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Random Initialization Can’t Catch Up:
The Advantage of Language Model Transfer for Time Series Forecasting

Anonymous Authors1

Abstract
Recent works have demonstrated the effectiveness
of adapting pre-trained language models (LMs)
for forecasting time series in the low-data regime.
We build upon these findings by analyzing the
effective transfer from language models to time
series forecasting under various design choices
including upstream post-training, time series to-
kenizer and language backbone size. In the low-
data regime, these design choices have a signifi-
cant impact on the validation loss, with clear-cut
choices that outperform others. Contrary to (Her-
nandez et al., 2021), we observe that the validation
loss of the LMs continues to smoothly decrease
long after the validation loss of the randomly ini-
tialized models has converged, leading to a non-
vanishing transfer gap that holds across design
choices. These findings not only help shed light
on the effective use of compute-efficient training
for time series, but also open the way for the study
of modality-agnostic properties of data distribu-
tions leveraged by these models1.

1. Introduction
Transfer learning enables the adaptation of models trained
in one domain to downstream tasks in another. With the
rise of large foundation models trained on massive text
corpora, many specialized models have been created by fine-
tuning these models for specific downstream applications
(Bommasani et al., 2022). Notably, it has been proven
possible to achieve state-of-the-art results on downstream
tasks significantly different from the original setting (Raffel
et al., 2019).

(Lu et al., 2021) explore this phenomenon through various
synthetic and real world tasks. In this paper, we extend

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1Trained checkpoints and code will be released upon accep-
tance.

this line of work to univariate time series forecasting. Simi-
larly to text generation, time series forecasting is a sequence
prediction problem, albeit with numerical values. This tran-
sition from discrete text tokens to continuous numerical
values introduces new challenges in tokenization, embed-
ding, and output representation.

Several recent studies have attempted to apply LLMs
to time series forecasting using different techniques.
Reprogramming-based methods, such as that of Jin et al.
(2023), train an encoder to align input summary statistics
with text-like representations. Other works explore zero-
shot forecasting by directly feeding digitized time series
data into LLMs as natural language inputs (Gruver et al.,
2024; Requeima et al., 2024; Williams et al., 2024). Still
others investigate parameter-efficient fine-tuning strategies.
For instance, Zhou et al. (2023) adapt normalization layers
of GPT2, while Ansari et al. (2024) train T5 models using
bin-based tokenization. Their results show limited gains
from pretrain initializing from pre-trained language models,
in contrast to Bayazi et al. (2024), who find positive transfer
from T5 to EEG signals, which suggests that the proper-
ties of the time series data may have an impact on whether
transfer occurs.

In this paper, we seek to contribute to this discussion by ex-
amining the transferability of language models to univariate
time series forecasting. Specifically, we ask:

1. What is the most effective way to encode time series
data into a latent space?

2. How does the upstream model’s performance influence
downstream forecasting accuracy?

To this end, we present the following contributions:

1. We demonstrate that transferring from pre-trained
weights is more suitable in almost every scenario we
test. Regardless of tokenization/embedding techniques
or model size, models initialized with the weights
of pre-trained language models outperform their ran-
domly initialized counterparts.

2. We quantify the amount of additional data samples
necessary for a model trained from scratch to achieve
the same loss on time series as a model initialized with
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pre-trained LLM weights. In particular, our results
differ from those of (Hernandez et al., 2021), in that
there exists a “transfer gap” such that no amount of
additional tokens would enable a randomly initialized
model to perform as well as the pretrained language
initialization.

3. We find that upstream model performance is not di-
rectly correlated with transfer to time series forecasting.
Namely, while scaling parameter count increases effec-
tive transfer, upstream instruction tuning on language
tasks results in worse downstream validation loss.

2. Experiments/Methodology
To study the effective transfer of language to time series, we
experiment with the T52 encoder-decoder transformer as
the LLM backbone that we adapt to the time series modality.
Our choice of T5 LLM is inspired by the initial success of
(Bayazi et al., 2024) with this model on EEG time series.
The choice of LLM backbone is quite important as it may
significantly affect the transfer, as we observed in our earlier
experiments trying different language models; however, a
systematic ablation study with respect to the LLM backbone
choice is out of scope of this paper.

