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ABSTRACT

Graph anomaly detection (GAD) aims to identify abnormal nodes in graph datasets,
which is a significant and challenging task. Most existing methods regard the
problem as a binary classification task when exploiting the labeled data, overlook-
ing the potential existence of fine-grained subcategories among both normal and
anomalous nodes. The coarse-grained treatment often results in a sub-optimal
decision boundary, and the scarcity of labeled data makes it worse. To tackle these
limitations, we propose a novel framework for GAD under weak supervision, ad-
dressing the problem via two key innovations. First, we introduce a unified gating
module to tackle the diversity of anomaly types. It adaptively balances node-centric
attributes and neighborhood signals within a single model, allowing it to identify
different anomalous patterns like contextual and structural anomalies. Second, a
classifier-clustering synergy framework is developed, under which the discovery
of node sub-categories and the classification of anomalies can mutually reinforce
each other. We achieve this by dynamically maintaining two high-confidence sets
of normal and abnormal nodes, which are determined by both of the classifier and
clustering modules. Extensive experiments on seven public graph datasets demon-
strate that our method consistently outperforms existing approaches, validating its
effectiveness in weakly supervised graph anomaly detection.

1 INTRODUCTION

Graphs are widely used data structures in real-life applications, including social networks, financial
transaction networks, and E-commerce review systems. Graph anomaly detection (GAD) aims to
identify anomalies that deviate significantly from normal patterns, such as spam reviews (McAuley
& Leskovec, 2013), social bots (Yang et al., 2024), and financial fraud (Liu et al., 2024). These
anomalies are prone to have a severe negative impact on platform security or user experience.
Consequently, GAD has attracted widespread attention and research in various domains (Ding et al.,
2019; Bandyopadhyay et al., 2020; Fan et al., 2020; Peng et al., 2020; Yuan et al., 2021; He et al.,
2024; Roy et al., 2024). From the perspective of supervision, current GAD methods can be grouped
into two categories—unsupervised learning and (semi-)supervised learning. Most unsupervised
GAD methods are based on prior knowledge or assumptions about the deviation between normal
and abnormal nodes when reconstruction (Ding et al., 2019; Yuan et al., 2021; Roy et al., 2024; He
et al., 2024; Xi et al., 2024) or contrastive learning (Liu et al., 2021b; Chen et al., 2024a) is applied.
Considering that it is often feasible to collect a set of labeled data, many semi-supervised GAD
methods have also been proposed. Most of these methods focus on the design of a new graph neural
network (Dou et al., 2020; Liu et al., 2021a; Tang et al., 2022; Wang et al., 2023; Zhuo et al., 2024) or
propose a reasonable self-training mechanism for further representation learning (Wang et al., 2021;
Chen et al., 2024b), followed by a binary classifier.

Although recent GAD methods have shown promising results, the inherent diversity in graph datasets
is still under-explored and leads to the limitation of existing methods. The performance of unsuper-
vised methods is limited when handling the complex patterns in real-world graphs. On the other hand,
existing supervised methods are all constructed as binary classifiers, with more fine-grained subclasses
in both normal and abnormal nodes unexplored. Specifically, anomaly nodes can be divided into
contextual and structural nodes according to the cause of the irregularity, where contextual anomalies
refer to nodes whose attributes are vastly different from those of regular nodes and structural anoma-
lies refer to nodes with different connectivity patterns compared to other nodes(Roy et al., 2024).
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Figure 1: Node diversity and its effect in graph anomaly
detection

Furthermore, both normal nodes and
abnormal nodes can be partitioned
into more fine-grained subcategories
in real-world scenarios. Fig.1(a)
shows an example of the review net-
work in an E-commerce platform,
where abnormal reviews can be ma-
licious negative, fake positive, edited
via a template and so on. Similarly,
normal reviews can be genuinely pos-
itive, genuinely negative, neutral and
so on. With such fine-grained subcat-
egories, modeling the anomaly detec-
tion as a binary classification task will
be problematic, as shown in Fig.1(b),
especially when the labeled data cover
a small ratio. With the guidance of coarse and incomplete labeled data, the decision boundary tends
to deviate from the optimal one, neglecting fine-grained subcategories.

To address the challenges, we propose a novel GAD framework to capture node diversity with only
a few labeled data. Based on an anomaly detector trained with limited supervision, we explore
the diversity across the whole graph with two key modules. For the anomaly diversity brought by
contextual and structural irregularity, we design a unified gating module to adaptively adjust the
weight of node-centric attributes and neighborhood information. Considering that the existence of
normal and abnormal nodes is highly related to the graph spectrum (Tang et al., 2022; Xu et al.,
2024), we extract the frequency-aware information for the gating module. To capture fine-grained
subcategories in both normal and abnormal nodes, we incorporate an efficient clustering module
applied to node representations. Considering that the binary labels are precise but coarse while the
clustering results are less accurate but offer finer-grained distinctions, we leverage the strengths of the
two modules by maintaining two high-confidence sets for normal and abnormal nodes, respectively.
Two sets are initialized with the labeled data and updated according to both the anomaly score
function and the clustering results. The two sets will benefit the anomaly detector and the clustering
process in turn. Extensive experiments on seven public datasets demonstrate the effectiveness of our
framework.

The contributions of this paper can be summarized as follows:

• Considering that the contextual and structural anomalies rely on different information (e.g.,
centric node vs neighborhood) for detection, we propose a unified gating classifier to
adaptively balance node-centric attributes and neighborhood signals via a frequency-aware
gating mechanism, allowing a single framework to identify various anomalous patterns.

• To further take the node sub-categories into account, a classifier-clustering synergy
framework is developed. By introducing two dynamic high-confidence sets initialized with
the small labeled data, we use them to guide an adaptive clustering module to discover
subcategories, which in turn are used to iteratively expand the sets and provide stronger,
cluster-aware pseudo-label supervision to reinforce the classifier.

• Extensive experiments on seven public datasets with limited labeled data show that our
method consistently outperforms recent state-of-the-art approaches, demonstrating its effec-
tiveness in real-world GAD scenarios.

2 RELATED WORK

2.1 GRAPH ANOMALY DETECTION

Graph anomaly detection has attracted substantial research due to its importance in real-life applica-
tions. With the development of graph neural networks (GNNs) in graph mining (Kipf & Welling,
2016; Veličković et al., 2017; Hamilton et al., 2017), numerous GNN-based methods for graph
anomaly detection have emerged. These methods can be categorized based on their supervision
settings. The first category operates under unsupervised learning, where no labeled data are available,
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and reconstruction methods dominate most of the research(Ding et al., 2019; Fan et al., 2020; Peng
et al., 2020; Yuan et al., 2021; He et al., 2024; Roy et al., 2024). DOMINANT(Ding et al., 2019) uses
a GCN-based encoder to learn hidden node embeddings and then reconstructs both the original graph
structure and node attributes, with reconstruction loss serving as the anomaly score. AnomalyDAE
(Fan et al., 2020) and GUIDE (Yuan et al., 2021) decouple the encoding of node attributes and struc-
ture. GAD-DR (Roy et al., 2024) extends reconstruction by incorporating neighborhood distribution
reconstruction. ADA-GAD (He et al., 2024) generates graphs with lower anomaly rates to benefit the
training performance and improve the reconstruction mechanism. Apart from reconstruction-based
approaches, graph contrastive learning (Liu et al., 2021b; Chen et al., 2024a), one-class (Qiao &
Pang, 2024), and community-adhere methods (Chakrabarti, 2004; Leung & Leckie, 2005) are also
prevalent and show promising results.

