Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

ENVIRONMENT AS PoOLICY: GENERATIVE CURRICU-
LUM LEARNING FOR AUTONOMOUS RACING

Jiaxu Xing", Hongze Wang", Nico Messikommer, Davide Scaramuzza
Robotics and Perception Group, University of Zurich, Switzerland
“Equal contribution

ABSTRACT

Reinforcement learning (RL) has achieved outstanding success in complex robot
control tasks, such as drone racing, where the RL agents have outperformed hu-
man champions in a known racing track. However, these agents fail in unseen
track configurations, always requiring complete retraining when presented with
new track layouts. This work aims to develop RL agents that generalize effec-
tively to novel track configurations without retraining. The naive solution of train-
ing directly on a diverse set of track layouts can overburden the agent, resulting
in suboptimal policy learning as the increased complexity of the environment im-
pairs the agent’s ability to learn to fly. To enhance the generalizability of the RL
agent, we propose an adaptive environment-shaping framework that dynamically
adjusts the training environment based on the agent’s performance. We achieve
this by leveraging a secondary RL policy to design environments that strike a bal-
ance between being challenging and achievable, allowing the agent to adapt and
improve progressively. Using our adaptive environment shaping, one single rac-
ing policy efficiently learns to race in diverse challenging tracks. Experimental
results validated in both simulation and the real world show that our method en-
ables drones to successfully fly complex and unseen race tracks, outperforming
existing environment-shaping techniques.

1 INTRODUCTION

Reinforcement learning (RL) involves agents learning through trial and error by interacting with a
pre-defined environment and maximizing the rewards based on these interactions. It has proven
highly effective in various robotic control applications, demonstrating remarkable task perfor-
mance across scenarios like dexterous manipulation (Andrychowicz et al., 2020; Kalashnikov et al.,
2018; 2022), quadrupedal locomotion (Lee et al., 2020; Kumar et al., 2021), and agile quadrotor
flight (Song et al., 2021a; Messikommer et al., 2024; Xing et al., 2024a). Previous research has
shown that RL can even outperform human champions in the task of drone racing (Kaufmann et al.,
2023; Song et al., 2023), where an RL agent flies a quadcopter drone through a complex track at
high speed, requiring quick decision-making and precise control.

However, while RL agents excel within the specific distributions they are trained on, they strug-
gle with out-of-distribution configurations and may require retraining from scratch for even minor
configuration changes (Tobin et al., 2017). To improve adaptability and generalization, extending
the RL framework to train and perform across a broader range of distributions is essential, enabling
agents to handle more diverse and dynamic environments effectively. However, training directly on a
wide distribution of scenarios can significantly degrade the efficiency and effectiveness of the learn-
ing process (Bengio et al., 2009). As the distribution broadens, the complexity of policy exploration
increases, making it harder for the agent to identify and implement effective solutions.

Domain randomization is a commonly used technique to improve the learning capability of RL
agents across a broader range of tasks (Tobin et al., 2017; 2018; OpenAl et al., 2019bja). This ap-
proach varies the parameters of the training environment to expose the agent to a wide variety of
potential deployment scenarios. By learning in diverse conditions, the agent develops robust policies
less likely to overfit the specific characteristics of a single environment. Domain randomization is
often combined with curriculum learning, where the complexity and variability of training scenarios
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Figure 1: In this work, we introduce an environment-shaping framework to improve the general-
ization of RL drone racing agents to diverse and unseen tracks without retraining. We use a Soft
Actor-Critic (SAC) policy to adaptively shape the track layouts by generating difficult but achievable
race tracks based on the racing agent’s actual performance. The resulting single racing policy can
fly in various unseen and challenging race tracks in the real world with competitive lap times.

are incrementally increased (OpenAl et al., 2019a). By starting with less challenging environments
and gradually introducing greater variability, the agent learns to perform well in a wide set of sce-
narios without becoming overwhelmed during the early stages of training. However, curriculum
learning often depends on manual design, introducing human biases. This reliance on fixed, non-
adaptive progressions can limit training diversity and restrict the agent’s ability to generalize to new,
real-world situations (Kong et al., 2021). These effects are especially prominent in the challeng-
ing task of drone racing, where the platform’s high agility and the need for rapid decision-making
amplify the difficulties. Therefore, the challenge of agile drone racing on an unseen race track in
real-world conditions remains largely unexplored.