The adaptation of LLM backbones to time series requires
several architectural modifications, which we investigate.
First, we compare the performance of three different weight
initialization strategies for the backbone. Second, we re-
place the input tokenization and embedding layers to han-
dle continuous-valued inputs. Third, we vary the backbone
size.

All models use the same output distribution as in (Ansari
et al., 2024) and are trained using the LOTSA dataset (see
Appendix A of (Woo et al., 2024)) across 3 random seeds.
For details regarding tokenizer design as well as initializa-
tions, see Appendix C.

2.1. Effect of Backbone Initialization

To assess the effective transfer from language weights to
time series, we initialize the T5 architecture with three
different sets of weights before fine-tuning with time series
data:

1. Random initialization: The baseline against which
we compare transfer from language models is a random
initialization according to Hugging Face defaults.

2. Purely pre-trained initialization: We measure trans-
fer from language by initializing the model with the
weights of T5-Efficient (Tay et al., 2022).

2We use the efficient variants: https://huggingface.co/google/t5-
efficient-base.

3. Instruction-tuned initialization: We use the weights
of FLAN-T5 (Chung et al., 2022), an instruction-tuned
version of T5.

2.2. Effect of Tokenizer

A critical aspect of adapting transformer-based models
for time series is the transformation of continuous time
observations into tokens. Given a time series sequence
{xt}Tt=1 of length T , we aim to produce a sequence of
tokens {st}T

′

t=1 ∈ Rdtoken×T ′
, where each token is of di-

mension dtoken and T ′ ≤ T denotes the length of the token
sequence3. We test three tokenization methods:

1. Naive tokenization: The most straightforward ap-
proach; each time series observation is directly treated
as a token, i.e., st = xt.

2. Lag tokenization: To incorporate seasonal dependen-
cies, Rasul et al. (2024) constructs token vectors us-
ing current and past time series values based on a set
of lag indices L = {ℓ1, . . . , ℓp}. Each token vector
st ∈ Rdtoken is given by st = [xt xt−ℓ1 . . . xt−ℓp ]

T .

3. Bin tokenization: To better align time series data with
natural language tokens, Ansari et al. (2024) bins time
series values into B linearly-spaced bins within the
range [−a, a]. Each token is assigned an index based
on its bin.

2.3. Effect of Backbone Size

Lu et al. (2021) find that performance scales reliably with
model size for frozen pretrained language transformers
adapted to CIFAR-10. To investigate the effect of model size
on transfer to time series, we test three sizes: small (60M),
base (220M), and large (770M). Intuitively, we hypothe-
size that using larger models leads to lower loss and more
effective transfer in the low-data regime since larger models
require more training to converge (Kaplan et al., 2020); as a
result, we expect effective transfer in the low-data regime to
increase as model size increases.

3. Results
Do pre-trained weights lead to better performance than
randomly initialized weights?
Figure 1 demonstrates that language weights, both pre-
training only (pink) and instruction-tuned (yellow), exhibit
positive transfer against the random initialization (green).
In particular, at the end of training, both the pre-trained and

3Prior to tokenization, time series entries are normalized using
the standard deviation across the input window to ensure consistent
scales across different inputs. We consistently employ the same
pre-processing steps to compare tokenization methodologies in
isolation.
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instruction-tuned models exhibit a non-vanishing trans-
fer gap that persists even as training concludes. While the
performance of randomly initialized models plateaus, the
performance of the language and instruction-tuned mod-
els continues to improve. This behavior contrasts with the
findings of Hernandez et al. (2021), where the transfer gap
vanishes as the number of relevant training tokens increases.

However, in the low-data regime, the pre-trained weights
and the instruction-tuned weights exhibit very different
behaviours. Whereas the pretrained model immediately
and consistently outperforms the random initialization, the
FLAN-T5 initialization performs worse than the random
initialization for the first 6M tokens. As training progresses,
the validation loss of the FLAN-T5 initialization gradually
converges towards that of the T5 model, although the curve
qualitatively appears to be much noisier and spikier.

Simply choosing the best language model does not imme-
diately return the best downstream performance for time
series forecasting. Instead, these results suggest that post-
training may have a complex impact on the representation
space induced by the model’s parameters, which improves
language performance at the expense of a more jagged rep-
resentation landscape that is less accommodating to transfer
(Mosbach et al., 2021).

