Published as a conference paper at ICLR 2025

DECISION TREE INDUCTION THROUGH LLMS VIA
SEMANTICALLY-AWARE EVOLUTION

Tennison Liu, Nicolas Huynh* & Mihaela van der Schaar
DAMTP, University of Cambridge

Cambridge, UK

{t1l522,nvth2,mv472}@cam.ac.uk

ABSTRACT

Decision trees are a crucial class of models offering robust predictive performance
and inherent interpretability across various domains, including healthcare, finance,
and logistics. However, current tree induction methods often face limitations
such as suboptimal solutions from greedy methods or prohibitive computational
costs and limited applicability of exact optimization approaches. To address these
challenges, we propose an evolutionary optimization method for decision tree
induction based on genetic programming (GP). Our key innovation is the integration
of semantic priors and domain-specific knowledge about the search space into the
optimization algorithm. To this end, we introduce LLEGO, a framework that
incorporates semantic priors into genetic search operators through the use of Large
Language Models (LLMs), thereby enhancing search efficiency and targeting
regions of the search space that yield decision trees with superior generalization
performance. This is operationalized through novel genetic operators that work
with structured natural language prompts, effectively utilizing LLMs as conditional
generative models and sources of semantic knowledge. Specifically, we introduce
fitness-guided crossover to exploit high-performing regions, and diversity-guided
mutation for efficient global exploration of the search space. These operators are
controlled by corresponding hyperparameters that enable a more nuanced balance
between exploration and exploitation across the search space. Empirically, we
demonstrate across various benchmarks that LLEGO evolves superior-performing
trees compared to existing tree induction methods, and exhibits significantly more
efficient search performance compared to conventional GP approaches.

1 INTRODUCTION

Decision trees are fundamental models, which are widely utilized across various domains, including
finance, healthcare, and bioinformatics (Morgan & Sonquist, 1963; Che et al., 2011; Soleimanian
et al., 2012). These hierarchical models recursively partition the feature space, creating a tree-like
structure where internal nodes represent decision rules based on feature values, and leaf nodes
correspond to class labels or predicted values. Decision trees are particularly appealing as they
offer both predictive accuracy and interpretability, which have stood the test of time against recently
developed black-box predictive models (Borisov et al., 2022; Grinsztajn et al., 2022).

However, decision tree induction represents a challenging optimization problem. Finding the optimal
tree given a training dataset is NP-complete (Laurent & Rivest, 1976), often necessitating the use
of heuristic algorithms (Quinlan, 1986). While computationally efficient, these heuristics yield
approximate, locally greedy solutions that sacrifice some degree of performance and global optimality
(Rokach & Maimon, 2005). Exact optimization methods have been developed to address these
limitations, but they face their own constraints. Their computational complexity typically scales
exponentially with problem size, limiting their applicability to restricted search spaces, and specific
problem types (e.g., binary classification) (Verwer & Zhang, 2019; Lin et al., 2020).

Genetic programming (GP) is a class of evolutionary algorithms which offers a promising middle
ground for decision tree induction, balancing computational efficiency with global optimization

*Equal contributions.



Published as a conference paper at ICLR 2025

Pop. of decision Crossover (LLEGOxo) Section

trees PO (D) Sample v parents: S, = {(t;. /(1) | € ¥}

%

Oxo

@ Compute desired fitness: f* via S, « offspring Section
Fit & Eval

@ Sample offspring: 0; ~ LLMxo (- | Sk, C, f*)

' ‘ . :.V N \ )
dataset: Divain . Mutation (LLEGOpyT) Section "

9,
L
@ Sample v parents: Sy = {(¢;, f(¢;) | j € [V]}
Pt — PO U Oxo U Orur
@ Sample offspring/logprob: ((3;,5(3;)) ~ LLMyu (- | Sk, C) PO SEL(PUHD, N

feature name:

problem

Omur
offspring

@ Weighted offspring sampling: via s(6;), 7

NS

Update population

Figure 1: LLEGO Overview. In each generation g € [G], a population of trees P(9) is evolved
through crossover Oyyr = LLEGOx0 (P9, C; «) and mutation Oyuyr = LLEGOMuT(PW), C; 7).
Subsequently, the offsprings Oxo U Opur are evaluated for fitness on Dy,in; and selection preserves
the top-N trees, PTD) « SEL(PUT) | N), where P19) = P) U Oxo U Oyur.

of the tree structure (Koza, 1994a;b). Inspired by principles of evolution, GP algorithms evolve a
population of candidate solutions through iterative application of genetic operators such as crossover
and mutation. They are particularly well-suited for optimizing combinatorial problems with discrete,
variable-length search spaces, as is the case in decision tree induction (Koza, 1990; Tanigawa & Zhao,
2000; Kuo et al., 2007; Lahovnik, 2024). While much research in GP has focused on designing genetic
operators to enhance search efficiency, these approaches face inherent limitations that constrain their
exploratory effectiveness. Key challenges include the difficulty of incorporating semantic information
into genetic operations—resulting in primarily structural, unguided mechanisms—and the narrow
operational contexts that limit global exploration.

Key considerations. The key insight of this work is to employ large language models (LLMs)
to design semantically-aware genetic operators for decision tree induction. LLMs are powerful
generative models capable of learning distributions over discrete and variable-length sequences given
only few-shot examples (Radford et al., 2019; Brown et al., 2020). We utilize LLMs as the foundation
for crossover and mutation operators, leveraging their encoded semantic priors to create meaningful
distributions over potential offspring. Building on LLMs, our approach introduces fitness-guided
crossover and diversity-guided mutation operators within a GP framework, enabling efficient search
space exploration that contrasts with the structural focus and unguided nature of conventional genetic
operators. By representing decision trees in natural language, we also enable higher-arity genetic
operations, capable of operating over multiple trees simultaneously.