In practical scenarios, partially labeled graphs might also be available, where labels provide more
accurate insight into anomalies in the target graph. Numerous studies have explored methods under
supervised settings. SemiGNN (Wang et al., 2019) incorporates a training mechanism similar to
GraphSAGE (Hamilton et al., 2017) for labeled and unlabeled data. DCI (Wang et al., 2021) proposed
a graph contrastive learning to handle the unlabeled data. CARE-GNN (Dou et al., 2020) and GHRN
(Gao et al., 2023) adjust the heterophilic edges in the original graphs to enhance the training process.
BWGNN (Tang et al., 2022) and SEC-GFD (Xu et al., 2024) incorporate spectral-based approaches
with multi-band filters. GAGA (Wang et al., 2023) and PMP (Zhuo et al., 2024) design specific
aggregation modules tailored for labeled normal samples, anomalous samples, and unlabeled samples
within the neighborhood distribution. Despite these advances, real-world scenarios often involve
only a small fraction of labeled data, posing challenges for methods requiring extensive supervision.
To address this, methods like ConsisGAD (Chen et al., 2024b) incorporate consistency training for
unlabeled data to mitigate the limitations of sparse labels. GGAD (Qiao et al., 2024) and CGENGA
(Ma et al., 2024) leverage data-centric modules to generate auxiliary nodes, enhancing training.
However, limited attention has been given to addressing the diversity in graph datasets under weak
supervision.

2.2 LARGE-SCALE GRAPH CLUSTERING

Graph clustering aims to produce a partition where nodes in the same group are similar while those
in distinct groups exhibit dissimilarity. As a fundamental task in machine learning, clustering helps
uncover high-level semantics in an unsupervised learning setting. Most graph clustering methods
follows a paradigm: node embeddings are learned through graph representation learning methods
and a certain clustering module is applied. However, these approaches struggle with scalability on
large graphs (Tu et al., 2021; Gong et al., 2022; Ding et al., 2023). To address scalability issues,
S3GC (Devvrit et al., 2022) introduces a graph contrastive learning approach combined with a
random walk sampler and applies K-means clustering on the learned representations. To mitigate
the suboptimal solutions inherent in two-stage methods, Dink-net (Liu et al., 2023) proposes an
end-to-end framework for large-scale graphs inspired by the theory of universe expansion. MAGI
(Liu et al., 2024) bridges graph contrastive learning and modularity maximization to achieve scalable
and efficient graph clustering.

3 PROBLEM DEFINITION

An attributed graph can be represented as G = {V, {Et}Tt=1, X,Y}. Here, V = {vi}Ni=1 denotes
the set of nodes with N total nodes. X ∈ RN×d represents the feature matrix of nodes, where d
indicates the dimension and the i-th row xi ∈ Rd is the attributes of the i-th node. Et represents
the edge set under the t-th relation and T indicates the number of relations. For each relation, the
edge set can always be represented by an adjacency matrix A ∈ {0, 1}N×N , where the element
Aij = 1 when there is an edge between the i-th and j-th nodes, otherwise Aij = 0. Let D denote
the diagonal degree matrix where Dii =

∑
j Aij . The graph Laplacian is defined as L = D − A.

Y = {yi | i ∈ V} is divided into a small subset YL which can be leveraged and a unavailable subset
YU , where |YL| ≪ |YU |. In YL, yi = 1 indicates the i-th node is abnormal and yi = 0 means a
normal node. Our objective is to train a model F to detect unknown anomalous nodes in the graph.
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Figure 2: (a) The overall architecture is comprised of two key modules: a frequency-aware gating
module that adaptively adjusts the weights of different information sources, and a clustering module
that captures fine-grained sub-classes within the graph. These two modules are interplayed via two
high-confidence node sets. (b) The frequency-aware gating module leverages both low-frequency
and high-frequency signals to generate source-specific weights. (c) The two high-confidence node
sets serve as a bridge that connects the classification and clustering modules.

4 METHOD

In this section, we provide a comprehensive explanation of the proposed framework. To offer
a high-level understanding of our model, we illustrate the pipeline of the whole framework in
Fig.2, which contains two main modules to capture the node diversity from distinct aspects. The
frequency-aware gating module attempts to highlight the anonalous characteristics of contextual and
structural anomalies by using a gate to adaptively adjust the weights of features from self-node and
neighboring nodes. On the other side, a clustering module is incorporated to automatically discover
fine-grained subcategories and mutually reinforce the anomaly classifier. Next, we will provide a
detailed explanation of all modules.

4.1 A UNIFIED GATING CLASSIFIER FOR DIVERSE TYPES OF ANOMALIES

Given a graph G =
{
V, {Et}Tt=1 , X

}
with T types of relation, we employ (T + 1) MLPs to

project node features X ∈ RN×dh to node-centric representation Hc ∈ RN×dh and relation-relevant
representations {H(t) ∈ RN×dh}Tt=1, with their i-th rows hc

i and h
(t)
i denoting the corresponding

representations of node vi . To provide the model with direct and uncorrupted access to the distinct
signals for both contextual and structural anomalies, we concatenate the node-centric representation
and the neighborhood representation together rather than simply summing or averaging them as done
in GCN. Specifically, for the node vi, we compute its neighborhood representation under the t-th
relation as zti =

∑
j∈N (t)

i
h
(t)
j , where N (t)

i denotes the set of neighbors of node vi under the t-th

relation. Once obtaining hc
i and {zti}Tt=1, we concatenate them to yield the node representation as

hi = [hc
i , ||Tt=1z

t
i ], (1)

where || means the concatenation along the indices, and hi ∈ Rdh(1+T ).

