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Abstract

We introduce BLIP3-KALE, a dataset of 218 million image-001
text pairs that bridges the gap between descriptive syn-002
thetic captions and factual web-scale alt-text. KALE aug-003
ments synthetic dense image captions with web-scale alt-text004
to generate factually grounded image captions. Our two-005
stage approach leverages large vision-language models and006
language models to create knowledge-augmented captions,007
which are then used to train a specialized VLM for scaling008
up the dataset. We train vision-language models on KALE009
and demonstrate improvements on vision-language tasks.010
Our experiments show the utility of KALE for training more011
capable and knowledgeable multimodal models.012

1. Introduction013

We introduce BLIP3-KALE, a dataset of 218 million image-014
text pairs that advances the knowledge-augmented image015
captioning. KALE builds upon recent work in this area,016
particularly CapsFusion [29], which pioneered the use of017
large language models to fuse synthetically generated image018
captions with alt-text to incorporate real-world knowledge.019
KALE makes two key contributions beyond CapsFusion:020

Scale and Density: CapsFusion produced 120M samples021
with an average of 22.74 words per caption. KALE is sig-022
nificantly larger and denser, containing 218M samples with023
an average of 67.26 words per caption - 1.82x the scale and024
nearly 3x the caption density.025

Efficient Generation: Instead of utilizing multiple large026
models to synthesize image-captions and fuse the knowl-027
edge, we distill the knowledge augmentation process into a028
compact 2B parameter alt-text-conditioned captioning model.029
This enables efficient generation of high-quality captions,030
which allows us to scale up the dataset creation process031
significantly.032

Our approach combines synthetic captions from VLMs with033
factual information from web-scale alt-text, creating rich034
image descriptions. We demonstrate that training on KALE035

improves performance across multimodal tasks compared to 036
many previous purely synthetic or web-scraped datasets. 037

2. Approach 038

2.1. Stage 1: Generating initial knowledge- 039
augmented captions 040

The first stage of our approach focuses on creating an initial 041
pool of dense knowledge-augmented captions. We begin by 042
leveraging CogVLM-17B [26] to generate dense captions for 043
images from the Datacomp-1B dataset. These captions serve 044
as a foundation for our knowledge augmentation process. 045
To enhance these captions with real-world knowledge, we 046
employ Mistral[8], a powerful language model. We prompt 047
Mistral using the CogVLM-generated captions, instructing it 048
to augment the descriptions with relevant factual information. 049
This step aims to incorporate broader contextual knowledge 050
into the image descriptions, following CapsFusions’ prompt- 051
ing method. Through this process, we create an initial pool 052
of 100 million knowledge-augmented captions. 053

2.2. Stage 2: Scaling up 054

The second stage of our approach focuses on scaling up the 055
dataset to our target of 218 million image-text pairs. We 056
accomplish this by training a specialized VLM using the 057
knowledge-augmented captions generated in Stage 1. We 058
construct our VLM similar to the LLaVA [17] model, us- 059
ing Qwen1.5-1.5B [28] for the language model and DFN 060
ViT-H [6] for the vision encoder. We resize the positional 061
embeddings for the vision encoder to handle 490x490 im- 062
ages matching the resolution used by CogVLM. Our VLM 063
takes two inputs: image patch embeddings and the original 064
Datacomp-1B captions. The model is trained to output the 065
knowledge-augmented captions produced in Stage 1. We use 066
this VLM to caption an additional 118 million images from 067
the Datacomp-1B dataset. This two-stage approach enables 068
us to efficiently scale up KALE to 218 million samples. 069

2.3. Removing pipeline artifacts 070

Artifacts from the prompts passed into LLMs/VLMs to gen- 071
erate KALE occasionally leak into the generated captions. 072
We present an example of these artifacts in Figure 3 where 073
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Figure 1. Overview of KALE dataset creation and performance. Top: Example showing how KALE combines web alt-text with synthetic
captions to produce knowledge-rich dense captions. Bottom left: Two-stage generation pipeline for KALE, using CogVLM and Mistral to
create an initial set of knowledge augmented captions, followed by training a distilled VLM to scale up to 218M samples. Bottom right:
Evaluation results comparing KALE’s average performance against popular synthetic image-text datasets.