Contributions. Conceptually, we propose a novel GP algorithm that leverages semantic priors
contained in LLMs to enhance search efficiency and performance on challenging decision tree
induction problems. Technically, we introduce LLEGO (LLM-Enhanced Genetic Operators), which
uses LLMs to define two key search operators: fitness-guided crossover that steers the search towards
promising regions using a target fitness; and diversity-guided mutation that employs log-probabilities
to evolve solutions in under-explored search regions. Empirically, on a wide range of classification
and regression tabular benchmarks, we demonstrate that LLEGO significantly improves search
efficiency and consistently evolves trees with superior generalization performance.

2 PRELIMINARIES

2.1 DECISION TREE INDUCTION

Decision tree induction is the problem of learning a decision tree ¢ € T from a training dataset
Dirain = {(2:,9:)}7,, where z; € X C R? denotes a d-dimensional input and y; € ) denotes
the output. Decision trees recursively partition the input space X into hierarchical, disjoint regions.
In this work, we focus on binary decision trees, where splits partition regions in two subregions.
These regions define a set of leaf nodes R = {Ry, Ry, ..., R}, where each leaf R; is assigned a
constant ¢; (Hastie et al., 2009). This in turn yields a predictor ¢ : X — ) which is defined by

t(x) = Z{;l ¢I(x € Ry), where I(-) is the indicator function. Constructing decision trees from a



Published as a conference paper at ICLR 2025

training dataset is a challenging optimization problem, since full tree optimization has been proven to
be an NP-complete problem (Laurent & Rivest, 1976). Greedy algorithms like CART (Breiman et al.,
1984) build trees top-down, offering computational efficiency but sacrifices performance by only
finding locally optimal trees. By comparison, exact optimization methods (Lin et al., 2020) provide
theoretical guarantees of global optimality, but scale exponentially with problem size, and apply only
to classification tasks and objective functions of specific forms.

2.2  GENETIC PROGRAMMING

Genetic Programming (GP) is a class of evolutionary algorithms for searching combinatorial spaces
and offers a flexible middle ground between greedy and exact optimization methods. The fundamental
objective of GP is to evolve trees ¢ € T to maximize a fitness function f : 7 — R, where
T is the combinatorial search space (Koza, 1994a). In GP, each individual is described by the
tuple (¢, f(t)) containing a tree and its fitness. We denote this population of N individuals P =
{(t1, f(t1)), (t2, f(£2)), ..., (tw, f(tn))}, with N € N. The algorithm evolves the population
across G € N generations. In each generation g € [G], the population P9 undergoes three key
genetic operations: selection and two variation operators (crossover and mutation).

Selection. The selection mechanism preserves performant trees across generations, placing selection
pressure on sufficient exploitation and ensures convergence (Goldberg, 1989). The N-ary selection
operator is defined as SEL : TV x RN — A(T™), where A(T?) represents the probability simplex
over 7. Often, selection operators implicitly create this probability distribution over P, wherein
trees with higher fitness are more likely to be preserved.

Crossover. The crossover operator combines the genetic material of multiple candidate trees to
generate performant offspring (Langdon & Poli, 2013). Crossover is an v-ary operator, denoted
X0 : TY — A(T), taking in v parents to generate an offspring o € T, sampled as, 0 ~ pxo(- | S),
where S is usually a pair of parents (v = 2) sampled uniformly from the population. X0 induces the
offspring distribution pxo, which can be interpreted as a uniform distribution over all trees producible
by the crossover operator. For example, a popular version of XO is subtree crossover, where randomly
selected subtrees from two parent trees are swapped (Koza, 1994a).

Mutation. The mutation operator promotes global exploration, thus mitigating premature convergence
to local optima (Goldberg, 1989). An v-ary mutation operator MUT : 7% — A(7T) performs random
modifications to parents to generate an offspring o ~ pyyr (- | §). Traditionally, mutation operates on
a single parent tree (v = 1) and pyy is uniform over the set of trees that can be generated through a
mutation operator (e.g., random insertion or replacement of nodes).

2.3 DESIDERATA

We can conceptualize a variation operator, v, as implicitly defining a sampling distribution p, (o | S)
that depends on the parent trees S and its rules. More formally, p,(0|S) = [ p,(0|S, g9)p.(g|S) dg,
where p, (g | S) represents the prior distribution of applying a specific genetic operation (e.g., pairs
of nodes when v corresponds to subtree crossover), and p, (o | S, g) is the likelihood of an offspring
given parents and genetic operation (generally, 1 if producible, and 0 otherwise). As such, genetic
operators can be viewed as sampling from a posterior distribution over offspring, where the prior is
encoded through the operator’s design. While these variation mechanisms are core to GP, they present
notable limitations that negatively impact search performance, leading to the following desiderata:

* Semantic priors: Conventional variation operators encode inductive biases on structural properties,
crucially lacking any considerations for tree semantics, i.e., p, (¢|S) is independent of the semantics.
This can be problematic, as small changes to the structure can lead to disruptive changes to the
functional behavior (an issue known as rough genotype-phenotype mapping Rothlauf et al. (2011)).
This can be improved through integration of problem semantics into the prior p, (g | S,C), where C
represents the semantics, leading to the sampling distribution p, (o | S, C).

* Guided variations: Generally, conventional variation mechanisms place an uninformative distri-
bution over any genetic operations. For example, they might consider any structural operations
as equally likely, i.e., p(¢g | S) is uniform. This lack of search guidance can lead to inefficient
exploration and slower convergence, which can be improved with more informative priors that



Published as a conference paper at ICLR 2025

prioritize offsprings that are more semantically meaningful, or likely to improve fitness and cover
unexplored regions of the search space.

* Broader context: The designs of existing operators often constrain the arity of allowed operations
(e.g., it is difficult to define valid operators on > 2 trees), restricting offsprings to local exploration.
In contrast, including more parents in genetic operations can improve global exploration.

