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Risk Quadrangle and Robust Optimization Based on Extended ϕ-Divergence
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Abstract
The Fundamental Risk Quadrangle (FRQ) is a uni-
fied framework linking risk management, statisti-
cal estimation, and optimization. Distributionally
robust optimization (DRO) based on ϕ-divergence
minimizes the maximal expected loss, where the
maximum is over a ϕ-divergence ambiguity set.
This paper introduces the extended ϕ-divergence
and the extended ϕ-divergence quadrangle, which
integrates DRO into the FRQ framework. We
derive the primal and dual representations of the
quadrangle elements (risk, deviation, regret, error,
and statistic). The dual representation provides
an interpretation for classification, portfolio opti-
mization, and regression as robust optimization
based on the extended ϕ-divergence. The pri-
mal representation offers tractable formulations of
these robust optimizations as convex optimization.
We provide illustrative examples showing that
many common problems, such as least-squares
regression, quantile regression, support vector ma-
chines, and CVaR optimization, fall within this
framework. Additionally, we conduct a case study
to visualize the optimal solution of the inner max-
imization in robust optimization.

1. Introduction
Distributionally robust optimization with ϕ-divergence am-
biguity set (Ben-Tal et al., 2013) minimizes the worst-case
expected loss over all probability measures within an am-
biguity set defined by ϕ-divergence. Ahmadi-Javid (2012)
shows that the inner maximization of DRO is a coherent
risk measure (Artzner et al., 1999), establishing a direct
connection between DRO and risk-averse optimization. We
refer to it as the ϕ-divergence risk measure in this study.

The Fundamental Risk Quadrangle (Rockafellar & Uryasev,
2013) combines regular risk measures with regular mea-
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sures of deviation, error and regret in a framework that links
optimization with statistics. Defined through axioms, FRQ
clarifies the relationships between objective functions used
in tasks such as classification, portfolio optimization, and re-
gression. In particular, regression is shown to be equivalent
to deviation minimization. Through the dual representation
of the quadrangle, these tasks can be interpreted as robust
optimization.

It is natural to consider integrating DRO into FRQ by com-
pleting the quadrangle for ϕ-divergence risk measure. The
purpose of the integration is two-fold: FRQ provides in-
sights into DRO by connecting objective functions in various
tasks and interprets them as DRO, while the ϕ-divergence
risk measure inspires the construction of new risk quad-
rangles. However, ϕ-divergence risk measure is coherent,
which excludes some risk measures widely used in machine
learning and finance, such as the mean-standard deviation
risk measure. By extending the divergence function to the
entire real line, we introduce a family of regular risk mea-
sures and associated quadrangles, which accommodates the
excluded measures.

Main Contributions. (i) Extension of ϕ-divergence:
We define the extended ϕ-divergence and its associated
risk measure, allowing for negative values in the worst-case
weight. The extension recovers risk measures used as ob-
jective functions in various tasks. A notable example is the
mean-standard deviation risk measure associated with the
extended χ2-divergence. (ii) Completion and interpreta-
tion of Quadrangle: For the extended ϕ-divergence risk
measure, we complete the risk quadrangle and derive primal
and dual representations for risk, deviation, regret and error.
The primal representation facilitates convex optimization
formulations. The dual representation provides a robust op-
timization (RO) interpretation for the measures associated
with extended ϕ-divergence, and a DRO interpretation for
the measures associated with ϕ-divergence. Furthermore,
the RO objective functions are conservative versions of their
DRO counterparts. (iii) Examples: We provide a range of
examples to illustrate that the extended ϕ-divergence quad-
rangle recovers many important quadrangles. The quad-
rangle elements are used as objective functions in various
learning tasks, such as least-squares regression, quantile
regression, support vector machines, and CVaR optimiza-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
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tion. Through the dual representation, these tasks has a
novel RO/DRO interpretation. Furthermore, viewing RO
as conservative DRO, we recover a well-known example
that the mean-standard deviation risk measure bounds the
χ2-divergence risk measure.

Literature Review. The connection between DRO and co-
herent risk measure has been extensively studied in Bayrak-
san & Love (2015); Dommel & Pichler (2020); Kuhn et al.
(2024). The dual representation of regular risk measure is
studied in Rockafellar & Uryasev (2013). The dual represen-
tation of coherent regret is studied in Sun et al. (2020); Rock-
afellar (2020); Fröhlich & Williamson (2022a;b); Rockafel-
lar (2023). Gotoh & Uryasev (2017) studies classification
as a risk minimization problem. Our study is the first to de-
fine the extended ϕ-divergence, complete the corresponding
risk quadrangle, and unify these developments with robust
optimization interpretations for various learning tasks.

2. Preliminaries
This section provides the necessary background on the ϕ-
divergence risk measure and the FRQ. We adopt the fol-
lowing standard notations throughout. Let (Ω,Σ, P0) be a
probability space, where P0 is a reference measure. The set
of all probability measures on (Ω,Σ) is denoted by P(Σ).
The extended real number set is denoted by R = R ∪+∞.
Let X ∈ L2 be a real-valued random variable. The expec-
tation and standard deviation of X with respect to P0 are
denoted by E[X] and σ(X), respectively. The Lp-norm of
X is denoted by ||X||p. const denotes a constant.

2.1. ϕ-Divergence and ϕ-Divergence Risk Measure

Definition 2.1 (divergence function). A convex lower semi-
continuous function ϕ : R→ R is a divergence function if
(i)ϕ(1) = 0, (ii) dom(ϕ) = R, (iii)ϕ(x) = +∞ for x <
0, (iv)1 ∈ int({x : ϕ(x) < +∞}), (v)0 ∈ ∂ϕ(1), where
int denotes the interior, ∂ denotes the subgradient.

Definition 2.2 (ϕ-divergence (Csiszár, 1963; Morimoto,
1963)). Consider probability measures P and P0, where P
is dominated by P0. For a divergence function ϕ(x), the
ϕ-divergence of P from P0 is defined by Dϕ(P ||P0) :=∫
Ω
ϕ (dP/dP0) dP0. Let Q be the Radon–Nikodym deriva-

tive dP/dP0. We have Dϕ(P ||P0) = E[ϕ(Q)].

Definition 2.3 (ϕ-divergence risk measure (Ahmadi-Javid,
2012; Dommel & Pichler, 2020)). Consider a divergence
function ϕ(x). The ϕ-divergence risk measure is defined
by Rϕ,β(X) = supP∈Pϕ,β EP [X], where Pϕ,β = {P ∈
P(Σ) : Dϕ(P ||P0) ≤ β}.

The condition (v) in Definition 2.1 ensures that the other ele-
ments in ϕ-divergence quadrangle developed in subsequent
sections satisfy the defining axioms. The condition (iv)

ensures that Rϕ,β(X) > E[X]. The family of divergence
functions of the form ϕ(x)+k(x−1), where k ∈ R, defines
the same ϕ-divergence and ϕ-divergence risk measure.

2.2. The Fundamental Risk Quadrangle Framework

FRQ framework studies closed and convex functionals
of random variables. A functional ρ : L2 → R is
called convex if ρ (µX + (1− µ)Y ) ≤ µρ(X) + (1 −
µ)ρ(Y ), ∀ X,Y ∈ L2, µ ∈ [0, 1], and closed if{
X ∈ L2|ρ(X) ≤ c

}
is a closed set ∀ c <∞.

A risk measure aggregates the overall uncertain cost in X
into a number, so that the inequality R(X) < C models
that X is adequately smaller than C. For a bet that loses a
constant amount, the risk equals the constant. Since a risk
measures the undesired outcome, it is more conservative
than the expectation. An example is the Markowitz risk
E[X] + λσ(X), λ > 0.

Definition 2.4 (regular risk measure). A closed convex
functional R : L2 → R is a regular measure of risk if
it satisfies: (1) R(C) = C, ∀ C = const, (2) R(X) >
E[X], ∀ X 6= const.

A deviation measure quantifies nonconstancy as the uncer-
tainty in X by measuring deviation from the expectation.
Intuitively, a bet that loses a constant amount has constant
risk but zero uncertainty. An example is the (scaled) stan-
dard deviation λσ(X).

Definition 2.5 (regular deviation measure). A closed convex
functional D : L2 → R+

is a regular measure of deviation
if it satisfies: (1) D(C) = 0, ∀ C = const, (2) D(X) >
0, ∀ X 6= const.

Regret quantifies the displeasure associated with the mix-
ture of potential positive, zero and negative outcomes of a
random variable. An example is E[X] + λ||X||2.

Definition 2.6 (regular regret measure). A closed convex
functional V : L2 → R is a regular measure of regret if it
satisfies: (1) V(0) = 0, (2) V(X) > E[X], ∀ X 6= const.

