB (Falkner et al.,
2018a). Additionally, BlendSearch (Wang et al., 2021), a latest lightweight multi-trial algorithm
combining both Bayesian optimization and reinforcement learning is also supported.

B REDUCED SEARCH SPACE FOR SUPERNET

We continue to analyze the reduction of the supernet search space in Hyperion. Formally, for each
architecture parameter θj available to the jth node in the search space Θarch, the total number
of possible operations from any node to node j, mj , equals

∏
θj∈Θarch

nθj , where n represents
the number of choices available for a corresponding parameter. As each node in the supernet can
have connections from all previous nodes in a DARTS cell, the total number of possible connection
combinations to jth node, cj , is then given by: cj = (mj)

j+2 = (
∏

θj∈Θarch
nθj)

j+2. Here it is
assumed that only one edge should be selected in the end between any pair of nodes. Additionally,
2 is added to the exponent to count connections from the two input nodes, as shown in Figure 1. As
a result, the total number of connection combinations in a cell of the super network, ccell, with K

nodes is given by ccell =
∏K−1

j=0 cj .

With the above analysis we can understand the super network search space reduction with a more
complicated example. Assume we have the following parameters for the cell search space: kernel
sizes = {3, 5, 7, 9, 11, 13, 15, 17, 19}, activations = {Relu, Tanh, Linear, Logistic, Heaviside,
Gaussian}, and operations= {Conv, Dilated Convolution, Depthwise Separable Convolution, Max
Pooling, Average Pooling}.

In the original DARTS, each kernel size can be combined with each activation function and layer
operation to generate a candidate operation. Therefore, the total number of candidate operations
between two nodes is 270 (9×6×5). This results in a large number of connection combinations in the
super network. Assuming 5 nodes in the basic cell, it has (2702×2703×2704×2705×2706) possible
connection combinations. This shows the huge combinatorial search space and high computational
demand of super networks in DARTS.

In Hyperion’s extension of DARTS, architecture search space Θarch is divided, such that Θarch m is
searched by the multi-trial network optimizer and Θarch o is optimized by DARTS. Accordingly, mj

becomes
∏

θj∈Θarch o
nθj

∏
θj∈Θarch m

nm, where nm denotes the number of values the multi-trial
optimizer chooses for each architecture parameter and node in the basic cell. nm can be typically
set as small numbers such as 1 or 2, see Section 3.2.

For the example above, assuming that kernel sizes are distributed to the multi-trial optimizer. Based
on our analysis, the total number of candidate operations between two nodes reduces significantly
from 270 to 60 (5×6×2, assuming nm = 2) and ccell reduces by a factor close to 1013. Such search
space reduction greatly improves resource usage of DARTS and it does not compromise the overall
search space of Hyperion as the multi-trial network optimizer still ensures the entire architecture
search space can be explored.

C DETAILED RESULTS ON IMPACT OF Hyperion ON AN INDUSTRIAL USE
CASE

We present results of applying Hyperion to industrial motor health prediction. The problem is to
classify motor bearing status (healthy, degraded and damaged) with monitored accelerometer data.
Hyperparameters like window size of the timing series taken as input, sensing frequency of the
accelerometer and other training based hyperparameters like learning rate and batch size are opti-

12

Under review as a conference paper at ICLR 2024

mized together with the neural architecture by Hyperion, see Table 1. Additionally, the number of
cells (network depth) is also optimized.

For the joint search space, Hyperion optimized a neural network with 192 trainable parameters
achieving 99.91% accuracy on the validation set in a 12 hours experiment. Due to the small model
size it can be easily implemented and run on industrial embedded platforms. Furthermore, to show
the impact of joint hyperparameter and neural architecture optimization, we conducted two more
experiments using Hyperion by fixing hyperparameters (we take the min/max values of each hyper-
parameter respectively in those two experiments). Our results show that Hyperion returned neural
networks with 724 and 5925 trainable parameters, while achieving 79.1% and 99.99% validation ac-
curacies respectively. Therefore, the model generated when optimizing hyperparameters and neural
architecture together would be more preferred in practice as it achieves high accuracy with a small
model size.