A line of work has aimed to address some of these desiderata. Notably, previous works in semantic
GP have attempted to address the first two limitations with variation operators, which consider the
semantics of solutions (Krawiec & Lichocki, 2009; Moraglio et al., 2012; Krawiec & Pawlak, 2013).
In the semantic GP literature, a solution’s semantics typically refers to the functional output of a
solution, i.e., h(t) = [t(z1),t(x2),. .., t(zy)] € R™. In contrast, our work uses the term to describe
domain knowledge about the solution space encoded in the LLM. Additionally, semantic GP is limited
to application-specific definitions of semantics that restrict its broader applicability. Crucially, no
comparable semantically-aware method has been developed for decision tree induction.

3 LLEGO: GENETIC OPERATORS WITH SEMANTIC PRIORS

Designing genetic operators that satisfy the aforementioned desiderata using conventional methods
has proven difficult. In this work, we build on the insight that LLMs are powerful generative models
that can be employed as semantically aware variation operators. Indeed, LLMs possess several
properties that make them appealing (Meyerson et al., 2023; Lehman et al., 2023). Firstly, we utilize
LLMs as a source of semantic prior pr1u(g | S, C), as they contain rich semantic knowledge of the
problem and tree solutions, forming the basis of variation operators (Xie et al., 2021). Secondly,
they are able to reason over and learn from in-context examples to identify high-potential patterns
in candidate trees and produce guided variations towards desired regions. Lastly, their relatively
large context window facilitates utilization of broader context, increasing arity of feasible genetic
operations. Building on this semantic prior, we design genetic operators through mechanisms that
incorporate fitness information and log probabilities of generated offspring, to further improve
exploration and exploitation abilities.

Method overview. At a high level, LLEGO represents trees and frames genetic operations in natural
language. Specifically, each genetic operation is realized through a distinct prompt which contains
parent trees, semantics, and auxiliary information. We introduce fitness-guided crossover LLEGOxo
that performs in-context learning over solutions and their fitness, and generates offspring conditioned
on a desired fitness f*, to steer evolution towards high-performing regions. Additionally, we propose
diversity-guided mutation LLEGOpyrt, which uses the log probabilities of candidate offspring to con-
struct a weighted sampling distribution, prioritizing efficient exploration that cover unexplored search
regions. We note that the level of fitness- or diversity-guidance is intentionally controllable through
two hyperparameters, o and 7 that correspond to different degrees of exploitation vs. exploration. An
overview of our method is visualized in Figure

3.1 LLEGO PROMPT DESIGN

The genetic operations are performed through natural language queries to the LLM. While the specific
structure of each query differs, they are constructed from three essential components. For an extended
description of prompts and examples, please refer to Appendix

1. Task context. Denoted as C and encapsulates the semantic description of the problem, including se-
mantic and statistical descriptions of the input space features X, output label ), and characteristics
of the overall dataset, e.g., number of samples or features.

2. Parent solutions. This contains the solution representation and fitness of each parent, which are
serialized into natural language and provided as few-shot examples in each genetic operation.

3. Task-specific instructions. For each genetic operator, we include task-specific instructions on
offspring generation and guidelines on the format of the response.

3.2 Fitness-GUIDED CROSSOVER OPERATOR

Traditional crossover operators are not semantically aware, as they randomly select subtrees from
parents to be recombined into an offspring. This ignores patterns in the parents, introducing the



Published as a conference paper at ICLR 2025

possibility for performant substructures to be destroyed through random perturbations. Additionally,
they do not make use of parent fitness explicitly to guide offspring generation (i.e., no fitness
guidance), foregoing any informative signals on correlations between fitness and solution structure.
We seek to address these factors in our fitness-guided crossover operator. More specifically, the
crossover operation includes three steps: (/) sampling a subset of parents, weighted by parent fitness,
(2) compute desired fitness f* based on parent fitness, (3) constructing the prompt and querying the
LLM to generate offsprings, conditioning on f* (see Figure 2).

Parent sampling. Each crossover operation is conditioned on parents, which are sampled from
the current population. We utilize a roulette-wheel mechanism (Blickle & Thiele, 1996) to favour
existing solutions with high fitness. Specifically, we aim to sample a set of v € N parents for each
crossover operation, where the sampling weights 6 = (61, ..., 6y) are proportional to the solutions’
fitness. These weights define a categorical distribution Cat y(6), based on which we sample parents
without replacement. Intuitively, solutions with higher fitness are more likely to be involved in genetic
operations. We use Sy, to represent the set of parents sampled for operation k € [k], where k € N is
the number of crossover operations performed.

Crossover through fitness guidance. To perform Crossaver (LLEGOxo)
crossover, we utilize both the tree structures ¢; and the Lo ), ‘ '
fitness metric f(¢;) to create few-shot prompts. For

each of the sampled parents in S, we serialize the tree . e LLtxo (-] $,C, f*)
into natural language as a nested dictionary, which we - s
denote as 7!, where each intermediary key represents P [ I o) ~ Liixo

the splitting condition (feature name and splitting value) e o

and the leaf item represents the value of the leaf node.
Please refer to Figure 10 for more description of this
representation. Each example is then constructed as
“fitness: f(t;), tree: t"” and we use S™ to represent
the serialized few-shot prompt. We further condition
the generation by specifying a desired fitness f* in the
prompt to steer the generation towards high-fitness re-
gions. This steering is controlled by a hyperparameter «, where f* = fiax + @(fmax — fmin),
with fiax and fii, the best and worst fitness in S respectively. Intuitively, f* is defined relative to
the best parent fitness, with the improvement proportional to the observed variability. A positive o
defines f* to improve over the best fitness in the parent set, whereas —1 < « < 0 results in a more
conservative target fitness that is within the observed fitness range.