An error quantifies nonzeroness. In regression, it measures
how wrong an estimate is compared to the true value. It
is therefore nonnegative. When the estimate is precise, the
error is zero. An example is the scaled L2 norm λ||X||2
used in least squares regression.

Definition 2.7 (regular error measure). A closed convex
functional E : L2 → R+

is a regular measure of error if it
satisfies: (1) E(0) = 0,, (2) E(X) > 0, ∀ X 6= const.

The measures defined above are intrinsically connected.
There is a one-to-one correspondence between risk and de-
viation, and between regret and error. Risk and deviation
can be derived from one-dimensional minimization prob-
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lems involving regret and error, respectively. When review-
ing the axioms, it is helpful to use the provided examples
as a guide: risk E[X] + λσ(X), deviation λσ(X), regret
E[X] + λ||X||2, and error λ||X||2.
Definition 2.8 (regular Risk Quadrangle). A quartet
(R,D,V, E) of regular measures of risk, deviation, regret,
and error satisfying the following relationships is called a
regular risk quadrangle:

(Q1) error projection: D(X) = inf
C

{
E(X − C)

}
;

(Q2) certainty equivalence: R(X)=inf
C

{
C+V(X−C)

}
;

(Q3) centerness: R(X) = D(X) + E[X], V(X) =
E(X) + E[X].

Moreover, the quartet (R,D,V, E) is bound by the statistic
S(X) satisfying S(X) = argminC∈R

{
E(X − C)

}
=

argminC∈R
{
C + V(X − C)

}
.

A regression problem is defined by minimizing the error of
the residual. Error minimization is equivalent to deviation
minimization, connecting regression problem to deviation
and risk measures.
Definition 2.9 (regression). LetZf = Y −f(X)−C, Z̄f =
Y − f(X), where C ∈ R, f belongs to a class of functions
F . A regression problem is defined as minf∈F,C E(Zf ).
Theorem 2.10 (error shaping decomposition of regression
(Theorem 3.2, Rockafellar et al. (2008)). The solution to
regression in Definition 2.9 is characterized by

f, C ∈ argmin
f,C

E(Zf ) iff f ∈ argmin
f
D(Z̄f ), C ∈ S(Z̄f ).

The dual representation of Risk Quadrangle involves the def-
inition of risk envelope. Section 4.2 discusses its connection
to ambiguity set in robust optimization.
Definition 2.11 (conjugate functional, risk envelope, risk
identifier (Rockafellar & Uryasev, 2013)). Let ρ : L2 → R
be a closed convex functional. Then a functional ρ∗ : L2 →
R is said to be conjugate to ρ if ρ(X) = supQ∈Q{E[XQ]−
ρ∗(Q)},∀ X ∈ L2, where Q = dom(ρ∗) is called the risk
envelope associated with ρ, and Q furnishing the maximum
in the conjugate ρ∗ is called a risk identifier for X .

3. Functional Space Setting
This section discusses the logic behind choosing L2 as a
working space. The choice of Lp := Lp(Ω,Σ, P0), p ∈
[1,∞) seems to be reasonable, however, one still has to
be careful since if R : Lp → R is a proper convex risk
measure, then either R(·) is finite valued and continuous
on Lp or R(X) = +∞ on a dense set of points X ∈ Lp
(cf. Shapiro et al. (2014), Proposition 6.8). Therefore, for
some risk measures, it may be even impossible to find an
appropriate space.

For ϕ-divergence risk measures, the natural choice of a func-
tional space can be an Orlicz space paired with a divergence
function satisfying ϕ(0) < +∞, limx→+∞ ϕ(x)/x =
+∞, suggested by Dommel & Pichler (2020) and adopted
by Fröhlich & Williamson (2022b). However, this partic-
ular space excludes important divergence functions such
as the total variation distance (TVD). The TVD fits in the
framework of Shapiro (2017), which uses Lp in general and
switches to L∞ for certain divergence functions. Of course,
the simplest way would be to work with finiteΩ. Then every
function X : Ω → R is measurable, and the space of all
such functions can be identified with the Euclidean space.
Such an approach was taken by Bayraksan & Love (2015).

In light of everything mentioned above, we follow (Rock-
afellar & Uryasev, 2013) and take L2 as our working space
assuming finiteness where needed. This choice allows us to
apply the extensive FRQ theory developed in this setting.

4. Extended ϕ-Divergence Quadrangle
4.1. Dual Representation of Extended ϕ-Divergence

Quadrangle

This section defines the extended divergence function and its
associated risk measure, and completes the risk quadrangle
in dual representation for the risk measure. Throughout this
paper, if extension is not explicitly mentioned for divergence
function, divergence and risk quadrangle, then the referred
object is associated with the non-extended version.

We define the extended divergence function by removing
the condition ϕ(x) = +∞ for x < 0 in Definition 2.1. We
frequently work with natural extensions of the divergence
function in this study. For example, the divergence function
for the χ2-divergence is ϕ(x) = x2 for x > 0; we extend
this by using ϕ(x) = x2 for x ∈ R to define the extended
χ2-divergence function.

Definition 4.1 (extended divergence function). A convex
lower semi-continuous function ϕ : R → R is an ex-
tended divergence function if (i)ϕ(1) = 0, (ii) dom(ϕ) =
R, (iii)1 ∈ int({x : ϕ(x) < +∞}), (iv)0 ∈ ∂ϕ(1).

Next, we define the extended ϕ-divergence risk measure.
We will see that the ϕ-divergence risk measure (Definition
2.3) is a special case of the extended version.

Definition 4.2 (extended ϕ-divergence risk measure).
The extended ϕ-divergence risk measure is defined by
Rϕ,β(X) = supQ∈Q1

ϕ,β
E[XQ], where Q1

ϕ,β = {Q ∈ L2 :

E[Q] = 1,E[ϕ(Q)] ≤ β}.

We complete the risk quadrangle in dual representation for
the extended ϕ-divergence risk measure.

Definition 4.3 (dual representation of extended
ϕ-divergence quadrangle). For an extended ϕ-divergence

3
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function and X ∈ L2, the dual extended ϕ-divergence
quadrangle is defined by

Rϕ,β(X)= sup
Q∈Q1

ϕ,β

E[XQ],

(1)

Vϕ,β(X)= sup
Q∈Qϕ,β

E[XQ],

(2)

Dϕ,β(X)= sup
Q∈Q1

ϕ,β

E[X(Q−1)],

(3)

Eϕ,β(X)= sup
Q∈Qϕ,β

E[X(Q− 1)],

(4)

Sϕ,β(X) = argmin
C∈R

sup
Q∈Qϕ,β

E[(X − C)(Q−1)], (5)

where

Q1
ϕ,β ={Q ∈ L2 : E[Q] = 1,E[ϕ(Q)] ≤ β}, (6)

Qϕ,β ={Q ∈ L2 : E[ϕ(Q)] ≤ β} (7)

are the envelopes associated with Rϕ,β(X) and Vϕ,β(X)
respectively.

The next theorem proves that the dual representation above
satisfies the axioms in Definition 2.8.

Theorem 4.4 (extendedϕ-divergence quadrangle). Letϕ(x)
be an extended ϕ-divergence function, X ∈ L2. The quartet
(Rϕ,β ,Dϕ,β ,Vϕ,β , Eϕ,β) defined by (1)–(4) is a regular risk
quadrangle with the statistic (5).

The proof verifying the axioms, based on Ang et al. (2018);
Sun et al. (2020), is in Appendix B. It will be clear that
Theorem 4.4 integrates DRO into the FRQ framework after
the discussion of the ϕ-divergence ambiguity set and the
risk envelope Q in Section 4.2. The coherent risk measure
in DRO is a special case of the extended ϕ-divergence risk
measure. New quadrangles can be constructed by plugging
extended ϕ-divergences into Definition 4.3. The dual repre-
sentation provides a robust optimization interpretation for
many well-known optimization problems (Section 6).

4.2. Discussion on Risk Identifier Q

This section interprets the risk identifier Q, showing that
minimizing elements in the extended ϕ-divergence quadran-
gle corresponds to DRO, whereas the non-extended quad-
rangle corresponds to robust optimization (RO).