To address this problem, we propose an automatic adaptive environment-shaping framework to en-
hance the agent’s generalization ability to fly in unseen race tracks. This framework dynamically
adjusts the environment curriculum based on the agent’s learning progress (Fig. 1). The key idea
is to create consistently challenging yet attainable environments, avoiding tracks that are too easy
or overly difficult, which could hinder learning. We achieve this by leveraging a secondary RL
agent to design environments that maintain a balanced difficulty level, allowing the agent to adapt
and improve progressively. By automating the environment shaping, the system can more precisely
tailor the learning environment to the agent’s performance, reducing human bias and significantly
enhancing the agent’s ability to generalize across various unseen track configurations. In experi-
ments validated both in simulation and the real world, we demonstrate for the first time a drone
racing policy that can race in different unseen tracks. We show that our approach outperforms the
existing environment-shaping approaches using the same number of actions and enables the racing
policy to generalize to a diverse set of unseen and complicated tracks.

2 RELATED WORKS

Reinforcement Learning for Robotics Reinforcement Learning (RL) has been extensively applied
in robotics to facilitate continuous control in complex and dynamic environments. Recent stud-
ies have achieved remarkable success in various robotic domains. These include quadrotor con-
trol (Kaufmann et al., 2023; Song et al., 2023; Hwangbo et al., 2017; Xing et al., 2024a;b), legged
locomotion (Hwangbo et al., 2019; Kumar et al., 2021), and manipulation (Fu et al., 2023; Gu et al.,
2017), showcasing significant advancements in the field.

Autonomous Drone Racing Autonomous drone racing is an emerging field in which drones must
navigate through predefined waypoints in the shortest possible time. Success in this field requires
integrating advanced hardware and sophisticated algorithms capable of perceiving the environment,
planning optimal paths, and executing actions in real-time (Hanover et al., 2024). (Song et al.,
2023) demonstrated that RL controllers can outperform traditional optimization-based approaches,
such as those proposed in (Romero et al., 2022; 2024), for autonomous drone racing. This advan-
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Figure 2: Overview of the proposed method. In every N iteration, the environment policy (left) takes
as input the information of the racing policy evaluations and the current environments. It generates
actions to adjust the gate layouts independently for each parallel environment. The racing policy
(right) utilizes the information about drone and gate states from these simulation environments to
learn time-optimal drone racing strategies through an MLP.

tage arises because RL can effectively handle highly non-linear dynamical systems and complex
objectives, which pose significant challenges for conventional optimization methods like Model
Predictive Control (MPC) (Falanga et al., 2018; Xing et al., 2023). Recent studies have shown that
policies trained with deep reinforcement learning (DRL) can surpass even human world champions,
employing vision-based state estimation for the RL controller. Furthermore, (Geles et al., 2024;
Xing et al., 2024b) have demonstrated using RL to learn drone racing from image inputs directly.

Environment Shaping for Reinforcement Learning Environment shaping has been widely applied
in reinforcement learning by designing a distribution of environments that progressively improves
the agent’s performance. Previous works like (Portelas et al., 2019; Parker-Holder et al., 2023;
Jiang et al., 2022; Dennis et al., 2021) on environment shaping have been successful in simulation
tasks like Bipedal Walker and maze games, where environments are easily parameterized for manual
curriculum design. However, this process becomes more challenging for more complex real-world
robotic tasks. Domain randomization is a common solution, where environments are sampled from
a predefined range to enable robust task execution. For instance, (OpenAl et al., 2019a;b) used
domain randomization to achieve dexterous manipulation in the real world. Additionally, (Lee
et al., 2020) proposed an adaptive terrain curriculum using a particle filter to sample environment
parameters, enabling quadrupedal locomotion across various terrains in real-world scenarios.

3 METHODOLOGY

To enable agile flight through unseen tracks, our approach introduces an Environment Policy that
acts as a separate agent, guiding the racing policy’s training across varied tracks. Both policies are
employed in an alternating fashion during training: the environment policy creates tracks tailored
to the drone agent’s learning progress, enhancing the racing policy’s robustness and speed. An
overview of the method is visualized in Fig. 2. In the following, we introduce the racing policy in
Sec. 3.1 and describe the proposed environment policy in Sec. 3.2.