Hyperparameters Design Choices Category Optimizer
Window size [50, 100, 150, 200, 300, 400, 700] Sensing Multi-trial

Sampling Frequency [52, 104, 208, 416, 833, 1660] Sensing Multi-trial
Learning Rate [0.01, 0.05] Training Multi-trial

Batch Size [256, 512, 1024, 2048] Training Multi-trial
Model Depth [3,4,5] Model Multi-trial

Number of Channels [1,2,3,4,5,6] Model Multi-trial
Kernel Size [3,4,5,7,9,11,13,15] Model Fusion

Activation Function [ReLU, Tanh] Model Fusion
Layer Operations [Maxpool, Skip Connection, Conv2D, Identity] Model Fusion

Table 1: Search space for the motor health prediction problem.

D DETAILED SETUP OF Hyperion’ EXPERIMENTS

CIFAR10
weighted sum = training loss + 0.00001×#parameters (2)

Motor Dataset

weighted sum = (1-accuracy) + 0.4× (#parameters)/10000 (3)

Hyperparameters Design Choices Optimizer
Layer Operations [Average Pooling, Skip Connection, Dilated Convolution] Fusion

Kernel Sizes [3, 5, 7, 9] Fusion
Activation Functions [ReLU, Tanh] Fusion

Table 2: Search space for showing effectiveness and reproducibility of Hyperion.

Hyperparameters Design Choices Optimizer

Layer Operations [Average Pooling, Max Pooling, Skip Connection, FusionDilated Convolution, Separable Convolution]
Kernel Sizes [3, 5, 7, 9] Fusion

Activation Functions [ReLU, Tanh] Fusion

Table 3: Search space for showing efficiency of Hyperion.

E DETAILED RESULTS ON Hyperion’S OPTIMIZATION EFFECTIVENESS

We observe that for all datasets Hyperion is able to achieve better optimization metrics compared to
the the baseline multi-trial optimizer (BlendSearch) and one-shot optimizer (DARTS) during opti-
mization as can be seen in the Figure 8. This shows the effectiveness of Hyperion for optimization.

13

Under review as a conference paper at ICLR 2024

0 20 40 60 80
Time [hrs]

0.06

0.08

0.10

0.12

0.14

Op
tim

iza
tio

n
M

et
ric

BlendSearch
DARTS
BlendSearch - Fused

(a) MNIST

0 20 40 60 80 100
Time [hrs]

0.90

0.95

1.00

1.05

1.10

1.15

1.20

W
ei

gh
te

d
Su

m
 M

et
ric

BlendSearch
DARTS
BlendSearch - Fused

(b) CIFAR10

0 5 10 15 20
Time [hrs]

0.1

0.2

0.3

0.4

0.5

0.6

Op
tim

iza
tio

n
M

et
ric

BlendSearch
DARTS
BlendSearch - Fused

(c) EuroSAT

0 5 10 15 20
Time [hrs]

0.36

0.38

0.40

0.42

0.44

Op
tim

iza
tio

n
M

et
ric

BlendSearch
DARTS
BlendSearch - Fused

(d) Fashion-MNIST

0 5 10 15 20
Time [hrs]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

gh
te

d
Su

m
 M

et
ric

BlendSearch
BlendSearch - Fused

(e) Motor Dataset

Figure 8: Comparison of moving averages of optimization targets for BlendSearch w/wo Hyperion
and DARTS.

F DETAILED RESULTS ON Hyperion’S OPTIMIZATION REPRODUCIBILITY

We observe that for MNIST and CIFAR10 datasets Hyperion performs better optimization when
averaged over 10 experiments compared to the baseline multi-trial optimizers (Anneal, TPE, Blend-
Search) and one-shot optimizer (DARTS) during optimization as can be seen in the Figure 9. This
shows that Hyperion consistently outperforms the baseline algorithms across multiple experiments
and has high reproducibility.