Consider the (non-extended) ϕ-divergence quadrangle. Al-
though there is no requirement in the envelope (6) that Q ≥
0, the conditions ϕ(x) = +∞ for x < 0 and E[ϕ(Q)] ≤ β
imply that Q ≥ 0 almost surely. Define indicator func-
tion IA(x) = 1 if x ∈ A and 0 otherwise. For every
Q ∈ Q1

ϕ,β , we can define a probability measure on (Ω,Σ)
by PQ(A) = E[IA(ω)Q(ω)], A ∈ Σ. Let Q0(ω) = 1 be
the constant random variable. We have Q0 ∈ Q1

ϕ,β . De-
fine P0 = PQ0 . By definition, Q is the Radon–Nikodym

derivative dPQ/dP0. The condition E[ϕ(Q)] ≤ β can be
equivalently expressed by Dϕ(P ||P0) ≤ β. The envelope
Q1
ϕ,β has a one-to-one correspondence to a set of probability

measures Pϕ,β = {P ∈ P(Σ) : Dϕ(P ||P0) ≤ β}. The
dual representations (1) (3) can be equivalently written as

Rϕ,β(X) = sup
P∈Pϕ,β

EP [X],

Dϕ,β(X) = sup
P∈Pϕ,β

EP [X]− E[X].

Next, consider the extended ϕ-divergence quadrangle. By
extending the divergence function, Q can take negative val-
ues. Note that the envelope with Q ≥ 0 is the necessary and
sufficient condition for monotonicity of the convex homoge-
neous functional associated with such envelope (Rockafellar
et al., 2006; Rockafellar & Uryasev, 2013). We therefore
forgo the interpretation of Q as a Radon-Nikodym deriva-
tive, and the monotonicity of the associated risk measure.
Instead, Q can be viewed as (potentially negative) weight
on samples. In this case, the minimization of (1) can still be
interpreted as a robust optimization, where the maximum is
over a set of weights. Also, the covariance between random
variablesX andQ is cov(X,Q) = E[(X−EX)(Q−EQ)].
Since EQ = 1 by (6), cov(X,Q) = E[X(Q− 1)]. The de-
viation (3) can be written as supQ∈Q1

ϕ,β
cov(X,Q). Thus

the worst-case Q∗ tracks X as closely as possible.

4.3. Primal Representation of Extended ϕ-Divergence
Quadrangle

This section derives the primal representations of extended
ϕ-divergence quadrangle in Definition 4.5 from the dual
representations in Definition 4.3. The proof is in Appendix
C.

Definition 4.5 (primal representation of extended
ϕ-divergence quadrangle). For an extended divergence
function ϕ(x) and X ∈ L2, the primal extended
ϕ-divergence quadrangle is defined by

Rϕ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
ϕ∗
(X
t
− C

)]}
, (8)

Dϕ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
ϕ∗
(X
t
− C

)
− X

t

]}
,

(9)

Vϕ,β(X) = inf
t>0

t

{
β + E

[
ϕ∗
(X
t

)]}
, (10)

Eϕ,β(X) = inf
t>0

t

{
β + E

[
ϕ∗
(X
t

)
− X

t

]}
, (11)
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Sϕ,β(X) = argmin
C∈R

inf
t>0

t

{
C

t
+ β + E

[
ϕ∗
(X − C

t

)]}
.

(12)

Theorem 4.6 (primal extended ϕ-divergence quadrangle).
Let ϕ(x) be an extended divergence function, X ∈ L2.
Elements of the dual extended ϕ-divergence quadrangle in
Theorem (4.4) can be presented as (8)–(12) in Definition
4.5. The optimal t and C in (8)–(12) are attainable.

The quadrangle elements in primal representation facilitates
optimization, since the minimax problem of minimizing
the worst-case expectation becomes a minimization with
an additional variable. Furthermore, substituting important
extended ϕ-divergence functions into the definitions, we re-
cover many risk quadrangles with interpretable expressions
(Section 5).

4.4. Relation between ϕ-Divergence Risk Quadrangle
and Extended ϕ-Divergence Risk Quadrangle

This section discusses the interpretation of RO as a conser-
vative version of DRO.

Proposition 4.7 (RO as conservative DRO). The risk, re-
gret, deviation and error in the ϕ-divergence quadrangle
are bounded from above by their counterparts in the ex-
tended ϕ-divergence quadrangle. For sufficiently small β,
the ϕ-divergence quadrangle is equivalent to the extended
ϕ-divergence quadrangle.

This follows from the observation that for fixed parameter
β, the risk envelopes (6), (7) with divergence function ϕ are
subsets of the risk envelopes with the extended version. The
ϕ-divergence measures are thus smaller than their extended
counterparts. Therefore, when the quadrangle elements are
used as objective function, the RO is a more conservative
version of the corresponding DRO. Furthermore, the condi-
tions E[ϕ(Q)] ≤ β and E[Q] = 1 imply that for sufficiently
small β, the risk identifier Q cannot be negative. Since the
risk envelopes (6), (7) are equivalent to their extended ver-
sions with the additional constraint Q ≥ 0, the quadrangles
are equivalent.

We can recover a well-known bound in Theorem 8.2 in Kuhn
et al. (2024) as a special case of Proposition 4.7. Consider
χ2-divergence and its extended version.

Example 4.8 (χ2-divergence risk measure bounded by
mean-standard deviation risk measure). Consider the risk
measures generated by ϕ(x) = (x−1)2 for x > 0 and +∞
if x ≤ 0, and its extended version. The risk measure gen-
erated by the extended χ2-divergence is the mean-standard
deviation risk. The risk measure generated by χ2-divergence
is the second-order superquantile. See Example 5.2 and 5.6

for details. We have

sup
P∈Pϕ,β

EP [X] ≤ E[X] +
√
βσ(X).

4.5. Expression for Risk Identifier

We derive an expression for the risk identifier, which allows
us to directly calculate the risk identifier (worst-case weight)
given the solution to the problem in primal representation.

Proposition 4.9. Denote by C∗ and t∗ the optimal C and t
in the primal representation 8 of extended ϕ-divergence risk
measure. The risk identifier of risk measureRϕ,β(X) can
be expressed as Q∗(ω) ∈ ∂ϕ∗ (X(ω)/t∗ − C∗) . Denote
by C∗ the optimal C in the primal representation 11 of
extended ϕ-divergence error measure. The risk identifier
of extended ϕ-divergence error measure Eϕ,β(X) can be
expressed as Q∗(ω) ∈ ∂ϕ∗ (X(ω)/t∗) .

The proof is in Appendix G. Proposition 4.9 will be used
to calculate the worst-case weight after solving the primal
problem in Section 8.

5. Examples of Extended ϕ-Divergence
Quadrangle

This section presents important examples of extended ϕ-
divergences and their corresponding ϕ-divergence quadran-
gles. These quadrangles are derived by substituting the
convex conjugates of various extended ϕ-divergence func-
tions into the primal representation in Definition 4.5. More
examples are listed in Appendix D. The derivations are in
Appendix E. For all examples, the quadrangle establishes a
novel connection between regression and DRO (Section 6).

5.1. Extended ϕ-Divergence Quadrangles

We show that two important risk quadrangles are generated
by the extended total variation distance (TVD) and extended
χ2-divergence.

Example 5.1 (range-based quadrangle generated by ex-
tended TVD). Consider the following extended divergence
function and its convex conjugate

ϕ(x) = |x− 1|, x ∈ R, ϕ∗(z) =

{
z, z ∈ [−1, 1]

+∞, z 6∈ [−1, 1] .

The complete quadrangle is as follows

Rϕ,β(X) =
β

2
(ess supX − ess inf X) + E[X],

Vϕ,β(X) = β ess sup |X|+ E[X],

Dϕ,β(X) =
β

2
(ess supX − ess inf X),

5
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Eϕ,β(X) = β ess sup |X|,

Sϕ,β(X) =
1

2
(ess supX + ess inf X).

We recover the range-based quadrangle in Example 4 in
Rockafellar & Uryasev (2013). The divergence function is
the extended version of TVD in Example 5.5.

Example 5.2 (mean quadrangle generated by extended Pear-
son χ2-divergence). Consider the following extended diver-
gence function and its convex conjugate

ϕ(x) = (x− 1)2, ϕ∗(z) =
z2

4
+ z .

The complete quadrangle is as follows

Rϕ,β(X) =E[X] +
√
βσ(X), Dϕ,β(X) =

√
βσ(X),

Vϕ,β(X) =E[X] +
√
β ‖X‖2 , Eϕ,β(X) =

√
β ‖X‖2 ,

Sϕ,β(X) = E[X].

We recover the mean quadrangle in Example 1 in Rockafel-
lar & Uryasev (2013). The solution to the regression (error
minimization) is not dependent on β, since scaling the error
function does not change the solution.

The divergence function is the extended version of the χ2-
divergence function in Example 5.6. The connection be-
tween variance penalty and DRO is studied in Lam (2016);
Duchi & Namkoong (2019).