By noting that contextual and structural anomalies often exhibit significantly different characteristics
on their attributes and neighborhood, it is important to automatically highlight the information that is
most relevant to anomalies in the representation hi. To this end, we propose to learn a gate vector
g(i) ∈ RT+1 (Dauphin et al., 2017; Ma et al., 2018) that acts as a soft selection mechanism, assigning
a dynamic weight to the node-centric representation hc

i and each of the aggregated neighborhood
representations zti , with the specific method to learn the vector elaborated at the end of this section.
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After obtaining the gate vector g(i), we use it to adaptively select the representations that are most
relevant to the anomaly signal, giving rise to the following anomaly-relevant representation

hg
i = [gi0h

c
i , ||Tt=1 g

i
tz

t
i ]. (2)

where g
(i)
j ∈ (0, 1) is a scalar, and is the j-th element in g(i). For nodes with labels, we train a

binary classifier Fcls on them to detect anomalies as ŷi = Fcls(h
g
i ), where ŷ ∈ [0, 1] is the anomaly

score. Considering the class imbalance in most GAD datasets(Chen et al., 2024b), we adopt the focal
loss(Ross & Dollár, 2017) to adaptively focus on the hard samples:

L(i)
sup = −[(1− ŷi)

γyi log ŷi + ŷγi (1− yi) log(1− ŷi)], (3)

where γ is the hyper-parameter to adjust the contribution of each sample.

To ensure the gate vector g(i) effectively highlights anomalous signals, motivated by the phenomenon
that graph anomalies are highly related to the graph frequency (Tang et al., 2022), its computation
is specifically designed to be sensitive to information in the graph’s frequency domain. Taking the
t-th type of edges as an example, we compute the high-frequency and low-frequency components
using two designed filters (Luan et al., 2022). Specifically, we adopt the random walk normalized
Laplacian Lrw = D−1L = I −D−1A to extract high-frequency features, while using the affinity
matrix Arw = I − Lrw = D−1A to extract the low-frequency component, as shown below

h
(t)
i,l = Arw

i H(t) =
1

|N (t)
i |

∑
j∈N (t)

i

h
(t)
j , h

(t)
i,h = Lrw

i H(t) = h
(t)
i − 1

|N (t)
i |

∑
j∈N (t)

i

h
(t)
j , (4)

where h(t)
i,l and h

(t)
i,h denote the low and high-requency representations extracted under the t-th relation.

Next, h(t)
i,l and h

(t)
i,h are concatenated and fed into an MLP-based projector Fm to obtain h

(t)
i,m. We

then employ a linear layer, in conjunction with a sigmoid function, to compute the weights of the
representations from the center node and its neighbors (Dauphin et al., 2017; Ma et al., 2018):

g(i) = σ([hc
i , ||Tt=1h

(t)
i,m]Wg + bg), (5)

where Wg ∈ R(1+T )dh×(1+T ), bg ∈ R(1+T ) and σ(·) is the sigmoid function.

4.2 CLASSIFIER-CLUSTERING SYNERGY FOR NODE SUB-CATEGORIES DISCOVERY

Although the gating module helps to capture different kinds of anomalies, the binary classification
task still overlooks the inherent diversity in graph data. Both normal and abnormal nodes contain
finer-grained subcategories. Under coarse binary supervision, the classifier may learn a sub-optimal
decision boundary, leading to under-exploration and misclassification of certain subclasses. The
small ratio of labeled data will further make the problem worse.

To capture the inherent node diversity present in the graph data, we introduce a framework built on
a core principle of synergy between the binary classifier and the unsupervised clustering module.
Compared to the binary classifier trained with precise yet coarse-grained labels, the clustering module
provides less accurate but more fine-grained structural insights. This motivates us to leverage the
complementary strengths of both the clustering results and the classifier. We achieve this through
two dynamically maintained node sets: VA and VN , representing high-confidence abnormal and
normal nodes, respectively. Based on these sets, we design a training procedure as shown in Fig.2(c),
these sets are initialized with labeled data and then iteratively refined through a process of mutual
reinforcement: the classifier’s predictions guide the clustering, and the resulting cluster structures
enhance the classifier. More details are presented below.

Clustering Module Given two sets of high-confidence nodes Ve
A and Ve

N at the e-th training
epoch, we leverage them to guide the clustering process. Recognizing that the number of fine-
grained clusters is unknown and highly dataset-dependent, as confirmed by our ablation studies
(see Table 6), we propose a method that can adaptively discover the anomalous and normal clusters,
as well as their numbers Ke

a and Ke
n, at a given epoch e. First, two sets of learnable cluster

centers {Ce,a
i ∈ R(1+T )dh}i=Ke

a
i=1 and {Ce,n

i ∈ R(1+T )dh}i=Ke
n

i=1 are updated through the application
of DBSCAN (Ester et al., 1996) on node representations {hi | vi ∈ Ve

A} and {hi | vi ∈ Ve
N},

5
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respectively. To encourage separability, we maximize the distance between the two sets of cluster
centers through a dilation loss:

Ldilation = − 1

Ke
nK

e
a

Ke
n∑

i=1

Ke
a∑

j=1

||Ce,n
i − Ce,a

j ||22. (6)

Next, we promote compactness by encouraging node representations to be close to the cluster centers.
Since the nodes in Ve

N and Ve
A are believed to be more reliable and discriminative, we push the

representations of these nodes to their nearest cluster centers. For the remaining low-confidence
nodes, we compute their average distance to both sets of cluster centers and use the smaller one. This
leads to the shrinking loss on a mini-batch B:

LB
shrink =

1

|BN |
∑
i∈BN

min
j∈{1,2,...,Ke

n}
||hi − Ce,n

j ||22 +
1

|BA|
∑
i∈BA

min
j∈{1,2,...,Ke

a}
||hi − Ce,a

j ||22

+
1

|BLC |
∑

i∈BLC

min(
1

Ke
n

Ke
n∑

j=1

||hi − Ce,n
j ||22,

1

Ke
a

Ke
a∑

j=1

||hi − Ce,a
j ||22),

(7)

where BN , BA, and BLC represent the subsets of B corresponding to VN , VA, and the remaining
low-confidence nodes, respectively. Following prior work (Liu et al., 2023; Nickerson, 1998), we
avoid forcing all low-confidence nodes toward cluster centers to mitigate confirmation bias. The
complete cluster-aware loss is:

LB
cluster = Ldilation + LB

shrink. (8)

Pseudo-label Mechanism To further assist the anomaly detector and gating module, we generate
pseudo-labels from high-confidence nodes. Specifically, for node vi, we assign ȳi = 1 if vi ∈ VA

and ȳi = 0 if vi ∈ VN . The pseudo-label loss is formulated as:

LPL =
∑

i∈VA∪VN

−[(1− ŷi)
γ ȳi log ŷi + ŷγi (1− ȳi) log(1− ŷi)], (9)

where γ is consistent with Eq. (3). By incorporating reliable pseudo-labeled data, the anomaly
detector equipped with the gating module can be better trained with richer supervision.

Updating of High-Confidence Sets To expand the high-confidence sets with more accurate samples,
an alternative strategy is to leverage both the clustering module and the classifier. In practice,
we employ the classifier to select top and bottom-scoring samples as candidate nodes. Next, we
calculate the Euclidean distances between each candidate node and the cluster centers {Cn,e

k }K
e
n

k=1

and {Ca,e
k }K

e
a

k=1. A candidate node vi is added to the high-confidence abnormal set VA if it satisfies
the following condition:

(si > sp) ∧ (min
j

||hi − Ce,n
j ||22 > min

j
||hi − Ce,a

j ||22}). (10)

where si is node vi’s anomaly scores, and sp is the threshold for high-confidence scores. The
high-confidence normal set VN is expanded in a similar manner. By integrating both the clustering
module and classifier, this strategy ensures that the expansion of high-confidence node sets leverages
information from both labeled data and cluster-aware diversity, leading to a more effective selection
process.