S =1

Figure 2: LLEGOx(. In each operation, the
crossover operator (/) samples a set of par-
ents S weighted by their fitness, (2) com-
putes the desired fitness f* using S and «,
and (3) samples offspring via the LLM.

We generate offsprings as 0; ~ LLMxo(- | S™,C, f*), by sampling from an LLM conditioned on the
parents S™, the task context C, and target fitness f* controlled by o.. We write the complete crossover
operation as Oxo , = LLEGOXO(P(Q) ,C; o), where Oxo , 1s the set of offspring generated from the
operation k € [k]. a controls the level of extrapolation, and we systematically investigate its effect in
Section 5.2. By framing crossover using natural language, our crossover operator naturally allows for
an arity v strictly than 2, by including additional parents as in-context examples through S™.

3.3 Diversity-GUIDED MUTATION OPERATOR

On the other side of the coin is the mutation operator, where the objective is to efficiently traverse
under-explored areas in the search space to improve diversity and escape local minima. Traditional
mutation operators can be viewed as inducing a uniform distribution over the space of solutions one
random mutation away from the parent. However, this does not consider whether such mutations are
semantically meaningful. To contextualize this, imagine the space one mutation away from a decision
tree; many of these mutations are highly unlikely to be interesting or optimal given some degree of
domain knowledge, resulting in inefficient exploration. In this setting, our mutation operator uses its
semantic prior to effectively guide exploration, enabling more efficient diversity-driven exploration.

Parent sampling. As before, each mutation operation is conditioned on a set S of v parents. However,
whereas for crossover, parents are sampled based on their fitness, for mutation, parents are randomly
sampled from the population to increase the diversity of S. Specifically, S = {(t;, f(¢;)) | j €
[V],t; ~ Uniformy(P9)}, where each solution has uniform probability of being selected as a
parent. Future works should consider more advanced sampling schemes to improve parent diversity.



Published as a conference paper at ICLR 2025

Mutation with diversity guidance. To perform mu- Mutation(LLEGOMuT)

. . N )
tation, we only include the tree structure ¢; to create O (67.5(6;)) ~ LLiyur(- | 5.C)
few-shot prompts: each parent is serialized as “tree: r g ;

17, to create S". Subsequently, we generate \’ (where b * ‘ = s

X' > ) candidate offsprings 6;, and track the nega- ., e

. s . . T 6

tive log probabilities of the candidates obtained from &= | I o~ a0

the LLM, represented s(6,) = —p(6; | S). Intuitively,
5(0;) reflects the likelihood of the candidate offspring
given the set of parents, with smaller values indicating  Fjgure 3: LLEGOpyt. In each operation,
that the candidate offspring has low probability under the mutation operator: (/) samples a set
the current population distribution and hence that its A
inclusion can introduce more diversity at the population
level. We provide further justification for the use of log ¢ logprobs, with temperature 7 controlling
probabilities in Section 5.2 and Appendix D.4, demon- diversity, and (3) sample offspring via this
strating their correlation with functional and structural weighted distribution Cat ().

distances between parent and offspring trees.

of \' candidate offsprings O, (2) computes
sampling weights, 6, inversely proportional

As such, the candidate sampling step is represented as (65, $(6;)) ~ LLMyur(-|S™,C). Given this set
of X' candidates, we select A offspring based on their log probabilities, i.e., Omur = {(0;, f(0;)|j €
[\, 0; ~ Cat(0)}, where 0 = (01,...,0\) and 0; = %. Here, 7 is the sampling
i= Xp(s(0j T
temperature, where larger values of 7 > 1 results in a more uniform distribution over the candidate
offspring, and lower values of 0 < 7 < 1 would put more weight on candidates with lower likelihood.
As such, we use 7 and the log probabilities to guide the sampling of offspring with controllable
levels of diversity. In Section 5.2, we empirically investigate the effect of 7 on offspring diversity. In

summary, we define the k-th mutation operation as Omur,x = LLEGOMuT(PY),C; 7).

3.4 END-TO-END ALGORITHM

Having detailed our LLM-based genetic operators, we now put together the end-to-end GP algorithm.
The search is initialized with a set of N solutions, P(®). In each generation, we sample IV crossover

offspring, represented as (9%8, and mutation offsprings, represented as (’)]E,?I)JT. This is performed
through x genetic operations, with each operation involving v parents, and generating A offsprings.
The fitness of each solution is then calculated against the training set Dy,in. For selection, we
consider the set of candidates as the union of the solutions from the previous generation and the newly

generated offsprings, i.e. P = P U O)((%) U (’)Is,fl)jT. We use the elitism selection to select the
top-N unique solutions from the candidate population to preserve the highest quality solutions across
generations (Goldberg, 1989). Here, top-NN is selected based on training set fitness. More formally,
we denote this process as P9+1) SEL(75(9+1); N). After G generations of evolution, we select
the solution with the highest validation fitness as the final solution.

4 RELATED WORKS

Our work relates to multiple strands of research, which we summarize in brief below. We provide an
extended literature survey in Appendix

Tree induction algorithms. Existing algorithms for decision tree induction can be broadly categorized
into three main classes: greedy, globally optimal, and GP algorithms. Greedy algorithms recursively
construct a tree in a top-down approach, heuristically making locally optimal splits at each node
(Breiman et al., 1984; Quinlan, 1986; 1993). While computationally efficient, these methods do not
pursue global optimality. Recent works have proposed exact combinatorial methods to construct
optimal decision trees (Verwer & Zhang, 2019; Hu et al., 2019; Lin et al., 2020; Aglin et al., 2020).
These methods face two key limitations: exponential complexity scaling with tree depth and number
of splits, and restricted applicability to specific objectives (primarily classification problems).