5.2. ϕ-Divergence Quadrangles

This section completes the risk quadrangle in primal repre-
sentation for some well-known ϕ-divergence risk measures,
which, apart from Example 5.3, had not been established.

Example 5.3 (quantile quadrangle generated by indica-
tor divergence). Consider the divergence function and its
convex conjugate ϕ(x) = 1[0,(1−α)−1](x) and ϕ∗(z) =
max{0, (1− α)−1z}. Denote α-Value-at-Risk by VaRα.

We obtain the quantile quadrangle:

Rϕ,β(X) = CVaRα(X),

Dϕ,β(X) = CVaRα(X)− E[X],

Vϕ,β(X) =
1

1− α
E[X+],

Eϕ,β(X) = E
[ α

1− α
X+ +X−

]
,

Sϕ,β(X) = VaRα(X).

The derivation of the risk measure is from Ahmadi-Javid
(2012); Shapiro (2017). We recover the quantile quadrangle
in Example 2 in Rockafellar & Uryasev (2013). Note that

α is the parameter of divergence function. The parameter
β of the ambiguity set does not appear in the formula in
the primal representation. When α → 1, the quadrangle
becomes the worst-case-based quadrangle. When α → 0,
the risk measure becomes E[X], which is not risk averse.
ϕ(x) in this case violates Definition 2.1.

Example 5.4 (EVaR quadrangle generated by Kullback-
-Leibler divergence). The divergence function and its convex
conjugate are ϕ(x) = x ln(x)−x+1, ϕ∗(z) = exp(z)−1.

The complete quadrangle is as follows:

Rϕ,β(X) = inf
t>0

t

{
β + lnE

[
e
X
t

]}
= EVaR1−e−β (X),

Dϕ,β(X) = inf
t>0

t

{
β + lnE

[
e
X−E[X]

t

]}
,

Vϕ,β(X) = inf
t>0

t

{
β + E

[
e
X
t − 1

]}
,

Eϕ,β(X) = inf
t>0

t

{
β + E

[
e
X
t − X

t
− 1
]}
,

Sϕ,β(X) = t∗ lnE
[
e
X
t∗
]
,

where t∗ is a solution of the following equation t∗β +
t∗ lnE

[
e
X
t∗
]
− E

[
Xe

X
t∗
]
/E
[
e
X
t∗
]
= 0. The risk measure

EVaR is studied in Ahmadi-Javid (2012).

Example 5.5 (robustified supremum-based quadrangle gen-
erated by total variation distance). Consider the following
divergence function and its convex conjugate ϕ(x) = |x−1|
for x ≥ 0 and +∞ if otherwise. ϕ∗(z) = −1 + [z + 1]+ if
z ≤ 1 and +∞ if otherwise.

The complete quadrangle is as follows:

Rϕ,β(X) =
β

2
ess sup(X) + (1− β

2
)CVaR β

2
(X),

Vϕ,β(X) = inf
t>0

t≥ess supX

{
t(β − 1) + E

[
X + t

]
+

}
,

Dϕ,β(X) = Rϕ,β(X)− E[X],

Eϕ,β(X) = inf
t>0

{
t(β − 1) + E

[[
X + t

]
+
−X

]}
,

Sϕ,β(X) = ess sup(X)− 2VaR1− β2
(X).

The risk measure is studied in Shapiro (2017), Example
3.10.

Example 5.6 (second-order quantile-based quadrangle gen-
erated by Pearson χ2-divergence). The divergence function
and its convex conjugate are ϕ(x) = (x − 1)2 if x ≥ 0

and +∞ if otherwise. ϕ∗(z) =
(
z
2 + 1

)2
Iz≥−2−1, where

I{·} = 1 if the argument in the bracket is true and 0 other-
wise.
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The complete quadrangle is

Rϕ,β(X) =

√
(β + 1)E

[
(X − q(2)β (X))2I{X≥q(2)β (X)}

]
+ q

(2)
β (X) = second-order superquantile,

Dϕ,β(X) =Rϕ,β(X)− E[X]

= second-order superquantile deviation,

Vϕ,β(X) = inf
t>0

tβ +
1

4t
E
[(

(X + 2t)2 − 4t2
)
I{X+2t>0}

]
,

Eϕ,β(X) = inf
t>0

tβ +
1

4t
E
[(

(X + 2t)2 − 4t2
)
I{X+2t>0}

]
− E[X],

Sϕ,β(X) =q(2)α (X) = second-order quantile,

where
√

1 + β = (1 − α)−1, and the statistic q
(2)
α (X)

is characterized by the equation 1 − α = ||(X −
q
(2)
α (X))+||1(||(X − q(2)α (X))+||2)−1.

The risk measure is a special case of the higher-moment
coherent risk measure studied in Krokhmal (2007). The risk,
deviation and statistic are the same as those of second-order
quantile-based quadrangle in Example 12 in Rockafellar &
Uryasev (2013).

6. Robust Optimization Interpretation for
Various Applications

The primal representation of the extended ϕ-divergence
quadrangle recovers many important quadrangles, whose
elements are used in various tasks such as classification,
portfolio optimization and regression. As is discussed
in Section 4.1 and 4.2, the dual representation of (ex-
tended) ϕ-divergence quadrangle provides the interpretation
as RO/DRO. For the extended ϕ-divergence quadrangle, the
dual representation provides the interpretation as robust op-
timization which reweights the samples. We formalize the
statement and illustrate it with two important examples.

We consider classification (13), portfolio optimization (14),
and regression (15). In portfolio optimization, the portfolio
loss is w>L, where w is the portfolio weight, L is the
random loss vector. In classification, given attribute X ,
label Y and decision vector w, the margin is defined by
L(w, b) = Y (w>X − b). γ(w) is the regularization term.
In regression, consider a dependent variable (regressant)
Y , a vector of independent variables (regressors) X =
(X1, . . . , Xd), a class of function F and intercept C ∈ R.
The regression residual is defined by Zf = Y − f(X)−C,
and the residual without intercept C is defined by Z̄f =
Y − f(X).

Each problem in (13), (14), and (15) has a corresponding
RO interpretation given by (16), (18), and (20), respectively,
through the dual representations. The equivalence between

(15) and (20) follows from Theorem 2.10. Furthermore,
when ϕ(x) is a divergence function as defined in Definition
2.1, these problems also have a DRO interpretation, given
by (17), (19), and (21), respectively.

Classification

min
w
Rϕ,β(−L(w, b))

+ γ(w) ,
(13)

Portfolio Optimization

min
1>w=1

Rϕ,β(w>L) , (14)

Regression

min
f∈F,C

Eϕ,β(Zf )), (15)

Robust expected
margin maximization

min
w

max
Q∈Qϕ,β

E[−QL(w, b)]

+ γ(w) .
(16)

DR expected
margin minimization

min
w

max
P∈Pϕ,β

EP [−L(w, b)]

+ γ(w) .
(17)

Robust loss minimization

min
1>w=1

max
Q∈Qϕ,β

E[Qw>L] .

(18)

DRO

min
1>w=1

max
P∈Pϕ,β

EP [w>L]

(19)
Deviation minimization

min
f

{
max

Q∈Qϕ,β
E[QZ̄f ]

−E[Z̄f ]
}

calculate C = S(Z̄f )
(20)

Deviation minimization

min
f

{
max
P∈Pϕ,β

EP [Z̄f ]

−E[Z̄f ]
}

calculate C = S(Z̄f )
(21)

6.1. Examples of Robust Optimization Interpretation

Example 6.1 (mean quadrangle). The risk and error mea-
sure in mean quadrangle are objective functions for Large
Margin Distribution Machine (Zhang & Zhou, 2014),
Markowitz portfolio optimization (Markowitz, 1952), and
least squares regression. We have the following robust opti-
mization interpretation.

Large Margin
Distribution Machine

min
w,b

E[−L(w, b)]

+
√
βσ(−L(w, b))+γ(w),

Robust expected
margin maximization

min
w,b

max
Q∈Q1

ϕ,β

E[−QL(w, b)]

+γ(w).
Markowitz

portfolio optimization

min
1>w=1

E[w>L]

+
√
βσ(w>L),

Robust expected
loss minimization

min
1>w=1

max
Q∈Q1

ϕ,β

E[Q(w>L)] .

7
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Least squares
regression

min
f∈F,C∈R

√
β||Zf ||2 ,

Deviation minimization

min
f∈F

max
Q∈Q1

ϕ,β

E[QZ̄f ]− E[Z̄f ]

calculate C = E[Z̄f ] .