Dataset Scale (# of samples) Density (avg. words/caption) Knowledge-augmented? Captioner size (params)

LAION-COCO1 600M 8.99 ✗ 0.5B
ReCap-Datacomp-1B [16] 1.28B 49.43 ✗ 7B
CapsFusion [29] 120M 22.74 ✓ 0.5B

KALE 218M 67.26 ✓ 17B (stage 1) → 2B (stage 2)

Table 1. Comparison of open-source synthetic image-text datasets: We compare various datasets in terms of scale (number of samples),
density (average number of words per sample), whether they are knowledge-augmented (meaning that the caption includes information
found in image’s web scraped alt-text), and the size of the captioning model used to generate the descriptions. For KALE, we create an
initial pool of 100M captions from a 17B parameter model and use it to distill a 2B parameter model that matches the performance of the
larger 17B model.

the system prompt to the LLM used in the rewriting stage074
has leaked into the generated caption. To remove these ar-075
tifacts, we create a set of words that commonly appear in076
these artifacts such as ‘real-world‘ or ‘sentence structure‘077
and remove sentences that contain these keywords.078

1https://laion.ai/blog/laion-coco/

3. Experiments 079

We validate the effectiveness of KALE by training VLMs. 080
In this section, we outline our training and evaluation setup 081
and present results when training on KALE. 082

3.1. Training setup 083

We follow the Llava architecture in using a linear layer to 084
project image patch embeddings from a vision encoder into 085
the text embedding space. We use Qwen2.5-1.5B [28] for 086
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Figure 2. We generate KALE in a two stage process. Stage 1: We first create an initial pool of 100M knowledge-augmented dense
captions using CogVLM-17B to generate dense captions for Datacomp-1B images and then augmenting these captions with real world
knowledge by prompting Mistral. Stage 2: We use the knowledge-augmented captions from Stage 1 to train a VLM that takes image patch
embeddings and Datacomp-1B captions as inputs and outputs knowledge-augmented captions. This VLM is then used to efficiently caption
118M more images from Datacomp-1B.

The Quality and project coordinator position 
at Credit Agricole(Dublin), as indicated in 
Sentence 1, is a part of a VIE (Venture in
Ireland), and my analysis now turns to the 
visual representation of this organization.
The logo, as depicted in Sentence 2, features 
a stylized green ’A’ letter, which is 
accentuated by blue and red lines on the right 
side. The dynamic and modern appearance is 
achieved by intertwining the ’A’ with the blue 
and red line. A horizontal green line lies 
beneath the letter ’A’.

Figure 3. Example of pipeline artifacts in a caption. The highlighted
texts show the phrases that have leaked from the system prompt
into the final output.

the language model, and SigLIP ViT-L 384 [30] for the vi-087
sion encoder. We use a batch size of 80 image-text pairs088
and a peak learning rate of 5e−5. We train all of our models089
on two million samples from image-text data. We then fine-090
tune the model, using a peak learning rate of 3e−5, on one091
million multimodal instruction tuning samples from the Caul-092
dron [12] dataset. We remove multi-image samples from the093
Cauldron data and sample different subsets according to the094
ratios used in Idefics2.095

3.2. Evaluation setup096

We evaluate the instruction-tuned model on various vision-097
language benchmarks including TextVQA (val set) [25],098
VQAv2 (val lite) [1], ScienceQA [20], AI2D [9], MM-099
Bench [18], ChartQA [21], InfoVQA [22], OCRBench [19],100

Model Average

KALE (stage 1 only) 51.53
KALE 51.96

Table 2. Average performance shows little difference between
training on stage 1 captions and a mixture of stage 1 and stage 2
(i.e. KALE).