3.1 RACING PoLICY TRAINING

The autonomous racing task can be framed as an optimization problem, where the objective is
to minimize the time it takes for an agile quadrotor to pass through a predefined sequence of
gates (Hanover et al., 2024), as illustrated in Fig. 3. In this task, we define the observations as

Oracing = |Ps R, 0, W, Gprey, 5P1, 5p2}, where p € R3 denotes the drone’s position, R € R is a

vector comprising the first two columns of Rywp (Zhou et al., 2019), v € R? and w € R? denote the
linear and angular velocity of the drone, ap.y represents the previous action from the actor policy,
and 6p1, po € R'2 represent the relative difference in position of the four next gate corners (4 x 3)
in the world frame. Here, dp; represents the difference of the four corners of the next gate to pass
between the current quadrotor position, and dp- represents the positional difference of the corners
between the next gate to pass and the gate after the next gate to pass on the race track. The total
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reward at time ¢, denoted as r, consists of several components:

racing __ _prog act br pass crash
Ty Sl A o R A o A (1

where r}"°® represents progress toward passing the next gate (Song et al., 2021b), r2°* penalizes

changes in actions from the previous time step, 7" discourages high body rates to ensure a stable
flying behavior, 77** is a binary reward for successfully passing the next gate, and 7§*%" is a binary
penalty applied when a collision occurs, which also terminates the episode. The reward components

are formulated as follows

P = an(daare(t = 1) = daare(t),

act

& = aglluy — w1 ||,

e = agllws,), (2)
ri*® = a4 if robot passes the next gate,
Tgrash = a5 if robot crashes (gates, ground).

3.2 ENVIRONMENT PoOLICY TRAINING

The track layout used for training the racing policy plays a critical role in shaping its flying capabil-
ities while also impacting the overall training stability. If the tracks are too difficult, the agent will
struggle to extract meaningful learning signals. Conversely, simple tracks fail to challenge the agent,
limiting its ability to generalize to more complex environments. Thus, to ensure effective learning,
the track difficulty must be continuously adapted to the current capabilities of the agent. To achieve
this, we introduce a learned environment policy men, that dynamically adjusts the race tracks. This
adaptive approach allows the agent to consistently gather relevant and progressive learning experi-
ences, optimizing its training stability and performance in diverse race tracks.

3.2.1 MDP FORMULATION

In our racing scenario, the states of the environment are represented by the position p and ori-
entation R of each individual gate, such that the full gate state vector is given by Sgates =
[p1,R1,...,pn, Ry], where N is the total number of gates in the environment. The environment
policy leverages the observation 0c,, = [sgates, eracing}, where sgatcs represents the current states
of all gates, and €yacing indicates the performance of the drone agent achieved in the track corre-
sponding to the environment state Sgates. The evaluation performance vector €yacing = [€1, - . ., €N]
contains the gate-passing error for each of the N gates, where the error e; is computed as the dis-
tance between the drone’s position and the center of gate ¢ at the moment the drone passes through
the gate. The environment policy outputs actions a = [APgates, AYaW g,405], Where Apgates Speci-

fies changes in gate positions, and Ayaw,, . indicates changes in the yaw angles of the gates, both
t o -1

in the world frame coordinates. Hence, the transition dynamics P is naturally Sg,ics = Sgates + at=1.
As training progresses, the training track layout reflects accumulated changes from the initial track,
naturally producing various tracks.

Another key component of our framework is the development of a metric that precisely measures
the effectiveness of the environment policy’s actions on the performance of the racing agent. In
our work, we propose a reward for the environment policy grounded in the relative ranking of the
performance of the racing policy in different environments. Specifically, after each training phase,
we rank all the parallel training environments according to the number of gates the agent successfully
passed. The higher the ranking number, the worse the policy performs. The environment policy is
then penalized for generating track layouts at the extremes of the ranking—those that are either too
easy or too difficult. Additionally, we reward race tracks that fall within an intermediate range,
where the agent demonstrates a degree of success but has not fully mastered the track. The reward
is defined as follows:

R]\Jyenv;rank if rank > rypper
env—Tupper
env __ 1
ri" =< R if rank € [riower, Tupper) )
rank

' if rank < Tower
Tlower

where R represents a positive constant, Tower and rypper are the fixed thresholds determining the
mid-range representing the tracks that are not too easy and not too hard, N, represents the total
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Figure 3: Visualization of the drone racing tracks used for the experiments, each characterized by
varying levels of complexity. All the tracks maintain a consistent size scale, spanning widths from
8 meters to 16 meters.

number of parallel training environments. This formulation represents a smooth reward function
that provides fine-grained feedback on the environment policy for each generated training track.