Example 6.2 (quantile quadrangle). The risk and error
measure in quantile quadrangle are objective functions of
ν-support vector machine (Schölkopf et al., 2000), CVaR
optimization (Rockafellar & Uryasev, 2000), and quantile
regression (Koenker & Bassett Jr, 1978). Let ν = 1 − α.
The equivalence of ν-SVM and CVaR optimization is stud-
ied by Gotoh & Takeda (2004); Takeda & Sugiyama (2008).
We have the following DRO interpretation.

CVaR portfolio
optimization

min
1>w=1

CVaRα(X(w)) ,

DR loss minimization

min
1>w=1

max
P∈Pϕ,β

EP [X(w)] ,

ν-SVM

min
w,b

CVaRα(−L(w, b))

+ γ(w),

DR expected
margin maximization

min
w

max
P∈Pϕ,β

EP [−L(w, b)]

+ γ(w) .

Quantile regression

min
f∈F,C∈R

Eα(Zf ) ,

Deviation minimization

min
f∈F

max
P∈Pϕ,β

EP [Z̄f ]− E[Z̄f ]

calculate C ∈ VaRα[Z̄f ] ,
where X+ = max{0, X}, X− = max{0,−X}, E(X) =[

α
1−αX+ +X−

]
is the normalized Koenker-Bassett error,

VaR is Value-at-Risk.

7. Recovering ϕ-Divergence from Quadrangle
Elements

This work has focused on developing new risk quadrangles
induced by a specified ϕ-divergence. It is of independent
interest to establish the duality between divergence and risk
quadrangle, which allows for recovering the ϕ-divergence
from the elements of the corresponding ϕ-divergence quad-
rangle. The proof, based on Föllmer & Knispel (2011), is
provided in the Appendix H.

Proposition 7.1. Let ϕ(x) be a divergence function. ϕ-
divergence can be recovered from the elements in ϕ-
divergence quadrangle by

Dϕ(P ||P0) = sup
X∈L2

β>0

{E[XQ]−Rϕ,β (X)− β}

= sup
X∈L2

β>0

{E[X(Q− 1)]−Dϕ,β (X)− β}

= sup
X∈L2

β>0,C

{E[XQ]− Vϕ,β (X − C) + C − β}

= sup
X∈L2

β>0,C

{E[X(Q− 1)]− Eϕ,β (X − C)− β}.

8. Risk Identifier Visualization
This section contains three case studies visualizing the risk
envelope (Definition 2.11) in classification (16), portfolio
optimization (18), and regression (20). We focus on the
mean quadrangle (Example 5.2) in this case study. The
details of the experiments are specified in Appendix J.
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(a) Risk envelope in
Large Margin Distri-
bution Machine.
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(b) Risk envelope in
Markowitz portfolio
optimization.
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(c) Risk envelope in
least squares regres-
sion.

Figure 1: Darker points correspond to higher values of
Q∗(w) in all figures. In (a), the circles represent samples
with label 1, while the diamonds represent samples with la-
bel−1. The optimal decision line is y = −28.826x−0.486.
In (b), optimal portfolio weights = (0.4999038, 0.5000962).
In (c), the straight line is the least squares regression line
y = 0.495x− 0.0127.

From the minimax formulation in the dual representation
(4.3), we observe that a larger incurred loss corresponds to a
larger weight being assigned to the data point. This observa-
tion is confirmed by the figures. In Figure 1a, misclassified
points with a large margin are assigned larger weights. In
Figure 1b, points in the upper-right corner, corresponding
to large portfolio losses, are assigned larger weights. In Fig-
ure 1c, points further above the regression line are assigned
larger weights.

9. Conclusion
We introduce the extended ϕ-divergence risk measure and
complete its associated risk quadrangle. The inner maxi-
mization problem of DRO is integrated as a special case of
the risk measure. The extended ϕ-divergence quadrangle
encompasses many important quadrangles, whose elements
are used as objective functions in well-known learning tasks
in classification, portfolio optimization, and regression. The
FRQ framework connects the elements axiomatically and
provides a RO/DRO interpretation to the tasks. A case study
is conducted to visualize the worst-case weight.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Fröhlich, C. and Williamson, R. C. Risk measures and upper
probabilities: Coherence and stratification. arXiv preprint
arXiv:2206.03183, 2022a.
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A. Appendix
Rockafellar & Uryasev (2013) introduced measures of uncertainty that are built upon the concept of regularity, which is
closely linked to convexity and closedness.

Uncertainty can be modeled via random variables and by studying and estimating the statistical properties of these random
variables, we can estimate the risk in one form or the other. When the aim is to estimate the risk, it is convenient to think of
the the random variable as ‘loss’ or ‘cost’. There are various ways in which risk can be quantified and expressed. One such
framework developed by Rockafellar & Uryasev (2013) is called the Risk Quadrangle, which is shown in Figure 2.

RiskR

Regret V

Deviation D

Error E

SOptimization Estimation

Figure 2: Risk Quadrangle Flowchart

The quadrangle begins from the upper left corner which depicts the measure of risk denoted by R. It aggregates the
uncertainty in losses into a numerical valueR(X) by the inequalityR(X) ≤ C where C is the tolerance level for the risk.
The next term is in the upper-right corner called the measure of deviation denoted by D and it quantifies the nonconstancy
of the random variable. The lower-left corner depicts measure of regret denoted by V . It stands for the net displeasure
perceived in the potential mix of outcomes of a random variable ”loss” which can be bad (> 0) or acceptable/good (≥ 0).
The last measure is the measure or error which sits as the right-bottom of the quadrangle denoted by E . Error quantifies the
non-zeroness in the random variable.
Theorem A.1 (Quadrangle Theorem, Rockafellar & Uryasev (2013)). The theorem states the following:

(a) The centerness relationsD(X) = R(X)−E[X] andR(X) = E[X]+D(X) give a one-to-one correspondence between
regular measures of riskR and regular measures of deviation D. In this correspondence,R is positively homogeneous
if and only if D is positively homogeneous. On the other hand,R is monotonic if and only if D(X) ≤ supX − E[X]
for all X .

(b) The relations E(X) = V(X)− E[X] and V(X) = E[X] + E(X) give a one-to-one correspondence between regular
measures of regret V and regular measures of error E . In this correspondence, V is positively homogeneous if and only
if E is positively homogeneous. On the other hand, V is monotonic if and only if E(X) ≤ |E[X]| for X ≤ 0.

(c) For any regular measure of regret V , a regular measure of risk E is obtained by:

R(X) = min
C∈R
{C + V(X − C)} .

If V is positively homogeneous,R is positively homogeneous. If V is monotonic,R is monotonic.
(d) For any regular measure of error E , a regular measure of deviation D is obtained by

D(X) = min
C∈R
{E(X − C)} .

If E is positively homogeneous, D is positively homogeneous. If E satisfies the condition E(X) ≤ |E[X]| for X ≤ 0,
then D satisfies the condition D(X) ≤ supX − E[X] for all X .

(e) In both (c) and (d), as long as the expression being minimized is finite for some C , the set of C values for which the
minimum is attained is a nonempty, closed, bounded interval. Moreover when V and E are paired as in (b), the interval
comes out the same and gives the associated statistic:

argmin
C∈R

{C + V(X − C)} = S(X) = argmin
C∈R

{E(X − C)} .

Theorem A.2 (Error Projection and Certainty Equivalence). In order to establish the validity of a given quartet (R,D,V, E)
as a quadrangle, it is sufficient to demonstrate the satisfaction of either conditions (Q1) and (Q3), or conditions (Q2) and (Q3),
as conditions (Q1) and (Q2) are intrinsically linked through the condition (Q3). Indeed,R(X) = inf

C

{
C + V(X − C)

}
=

inf
C

{
E(X − C)

}
+ E[X] = D(X) + E[X].

11
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B. Proof of Theorem 4.4
Proof. First, we verify the conditions for regular risk measure in Definition 2.4.

Closedness and Convexity: Since the envelope Q is closed and convex ((Rockafellar et al., 2006; Rockafellar & Uryasev,
2013)), thenRϕ,β(X) is closed (lower semicontinuous) and convex as a maximum of continuous affine functions.

Constancy: Constancy is implied by the condition EQ = 1,

sup
Q∈Q1

ϕ,β

E[CQ] = sup
Q∈Q1

ϕ,β

C E[Q] = C .

Risk aversity: We can construct a Q0 such that the strict inequality holds for Rϕ,β(X) > E[X]. As a function of r,
P (X ≤ r) is a nondecreasing, right-continuous function with a range in [0, 1]. Thus for a nonconstant X , there exists r ∈ R,
p ∈ (0, 1) such that P (X ≤ r) = p, P (X > r) = 1 − p. By convexity of ϕ(x) and 1 ⊂ int({x : ϕ(x) < +∞}), there
exists δ > 0 such that ϕ(x) ≤ β for x ∈ (1− δ, 1 + δ). Then, there exists δ1 ∈ (0, δ), δ2 ∈ (0, δ) such that δ1 = 1−p

p δ2.
Define Q0 by

Q0(ω) =

{
1− δ1, ω : X(ω) ≤ r
1 + δ2, ω : X(ω) > r

. (22)

The feasibility can be checked by E[ϕ(Q0)] ≤ β, EQ0 = 1.