RealWorldQA1, and MMStar [4] using the lmms-eval frame- 101
work [31]. This comprehensive evaluation suite covers a 102
wide range of capabilities from general visual question an- 103
swering to specialized tasks involving scientific reasoning 104
and OCR-based comprehension. 105

3.3. Results 106

We find that pre-training on KALE captions improves down- 107
stream model performance on most VLM benchmarks, 108
achieving the highest average performance at 51.96%. In 109
particular, KALE shows strong performance on TextVQA 110
(59.92%), VQAv2 (70.10%), and ScienceQA (72.68%). 111
CogVLM’s synthetic captions also demonstrate robust per- 112
formance. Both KALE and CogVLM significantly outper- 113
form Datacomp-1B’s noisier alt-text captions, which achieve 114
lower scores across most benchmarks (49.86% average). 115
Earlier attempts at knowledge integration, such as CapsFu- 116
sion (50.88% average), while showing improvements over 117
the Datacomp baseline, did not achieve the same level of 118
performance as our approach. The LAION-COCO dataset, 119
constrained by both vocabulary size and caption density, per- 120
forms the lowest at 47.03% average. Furthermore, Table 2 121

1https://x.ai/blog/grok-1.5v
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Model Benchmarks

TextVQA VQAv2 ScienceQA AI2D MMBench ChartQA InfoVQA OCRBench RealWorldQA MMStar Avg

KALE (Ours) 59.92 70.10 72.68 65.64 58.59 23.28 29.28 43.80 52.42 43.91 51.96
CogVLM (Ours) 59.74 69.42 70.30 65.35 61.60 23.64 29.53 43.80 52.03 41.90 51.73
CapsFusion 57.62 67.30 71.79 62.27 60.82 22.28 27.67 43.10 52.03 43.91 50.88
Recap-Datacomp 58.49 67.36 71.19 63.31 52.75 23.08 28.45 42.20 53.07 41.90 50.18
Datacomp 57.40 67.22 69.51 61.82 59.45 22.28 28.53 42.20 50.46 39.70 49.86
LAION-COCO 54.12 65.26 65.94 59.10 55.58 21.60 26.81 38.90 44.05 38.90 47.03

Table 3. Downstream performance: To measure the quality of KALE in comparison to other datasets, we evaluate the instruction-tuned
models across vision-language tasks. KALE maintains a slight edge in overall performance, while our CogVLM synthetic captions shows
strong performance in tasks like MMBench. Both subsets of our KALE data outperform existing synthetic image-text datasets.

compares the performance of stage 1 captions generated by122
CogVLM and Mistral-7B with the complete KALE dataset,123
which combines these stage 1 captions with those from our124
distilled captioning model (stage 2). The combined stage 1125
and 2 captions achieve performance comparable to the stage126
1 captions generated by the significantly larger CogVLM127
model, demonstrating the effectiveness of our distilled cap-128
tioning approach.129

In "The Ride for Liberty- The Fugitive Slaves," 
painted by Eastman Johnson around 1862, a family 
of three, consisting of a man, woman, and child, 
is depicted in an oil painting on board. Measuring 
21 15/16 x 26 1/8 inches, this masterpiece is 
housed at The Brooklyn Museum as a gift from Miss 
Gwendolyn O. L. Conkling. The scene unfolds with 
the family in mid-gallop on their horse, the man 
holding the reins, the woman seated behind him, 
and the child on his lap. The horse's tail flows 
behind, and the landscape, though vast and barren, 
is characterized by an overcast sky, hinting at a 
gloomy or early morning setting. The painting's 
style is realistic, meticulously capturing the 
intricacies of the subjects and the environment.