4.3 TRAINING PROCEDURE

It can be observed that our proposed framework incorporates both supervised loss on a few labeled
data and unsupervised loss on the entire dataset. To make the training process scalable across datasets
of varying sizes, we adopt the approach from ConsisGAD (Chen et al., 2024b), training the module
on two batches in each iteration: one sampled from the labeled data and the other from the whole
dataset. We refer to these batches as BS and BU , respectively. The overall loss function for one batch
can be expressed as

LBS+BU = LBS
sup + λ1LBU

PL + λ2LBU

cluster, (11)
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Table 1: Dataset Statistics

Dataset # Nodes # Edges Anomaly (%) # Features

Weibo 8,405 407,943 10.3% 400
Tolokers 11,758 519,000 21.8% 10
Elliptic 203,769 234,355 4.6% 166
Amazon 11,944 4,398,392 6.87% 25
YelpChi 45,954 3,846,979 14.35% 32

T-Finance 39,357 21,222,543 4.58% 10
T-Social 5,781,065 73,105,508 3.01% 10

Table 2: Performance (%) comparison on Weibo, Tolokers, and Elliptic datasets.

Methods Weibo (1%) Tolokers (1%) Elliptic (1%)

AUROC AUPRC Macro F1 AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

MLP 62.78±9.73 48.65±2.67 72.28±0.23 70.32±0.73 35.09±0.55 58.74±1.16 88.59±0.09 24.11±1.28 68.46±1.34
GCN 73.08±10.4 63.6±3.53 82.18±1.81 67.03±2.28 34.28±2.44 57.6±1.91 70.37±2.34 4.86±0.80 50.82±1.76
GAT 67.32±1.54 27.39±4.01 62.92±4.66 68.8±0.47 33.52±1.24 58.47±0.78 67.23±3.40 4.20±1.02 47.97±5.88

GraphSAGE 52.82±7.58 37.55±6.36 68.52±2.53 71.55±0.79 36.2±0.93 61.35±0.55 84.81±3.27 18.66±7.83 62.92±5.48
GIN 70.77±16.27 37.33±16.83 63.69±5.29 56.51±7.43 25.77±4.15 52.45±5.97 66.11±5.98 5.08±1.45 50.39±1.82

CARE-GNN 81.49±1.56 47.84±1.44 54.96±2.01 72.56±0.57 36.23±0.48 47.09±0.59 80.39±5.56 16.94±4.24 30.38±6.53
PC-GNN 82.23±0.62 54.23±3.42 74.24±2.17 68.19±0.78 32.56±0.93 38.5±18.95 81.16±1.53 15.27±1.73 53.47±4.14
BWGNN 82.65±4.14 49.74±2.76 81.9±1.42 61.09±0.61 28.00±0.42 59.95±0.48 76.13±0.64 23.63±0.68 72.88±0.41
GAGA 87.8±1.19 58.13±3.84 53.15±12.14 67.3±5.49 31.99±3.76 50.00±5.53 83.45±2.6 22.14±4.78 70.72±7.88

ConsisGAD(GNN) 91.47±0.7 68.75±3.23 77.68±3.09 70.48±0.64 35.98±0.67 60.29±0.2 88.11±0.96 34.98±0.94 70.03±1.58
ConsisGAD 85.99±2.88 64.26±3.13 77.46±1.33 71.61±0.48 37.52±0.75 60.79±0.48 89.99±0.38 37.72±1 72.1±1.19

PMP 73.65±1.17 66.92±1.00 42.09±2.14 69.91±1.61 38.23±1.67 53.05±6.09 77.56±1.67 14.62±1.78 63.16±1.59
LEX-GNN 92.26±1.37 74.15±2.19 77.47±4.5 71.31±1.12 36.13±1.62 43.88±0.13 88.11±1.00 24.11±2.51 65.69±0.57

Ours 94.40±0.40 81.30±2.58 85.66±1.80 73.15±1.08 40.57±1.37 62.17±0.98 90.76±0.31 42.03±0.97 74.34±0.33

Table 3: Performance (%) comparison on Amazon, YelpChi, T-Finance and T-social datasets.

Methods Amazon (1%) YelpChi (1%) T-Finance (1%) T-social (0.01%)

AUROC AUPRC Macro F1 AUROC AUPRC Macro F1 AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

MLP 92.39±0.72 79.37±1.83 87.53±1.61 72.18±0.39 31.09±0.52 61.61±0.33 92.17±0.64 52.79±5.41 82.33±0.54 66.95±0.71 6.00±0.33 54.09±0.61
GCN 87.34±0.59 48.06±2.73 70.94±2.43 54.65±0.53 17.07±0.44 35.59±10.27 89.29±0.19 53.94±3.22 77.16±1.20 83.30±1.60 23.79±2.43 65.16±0.92
GAT 80.74±3.64 45.46±11.09 63.45±12.82 70.14±1.91 28.90±1.98 61.22±1.32 87.40±4.41 75.49±5.63 63.45±12.82 73.46±3.32 13.47±2.83 61.98±2.06

GraphSAGE 90.12±0.48 73.17±4.65 84.25±2.26 73.70±0.52 34.57±0.78 63.33±0.51 89.42±1.36 49.08±6.34 77.62±1.87 71.45±2.24 8.73±0.91 56.47±0.64
GIN 84.35±0.75 39.96±2.00 71.20±1.37 56.98±0.82 18.34±0.64 53.58±0.41 81.29±1.66 21.66±3.98 65.38±3.05 78.70±2.19 16.24±5.53 61.62±5.93

CARE-GNN 89.68±0.76 50.56±3.96 75.74±0.50 72.11±1.23 31.09±1.71 61.62±0.87 91.45±0.40 72.27±1.09 83.68±0.78 -OOM- -OOM- -OOM-
PC-GNN 91.18±0.66 77.92±1.49 85.25±2.09 75.17±0.44 36.60±0.91 64.23±0.47 91.74±0.85 74.77±0.98 86.97±0.24 64.68±0.64 4.30±0.09 49.66±0.12
BWGNN 88.56±0.87 79.26±1.11 90.48±0.98 77.62±2.37 39.87±1.79 66.54±0.73 93.08±1.57 77.79±3.87 86.97±1.51 84.40±3.01 49.96±3.75 76.37±1.82
GAGA 82.61±6.87 56.59±6.60 76.85±8.08 71.61±2.13 31.96±3.37 61.81±1.69 92.36±1.45 64.34±6.01 81.10±2.60 78.92±1.26 23.72±4.81 65.58±3.30