We have

E[XQ0] =E[XQ0|X ≤ r]P (X ≤ r) + E[XQ0|X > r]P (X > r) (23)
=p(1− δ1)E[X|X ≤ r] + (1− p)(1 + δ2)E[X|X > r] (24)
=pE[X|X ≤ r] + (1− p)E[X|X > r]− pδ1E[X|X ≤ r] + (1− p)δ2E[X|X > r] (25)
=E[X] + pδ1(E[X|X > r]− E[X|X ≤ r]) (26)
>E[X] . (27)

ThusRϕ,β(X) is a regular risk measure.

Next, we verify the conditions for regular regret measure.

Closedness and Convexity: Same with the proof above for regular risk measure.

Risk aversity: For X 6= const,

Vβ,ϕ(X) ≥ Rβ,ϕ(X) > EX. (28)

The first inequality is due to Q1
ϕ,β ⊂ Qϕ,β .

Zeroness:

sup
Q∈Qϕ,β

E[0 ·Q] = 0. (29)

The proof of Theorem 1 in Sun et al. (2020) (which works on coherent risk measure) can be applied here to show that a
regular regret measure can be obtained by removing condition EQ = 1 in 6. Thus the risk 1 and regret 2 satisfies (Q2) in
Definition 2.8.

Deviation 3 and error 4 measure are obtained by centerness formulae (Q3) (see Definition 2.8). With Theorem A.1, we can
show the regularity of deviation and error, and that the minimum in C for a regular regret measure is attainable. The optimal
C is Sϕ,β(X).

The proof of aversity of the risk measure constructs a feasible random variable inspired by Ang et al. (2018). The proof of
the relation between risk and regret follows Sun et al. (2020). Ang et al. (2018); Sun et al. (2020) work with coherent risk
measures. The proving techniques are of broader interest. Ang et al. (2018) proves that 1 being a relative interior point of

12
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the envelope Q is sufficient for a coherent risk measure to be risk averse. Sun et al. (2020) proves that removing EQ = 1 in
the envelope of coherent risk measure generates a coherent regret measure.

Proposition 4.1 in Artzner et al. (1999) proves the coherency of risk measures that have representation supP∈P EP [X] for
any set P . The setting in Artzner et al. (1999) is finiteR(X) and finite Ω.

An alternative proof of risk 1 and regret 2 satisfying (Q2) in Definition 2.8 can be obtained from the primal representations
in Section 4.3. The relation (Q2) can be directly observed from the primal risk and regret.

C. Proof of Theorem 4.6
Proof. Consider the regret 2

Vϕ,β = sup
Q∈Qϕ,β

E[XQ] = − inf
Q∈Qϕ,β

E[−QX]. (30)

Consider the Lagrangian dual problem of infQ:Q∈Qϕ,β E[−QX]

sup
t≥0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} . (31)

Denote the optimal t by t∗. If t∗ = 0, then

sup
t≥0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} = inf

Q
E[−XQ] = −∞. (32)

Thus for all t ≥ 0,

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} = −∞ . (33)

Thus if t∗ = 0, the optimum is also attained at t > 0. If t∗ > 0, t > 0 and t ≥ 0 are the same for the problem. Thus, we can
substitute t ≥ 0 with t > 0 in the Lagrange dual problem.

Then,

sup
t>0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} (34)

= sup
t>0

inf
Q

(−t)
{
E
[
X

t
Q− ϕ(Q)

]
+ β

}
(35)

=− inf
t>0

sup
Q
t

{
E
[
X

t
Q− ϕ(Q)

]
+ β

}
. (36)

Next, we prove that

− inf
t>0

sup
Q
t

{
E
[
X

t
Q− ϕ(Q)

]
+ β

}
=− inf

t>0
t

{
β + Eϕ∗

(
X

t

)}
. (37)

We consider two cases where the following condition is satisfied and not satisfied

sup
Q

{
E
[
X

t
Q− ϕ(Q)

]}
< +∞ for some t . (38)

When 38 is satisfied, since XQ/t − ϕ(Q) is a normal convex integrand (Shapiro, 2017), sup and expectation in 36 are
exchangeable by Theorem 3A in Rockafellar (1976). Thus, 37 holds.

When 38 is not satisfied, supQ{E[XQ/t− ϕ(Q)]} = +∞ for all t. We have

− inf
t>0

sup
Q
t

{
E
[(

X

t

)
Q− ϕ(Q)

]
+ β

}
= −∞.

13
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Risk Quadrangle and Robust Optimization

We also have that

t

(
Eϕ∗

(
X

t

)
+ β

)
=t

(
E
[
sup
Q

{(
X

t

)
Q− ϕ(Q)

}]
+ β

)
(39)

≥ sup
Q
t

{
E
[(

X

t

)
Q− ϕ(Q)

]
+ β

}
(40)

= +∞. (41)

Thus

− inf
t>0

t

(
Eϕ∗

(
X

t

)
+ β

)
= −∞. (42)

We see that 37 holds with or without the condition 38. With 34–36, 37, we obtain

sup
t>0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} = − inf

t>0
t

{
β + Eϕ∗

(
X

t

)}
. (43)

Strong duality for the convex problem holds since the following Slater’s condition is valid for Q = 1

∃Q : Q ∈ Qϕ,β , E[ϕ(Q)] < β . (44)

Thus

Vϕ,β = − inf
Q∈Qϕ,β

E[−QX] = inf
t>0

t

{
β + Eϕ∗

(
X

t

)}
. (45)

By regularity, the statistic Sϕ,β(X) is attainable. Denote the optimal C and t by C∗ and t∗. If t∗ > 0, Sϕ,β(X)
t∗ is attainable.

We showed that if t∗ = 0, any t > 0 is also optimal. Sϕ,β(X)
t∗ is attainable. By change of variable, C∗ in 8,9 equals Sϕ,β(X)

t∗ .
Thus t∗ and C∗ in 8–12 are attainable.

The primal representation of the other elements can be obtained similarly by Lagrange dual problem, or by direct calculation
using the quadrangle relations in Definition 2.8.

The primal representation of the risk measure 8 has been studied in the literature under different technical conditions.
Fröhlich & Williamson (2022b) starts with the primal representation of coherent regret and obtains the coherent risk with
(Q3) centerness relation in Definition 2.8.

D. More Examples
Example D.1 (Expectile Quadrangle Generated by Generalized Pearson χ2-divergence). Let 0 < p < 1. Consider the
following extended divergence function and its convex conjugate

ϕ(x) =

{
1
q (x− 1)2, x > 1
1

1−q (x− 1)2, x ≤ 1
and ϕ∗(z) =

{
qz2

4 + z, z > 0
(1−q)z2

4 + z, z ≤ 0
. (46)

The complete quadrangle is as follows

Rϕ,β(X) = qE[(((X − eq(X))+)2] + (1− q)E[(((X − eq(X))−)2] + E[X]

Vϕ,β(X) = E[X] +
√
βE
[
qX2
− + (1− q)X2

+

]
Dϕ,β(X) = qE[(((X − eq(X))+)2] + (1− q)E[(((X − eq(X))−)2]

Eϕ,β(X) =
√
βE
[
qX2
− + (1− q)X2

+

]
= asymmetric squared loss, scaled

Sϕ,β(X) = eq(X) = expectile

We recover one version of expectile quadrangle in Malandii et al. (2024). The divergence function ϕ(x) gives rise to a
generalized Pearson χ2-divergence. Example 5.2 is a special case of this quadrangle with q = 0.5.
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Example D.2 (Example Generated by finite-interval-indicator Divergence). Let 0 < a < 1 < b. The divergence function
and its convex conjugate are

ϕ(x) =


+∞, x ∈ [0, a)

0, x ∈ [a, b]

+∞, x ∈ (b,+∞)

, ϕ∗(z) =

{
az, z < 0

bz, z ≥ 0
. (47)

The error measure is

Eϕ,β(X) = E[(1− a)X− + (b− 1)X+] . (48)

The complete quadrangle is

Rϕ,β(X) = (1− a)CVaR b−1
b−a

(X) + aE[X], Vϕ,β(X) = E[(2− a)X− + bX+],

Dϕ,β(X) = (1− a)CVaR b−1
b−a

(X) + (a− 1)E[X], Eϕ,β(X) = E[(1− a)X− + (b− 1)X+],

Sϕ,β(X) = argminC∈R E[(1− a)(X − C)− + (b− 1)(X − C)+] ,

The risk measure in this quadrangle is studied in Pflug & Ruszczynski (2004), Ben-Tal & Teboulle (2007) (see Example
2.3), Love & Bayraksan (2015) (see Example 3). CVaR is a special case of this risk measure for a = 0. When α/(1− α) =
(b− 1)/(1− a), the quadrangle is a scaled version of Example 5.3.