3.2.2 ENVIRONMENT SHAPING

To accelerate data collection, we train our environment agent and the racing agent using multiple
parallel simulation environments. To handle varying numbers of environments, the environment
policy independently updates the track layout for each environment. Since all environments initially
share the same track layout, the racing policy experiences a gradual increase in layout complexity,
which facilitates smoother learning during the early stages of training. We use the notation Env; <
Env;_; & a;_; to represent changes in the individual environment. For each new environment,
the environment policy is trained for every Nyq racing policy update, where Ng.q determines how
much more frequent should 7racing than 7eny. Since Nfeq is typically much greater than 1 (i.e.,
Nfreq > 1), the environment policy is updated less frequently than the racing policy. To handle this,
we choose the off-policy RL algorithm Soft Actor-Critic (SAC) (Haarnoja et al., 2018) to update the
parameters of the environment policy. The complete framework containing the environment policy
and the racing policy during the training is presented in Algorithm 1.

Algorithm 1 Adaptive Environment Shaping

Initialize: 7agent, Tenv, and gate layout Envg
for i <— 1t0 Nepocn do
// Step 1l: Generate New Environments
if i = 1 then
ap +— random sample from the action space of ¢y
Envy < Envg @ ag
end
else
‘ Env; < Env; 1 & 7Tenv(sg;auteSa eracing)
end
// Step 2: Train racing policy
for j <— 1to Ngq do
| Train Tagens on updated Env;
end
// Step 3: Evaluate and update environment policy
Evaluate agent performance across tracks Env;
Compute relative ranking reward
Update environment policy Tepny

end
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4 EXPERIMENTS

In this section, we first introduce the detailed experimental setups in Sec. 4.1, followed by a discus-
sion of the baseline approaches used for comparison in Sec. 4.2. Our experiments aim to address
the following key research questions: (i) How does our approach generalize to unseen race tracks?
(i) How does our environment policy perform on different training configurations? (iii) Can our
generalist racing policy even fly in dynamic race tracks with moving gates? (iv) Does our policy
transfer to the real world?

4.1 EXPERIMENTAL SETUP

Our training framework is built on the Flightmare simulator (Song et al., 2020), with reward func-
tions and PPO hyperparameters aligned with methods from previous research (Kaufmann et al.,
2023). For our environment policy, we implemented a vectorized Gym (Brockman et al., 2016)
environment with the same number of environments as the agent, using a total of 100 environments.
The environment policy uses the SAC implementation from Stable Baselines 3 (Raffin et al., 2021),
with fine-tuned parameters for our task setting. Specifically, we set the gradient steps of SAC to
100 to accelerate the training of the environment policy and the entropy coefficient to 1.0 for better
exploration.

During the training process, the racing policy is updated at every iteration, while the environment
policy is updated every 100 iterations. We sometimes encounter environments getting stuck on
infeasible tracks during training. To address this, if the evaluation SR stays at zero for three consec-
utive runs, we reset the environment to the initial race track. We selected an 8-gate oval track for the
initial layout due to its simplicity, making it easier for the racing policy to learn and adapt quickly.
For the environment policy’s action space, we constrained the gate movements as follows: along the
x and y axes, the range is [—1.0, 1.0]m; along the z-axis, the range is [—0.2, 0.2]m, and for the yaw,
the range is [—;—O, 310] rad. For the relative ranking range, we set 7 to the 50th percentile of
all environments and 7,p., to the 90th percentile. These hyperparameters are empirically found to
lead to the best performance during the ablation experiments. Our method is trained for 800M data
samples, which is equivalent to 12 hours of training using an NVIDIA TITAN Xp GPU.