0 10 20 30 40 50 60 70
Time [hrs]

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Op
tim

iza
tio

n
M

et
ric

Anneal
Anneal - Fused

(a) MNIST-Anneal

0 10 20 30 40 50 60 70
Time [hrs]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Op
tim

iza
tio

n
M

et
ric

TPE
TPE - Fused

(b) MNIST-TPE

0 10 20 30 40 50 60 70
Time [hrs]

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Op
tim

iza
tio

n
M

et
ric

BlendSearch
BlendSearch - Fused

(c) MNIST-BlendSearch

0 10 20 30 40 50 60 70
Time [hrs]

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Op
tim

iza
tio

n
M

et
ric

DARTS

(d) MNIST-DARTS

0 20 40 60 80 100
Time [hrs]

0.95

1.00

1.05

1.10

1.15

W
ei

gh
te

d
Su

m
 M

et
ric

Anneal
Anneal - Fused

(e) CIFAR10-Anneal

0 20 40 60 80 100
Time [hrs]

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

W
ei

gh
te

d
Su

m
 M

et
ric

TPE
TPE - Fused

(f) CIFAR10-TPE

0 20 40 60 80 100
Time [hrs]

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

W
ei

gh
te

d
Su

m
 M

et
ric

BlendSearch
BlendSearch - Fused

(g) CIFAR10-
BlendSearch

0 20 40 60 80 100
Time [hrs]

1.00

1.05

1.10

1.15

1.20

1.25

W
ei

gh
te

d
Su

m
 M

et
ric

DARTS

(h) CIFAR10-DARTS

Figure 9: Averaged moving averages of optimization targets across 10 complete experiments for
MNIST dataset (Figures a-d) and CIFAR10 (Figures e-h) with various AutoML methods and their
fused versions in Hyperion.

14

Under review as a conference paper at ICLR 2024

G DETAILED RESULTS ON Hyperion’S OPTIMIZATION EFFICIENCY

We define two search spaces for this experiment. In both search spaces, there are 5 operations and
2 activation functions. In the small search space, we have 2 design choices for the kernel size {3,5}
whereas in the larger search space, we have 3 kernel choices {3,5,7}. We run DARTS on both search
spaces and use this as a baseline to compare with Hyperion

MNIST
Search AutoML Optimized GPU
Space Algorithms Loss Usage
Large DARTS Not feasible 30.21 GB
Small DARTS 0.020 17.34 GB

Large

Anneal as Hyperion 0.011 10.5 GB
% improvement 45 39.44
TPE as Hyperion 0.011 10 GB
% improvement 45 42.32

BlendSearch as Hyperion 0.012 9.3 GB
% improvement 40 46.33

Table 4: Comparison of the optimized loss and GPU memory usage of DARTS against Hyperion
(with different multi-trial optimizers) on the MNIST dataset.

As shown in Table 4, DARTS is only able to perform on the small search space as GPU usage for
the large search space exceeds the hardware limit. Hyperion is able to perform on the large space
as it smartly offloads certain parameters to the outer optimization loop and can further sample a
sub-search-space for those parameters assigned to the inner optimization loop with DARTS. Despite
using a large search space, we observe that Hyperion still requires less GPU memory usage than
DARTS, while achieving better optimized loss metric due to its efficient exploration combining
both multi-trial and one-shot optimizers.

Other baseline multi-trial algorithms and datasets. We observe that for the same dataset, Hyperion
with different baseline multi-trial algorithms would give exact same peak GPU memory consump-
tion during experiments. This is due to the fact that we enforce same search space. Smart splitter
would assign the same max number of architecture parameters to the one-shot optimizer. Further-
more, sub-search-space sampler would sample the same sub-search-space size for the one-shot op-
timizer. Therefore, results would be the same as shown in Figure 6.

15

	Introduction
	Related Work and Background
	Hyperparameter Optimization and Neural Architecture Search
	Differentiable Neural Architecture Search

	Hyperion
	Challenges and Solution Overview
	Multi-trial Optimizers in Hyperion
	One-shot Optimizer in Hyperion
	Hyperion Algorithm

	Experiments and Results
	Experimental Setup
	Optimization effectiveness
	Optimization reproducibility
	Optimization efficiency
	Ablating Hyperion's design

	Conclusion
	Choice of Search Algorithms for Multi-trial Optimizers
	Reduced Search Space for Supernet
	Detailed Results on Impact of Hyperion on an Industrial Use Case
	Detailed setup of Hyperion' experiments
	Detailed results on Hyperion's optimization effectiveness
	Detailed results on Hyperion's optimization reproducibility
	Detailed results on Hyperion's optimization efficiency

