BLIP3-KALE: Knowledge Augmented Large-Scale Dense Captions
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Abstract

We introduce ® BLIP3-KALE, a dataset of 218 million image-
text pairs that bridges the gap between descriptive syn-
thetic captions and factual web-scale alt-text. KALE aug-
ments synthetic dense image captions with web-scale alt-text
to generate factually grounded image captions. Our two-
stage approach leverages large vision-language models and
language models to create knowledge-augmented captions,
which are then used to train a specialized VLM for scaling
up the dataset. We train vision-language models on KALE
and demonstrate improvements on vision-language tasks.
Our experiments show the utility of KALE for training more
capable and knowledgeable multimodal models.

1. Introduction

We introduce BLIP3-KALE, a dataset of 218 million image-
text pairs that advances the knowledge-augmented image
captioning. KALE builds upon recent work in this area,
particularly CapsFusion [29], which pioneered the use of
large language models to fuse synthetically generated image
captions with alt-text to incorporate real-world knowledge.
KALE makes two key contributions beyond CapsFusion:

Scale and Density: CapsFusion produced 120M samples
with an average of 22.74 words per caption. KALE is sig-
nificantly larger and denser, containing 218M samples with
an average of 67.26 words per caption - 1.82x the scale and
nearly 3x the caption density.

Efficient Generation: Instead of utilizing multiple large
models to synthesize image-captions and fuse the knowl-
edge, we distill the knowledge augmentation process into a
compact 2B parameter alt-text-conditioned captioning model.
This enables efficient generation of high-quality captions,
which allows us to scale up the dataset creation process
significantly.

“Work done while interning at Salesforce Research

Our approach combines synthetic captions from VLMs with
factual information from web-scale alt-text, creating rich
image descriptions. We demonstrate that training on KALE
improves performance across multimodal tasks compared to
many previous purely synthetic or web-scraped datasets.

2. Approach

2.1. Stage 1: Generating initial knowledge-
augmented captions

The first stage of our approach focuses on creating an initial
pool of dense knowledge-augmented captions. We begin by
leveraging CogVLM-17B [26] to generate dense captions for
images from the Datacomp-1B dataset. These captions serve
as a foundation for our knowledge augmentation process.
To enhance these captions with real-world knowledge, we
employ Mistral[8], a powerful language model. We prompt
Mistral using the CogVLM-generated captions, instructing it
to augment the descriptions with relevant factual information.
This step aims to incorporate broader contextual knowledge
into the image descriptions, following CapsFusions’ prompt-
ing method. Through this process, we create an initial pool
of 100 million knowledge-augmented captions.

2.2. Stage 2: Scaling up

The second stage of our approach focuses on scaling up the
dataset to our target of 218 million image-text pairs. We
accomplish this by training a specialized VLM using the
knowledge-augmented captions generated in Stage 1. We
construct our VLM similar to the LLaVA [17] model, us-
ing Qwen1.5-1.5B [28] for the language model and DFN
ViT-H [6] for the vision encoder. We resize the positional
embeddings for the vision encoder to handle 490x490 im-
ages matching the resolution used by CogVLM. Our VLM
takes two inputs: image patch embeddings and the original
Datacomp-1B captions. The model is trained to output the
knowledge-augmented captions produced in Stage 1. We use
this VLM to caption an additional 118 million images from
the Datacomp-1B dataset. This two-stage approach enables
us to efficiently scale up KALE to 218 million samples.



KALE Dataset Overview

At Cape Sounion in Attica,
Greece, stands an ancient
temple dedicated to Poseidon,
the god of the sea. This temple,
Web Alt-text depicted in the image, boasts
large, weathered columns that
have withstood the test of time
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Ancient temple of Poseidon,
Cape Sounion, Attica, Greece
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Figure 1. Overview of ®KALE dataset creation and performance. Top: Example showing how KALE combines web alt-text with synthetic
captions to produce knowledge-rich dense captions. Bottom left: Two-stage generation pipeline for KALE, using CogVLM and Mistral to
create an initial set of knowledge augmented captions, followed by training a distilled VLM to scale up to 218M samples. Bottom right:
Evaluation results comparing KALE’s average performance against popular synthetic image-text datasets.

Dataset Scale (# of samples) Density (avg. words/caption) Knowledge-augmented? Captioner size (params)
LAION-COCO! 600M 8.99 X 0.5B
ReCap-Datacomp-1B [16] 1.28B 49.43 X 7B

CapsFusion [29] 120M 22.74 v 0.5B

$KALE 218M 67.26 v 17B (stage 1) — 2B (stage 2)

Table 1. Comparison of open-source synthetic image-text datasets: We compare various datasets in terms of scale (number of samples),
density (average number of words per sample), whether they are knowledge-augmented (meaning that the caption includes information
found in image’s web scraped alt-text), and the size of the captioning model used to generate the descriptions. For KALE, we create an
initial pool of 100M captions from a 17B parameter model and use it to distill a 2B parameter model that matches the performance of the
larger 17B model.