ConsisGAD(GNN) 92.01±0.71 78.49±0.40 85.53±0.51 80.95±0.36 43.25±0.31 67.62±0.31 94.72±0.11 83.92±0.15 89.73±0.38 93.54±0.35 53.40±1.28 76.45±1.06
ConsisGAD 93.91±0.58 83.33±0.34 90.03±0.53 83.36±0.53 47.33±0.58 69.72±0.30 95.33±0.30 86.63±0.44 90.97±0.63 94.31±0.20 58.38±2.10 78.08±0.54

PMP 91.82±0.74 66.92±1.00 87.72±1.15 80.03±2.07 44.36±1.91 66.93±1.4 94.11±0.4 80.31±1.43 87.83±0.41 93.75±1.01 51.35±1.17 78.15±2.04
LEX-GNN 93.02±0.21 82.12±0.41 87.33±1.76 83.14±0.53 39.96±0.68 69.73±0.68 92.76±1.19 62.49±7.93 55.76±13.86 80.39±2.44 13.73±2.64 58.65±4.15

Ours 94.99±0.47 84.62±0.69 89.37±0.66 83.7±0.61 48.27±0.30 70.18±0.13 96.43±0.12 87.60±0.53 91.42±0.38 95.09±0.12 60.24±0.03 79.23±0.34

where λ1 and λ2 are hyperparameters that control the weight of each component. During training, we
update VA and VN from the unlabeled data according to the anomaly scores generated by the detector.
The nodes in VN and VA can be leveraged to update the cluster centers for every certain epochs. To
better clarify the training procedure of our framework, a pseudo-code is provided in the Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTS SETTINGS

We evaluate our method on seven public real-world datasets against classic GNNs and recent state-
of-the-art GAD methods. The statistics of the datasets are summarized in Table 1. To evaluate
our method under limited supervision, we follow the settings in Chen et al. (2024b) and use a low
training ratio across all datasets. Detailed descriptions of the datasets, baselines, and our full
implementation and evaluation details are provided in Appendix B.

5.2 OVERALL COMPARISON

We summarize all experimental results in Tables 2 and 3. The best performance on each dataset
under each metric is highlighted in bold. “OOM” indicates that the model ran out of memory during
training. As shown, our method achieves the best performance in the majority of cases. For example,
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Table 4: Ablation studies on Weibo, Tolokers, Elliptic datasets.

Module Weibo (1%) Tolokers (1%) Elliptic (1%)

Gating Clustering Pseudo Label AUROC AUPRC Macro F1 AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

✓ 90.83±1.28 70.51±2.94 80.62±1.56 71.62±0.27 37.32±1.24 61.22±0.87 90.05±0.74 37.86±1.29 72.89±0.60
✓ ✓ 93.34±0.65 74.97±0.72 82.93±1.00 71.64±1.10 39.85±1.00 61.36±0.96 90.36±0.26 40.73±1.48 73.47±0.52

✓ ✓ 92.86±1.19 77.86±3.00 84.45±1.16 71.90±1.24 39.83±1.43 61.26±1.29 89.90±0.30 40.00±1.27 74.11±0.31
✓ ✓ ✓ 94.40±0.40 81.30±2.58 85.66±1.80 73.15±1.08 40.57±1.37 62.17±0.98 90.76±0.31 42.03±0.97 74.34±0.33

Table 5: Ablation studies on Amazon, Yelp, T-Finance datasets.

Module Amazon (1%) Yelp (1%) T-Finance (1%)

Gating Clustering Pseudo Label AUROC AUPRC Macro F1 AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

✓ 91.00±0.66 79.71±0.93 87.41±0.27 82.77±0.40 44.91±1.04 68.35±0.61 95.64±0.64 84.90±1.19 90.19±0.61
✓ ✓ 94.62±0.76 83.55±1.13 88.53±1.17 83.31±0.36 46.77±1.01 69.25±0.23 96.40±0.24 86.80±0.69 90.45±0.60

✓ ✓ 95.67±0.19 82.32±1.18 86.93±1.25 83.56±0.27 46.13±0.63 69.10±0.29 96.40±0.23 85.94±0.91 89.80±0.58
✓ ✓ ✓ 94.99±0.47 84.62±0.69 89.37±0.66 83.70±0.61 48.27±0.30 70.18±0.13 96.43±0.12 87.60±0.53 91.43±0.38

on the Weibo dataset, our method outperforms the second-best method by relative margins of 2.32%,
9.64%, and 4.59% in AUROC, AUPRC, and Macro-F1, respectively. On the Tolokers dataset, our
method achieves relative improvements of 0.8%, 6.1%, and 2.27% in the same metrics. Similarly, on
the Elliptic dataset, it shows relative gains of 0.86%, 11.43%, and 2.00%. Significant improvements
are also observed on other datasets, which collectively validate the effectiveness of our approach.
It is worth noting that among classical models, GNNs do not consistently outperform traditional
MLPs. Our method integrates node and neighborhood representations via concatenation and utilizes
a frequency-aware gating module to adaptively balance different information sources, resulting in
superior performance. Among recent graph anomaly detection methods, ConsisGAD is tailored for
weakly supervised settings and performs competitively in most scenarios. Other baseline methods
typically assume the availability of abundant labeled data. However, in real-world applications
where labeled data is limited, these methods struggle to remain competitive. In contrast, our method
adaptively balances node-centric and neighborhood information via a gating mechanism and leverages
clustering to identify node diversity, achieving consistently superior results across datasets.

5.3 ANALYSIS OF NODE DIVERSITY

CARE-GNN PMP LEX-GNN Ours

0.00

0.25

0.50

0.75

1.00

Figure 3: Visualization of anomaly detection results on diverse anoma-
lous samples in Weibo.

To evaluate the proposed
method’s capability in cap-
turing node diversity within
graph data, we conduct a
case study on anomalous
nodes from the Weibo test
set. Specifically, for each
anomalous node, we con-
catenate its own attribute
features with the average
features of its neighbors to
jointly represent semantic and structural information. These features are then projected into a 2D
space using T-SNE for visualization, where each point corresponds to one test sample. We train
CARE-GNN, PMP, LEX-GNN, and our method using identical data splits. Each test anomaly is
assigned an anomaly score in the range [0, 1]. We visualize the test anomalies based on their 2D
coordinates and corresponding scores in Figure 3, where brighter colors indicate higher anomaly
scores. Key observations from Figure 3: (1) High diversity among anomalies: Although labeled
under the same class, anomalous nodes form distinct fine-grained clusters, with high intra-cluster sim-
ilarity and clear inter-cluster boundaries. (2) Superiority of our method: Compared to baselines, our
method assigns more consistent and distinctive scores across nearly all anomaly clusters, effectively
uncovering anomaly diversity.