Genetic programming. GP approaches present a middle ground between search performance and
computational efficiency (Koza, 1990; Tanigawa & Zhao, 2000; Lahovnik, 2024). GP builds on
genetic operators that operate over structure (genotype) but can have disruptive effects because of the
complex genotype-phenotype mapping (Rothlauf et al., 2011). This observation has motivated works



Published as a conference paper at ICLR 2025

Table 1: Performance on classification tasks. Balanced accuracy (1) on 7 datasets, reporting
meanyq) and emboldening best results. We also report average rank () for comparing baselines.

Method | Breast Compas Credit Diabetes Heart Liver Vehicle ][ Rank (])
depth = 3

CART 0.941(0_009) 0.655(0_012) 0.668(0_021) 0.710(0_029) 0-734(0.068) 04646(0_025) 04903((),021) 249(0.83)

C4.5 0.938(0.012) 0.650(0.009) 0.5790.030) 0.6870.045) 0.704(0.019) 0.5690.047) 0.857(0.039) 4.9(1.07)

D185 | 0.947.00s) 0.6650.005) 0590005 0-703(002r)  0-688(0.021)  0-598(0.031) 09320000 || 3-0(173)
GOSDT 0.93500.005)  0.641(0.004y 0.681(g.000) 0.698(0.012)  0.651(0.086)  0.656(0.018)  0.852(0.047) 4.4(3.15)
GATREE | 0.942(909)  0.647(0.005)  0.648(0.045)  0.681(0.027)  0.669(0.031)  0.626(0.037)  0.922(¢.022) 4.31.11
LLEGO 0.946(9.011) 0.652(9.004) 0.6790.007) 0.713(0.015) 0.736(0.024) 0.672(0.019) 0.937(0.017) || 1.6(0.79)

depth = 4
CART 0.945([]_010) 0.660(0_011) 0.675(0_019) 0-704(0.026) 0.713(0_059) 0.632(0_063) 0.925(01)20) 2.9(0_90)
Cc4.5 0.9420.013)  0.660¢0.006)  0.622(0.043)  0.6990.024)  0.714(0.032)  0.585(0.046)  0.921(0.011) 3.6(1.13)
DL85 0.939(0.012) 0.6610.004) 0.576(0.017) 0.671(0.020) 0.7060.058) 0.561(0.019) 0.898(0.065) 4.71 50

GOSDT | 0.938000m) 0.641(00a) 0.680(0002) 0.7010011) 0.677(0.008)  0.660(0.016)  0-885(0.019) | 4-3(1.89)
GATREE | 0.941(000s)  0.650(0.00m)  0.658(0.013  0-675(0.035)  0.-676(0.005)  0.633(0.04m)  0.895(0.033) | 4-6(0.08)
LIEGO | 0.9510.00r) 0.663(0.005) 0.684(0.011) 0.72L0.017) 0.75L0.042) 0.6760021) 0.929(0.015) || 1.0(0.00)

on semantic GP (Krawiec & Lichocki, 2009; Moraglio et al., 2012; Krawiec & Pawlak, 2013), aiming
to produce offspring that inherit semantics (phenotype) from parents. However, these approaches are
highly domain-specific, and have not extended to tree induction, which is the focus of our work.

LLMs and optimization. Recent studies have explored LLMs for optimization tasks, with some
works employing LLMs as variation operators (Meyerson et al., 2023). Examples of applications
include code evolution (Lehman et al., 2023; Nasir et al., 2024; Brownlee et al., 2023), Bayesian
Optimization (Liu et al., 2024), and prompt optimization (Fernando et al., 2024; Guo et al., 2024),
where unguided variations are sampled from LLMs. In contrast, LLEGO generates guided variations
by considering search dynamics at the population level, modulating fitness and diversity through
hyperparameters « and 7, while exploiting in-context learning with parent solutions.

5 EXPERIMENTS

Benchmark datasets. We empirically evaluate LLEGO’s ability to find performant decision trees
for 12 open-source tabular datasets from OpenML curated benchmarks (Vanschoren et al., 2014),
including 7 classification and 5 regression datasets. These datasets were selected based on the number
of features, samples and the presence of semantically meaningful feature names and descriptions. We
provide further details on this selection of datasets and preprocessing in Appendix

Baselines. We compare LLEGO against a comprehensive set of competitive decision tree induction
methods across major categories: greedy induction (CART (Breiman, 2017) and C4.5 (Quinlan,
1993)), sparse optimal tree induction (GOSDT (Lin et al., 2020) and DL8.5 (Aglin et al., 2020)),
and a GP approach using conventional genetic operators (GATree (Lahovnik, 2024), which is an
implementation of GP for decision tree induction in Python). More details on these baselines, their
implementation, hyperparameters, and experimental details are given in Appendices and C.3. For
GP-based methods (LLEGO, GATree), we initialize the population with CART models bootstrapped
on 25% of the training data. We report results using G = 25, N = 25, and we use « = 0.1, 7 = 10
and v = 4 as the hyperparameters for the variation operators of LLEGO.

Evaluation. For classification tasks, we use balanced accuracy (ACC), and for regression tasks, mean
squared error (MSE), computed on a held-out test dataset D,.;. Each metric is averaged over 5 runs
with different random seeds, due to different dataset splits, and we present these averages with their
standard deviations. For LLEGO, we use gpt—3.5-turbo version 0301 as the underlying LLM.
For a fair comparison, each method is allowed 10 minutes of wall clock time per seeded run, which
includes time spent on hyperparameter tuning.