The risk measure provides another way to connect expectile eq(X) with distributionally robust optimization (see Proposition
9 in Bellini et al. (2014))

eq(X) = max
γ∈[ 1−qq ,1]

RI[γ,γ q
1−q ],β

(X) . (49)

E. Derivation for Examples
This section contains derivations of the examples in Section 5.

E.1. Example 5.1

The regret measure is given by

Vϕ,β(X) = inf
t>0

t≥−ess infX
t≥ess supX

{tβ + E[X]} (50)

= βmax{0,−ess inf X, ess supX}+ E[X] (51)
= β ess sup |X|+ E[X] . (52)

The risk measure is given by

Rϕ,β(X) = inf
t>0, C∈R

t(C−1)≤ess infX
t(C+1)≥ess supX

{tβ + tC + E[X − tC]} (53)

=
β

2
(ess supX − ess inf X) + E[X] . (54)

From the constraints t(C − 1) ≤ ess inf X and t(C + 1) ≥ ess supX , we have

2t ≥ ess supX − ess inf X,

hence the optimal
t∗ = (ess supX − ess inf X)/2.

15
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From the constraints, we have

2ess supX/(ess supX − ess inf X)− 1 ≤ C ≤ 2ess inf X/(ess supX − ess inf X) + 1.

Thus,

(ess supX + ess inf X)/(ess supX − ess inf X) ≥ C ≥ (ess supX + ess inf X)/(ess supX − ess inf X),

yelding
C∗ = (ess supX + ess inf X)/(ess supX − ess inf X).

Therefore, the statistic
Sϕ,β = C∗t∗ = (ess supX + ess inf X)/2.

E.2. Example 5.4

The equation for the statistic can be obtained from the second equation in 74 when ϕ∗(z) = exp(z)− 1.

E.3. Example 5.5

The risk measure is given by

Rϕ,β(X) = inf
t>0, C∈R

ess sup(X−C)≤t

{tβ + C − t+ E[X − C + t]+}

= inf
t>0, C∈R

ess sup(X−C−t)≤t

{tβ + C + E[X − C]+}

= inf
t>0, C∈R

ess sup(X)−2t≤C

{tβ + C + E[X − C]+} .

The function being minimized is convex in C. It attains minimum at C ∈ (−∞, ess inf X] if there is no constraint on C.
Thus the minimum in C is attained at C∗ = ess sup(X)− 2t. Suppose that β ∈ (0, 2) (Note that TVD is no larger than 2).
Then

Rϕ,β(X) = ess sup(X) + inf
t>0
{t(β − 2) + E[X − ess sup(X) + 2t]+}

= ess sup(X) + inf
t<0

{
t(1− β

2
) + E[X − ess sup(X)− t]+

}
= ess sup(X) + (1− β

2
) inf
t<0

{
t+ (1− β

2
)−1E[X − ess sup(X)− t]+

}
.

Note that since X − ess sup(X) ≤ 0, the minimum in the last equation is attained at some t ≤ 0, and this minimum is equal
to

CVaR β
2
(X − ess sup(X)) = CVaR β

2
(X)− ess sup(X).

E.4. Example 5.2

The extended Pearson χ2-divergence risk measure is given by

Rϕ,β(X) = inf
t>0,C∈R

t

{
C + β +

1

4t2
E[(X − C)2] + E[

X − C
t

]

}
= inf
t>0,C∈R

{
tβ +

1

4t
E[(X − C)2] + E[X]

}
= E[X] +

√
βV[X],

where V[X] = E[(X − E[X])2] is the variance of X and (t∗, C∗), which furnish the minimum are

t∗ =

√
V[X]

4β
, C∗ = E[X].
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Evidently, the corresponding regret is given by

Vϕ,β(X) = E[X] +
√
βE[X2]

= E[X] +
√
β ‖X‖2 .

E.5. Example D.1

The error measure is given by

Eϕ,β(X) = inf
t>0

tβ + E
[
tϕ∗

(
X

t

)
−X

]
(55)

= inf
t>0

tβ +
1

4t
E
[
qX2
− + (1− q)X2

+

]
(56)

= tβ +
1

4t
E
[
qX2
− + (1− q)X2

+

] ∣∣∣
t=

√
E[qX2

−+(1−q)X2
+]

4β

(57)

=
√
βE
[
qX2
− + (1− q)X2

+

]
(58)

E.6. Example 5.6

Plugging in the convex conjugate, the regret measure is given by

Vϕ,β(X) = inf
t>0

tβ + tE

[(
1

4

(
X

t

)2

+
X

t

)
I{Xt ≥−2}

]
(59)

= inf
t>0

tβ +
1

4t
E
[(

(X + 2t)2 − 4t2
)
I{X+2t>0}

]
. (60)

For the risk measure, we use an equivalent divergence function and its convex conjugate

ϕ(x) =

{
x2 − 1, x ≥ 0

+∞, x < 0
, ϕ∗(z) =

{
z2

4 + 1, z ≥ 0

1, z < 0
= 1 +

z2

4
Iz≥0 . (61)

Plugging in the convex conjugate, the risk measure is given by

Rϕ,β(X) = inf
C∈R,t>0

C + tβ + tE

[(
1

4

(
X − C
t

)2

I{X−Ct ≥0}
+ 1

)]
(62)

= min
C∈R

inf
t>0

C + t(β + 1) +
1

4t
E
[
(X − C)

2
I{X−C>0}

]
(63)

= min
C∈R

C +

√
(β + 1)E

[
(X − C)

2
I{X−C>0}

]
. (64)

The optimal t∗ is

√
E[(X−C)2I{X−C>0}]

4(β+1) . By Krokhmal (2007), the optimal C∗ is the second-order quantile.

F. Proof of Equivalence
The equivalence between 15 and 20 is proved as follows. By Theorem 2.10, Problem 15 is equivalent to

min
f
Dϕ,β(Z̄f ), calculate C = S(Z̄f ) . (65)

The equivalence to Problem 20 follows from the dual representation of Dϕ,β(X) in 3.
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G. Statistic and Risk Identifier
G.1. Proof of Proposition I.1

Lemma G.1 (Convexity). Let f : R× (0,∞)→ R be such that

f(C, t) = C + tβ + E
[
tϕ∗
(X − C

t

)]
. (66)

Then f(C, t) is convex in (C, t) and

∂(C,t)(f(C, t)) = (1, β)> + E
[
∂(C,t)

(
tϕ∗

(
X − C
t

))]
, (67)

where ∂(C,t)(f(C, t)) denotes a subdifferential of a convex function f(C, t) with respect to the vector (C, t)> ∈ R× (0,∞),
cf. Definition 23.1 in Rockafellar (1970). The “+” sign in 67 is understood in the sense of the Minkowski sum.

Proof. To prove the first part of the lemma it suffices to establish that the function

ψ(z, t) = tϕ∗(z/t), z ∈ R, t ∈ (0,∞)

is convex. This follows from the fact that the function h(z, t) = tg(z/t), z ∈ Rn, t > 0 is convex if and only if g is convex.
Such function h is called a perspective function, cf. Lemma 2.1 in Dacorogna & Maréchal (2008). Hence, since ϕ∗ is
convex then ψ is also convex as a perspective function. Therefore, f(C, t) is convex since convexity is preserved under
linear transformations.

The second part of the lemma follows from (?)Theorem 23]rockafellar1977. Indeed, since the function under the expectation
in 66 is convex, hence measurable (cf. Rockafellar & Wets (1998)), the subdifferential can be interchanged with the
expectation.