5.4 ABLATION STUDIES

In this section, we conduct ablation studies on our framework’s key components: the frequency-
aware gating module, the clustering module, and the pseudo-labeling mechanism. We assess their
contributions by removing each module individually. Furthermore, we investigate the framework’s
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Table 6: The impact of clustering methods on Amazon, T-Finance datasets.

Method Amazon (1%) T-Finance (1%)

AUROC AUPRC Macro F1 AUROC AUPRC Macro F1

Kmeans(n_cluster=4) 93.98±0.68 84.20±0.27 88.46±0.39 96.94±0.31 86.23±0.33 90.12±0.61
Kmeans(n_cluster=8) 94.23±0.37 84.69±0.44 90.85±0.23 96.62±0.25 85.06±0.11 88.94±0.14

Kmeans(n_cluster=12) 94.60±0.27 84.69±0.44 90.85±0.23 96.51±0.05 85.05±0.97 89.06±0.23
Kmeans(n_cluster=16) 94.30±0.35 84.38±0.33 90.57±0.35 96.56±0.16 84.84±0.34 89.02±0.26

Ours(DBSCAN) 94.99±0.47 84.62±0.69 89.37±0.66 96.43±0.12 87.60±0.53 91.42±0.38

sensitivity to the clustering algorithm by replacing our default DBSCAN with K-means. Additional
hyperparameter analysis is in Appendix C.

The effect of the gating module As shown in the third and fourth rows of Tables 4 and 5,
incorporating the gating mechanism consistently improves and balances performance across all
metrics. For instance, on the Weibo dataset, it yields relative gains of 1.66%, 4.42%, and 1.43% in
AUROC, AUPRC, and F1-score, respectively. Although AUROC is slightly higher without the gate
on the Amazon dataset, AUPRC and Macro F1 drop notably; this indicates the gating mechanism
helps the model better focus on anomalies, given that AUPRC is more sensitive to positive samples.

The effect of clustering Tables 4 and 5 show that the clustering module substantially improves
performance. For instance, on the Weibo dataset, it yields relative gains of 2.76%, 6.33%, and 2.87%
in AUROC, AUPRC, and F1-score, respectively. This demonstrates its effectiveness in uncovering
fine-grained distinctions that are difficult to capture with limited binary labels alone. The mechanism
enhances the clustering structure of node representations under the guidance of high-confidence
samples, which aids the classifier and supports the selection of new high-confidence samples.

The effect of the pseudo-label mechanism The second and fourth rows of Tables 4 and 5 demon-
strate the effectiveness of incorporating the pseudo-labeling mechanism into our framework. The
pseudo-labeling mechanism consistently improves performance, particularly under weak supervi-
sion. Specifically, on the Weibo dataset, we observe relative improvements of 1.14% in AUROC,
8.44% in AUPRC, and 3.29% in F1-score. The improvements stem from the additional supervision
signal provided by the pseudo-labeling strategy. By generating and iteratively refining pseudo-
labels for high-confidence nodes, this mechanism alleviates the supervision bottleneck from limited
ground-truth labels and promotes better feature utilization and decision boundary refinement.

The effect of clustering methods To validate the robustness of our framework to the choice of
clustering algorithm, we replace DBSCAN with the K-means to investigate its impact on the final
anomaly detection performance. The Table 6 shows that when a suitable K is selected, K-means can
be an alternative for the initialization of cluster centers. For Amazon, setting K = 12 can achieve
good results. For T-Finance, K-means with relatively lower K achieve better results. However, the
best choice of K depends on the characteristics of specific datasets. This observation highlights the
primary advantage of our default choice, DBSCAN, which obviates the need for such dataset-specific
hyperparameter tuning by automatically determining the number of the clusters.

6 CONCLUSION

In this work, we propose a novel framework for graph anomaly detection (GAD) under weak
supervision, aiming to capture node diversity in graph data and address the limitation of binary
classification. The unified gating module adjusts the weights of node-centric and neighborhood
representations via frequency-aware gating mechanism, capturing both contextual and structural
anomalies. Additionally, a classifier-clustering synergy framework is developed, under which the
discovery of node sub-categories and the classification of anomalies can mutually reinforce each other.
To further enhance the learning process, we maintain two dynamic high-confidence sets for normal
and abnormal nodes, which are jointly refined with the classifier and clustering module throughout
training. Extensive experiments conducted on seven real-world graph datasets demonstrate the
robustness and superiority of our method across multiple metrics.
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A TRAINING DETAILS

A.1 TRAINING PROCESS

Our framework is trained in a mini-batch manner to ensure scalability and leverage the Adam
optimizer (Kingma & Ba, 2014). Moreover, the high-confidence node sets are updated jointly with
both the classifier and the clustering module. The overall training process is detailed in Algorithm 1.
Specifically, we initialize two high-confidence node sets, V0

N and V0
A, corresponding to the labeled

normal and abnormal nodes, respectively. To begin with, we warm up the GNN encoder and the
classifier using only the labeled data by minimizing the supervised loss in Eq. (3) for a fixed number
of epochs. This helps the encoder learn meaningful representations.

Once the encoder is sufficiently warmed up, we initialize cluster centers for both normal and abnormal
nodes using the corresponding high-confidence sets. For example, to initialize the abnormal cluster
centers from V0

A, we apply DBSCAN (Ester et al., 1996) on the representation set {hi | i ∈ V0
A}

without requiring a pre-defined number of clusters. This yields clustering results {ci | i ∈ V0
A},

where ci ∈ {1, 2, . . . , C0
a} and C0

a is the number of valid clusters detected. The mean representation

of each cluster is then used as its cluster center, denoted by {C0,a
i }K

0
a

i=1. The normal cluster centers

{C0,n
i }K

0
n

i=1 are computed in a similar fashion using V0
N .

During each training iteration, we sample a labeled batch BS from the labeled set VS and an unlabeled
batch BU from the entire node set V . The supervised loss LBS

sup is computed on BS using Eq. (3).
Meanwhile, the pseudo-labeling loss LBU

PL and clustering loss LBU

cluster are calculated on BU using
Eq.(9) and Eq.(8), respectively. Following this, we update the high-confidence node sets based on the
outputs of the classifier and clustering module using the selection strategy described in Section 4.2.
Additionally, the cluster centers are periodically updated based on the latest high-confidence sets
every fixed number of epochs.

A.2 THE SETTINGS OF EACH DATASET

There are several hyperparameters in our proposed framework. Specifically, λpl and λcluster control
the influence of the pseudo-labeling mechanism and the clustering module, respectively. Parameters
p and q denote the threshold ratios used to select candidate nodes based on the scoring function.
The parameter γ is the focusing factor in the Focal Loss, as defined in Eq.3 and Eq.9. Training is
performed in a mini-batch manner with batch size bs. The detailed settings of these hyperparameters
for each dataset are provided in Table 7.