Figure 1. Validation losses for different weight initializations:
pre-training only, or “Language” (pink); pre-training + instruction-
tuning, or “Flan” (yellow); and random initialization (green). Both
pre-training and instruction tuned weights quickly outperform the
random initialization. Furthermore, even though the FLAN-T5
initialization outperforms solely pre-trained models on language
tasks (see Table 5 of (Chung et al., 2022)), FLAN-T5 performs
worse than the random initialization for the first 6M time series
training tokens, and performs worse than the solely pre-trained
initialization across the entire training duration.

How do tokenization schemes affect effective-transfer?

Figure 2 (a) shows that transfer is beneficial regardless of to-
kenization/embedding scheme, but that the chosen tokenizer
affects the validation loss and the convergence speed.

The bin tokenizer with pre-trained language weights (solid
green line) achieves the smallest validation loss while con-
verging smoothly and quickly. We conjecture that this is

Figure 2. (a) Validation losses across tokenizers. Naive and lag
tokenizations yield significantly worse zero-shot, i.e. initial, vali-
dation loss with pre-trained weights against random initializations.
Nevertheless, after 1M time series training tokens, pre-trained
models all have lower loses than their randomly initialized counter-
parts. Notably, each pre-trained model eventually achieves similar
or lower validation loss compared to every randomly initialized
model. (b) Effective transfer across tokenizers for T5 220M. De-
fined as the difference in training tokens required to obtain a given
validation loss (see Appendix D), effective transfer quantifies the
additional number of training tokens necessary for the randomly
initialized model to match the validation loss of the model initial-
ized from pre-trained weights. Vertical asymptotes occur when the
models with the randomly initialized weights converge before their
pre-trained counterparts. We observe that log effective transfer
increases with lower log validation loss, meaning that the models
initialized from pre-trained weights converge model quickly than
randomly initialized models.
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because bin tokenization effectively shrinks the vocabulary
and recasts forecasting as a classification task, which natu-
rally aligns with the expectations of language models. This
is supported by Chronos, which attributes its strong perfor-
mance to the natural compatibility of quantization-based to-
kenization with language model architectures (Ansari et al.,
2024). This may also explain why the loss curves for the bin
tokenizer are smoother than for the lag and linear tokenizers.

The lag tokenizer has the highest validation loss and is slow
to converge, despite having access to the additional informa-
tion provided by the lags. This suggests that the model may
be struggling to make use of this extra information, or that
the information is not useful.

We also note that, across all three tokenizers, the pretrained
initializations outperform their respective counterparts with
random initializations. Figure 2 (a) clarifies that initializ-
ing the model from pre-trained language weights leads to
meaningfully lower validation losses when compared with
random weight initializations for all three tokenization meth-
ods, while figure (b) shows that this transfer is present in
the low-data regime as well as at the end of training.

How does model size affect effective transfer?

Consistent with Hernandez et al. (2021), we observe that in-
creasing the number of model parameters influences the per-
formance disparity between weight initializations. Figure 3
demonstrates that scaling model size with pre-trained initial-
izations improves downstream performance on time series
data in the low-data regime: the differences in validation
loss between model sizes are most pronounced at the start of
training, which aligns with the conjecture that larger models
exhibit higher effective transfer in the low-data regime (Her-
nandez et al., 2021). In particular, models initialized with
random weights exhibit an inverse relationship between
scale and validation loss, highlighting the greater training
needs of larger models starting from scratch.

We also note that the validation loss of the models with
language initializations smoothly continues to improve with
training, in contrast to the randomly initialized models
which converge not only at a much higher loss, but also
much earlier. This suggests that the language initializa-
tion meaningfully affects the loss landscape and training
dynamics, resulting in asymptotically lower, predictably de-
creasing loss values on the downstream task of time series
prediction.

4. Conclusion and Future Work
We find that training the T5 architecture on time series data
performs better when initializing from pretrained language
weights than from random weights. These results hold
across different experimental setups, including whether the

Figure 3. Validation losses across backbones sizes. Validation
losses of models initialized with language weights decrease as
model size increases, whereas those of randomly initialized do
not. Moreover, across all model scales, the randomly initialized
models converge early in training while the models with pre-trained
weights did not converge within the length of training tested. In
the low-data regime,
language weights were post-trained or not, different choices
of tokenizers and various model sizes.

We hypothesize that transfer is effective because pretraining
biases the model toward a region of parameter space that is
already well-suited for learning temporal patterns. While
our experiments are limited to the T5 model family, we aim
to test transfer across different language model backbones
in future work to control for the impact of the architecture.