Proposition G.2 (Proposition I.1). Let (Rϕ,β ,Dϕ,β ,Vϕ,β , Eϕ,β) be a primal extended ϕ-divergence quadrangle. Statistic
in this quadrangle equals

Sϕ,β(X) =

{
C ∈ R : 0 ∈ (1, β)> + E

[
∂(C,t)

(
tϕ∗

(
X − C
t

))]}
. (68)

Proof. Definition 2.8 implies that the statistic is equal to

Sϕ,β(X) = argmin
C∈R

{
C + Vϕ,β(X − C)

}
= argmin

C∈R
inf
t>0

f(C, t) ,
(69)

where f(C, t) = C + tβ + E
[
tϕ∗
(
X−C
t

)]
. To find the statistic one has to minimize f(C, t) with respect to (C, t). Since

f(C, t) is convex, cf. Lemma G.1, then it reaches the minimum if and only if

0 ∈ ∂(C,t)f(C, t) . (70)

Therefore, cf. Lemma G.1, condition 70 is equivalent to

0 ∈ (1, β)> + E
[
∂(C,t)

(
tϕ∗

(
X − C
t

))]
. (71)

If for an extended divergence function ϕ(x), the conjugate ϕ∗(z) is positive homogeneous, then the expression 12 for
statistic is reduced to

Sϕ,β(X) = argmin
C∈R

C + E[ϕ∗(X − C)] . (72)
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Risk Quadrangle and Robust Optimization

The Expectation Theorem in (Rockafellar & Uryasev, 2013) in this case implies

Sϕ,β(X) =

{
C ∈ R : E

[
∂−

∂z
ϕ∗(z)

∣∣∣∣
x=X−C

]
≤ 1 ≤ E

[
∂+

∂z
ϕ∗(z)

∣∣∣∣
x=X−C

]}
, (73)

where
∂−

∂z
,
∂+

∂z
denote left and right derivatives with respect to z ∈ R. As a finite convex homogeneous function, ϕ∗(z) is

the support function of a closed interval (Corollary 13.2.2, Rockafellar (1970)). The convex conjugate of a support function
is an indicator function. Since ϕ(1) = 0, it must be in the form of the ϕ(x) in Example D.2.

In fact, Dommel & Pichler (2020) provided optimality conditions for (C, t) in 8. For differentiable function ϕ∗, they
developed a set of equations known as the characterizing equations for optimal (C, t). Further, we provide a system of
equations similar to the characterizing equations developed by Dommel & Pichler (2020).

Definition G.3 (characterizing equations). Let ϕ∗(z) ∈ C1(R). Characterizing system of equations is defined by:

E

[
dϕ∗(z)

dz

∣∣∣∣
z=X−C

t

]
= 1 ,

β + E
[
ϕ∗
(
X − C
t

)]
− 1

t
E

[
(X − C)

dϕ∗(z)

dz

∣∣∣∣
z=X−C

t

]
= 0 .

(74)

The following Corollary G.4 provides an expression for the statistic Sϕ,β with smooth ϕ∗(z).

Corollary G.4 (Characterization of Sϕ,β : Smooth Case). Let ϕ∗(z) ∈ C1(R), then the statistic equals

Sϕ,β(X) = {C ∈ R : (C, t) is a solution to Characterizing Equations 74 }.

Proof. Replacing the subdifferential in 71 with the gradient∇(C,t) leads to the system of equations 74.

G.2. Proof of Proposition 4.9

Lemma G.5 (Subgradients of expectation, Bauschke & Combettes (2011)). Let (Ω,A, P0) be a probability space and
ψ : R→ R be a proper, lsc, and convex function. Set

ρ = E[ψ(X)]. (75)

Then ρ is proper, convex lsc functional and, for every X ∈ dom(ρ),

∂Xρ(X) = {Q ∈ L2 : Q ∈ ∂ψ(X) P0 − a.s.}. (76)

Proposition G.6 (Proposition 4.9). Denote by C∗ and t∗ the optimal C and t in the primal representation 8 of extended
ϕ-divergence risk measure. The risk identifier of risk measureRϕ,β(X) can be expressed as follows

Q∗(ω) ∈ ∂ϕ∗
(
X(ω)

t∗
− C∗

)
. (77)

Denote by C∗ the optimal C in the primal representation 11 of extended ϕ-divergence risk measure. The risk identifier of
extended ϕ-divergence error measure Eϕ,β(X) can be expressed as follows

Q∗(ω) ∈ ∂ϕ∗
(
X(ω)

t∗

)
. (78)

Proof. It is known that the risk identifier is the subgradient of the risk function (see, for example, Proposition 8.36 in Royset
& Wets (2022)). Therefore, 77 is obtained by taking the subdifferential of 8 following Lemma G.5. The expression 78 is
obtained analogously.
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Note that the envelope Qϕ,β of error does not have the constraint EQ = 1. However, when we minimize Eϕ,β(X −C) with
respect to C to get statistic Sϕ,β(X), the constraint EQ = 1 is satisfied automatically. This can be seen from the necessary
condition for saddle point (C∗, Q∗)

∂

∂C
E[(X − C)(Q∗ − 1)]

∣∣∣
C=C∗

= 0. (79)

H. Proof of Proposition 7.1
Proposition H.1 (Proposition 7.1). Let ϕ(x) be a divergence function. ϕ-divergence can be recovered from the elements in
ϕ-divergence quadrangle by

Dϕ(P ||P0) = sup
X∈L2,β>0

{E[XQ]−Rϕ,β (X)− β} (80)

= sup
X∈L2,β>0

{E[X(Q− 1)]−Dϕ,β (X)− β} (81)

= sup
X∈L2,β>0,C

{E[XQ]− Vϕ,β (X − C) + C − β} (82)

= sup
X∈L2,β>0,C

{E[X(Q− 1)]− Eϕ,β (X − C)− β}. (83)

Proof. From ??, we have by convex conjugate

Rtϕ (X) = inf
β>0
{tβ +Rϕ,β (X)}. (84)

84 is a generalization of Proposition 3.1 in Föllmer & Knispel (2011).

Next, we have

E[ϕ(Q)] = sup
X∈L2

{E[XQ]−Rϕ(X)} (85)

= sup
X∈L2

{E[XQ]− inf
β>0
{β +Rϕ,β (X)}} (86)

= sup
X∈L2,β>0

{E[XQ]−Rϕ,β (X)− β}, (87)

where 85 is by ??, 86 is by plugging in 84 to ??.

Since ϕ(x) is a divergence function, E[ϕ(Q)] = Dϕ(P ||P0). The rest of the proof is by quadrangle relations.

I. Characterization of Statistics
Proposition I.1 (Characterization of Sϕ,β). Let (Rϕ,β ,Dϕ,β ,Vϕ,β , Eϕ,β) be a primal extended ϕ-divergence quadrangle.
Statistic in this quadrangle equals

Sϕ,β(X) =

{
C ∈ R : 0 ∈ (1, β)> + E

[
∂(C,t)

(
tϕ∗

(
X − C
t

))]}
.

J. Details of Case Study
Risk Identifier We first solve the problems 14, 13 and 15 in primal representations. With the optimal solutions, we obtain
the random variable X in three problems, respectively. By plugging in ϕ∗(z) = z2/2 + 1 to Proposition 4.9, we obtain the
risk identifier Q∗ = (X/t∗ − C∗)2/2 + 1.

Data The data for portfolio optimization and regression are the same: it is generated by drawing 1,000 samples from a
bivariate zero-mean Gaussian distribution. The variance of both random variables is 1, while the covariance is 0.5. The data
for classification is generated by two normal distributions with different mean and different covariance matrix. The first has
mean (−0.3, 0), while the second has mean (0.3, 0). For both distributions, the variance is 0.05 while the covariance is 0.02.
Each class has 100 samples. The value of the risk identifier Q∗ is represented through the intensity of color. Darker points
have larger values.
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Portfolio Optimization We illustrate the idea with Markowitz portfolio optimization from the mean quadrangle (Example
5.2). The data points (x, y) represents the loss (negative return) of two assets. We choose β = 100. The optimal portfolio
weight is (0.4999038, 0.5000962). The value of the risk identifier Q∗ is represented through the intensity of color in Figure
1b. Darker color corresponds to a larger value. Larger values are assigned to data points incurring larger loss, i.e., points
whose both coordinates are larger.

Classification We illustrate the idea with large margin distribution machine from the mean quadrangle (Example 5.2). We
choose β = 0.01 and γ(w) = ||w||22. The optimal decision line is y = −28.826x− 0.486. The circles represent samples
with label 1, while the diamonds represent samples with label −1. The value of the risk identifier Q∗ is represented through
the intensity of color in Figure 1a. A darker spot corresponds to a larger value. Larger values are assigned to data points
incurring larger loss (negative margin), i.e., points that are correctly classified and have larger perpendicular distance from
the optimal decision line.

Regression We illustrate the idea with least squares regression from the mean quadrangle (Example 5.2). We choose
β = 100. The regression line is y = 0.495x−0.0127. The value of the risk identifier Q∗ is represented through the intensity
of color in Figure ??. A darker spot corresponds to a larger value. Larger values are assigned to data points incurring larger
loss, i.e., data points further above the regression line.
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