Table 7: Hyperparameter settings for each dataset

Dataset λpl λcluster p q γ bs

Weibo 1× 10−3 1× 10−1 3% 5% 2.0 128
T-Finance 1× 10−1 1× 10−3 1% 5% 8.0 128
Amazon 1× 10−3 5× 10−4 1% 3% 8.0 32
YelpChi 1× 10−1 1× 10−1 1% 10% 4.0 32
Elliptic 1× 10−3 1× 10−3 1% 5% 2.0 128

Tolokers 1.0 1× 10−1 1% 5% 1.0 32
T-Social 1× 10−3 1× 10−3 1% 5% 2.0 128

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

cl
us

te
r

85.36 85.44 85.27 85.18 81.58

86.19 85.34 86.07 85.66 87.93

80.51 80.76 81.72 81.62 81.72

83.60 85.09 82.73 83.85 81.72

F1-Macro (%)

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

93.60 93.77 93.55 93.18 93.30

92.93 93.61 93.08 93.06 94.89

92.78 92.75 92.68 93.55 92.68

93.34 93.45 93.39 93.93 92.68

AUROC (%)

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

80.65 80.83 80.34 79.81 73.86

81.52 80.65 81.18 80.66 84.52

74.37 73.99 74.85 72.01 74.85

78.17 76.43 73.21 79.38 74.85

AUPRC (%)

(a) Weibo

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

cl
us

te
r

88.38 87.78 88.29 86.81 89.61

86.95 86.54 89.42 90.72 87.86

85.87 86.03 81.28 86.33 88.82

81.89 82.30 83.25 81.42 82.77

F1-Macro (%)

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

94.68 93.43 94.19 94.02 95.66

94.06 94.97 94.59 93.25 91.75

94.32 93.82 94.72 92.90 93.95

92.42 91.98 92.93 91.78 90.60

AUROC (%)

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

82.41 81.31 71.40 82.40 85.10

80.32 78.28 83.53 84.02 66.98

68.07 79.19 69.71 79.21 82.15

66.42 65.33 71.85 59.66 75.06

AUPRC (%)

(b) Amazon

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

cl
us

te
r

90.65 90.74 90.82 88.96 90.69

89.53 90.06 89.17 90.60 90.51

89.64 90.29 90.33 90.96 90.40

91.16 90.14 91.16 90.65 89.75

F1-Macro (%)

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

96.54 96.73 96.30 96.57 96.57

96.69 96.66 96.26 96.85 96.35

96.50 96.56 96.88 96.77 96.62

96.57 96.57 96.69 96.67 96.44

AUROC (%)

5 × 10 4 10 3 10 2 10 1 1
pl

5 × 10 4

10 3

10 2

10 1

86.77 86.72 87.28 84.98 87.22

85.74 85.74 84.80 87.64 86.19

85.87 86.89 86.91 87.64 87.03

88.10 87.08 88.12 86.70 86.56

AUPRC (%)

(c) T-Finance

5 × 10 4 10 3 10 2 10 1 1

pl

5 × 10 4

10 3

10 2

10 1

cl
us

te
r

70.42 69.84 69.92 70.25 70.47

69.70 70.12 70.61 69.68 70.14

69.93 69.74 69.57 69.64 69.97

69.62 69.82 69.99 70.68 70.36

F1-Macro (%)

5 × 10 4 10 3 10 2 10 1 1

pl

5 × 10 4

10 3

10 2

10 1

83.86 83.47 83.63 83.64 83.67

82.85 83.61 83.79 83.48 83.69

83.51 83.51 83.20 83.61 84.08

83.31 83.55 83.85 84.06 83.53

AUROC (%)

5 × 10 4 10 3 10 2 10 1 1

pl

5 × 10 4

10 3

10 2

10 1

48.77 48.12 48.61 48.90 48.37

47.01 48.26 48.81 47.74 48.29

47.81 45.76 48.00 47.66 47.81

46.84 48.60 48.13 48.44 48.11

AUPRC (%)

(d) YELP

5 × 10 4 10 3 10 2 10 1 1

pl

5 × 10 4

10 3

10 2

10 1

cl
us

te
r

61.91 62.13 62.27 60.91 58.70

60.43 61.29 60.89 61.73 60.23

61.17 62.30 62.95 57.24 52.44

61.29 61.29 62.74 61.29 61.29

F1-Macro (%)

5 × 10 4 10 3 10 2 10 1 1

pl

5 × 10 4

10 3

10 2

10 1

72.81 73.25 72.95 72.07 70.55

71.15 72.19 70.25 71.14 69.91

72.42 72.91 74.27 70.89 69.93

72.19 72.19 73.85 72.19 72.19

AUROC (%)

5 × 10 4 10 3 10 2 10 1 1

pl

5 × 10 4

10 3

10 2

10 1

41.61 41.73 41.58 41.22 39.50

38.85 38.49 39.77 40.05 38.50

39.80 41.59 42.22 39.61 39.18

38.49 38.49 42.81 38.49 38.49

AUPRC (%)

(e) Tolokers

Figure 4: The performances under different setting of λpl and λcluster.
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Algorithm 1 Training procedure of the framework

1: Input: G = {V, {Et}Tt=1, X,YL}: A multi-relation graph with a small labeled set ratio,
max_iters: Maximum number of training iterations, λ1: Weight of the contrastive learning loss,
λ2: Weight of the clustering loss, D(·): Anomaly detector with a shared feature extractor and
gating mechanism, update_iters: the number of iterations to update the cluster centers explicitly,
p(q): the ratio of high-confidence nodes with highest (lowest) scores, w: the number of warm-up
epochs.

2: Output: The anomaly score for unlabeled data.
3: Warm up the D(·) on labeled data VS through Eq.(3) for w epochs.
4: Initialize the high-confidence node set VA = {vi|vi ∈ VL ∧ yi = 1}, VN = {vi|vi ∈ VL ∧ yi =

0}
5: Initialize cluster centers {C0,a

i }K
0
a

i=1 and {C0,n
i }K

0
n

i=1 through DBSCAN on the node representations
of VA and VN , respectively.

6: for e = 1, . . . ,max_iters do
7: if e%update_iters == 0 then
8: Update cluster centers {Ce,a

i }K
a
e

i=1, {Ce,n
i }K

n
e

i=1 on VN ;
9: end if

10: Sample a batch BS from the labeled dataset VS ;
11: Sample a batch BU from the entire dataset V;
12: Compute supervised loss LBS

sup on batch BS through Eq.(3);
13: Compute pseudo-label loss LBU

PL and clustering loss LBU

cluster on batch BU through Eq.(9)(8);
14: Compute the anomaly scores on batch BU through the classifier, then add nodes to VA if the

condition 10 satisfied. The updating of VN is similar.
15: Optimize parameters in D using the total loss through Eq.(11);
16: end for
17: Ŷ = D(G)
18: return the predicted labels ŶU for the unlabeled dataset VU .

B EXPERIMENTAL SETTINGS DETAILS

B.1 DATASET DETAILS

We evaluate our method on seven public graph anomaly detection datasets, all sourced from real-
world scenarios without synthetic anomaly samples (Tang et al., 2023). The basic statistics of each
dataset are summarized in Table 1 in the main text.