Another possibility is that time series data is distributionally
similar to language data, and the benefit arises simply due
to increased training data. To investigate this, we plan on
controlling for total training data size in future work.

Interestingly, the FLAN-T5 initialization underperforms
against the base language initialization. Therefore, further
upstream tuning of language weights to improve language
performance (Wei et al., 2022) does not translate to im-
provements in effective transfer to time series. We plan
to study this by ablating upstream datasets and fine-tuning
approaches.

Finally, it is possible that the model learns to map time series
data into a representation space similar to that of language.
To investigate this, we plan to use statistical analysis tools,
such as PQMass (Lemos et al., 2024) to compare the distri-
butions of time series and language representations before
and after encoding.

Ultimately, we hope to clarify whether transfer is effective
because the models are trained with more data or because
language and time series tasks share underlying structural
similarity.
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A. Additional Results and Visualizations

Figure 4. Difference in validation loss (pre-trained minus lan-
guage) across weight initializations for 220M T5 backbone.

Figure 5. Difference in validation loss (random minus lan-
guage) across tokenizers for 220M T5 backbone.

Figure 6. Difference in validation loss (random minus lan-
guage) across model backbone scales. Figure 7. Effective transfer across model backbone scales.

B. Hyperparameter Search
When using a pre-trained model for downstream tasks, choices of hyperparameters are different compared to when training
a model from scratch. To avoid unfair comparisons caused by a given choice of hyperparameters, we perform a sweep
across common settings for the T5-Base backbone with the bin tokenizer. Figure 8 shows the mean validation loss curve
with standardard deviations across all such configurations. Moreover, Figure 9 shows the individual validation loss curves
(transparent) across for all these configurations along with the mean validation loss curve for both language and random
weights (opaque). As can be seen from both figures, initializing the model with pre-trained weights consistently yields lower
validation losses than random initializations, across most choices of hyperparameters.
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We ablate across the following choices of hyperparameters:

• learning rate: 0.0001, 0.0005, 0.001

• batch size: 64, 128

• weight decay: 0, 0.01, 0.1

• warm-up duration (as a percentage of maximum training duration): 0, 0.5%, 1%, 2%

Figure 8. Mean validation loss across hyperparameter configurations.

Figure 9. Validation losses across hyperparameter configurations.

C. Embeddings
As mentioned above, language data is discretely valued whereas time series data is continuously valued. This distinction
affects how we usually embed tokens for LLMs, which explicitly assign learnable embedding vectors et to each token st.
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C.1. Embeddings Architectures

We employ different embedding methods for discrete and continuous time series tokenization methods:

1. Discrete mappings (bins): We apply a standard embedding layer, where the embedding et for token st = i is a lookup
from an embedding matrix based on the bin index i.

2. Continuous mappings (naive, lags): We apply a linear transformation to the token vectors:

et = West + be,

where We ∈ Rdmodel×dtoken and be ∈ Rdmodel .

C.2. Embeddings Pre-Trained Initializations

For each tokenization approach, the embedding layers of the pre-trained model cannot be directly re-used, and instead
require an intermediate processing step:

1. Discrete mapping: Initialize the embedding matrix to the first B = 4096 vocabulary vectors of the pre-trained backbone.
2. Continuous mapping: Each row of the matrix We is initialized to the mean vocabulary vector of the pre-trained model,

while the bias be is initialized as the zero vector.

D. Effective Transfer
Let LR(d) and LP (d) denote the validation losses achieved after training for d time series tokens using random and
pre-trained initializations, respectively. For a given validation loss ℓ, L−1

· (ℓ) therefore denotes the amount of data required
to train a model to reach the loss level ℓ begining from a given initialization. We define transfer as “effective” or “positive”
when starting the timeseries model training with the language model’s weights allows us to achieve the same validation loss
with less data than a model initialised randomly. This data quantity difference is what we refer to as the amount of data we
“saved”. Concretely, the effective data transferred DT (ℓ) for a target loss ℓ is defined as the difference of these data amounts:

DT (ℓ) := L−1
R (ℓ)− L−1

P (ℓ).

A positive DT (ℓ) indicates that initializing the model from pre-trained language weights requires fewer training examples to
reach the loss ℓ compared to random initialization, signifying an effective transfer from the upstream task to time series
forecasting.
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