2.3. Removing pipeline artifacts and remove sentences that contain these keywords.

Artifacts from the prompts passed into LLMs/VLMs to gen-

erate KALE occasionally leak into the generated captions. 3. Experiments

We present an example of these artifacts in Figure 3 where ' ' o

the system prompt to the LLM used in the rewriting stage We validate the effectiveness of KALE by training VLMs.
has leaked into the generated caption. To remove these ar- In this section, we outline our training and evaluation setup
tifacts, we create a set of words that commonly appear in and present results when training on KALE.

these artifacts such as ‘real-world* or ‘sentence structure*
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Figure 2. We generate ®KALE in a two stage process. Stage 1: We first create an initial pool of 100M knowledge-augmented dense
captions using CogVLM-17B to generate dense captions for Datacomp-1B images and then augmenting these captions with real world
knowledge by prompting Mistral. Stage 2: We use the knowledge-augmented captions from Stage 1 to train a VLM that takes image patch
embeddings and Datacomp-1B captions as inputs and outputs knowledge-augmented captions. This VLM is then used to efficiently caption

118M more images from Datacomp-1B.

The Quality and project coordinator position
at Credit Agricole (Dublin), as indicated in
Sentence 1, is a part of a VIE (Venture in
Ireland), and my analysis now turns to the
visual representation of this organization.
The logo, as depicted in Sentence 2, features
a stylized green 'A’ letter, which is
accentuated by blue and red lines on the right
side. The dynamic and modern appearance is
achieved by intertwining the ’'A’ with the blue
and red line. A horizontal green line lies
beneath the letter 'A’.

Figure 3. Example of pipeline artifacts in a caption. The highlighted
texts show the phrases that have leaked from the system prompt
into the final output.

3.1. Training setup

We follow the Llava architecture in using a linear layer to
project image patch embeddings from a vision encoder into
the text embedding space. We use Qwen2.5-1.5B [28] for
the language model, and SigL.IP ViT-L 384 [30] for the vi-
sion encoder. We use a batch size of 80 image-text pairs
and a peak learning rate of 5¢=5. We train all of our models
on two million samples from image-text data. We then fine-
tune the model, using a peak learning rate of 3e~®, on one
million multimodal instruction tuning samples from the Caul-
dron [12] dataset. We remove multi-image samples from the
Cauldron data and sample different subsets according to the
ratios used in Idefics2.

Model Average
KALE (stage 1 only) 51.53
®KALE 51.96

Table 2. Average performance shows little difference between
training on stage 1 captions and a mixture of stage 1 and stage 2

(i.e. #KALE).

3.2. Evaluation setup

We evaluate the instruction-tuned model on various vision-
language benchmarks including TextVQA (val set) [25],
VQAV2 (val lite) [1], ScienceQA [20], AI2D [9], MM-
Bench [18], ChartQA [21], InfoVQA [22], OCRBench [19],
RealWorldQA', and MMStar [4] using the Imms-eval frame-
work [31]. This comprehensive evaluation suite covers a
wide range of capabilities from general visual question an-
swering to specialized tasks involving scientific reasoning
and OCR-based comprehension.

3.3. Results

We find that pre-training on KALE captions improves down-
stream model performance on most VLM benchmarks,
achieving the highest average performance at 51.96%. In
particular, KALE shows strong performance on TextVQA
(59.92%), VQAV2 (70.10%), and ScienceQA (72.68%).
CogVLM'’s synthetic captions also demonstrate robust per-
formance. Both KALE and CogVLM significantly outper-
form Datacomp-1B’s noisier alt-text captions, which achieve
lower scores across most benchmarks (49.86% average).

lhttps ://x.ai/blog/grok-1.5v
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Model

Benchmarks

TextVQA  VQAv2 ScienceQA AI2D MMBench ChartQA InfoVQA OCRBench RealWorldQA MMStar Avg
#KALE (Ours) 59.92 70.10 72.68 65.64 58.59 23.28 29.28 43.80 5242 4391 51.96
CogVLM (Ours) 59.74 69.42 70.30 65.35 61.60 23.64 29.53 43.80 52.03 41.90 51.73
CapsFusion 57.62 67.30 71.79 62.27 60.82 22.28 27.67 43.10 52.03 4391 50.88
Recap-Datacomp 58.49 67.36 71.19 63.31 52.75 23.08 28.45 42.20 53.07 41.90 50.18
Datacomp 57.40 67.22 69.51 61.82 59.45 22.28 28.53 42.20 50.46 39.70  49.86
LAION-COCO 54.12 65.26 65.94 59.10 55.58 21.60 26.81 38.90 44.05 3890  47.03

Table 3. Downstream performance: To measure the quality of KALE in comparison to other datasets, we evaluate the instruction-tuned
models across vision-language tasks. KALE maintains a slight edge in overall performance, while our CogVLM synthetic captions shows
strong performance in tasks like MMBench. Both subsets of our KALE data outperform existing synthetic image-text datasets.