5.1 LLEGO-EVOLVED TREES ACHIEVE SUPERIOR GENERALIZATION PERFORMANCE

We first compare the performance of the complete LLEGO algorithm against baselines for decision
tree induction. We report in Table | and Table 2 the test performance on classification and regression
datasets, respectively, for maximum tree depths of 3 and 4. For regression, we report the results
for CART and GATree since other baselines cannot optimize regression objectives. The results
demonstrate that LLEGO outperforms baselines comprehensively. We observe that this performance
advantage becomes more pronounced in the space of trees with depth 4, which is intuitive since



Published as a conference paper at ICLR 2025

Table 2: Performance on regression tasks. MSE (|) ,,  MedianPop Fitness - Median Pop Diversity
across 5 regression datasets, best results emboldened. e I S
0.9
0.30F
Method | Abalone Cars Chol ol Wage Wine

depth = 3 ”c/ 020F
CART 05910027y  0.250(0.008)  1.5000.244) 1.036(0146) 0.811(0.009) ook

GATREE | 0.595(0.044) 0.198(0.039)  1.427(0.187) 1.150(0.149) 0.825(9.016)

LLEGO | 0.584(0.030) 0-2000.037) 1.324(0.139) L.045(0.149)  0-814(9.010) R T T T (RS R
. depth =r:l . Generations (G)

CART 0.561(0.018)  0.269(0.041) 1.552(0.230) 1.185(0.193)  0.807(0.004) . . .

GATREE | 0.586(0.035)  0.1000020) 13430158 118800168y  0.8470017) Figure 4: Search efficiency. Median fit-

LLEGO | 0.577(0.029) 0-0990.020) 1-322(0.145) 1.067(0.203) _ 0-828(0.026)

ness and diversity across 25 generations.

it represents a substantially larger search space compared to the set of trees with depth 3. In the
more constrained space of trees with depth 3, sparse optimal induction methods such as DL8S and
GOSDT demonstrate increased competitiveness. This suggests that LLEGO’s efficiency gains are
particularly evident when navigating more complex and expansive search spaces. We also compare
in Appendix the generalization gap across all methods. Notably, LLEGO consistently achieves
the lowest generalization gap, with this advantage becoming especially pronounced at depth 4.

The results also underscore the impact of incorporating semantic priors. Indeed, LLEGO consistently
outperforms the GP baseline GATree, which cannot take into account contextual information. Further
analysis in Appendix demonstrates that LLEGO produces superior trees even when compared to
a GATree configuration utilizing substantially larger search budgets. Notably, LLEGO achieves this
superior performance while requiring fewer evaluations, highlighting its efficiency and effectiveness.

Takeaway: LLEGO optimizes decision trees that are superior against a diverse benchmark of methods,
while being more applicable to a wider range of optimization objectives (e.g., regression).

Search efficiency. Having shown the superior generalization performance of decision trees evolved
by LLEGO, we now compare search efficiency between LLEGO and the GP baseline GATree. We
evaluate population dynamics via normalized population fitness and diversity between the two
methods across all classification datasets, when optimizing trees with depth 3. Fitness values (i.e.,
balanced accuracy) were normalized to enable comparison across different seeds and datasets (refer
to Appendix for details). Figure 4 (Left) shows the median population fitness, where LLEGO
demonstrates superior search efficiency, finding fitter individuals more efficiently.

Figure 4 (Right) shows that the populations evolved by LLEGO exhibit decreasing diversity as the
search progresses, whereas GATree maintains roughly the same level of diversity in its population.
This is expected, as LLEGO uses its semantic priors to focus the search on semantically meaningful
regions, which naturally reduces diversity. A similar effect has been observed when employing
semantically aware GP in other domains (Krawiec & Pawlak, 2013). In comparison, GATree, which
is semantically unaware, performs random structural perturbations that maintain a certain level of
diversity in the population. In Appendix D.8, we investigate search efficiency on problems with depth
4 and show search dynamics on individual tasks, observing the same effects at play.

Takeaway: LLEGO leverages its semantic priors for more efficient search convergence, although this
can sacrifice population diversity, requiring this trade-off to be carefully balanced by its operators.

5.2 UNDERSTANDING THE SOURCES OF GAIN

Having demonstrated enhanced search efficiency of LLEGO in 0.7~ \ \
the previous section, we now examine the contributions of its ¢ / ~_ o
operators to this improvement. In what follows, we analyze £ 0.6} o —e— LLEGD
how offspring characteristics are influenced by different values L; ./ GATREE
of the hyperparameters o and 7, which give control over the £ 05f ]
desired solution fitness and population diversity. 04

. 0.
Results. (1) Crossover: We examine the effect of o € é N
{-0.25,-0.1,0.1,0.25} on offspring generation, where o de- = \ —®— LLEGO
termines the target fitness f* that conditions the offspring gen- QQ 0.2 o oATREE
eration. In Figure 5, we visualize the median population fitness I~ \./
and diversity as a function of a.. Offspring fitness improves as 025 010 010 025
« increases from —0.25 to 0.1, but regresses beyond this point o
as the target fitness f* leads to extrapolation in less reliable Figure 5: XO dynamics.



Published as a conference paper at ICLR 2025

regions. Interestingly, the best offspring fitness emerges at o = 0.1, suggesting LLEGOxo s ability to
perform a reasonable degree of extrapolation. Corresponding, diversity decreases with increasing a,
reflecting sampling from progressively smaller search regions. Hence, compared to GATree, LLEGO
produces higher quality offspring but with lower diversity, which is consistent with our findings in
Section

(2) Mutation: We investigate the role of LLEGOpyr in main- 0.46 ¢ ‘
taining diversity by considering a range of 7 € {5,10,25,50}. & | —®~ LLEGO

. : B 044F e GATREE
In Figure 6, we observe that lower values of 7 increases pop- g - 4
qlation inersity, as they prioritize offspripg that have low like- 5 42} ]
lihood given parents. As such, the offspring introduce greater &
diversity at the population level, which complements the dy- & 0-40¢ ‘ ‘ ‘
namics of the crossover operator mentioned above, crucial in 5 10 25 50
balancing exploitation and exploration during search. Results T
for individual datasets can be found in Appendix . Figure 6: MUT dynamics.