• Weibo (Zhao et al., 2020) and T-Social (Tang et al., 2022) represent user accounts on social media
platforms.

• Tolokers (Platonov et al., 2023), Amazon (McAuley & Leskovec, 2013), and YelpChi (Rayana &
Akoglu, 2015) are collected from crowdsourcing or E-commerce platforms. Notably, Amazon and
YelpChi are heterogeneous graphs with multiple types of relations.

• T-Finance (Tang et al., 2022) and Elliptic (Weber et al., 2019) are constructed to detect fraudulent
users and illicit activities in financial networks.

B.2 BASELINE DETAILS

We compare our method with state-of-the-art approaches to demonstrate its effectiveness. The
baselines are grouped into two categories:

• Classic GNN Models: This category includes standard models where the supervision loss is
computed only on the labeled nodes. The models are: MLP (Rosenblatt, 1958), GCN (Kipf &
Welling, 2016), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), and GIN (Xu
et al., 2019).

• Recent GAD Methods: This category consists of recent methods specifically designed for graph
anomaly detection. The models include: CARE-GNN (Dou et al., 2020), PC-GNN (Liu et al.,
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2021a), BWGNN (Tang et al., 2022), GAGA (Wang et al., 2023), ConsisGAD (Chen et al., 2024b),
PMP (Zhuo et al., 2024), and LEX-GNN (Hyun et al., 2024). Among these, ConsisGAD is
particularly relevant as it also addresses the challenge of limited supervision.

B.3 IMPLEMENTATION AND EVALUATION DETAILS

Implementation. Our method is implemented in PyTorch 1.13.1 with Python 3.7.16, and all graph
neural network components are built using DGL 2.0.0. Experiments are conducted on a single
NVIDIA GeForce RTX 3090 GPU. For baseline comparisons, we use the reported results from Chen
et al. (2024b) when available; otherwise, we reproduce the results using their official implementations
and perform a grid search to optimize hyperparameters. All projectors and the classifier introduced in
Section 4 are implemented as a two-layer MLP, both with 64-dimensional hidden representations.
Model training is performed using the Adam optimizer (Kingma & Ba, 2014) with an initial learning
rate of 0.001. We conduct a grid search for key hyperparameters: λcluster and λpl are selected from
{5× 10−4, 10−3, 10−1, 1}, and the batch size from {32, 64, 128}. The final hyperparameter settings
for each dataset are detailed in Appendix A.

Evaluation Protocol. To evaluate our method under limited supervision, we follow the settings
in Chen et al. (2024b) and use a low training ratio across all datasets. Specifically, for relatively
larger datasets like T-Social, we set the training ratio to 0.01%. For other smaller datasets, we set the
training ratio to 1%. The remaining data is divided into validation and testing sets in a 1:2 ratio. To
comprehensively assess the model’s performance, we employ metrics including AUROC, AUPRC,
and F1-macro, which are particularly suitable for mitigating the effects of class imbalance. Higher
values indicate better performance. Following the baseline approaches (Chen et al., 2024b), we select
the best F1-macro on the validation set and use the corresponding threshold for evaluation on the test
set. All reported results are averaged over five independent runs with different random seeds, and we
report the mean and standard deviation.

C ADDITIONAL EXPERIMENTS

C.1 ANALYSIS OF HYPER-PARAMETERS

To analyse the effect of hyperparameters λpl and λcluster, we conduct experiments on five datasets and
take all three metrics to evaluate the performance. The results are summarized in Fig.4. The AUROC
on Weibo is relatively stable across hyperparameter settings, while F1-Macro and AUPRC are more
sensitive. Notably, λcluster significantly affects performance when exceeding 10−3, suggesting that
smaller values are preferable on Weibo. A similar trend is observed in Amazon, where a high λcluster

degrades performance, but a larger λpl consistently improves all metrics. Notably, AUROC and
F1-Macro/AUPRC require a trade-off with different emphases, highlighting the need for evaluation
based on specific application demands. For T-Finance, better performance is achieved with a smaller
λpl and a larger λcluster, indicating that different datasets require different loss weightings. In
these three datasets, performance generally improves as λpl increases. Since the three datasets are
relatively easier to train and yield higher-quality pseudo-labels, increasing the corresponding weight
is reasonable.

C.2 PERFORMANCES UNDER DIFFERENT LABEL RATIOS

To further evaluate the robustness of our framework under varying label ratios, we conduct a series
of experiments on the Weibo and Amazon datasets. The results are presented in Fig.5 and Fig.6.
Our method demonstrates strong performance across a wide range of label ratios on both datasets,
particularly excelling in low-label scenarios. On the Weibo dataset, our method achieves consistent
and significant improvements in AUROC and AUPRC across all label ratios, while also maintaining
competitive performance in terms of F1-Macro. For the Amazon dataset, different methods excel in
different metrics. For instance, BWGNN achieves the highest F1-Macro across most label ratios, yet
its AUROC and AUPRC scores are noticeably lower than those of other methods. In contrast, our
method delivers stable improvements over the baselines across all evaluation metrics. Overall, the
results in Fig.5 and Fig.6 validate the scalability and effectiveness of our framework under varying
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Figure 5: Performance comparison of different methods on the Weibo dataset across varying training
ratios
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Figure 6: Performance comparison of different methods on the Amazon dataset across varying
training ratios
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Figure 7: Performance on T-Finace dataset with different ratio of noisy labels.

proportions of labeled data. Notably, our method provides substantial gains in low-label settings and
maintains competitive performance when more labeled data is available.

C.3 ANALYSIS OF ROBUSTNESS

To evaluate the robustness of our proposed method, we simulate real-world scenarios where training
data is subject to label noise attacks. Using the T-Finance dataset as an example, we start with only a
small fraction of labeled data (1% of the dataset) and randomly flip a portion of the training labels
to create noisy training sets. Keeping all other experimental settings unchanged, we progressively
increase the label noise ratio to 0.1, 0.2, 0.3, and 0.4 to assess the performance of our method
and various baseline models under different noise levels. The results are shown in Fig.7. As
illustrated, our method consistently demonstrates superior robustness on the T-Finance dataset
compared to the baselines. Although all models experience performance degradation as the noise
ratio increases, the decline in our method is significantly more moderate. For example, in terms
of AUROC, the performance drop remains below 2% even when 40% of the labels are corrupted.
While the decline is relatively larger on the AUPRC metric, our method still outperforms all baselines
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by a notable margin. This enhanced robustness is attributed to the collaborative multi-module
architecture proposed in this work. In addition to learning a binary classifier from the limited labeled
samples, our approach incorporates clustering and pseudo-labeling mechanisms, effectively exploiting
the underlying structure in the large-scale unlabeled data. This enables the model to enhance its
representation learning and noise tolerance capabilities.
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