Earlier attempts at knowledge integration, such as CapsFu-
sion (50.88% average), while showing improvements over
the Datacomp baseline, did not achieve the same level of
performance as our approach. The LAION-COCO dataset,
constrained by both vocabulary size and caption density, per-
forms the lowest at 47.03% average. Furthermore, Table 2
compares the performance of stage 1 captions generated by
CogVLM and Mistral-7B with the complete KALE dataset,
which combines these stage 1 captions with those from our
distilled captioning model (stage 2). The combined stage 1
and 2 captions achieve performance comparable to the stage
1 captions generated by the significantly larger CogVLM
model, demonstrating the effectiveness of our distilled cap-
tioning approach.

4. Related Works

KALE builds on many large-scale image-text datasets such
as LAION-5B [24], Datacomp-1B [7], COYO-700M [3], and
many more. These datasets were sourced from large amounts
of images paired with alt-text captions found in the HTML
image tags associated with these images. As LLM/VLMs
have become more capable, many works have explored gen-
erating synthetic multimodal training data. There is a line
of work that seeks to improve image-text datasets by us-
ing VLMs to generate synthetic captions [13, 14, 16, 23].
Works such as LaCLIP [5] took an alternative approach of
rewriting the existing alt-text caption using an LLM to im-
prove the quality of the caption. Moreover, works such as
LLaVA [17] and LLaVAR [32] have synthetically generated
visual question-answer pairs in the context of instruction
tuning. Additionally, the BLIP-3 [27] model leverages our
KALE dataset to improve the quality of their caption data.

Previous work has pointed out that synthetic captions lack
real-world knowledge, limiting their applicability in many
domains. CapsFusion [29] addresses this issue by augment-
ing LAION-COCO synthetic captions with alt-text from
the LAION dataset. VeCLIP [10] also addresses this issue,
but instead of using existing captions, it generates synthetic
captions using a LLaVA model.

An adjacent line of work improves the text quality of mul-

B 1o "The Ride for Liberty- The Fugitive Slaves,"
| painted by Eastman Johnson around 1862, a family

of three, consisting of a man, woman, and child,
is depicted in an oil painting on board. Measuring
21 15/16 x 26 1/8 inches, this masterpiece is
housed at The Brooklyn Museum as a gift from Miss
Gwendolyn 0. L. Conkling. The scene unfolds with
the family in mid-gallop on their horse, the man
| holding the reins, the woman seated behind him,
and the child on his lap. The horse's tail flows
behind, and the landscape, though vast and barren,
is characterized by an overcast sky, hinting at a
gloomy or early morning setting. The painting's
style is realistic, meticulously capturing the
intricacies of the subjects and the environment.

"In the intricately detailed watercolor painting
by Emma Howell, dated 2021, a captivating bath
landscape unfolds. The scene portrays a serene
body of water, be it a lake or a river, encircled
% by verdant hills and lush greenery. To the left,
an intriguing structure emerges, hinting at a
rich history with its aged appearance. Whether
it's a ruin, an old church, or a castle, the
structure adds depth and intrigue to the
painting. The sky above is a breathtaking canvas
of blue and yellow hues, reflecting the
tranquility of either dawn or dusk. The artist's
signature, a testament to the work's
authenticity, is discreetly placed at the bottom
of the painting."

Overload Protection

Builtin In-line Fuse
"A waterproof USB charger features an inline
fuse for overload protection, as depicted in
this image. The fuse, labeled as such, is a
23.7-inch long component with a built-in
design. The image provides a detailed view of
the fuse, showcasing its connectors and the
fuse itself. The connectors are color-coded,
with one being red and the other black, and the
fuse is securely housed in a black casing.",

In the set of the Top Gun sequel, Tom Cruise is
captured sitting on a sleek, black motorcycle
with a sporty design, shiny finish, and clear
windshield. He dons a green jacket adorned with
an American flag patch on the left arm and
wears sunglasses. The image's background
reveals blurred figures and greenery,
suggesting an open area or park setting.

Figure 4. More samples from $KALE.

timodal data by instead sourcing web-scale interleaved im-
age/text samples from web documents as opposed to HTML
alt-text captions. Works such as MMC4 [33], OBELISC [11],
MINT-1T [2], and OmniCorpus [15] all build multimodal
interleaved datasets, which is a promising direction to attain
high-quality and knowledge-rich multimodal data.

5. Limitations and conclusion

KALE represents a step forward in bridging the gap be-
tween descriptive synthetic captions and factual web-scale
alt-text. Our experiments demonstrate that models trained on
KALE consistently outperform baseline models across vari-
ous benchmarks. While KALE performs favorably compared



to other open-source image-text datasets, the data could still
contain hallucinations, particularly in text-dense images. Fu-
ture work should scale KALE to billions of image-text pairs,
explore more sophisticated knowledge augmentation tech-
niques, and investigate its impact on a broader range of
multimodal tasks.
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