In the set of the Top Gun sequel, Tom Cruise is 
captured sitting on a sleek, black motorcycle 
with a sporty design, shiny finish, and clear 
windshield. He dons a green jacket adorned with 
an American flag patch on the left arm and 
wears sunglasses. The image's background 
reveals blurred figures and greenery, 
suggesting an open area or park setting.

"A waterproof USB charger features an inline 
fuse for overload protection, as depicted in 
this image. The fuse, labeled as such, is a 
23.7-inch long component with a built-in 
design. The image provides a detailed view of 
the fuse, showcasing its connectors and the 
fuse itself. The connectors are color-coded, 
with one being red and the other black, and the 
fuse is securely housed in a black casing.",

"In the intricately detailed watercolor painting 
by Emma Howell, dated 2021, a captivating bath 
landscape unfolds. The scene portrays a serene 
body of water, be it a lake or a river, encircled 
by verdant hills and lush greenery. To the left, 
an intriguing structure emerges, hinting at a 
rich history with its aged appearance. Whether 
it's a ruin, an old church, or a castle, the 
structure adds depth and intrigue to the 
painting. The sky above is a breathtaking canvas 
of blue and yellow hues, reflecting the 
tranquility of either dawn or dusk. The artist's 
signature, a testament to the work's 
authenticity, is discreetly placed at the bottom 
of the painting."

Figure 4. More samples from KALE.

4. Related Works130

KALE builds on many large-scale image-text datasets such131
as LAION-5B [24], Datacomp-1B [7], COYO-700M [3], and132
many more. These datasets were sourced from large amounts133

of images paired with alt-text captions found in the HTML 134
image tags associated with these images. As LLM/VLMs 135
have become more capable, many works have explored gen- 136
erating synthetic multimodal training data. There is a line 137
of work that seeks to improve image-text datasets by us- 138
ing VLMs to generate synthetic captions [13, 14, 16, 23]. 139
Works such as LaCLIP [5] took an alternative approach of 140
rewriting the existing alt-text caption using an LLM to im- 141
prove the quality of the caption. Moreover, works such as 142
LLaVA [17] and LLaVAR [32] have synthetically generated 143
visual question-answer pairs in the context of instruction 144
tuning. Additionally, the BLIP-3 [27] model leverages our 145
KALE dataset to improve the quality of their caption data. 146

Previous work has pointed out that synthetic captions lack 147
real-world knowledge, limiting their applicability in many 148
domains. CapsFusion [29] addresses this issue by augment- 149
ing LAION-COCO synthetic captions with alt-text from 150
the LAION dataset. VeCLIP [10] also addresses this issue, 151
but instead of using existing captions, it generates synthetic 152
captions using a LLaVA model. 153

An adjacent line of work improves the text quality of mul- 154
timodal data by instead sourcing web-scale interleaved im- 155
age/text samples from web documents as opposed to HTML 156
alt-text captions. Works such as MMC4 [33], OBELISC [11], 157
MINT-1T [2], and OmniCorpus [15] all build multimodal 158
interleaved datasets, which is a promising direction to attain 159
high-quality and knowledge-rich multimodal data. 160

5. Limitations and conclusion 161

KALE represents a step forward in bridging the gap be- 162
tween descriptive synthetic captions and factual web-scale 163
alt-text. Our experiments demonstrate that models trained on 164
KALE consistently outperform baseline models across vari- 165
ous benchmarks. While KALE performs favorably compared 166
to other open-source image-text datasets, the data could still 167
contain hallucinations, particularly in text-dense images. Fu- 168
ture work should scale KALE to billions of image-text pairs, 169
explore more sophisticated knowledge augmentation tech- 170
niques, and investigate its impact on a broader range of 171
multimodal tasks. 172
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man, Amanpreet Singh, Anton Lozhkov, Thomas Wang,225
Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela,226
Matthieu Cord, and Victor Sanh. Obelisc: An open web-scale227
filtered dataset of interleaved image-text documents. ArXiv,228
abs/2306.16527, 2023. 4229
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