To evaluate the performance of our approach, we tested the racing policy on several fixed racetracks
with varying difficulties and complexities. We selected three 2D tracks, where all gates are posi-
tioned at the same height along the z-axis, including Figure 8, Kidney, and 2D Big S. Additionally,
we chose three 3D tracks, where the gates have varying heights along the z-axis, including 3D Fig-
ure 8, 3D Big S, and Twist, as shown in Fig. 3. All of these tracks are significantly different than the
initial training track, with most having a different number of gates than during training. For the eval-
uation, we primarily used two metrics: success rate (SR %) and lap time (LT [s]). The success rate
is calculated as the ratio of successful runs, where the drone passes all the gates without crashing,
over the total number of trials. Lap time refers to the drone’s total time to successfully complete a
race track. These metrics are commonly used in drone racing and are essential in evaluating whether
the policy enables fast and stable flight performance (Geles et al., 2024; Xing et al., 2024b).

4.2 BASELINES

To evaluate the generalization ability of our proposed methods, we compared them with three base-
line methods: (i) RL policy without curriculum: This method shares the same initial environment
setup as ours but does not use a curriculum for training. (ii) Domain randomization from (Song
et al,, 2021a): In this approach, the initial environment is the same as in our method. However,
environment policy actions are sampled randomly within the action space; we use the identical con-
figurations from (Song et al., 2021a). (iii) Particle Filter Curriculum from (Lee et al., 2020): This
method also uses the same initial environment as ours but relies on a particle filter to sample environ-
ments. How does our approach generalize to unseen race tracks? We first evaluated our method

on six unseen tracks to assess its generalization ability across tracks with varying numbers of gates
and different layouts compared to those used during training. Table | presents the performance re-
sults. As can be observed, the reference single-track RL policies on the left side demonstrate the best
performance in most experiments. This is because these policies overfit the specific track, allowing
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Track Type | Track Name | Single-track RL | RLw/o curriculum  Particle Filter ~ Domain Randomization Ours
‘ ‘ SR [%] LT s] ‘ SR [%] LT [s] ‘ SR [%] LT [s] ‘ SR [%] LT [s] ‘ SR [%] LT /s]
Figure 8 100.00 4.263 0.00 100.00  5.128 | 100.00 6.205 100.00 4.746
2D Kidney 100.00 4.260 0.00 0.00 100.00 4.984 100.00 4.943
Big S 100.00 9.245 0.00 0.00 0.00 100.00 7.513
3D Figure 8 100.00 5.010 0.00 100.00  5.654 0.00 100.00 5.856
3D 3D Big S 100.00  10.187 0.00 0.00 0.00 100.00 9.761
Twist 100.00 7.444 0.00 0.00 0.00 100.00 10.199

Table 1: We compare the success rate (SR) and lap time (LT) of our method against four baselines.
Six different unseen racetracks are evaluated in a realistic BEM simulation (Bauersfeld et al., 2021),
including three 2D tracks and three 3D tracks. Here apart from our and baseline approaches, we
also include the Single-track RL as a reference, which is a vanilla PPO agent trained and tested on
individual track.
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Figure 4: Visualization of the drone racing tracks used for the experiments, each characterized by
varying levels of complexity. All the tracks maintain a consistent size scale, spanning widths from
8 meters to 16 meters.

them to optimize and perform well in that particular environment. Consequently, the results from
the RL method without a curriculum show that directly training on one track without a curriculum
and testing on different tracks is not successful.

Additionally, we found that a simple curriculum has a limited effect on improving the racing policy’s
generalization ability. Methods such as domain randomization and particle filters can enhance the
agent’s generalization ability, allowing it to fly on some simple unseen tracks, such as Figure 8 or
Kidney tracks. However, since these methods do not take into account the continuous improvement
of the agent’s policy during training or the evolution of the environment, they fail to perform well
in rather complicated unseen tracks, e.g., in 2D Big S or Twist tracks. Only our proposed method
demonstrated stable and successful flight across all six unseen tracks. Additionally, we observed
that for most 2D and 3D tracks (excluding the Tivist track), the policy’s performance (lap time)
remains close to that of the single-track RL policy, within a 1-second difference. This difference can
be explained by the increased generalization of our policy, which did not memorize a single specific
track. This confirms that our training approach maintains strong task performance while enhancing
generalization.

How does our environment policy perform on different training configurations? To assess the
impact of different configurations on the performance of our environment policy in racing policy
training, we performed an ablation study. Within the same parameter setting for the environment
policy, we vary the progress reward coefficients «;; from Equation 2 of the racing policy. To the
variance in the results, we tested the different configurations on 100 randomly generated tracks,
which were manually filtered for feasibility. As shown in Fig. 4, within a large range of parameters,
increasing the progress reward coefficient helps the agent learn to fly faster, as evidenced by the
decreasing lap times on specific tracks. At the same time, we observe no significant decrease in gen-
eralization, as the success rate remains fairly stable. This indicates the robustness of our framework,
where a dedicated human-defined curriculum usually needs to be re-designed for different speed
ranges.
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Can our generalist racing policy fly in dynamic race tracks with moving gates? To evaluate
the generalization of our method, we further test the racing policy by deploying it on a dynamic
track. In this scenario, several gates move at a constant speed in predefined directions. Notably,
this dynamic setting was never included in the training configurations of the racing policy. As the
track continuously changes, the racing policy’s observations evolve over time. In this setting, only a
highly robust control ability can finish the lap and prevent crashes. In this experiment, we chose the
Figure 8 track, where the third and fourth gates move dynamically along their y-axis at a constant
speed of 0.6ms~! within the ranges of [-0.5, 0.5] m, [-1.0, 1.0] m, and [-2.0, 2.0] m. As can be
observed in Table 2, we can see that the Domain Randomization (Song et al., 2021a) and Particle
Filter (Lee et al., 2020) methods still achieve partial success when the gates move within the range
of [-0.5, 0.5] m. However, both methods fail when the range increases to [-1.0, 1.0] m. In contrast,
our method can handle perturbations up to [-2.0, 2.0] m. This further demonstrates our method’s
superior generalization ability, enabling it to adapt its actions as observations change and maintain
stable performance even in the face of significant dynamic variations. Also, we test the current limit
of our approach, where we further increase the gate moving speed to 0.75m s~ L. In this setting, our
policy can still achieve more than 30% success rate.

Does our policy transfer in the real world? To validate the effectiveness of our proposed method,
we conducted tests in real-world conditions. We used the Agilicious quadrotor platform (Foehn
et al., 2022) with precise state estimation provided by a VICON motion capture system, ensuring
accurate inputs for the policy. The BetaFlight2 firmware was employed for low-level control to
execute the collective thrusts and body rate commands. We performed nine laps on each of the six
tracks (Fig. 3), demonstrating that our single racing policy can successfully navigate these previously
unseen tracks in the real world with a success rate of 100%, as shown on the right side of Fig. 1. For
further details, we invite readers to view the supplementary video.

Range [m] Methods SR [%] LT [s]
Single-track RL 100.00 4.263
Static Particle Filter 100.00 5.128
Domain Randomization 100.00 6.205
Ours 100.00 4.746
Particle Filter 54.69 5.512
[-0.5,0.5] Domain Randomization 93.75 6.152
Ours 100.00 5.388
Particle Filter 0.00
[-1,1] Domain Randomization 0.00 -
Ours 100.00 5.276
Particle Filter 0.00
Domain Randomization 0.00 -
[—2,2] Ours (0.6m/s) 100.00 5.329
Ours (0.75m/s) 31.25 5.067

Table 2: Results of flying on a dynamic Figure 8§ racetrack. We compare the success rate (SR) and
lap time (LT) of different methods.

5 CONCLUSION

In this work, we proposed an adaptive environment-shaping framework enabling, for the first time,
a learned policy to race on unseen and dynamic tracks. Our method works by leveraging a sec-
ondary environment policy that shapes the training environments for a drone racing policy. Using
our novel relative ranking reward, our environment policy can generate track layouts that are chal-
lenging but feasible based on the racing agents’ performance. One single drone racing policy trained
with our framework can race in various race tracks with different complexity with 100% success rate,
whereas the state-of-art curriculum learning approach mostly cannot fly. Furthermore, we validated
the policy’s generalization ability by racing on a track with moving gates, where existing methods
performed significantly worse at adapting to the fast-changing gate positions. We believe our work
represents a significant advancement in enabling agile robots to achieve greater generalization and
robustness in complex, dynamic, and open environments.
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