5.3 ABLATION STUDY: ALL COMPONENTS CONTRIBUTE TO ENHANCED SEARCH EFFICIENCY

Having demonstrated the superior performance of LLEGO
against existing baselines, we finally scrutinize the contribution
of each algorithmic component to its optimization performance.
Specifically, we aim to investigate the effects of (1) leveraging
the LLM’s semantic prior to evolve solutions, (2) the fitness-
guided crossover and diversity-guided mutation, and (3) the
higher arity of genetic operations. Now, we systematically ab-
late each component: LLEGOy_semantics I€MOVEs any semantic
information from the prompts (see Appendix for detailed
description), which is equivalent to removing C from p(o[S,C);  Figure 7: Ablation study. Compar-
LLEGOno_xo removes the fitness-guided crossover, using only  ing search efficiency of ablations.
the mutation operator during search; LLEGOpq_myt removes
diversity-guided mutation, using only crossover during search; and LLEGO, o restricts the context to
2 parents, akin to traditional genetic operators. We evaluate search efficiency in Figure 7, observing
that best performance is obtained when both operators are used in tandem, likely as they balance
exploration of higher fitness regions (guided by f*) and exploration of less visited regions (guided
by 7). The semantic information leveraged by the operator also improves performance, although
we note that even without it, LLEGOp,_semantics Pe€rforms very competitively, highlighting the strong
few-shot learning capabilities of LLMs. Finally, using binary operators in LLEGO, —5 is suboptimal,
underlining the often overlooked importance of using a wider context in genetic operations. We
provide more fine-grained ablation results in Appendix

0.80

0.70¢ LLEGO

LLEGOno xo
LLEGOno_mut
LLEGOo_semantics 1
LLEGO,—2»

0.60

Median Pop Fitness

15 0 15 20 25
Generations (G)

Takeaway: Our ablation experiment demonstrates that all algorithmic components contribute to the
enhanced optimization performance of LLEGO.

5.4 ADDITIONAL RESULTS.

In the interest of space, we relegated additional investigations to Appendix D. Specifically, we
investigated memorization concerns by evaluating generalization performance on datasets with
removed identifying information and context, as well as testing LLEGO on unseen proprietary
datasets (detailed in Appendix D.2). In Appendix D.3, we investigated LLEGO’s ability to mitigate
negative bias by optimizing fairness-regularized objectives. We also provide additional analyses into
LLEGO’s performance and its individual components.

6 DISCUSSION

In summary, we introduced LLEGO, a novel GP method for decision tree induction that integrates
semantic priors over the search space by using LLMs as variation operators. Our approach leverages
the semantic understanding and domain knowledge of LLMs to evolve decision trees through
crossover and mutation operators, while incorporating fitness and diversity guidance and flexible



Published as a conference paper at ICLR 2025

operation arity. Empirical results across diverse datasets demonstrate LLEGO’s superior optimization
efficiency, yielding high-performing decision trees compared to existing baselines.

Limitations and future works. However, our work is not without its limitations. Performing
inference through LLMs incurs a larger computational footprint than conventional GP algorithms. Our
findings indicate that LLEGO trades off computational requirements for improved search efficiency
and generalization performance, making it particularly appealing in performance-sensitive domains
or problems where evaluation costs exceed search costs. Future works should prioritize reducing
computational requirements while retaining performance, such as through inference acceleration
(Leviathan et al., 2023) and memory-efficient model architectures (Han et al., 2015). Additionally,
while LLEGO can operate effectively without semantic priors, its performance can be further improved
when such knowledge is available. Future works could explore finetuning strategies and prompt
augmentation strategies to incorporate semantic knowledge in specialized domains. We also recognize
that using black-box LLMs could potentially lead to the propagation of negative biases into the
solutions returned by LLEGO—to this end, we presented initial steps to mitigate bias via the design
of objective functions. OQutlook. In the long run, we believe this work illuminates the promise of
employing LLLM capabilities for enhancing efficiency and performance in complex combinatorial
optimization problems beyond decision tree induction.

10



Published as a conference paper at ICLR 2025

ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. In this work, we evaluate both public benchmarks and private datasets. The private datasets
are de-identified and used following the guidance of the respective data providers. We follow
recommendations to use the Azure OpenAl service when using GPT models, where via the agreement
we ensure the medical data is not sent for human review or stored, hence respecting the guidelines
given by the dataset providers.

Reproducibility. We provide all the details on the datasets, the implementation of baselines and the
LLM in Appendix C. Furthermore, we detail the prompts used by the crossover and the mutation
operators in Appendix B. We provide the code to reproduce our results at https://github.
com/nicolashuynh/LLEGO, and https://github.com/tennisonliu/LLEGO.

ACKNOWLEDGMENTS

We thank the anonymous ICLR reviewers, members of the van der Schaar lab, and Andrew Rashbass
for many insightful comments and suggestions. TL would like to thank AstraZeneca for their spon-
sorship and support. NH thanks Illumina for their support. This work was supported by Microsoft’s
Accelerate Foundation Models Academic Research initiative.

REFERENCES
Statlog (Heart). UCI Machine Learning Repository. DOLI: https://doi.org/10.24432/C57303.

Gaél Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3146-3153, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631, 2019.

Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine bias. ProPublica:

https://'www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, May
2016.

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian symposium on neural networks, pp. 173—178. IEEE, 2000.

Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovi¢, et al. Ai
fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM Journal of
Research and Development, 63(4/5):4—1, 2019.

ER Berndt. Determinants of wages from the 1985 current population survey. The practice of
econometrics: classic and contemporary, pp. 193-209, 1991.

Philip Bille. A survey on tree edit distance and related problems. Theoretical computer science, 337
(1-3):217-239, 2005.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Manto-
vani, Jan N. van Rijn, and Joaquin Vanschoren. Openml benchmarking suites. arXiv:1708.03731v2
[stat. ML], 2019.

Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolutionary algorithms.
Evolutionary Computation, 4(4):361-394, 1996.

Marko Bohanec.  Car Evaluation. = UCI Machine Learning Repository, 1997.  DOI:
https://doi.org/10.24432/C5JP48.

! Also available at the wider lab repository ht tps: //github.com/vanderschaarlab/LLEGO.

11


https://github.com/nicolashuynh/LLEGO
https://github.com/nicolashuynh/LLEGO
https://github.com/tennisonliu/LLEGO
https://github.com/vanderschaarlab/LLEGO

Published as a conference paper at ICLR 2025

Vadim Borisov, Tobias Leemann, Kathrin Seler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Leo Breiman. Classification and regression trees. Routledge, 2017.

Leo Breiman, Jerome Friedman, Charles J Stone, and RA Olshen. Classification and Regression
Trees. CRC Press, 1984.

Cliford Broni-Bediako, Yuki Murata, Luiz HB Mormille, and Masayasu Atsumi. Evolutionary nas
with gene expression programming of cellular encoding. In 2020 IEEE symposium series on
computational intelligence (SSCI), pp. 2670-2676. IEEE, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Alexander EI Brownlee, James Callan, Karine Even-Mendoza, Alina Geiger, Carol Hanna, Justyna
Petke, Federica Sarro, and Dominik Sobania. Enhancing genetic improvement mutations using
large language models. In International Symposium on Search Based Software Engineering, pp.
153-159. Springer, 2023.

Dongsheng Che, Qi Liu, Khaled Rasheed, and Xiuping Tao. Decision tree and ensemble learning
algorithms with their applications in bioinformatics. Software tools and algorithms for biological
systems, pp. 191-199, 2011.

Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
Repository, 2009. DOI: https://doi.org/10.24432/C56S3T.

CUTRACT. Cutract. https://prostatecanceruk.org, 2019.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
taschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In Forty-first
International Conference on Machine Learning, 2024.

Sebastian Felix Fischer, Matthias Feurer, and Bernd Bischl. Openml-ctr23—a curated tabular regres-
sion benchmarking suite. In AutoML Conference 2023 (Workshop), 2023.

DE Goldberg. Genetic algorithms in search, optimization, and machine learning, 1989.

Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507-520, 2022.

Alexandre Guillaume, Seugnwon Lee, Yeou-Fang Wang, Hua Zheng, Robert Hovden, Savio Chau, Yu-
Wen Tung, and Richard J Terrile. Deep space network scheduling using evolutionary computational
methods. In 2007 IEEE Aerospace Conference, pp. 1-6. IEEE, 2007.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement learning
by genetic programming. Engineering Applications of Artificial Intelligence, 76:158-169, 2018.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in Neural
Information Processing Systems, 32, 2019.

12



Published as a conference paper at ICLR 2025

Northpointe Inc. Compas risk scales, 2016. URL
https://www.propublica.org/datastore/dataset/
compas—-recidivism-risk-score-data-and-analysis. Accessed:  2023-10-
01.

Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Detrano Robert. Heart Disease. UCI
Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository.
https://archive.ics.uci.edu.

John R Koza. Concept formation and decision tree induction using the genetic programming paradigm.
In International Conference on Parallel Problem Solving from Nature, pp. 124—128. Springer,
1990.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87-112, 1994a.

John R Koza. Genetic programming I1: automatic discovery of reusable programs. MIT press, 1994b.

Krzysztof Krawiec and Pawel Lichocki. Approximating geometric crossover in semantic space. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 987-994,
2009.

Krzysztof Krawiec and Tomasz Pawlak. Approximating geometric crossover by semantic backpropa-
gation. In Proceedings of the 15th annual conference on Genetic and evolutionary computation,
pp. 941-948, 2013.

Chan-Sheng Kuo, Tzung-Pei Hong, and Chuen-Lung Chen. Applying genetic programming technique
in classification trees. Soft Computing, 11:1165-1172, 2007.

Tadej Lahovnik. Gatree — gatree 0.1.4 documentation. https://gatree.readthedocs. 10/
en/latest/, 2024. (Accessed on 05/19/2024).

William B Langdon and Riccardo Poli. Foundations of genetic programming. Springer Science &
Business Media, 2013.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15-17, 1976.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331-366.
Springer, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable
optimal sparse decision trees. In International Conference on Machine Learning, pp. 6150-6160.
PMLR, 2020.

Tennison Liu, Nicolds Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=00xotBmGol.

Vadim Liventsev, Anastasiia Grishina, Aki Harméa, and Leon Moonen. Fully autonomous program-
ming with large language models. In Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1146-1155, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024.

13


https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://gatree.readthedocs.io/en/latest/
https://gatree.readthedocs.io/en/latest/
https://openreview.net/forum?id=OOxotBmGol

Published as a conference paper at ICLR 2025

Sascha Marton, Stefan Liidtke, Christian Bartelt, and Heiner Stuckenschmidt. Gradtree: Learning
axis-aligned decision trees with gradient descent. arXiv preprint arXiv:2305.03515, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and the effects of
noise. Complex systems, 9(3):193-212, 1995.

Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. Geometric semantic genetic pro-
gramming. In Parallel Problem Solving from Nature-PPSN XII: 12th International Conference,
Taormina, Italy, September 1-5, 2012, Proceedings, Part I 12, pp. 21-31. Springer, 2012.

James N Morgan and John A Sonquist. Problems in the analysis of survey data, and a proposal.
Journal of the American statistical association, 58(302):415-434, 1963.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C55CTW.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: Neural architecture search via large language models and quality diversity optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110-1118, 2024.

Mowforth Pete and Barry Shepherd. Statlog (Vehicle Silhouettes). UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/CSHGON.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and Al, 3:202845, 2016.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81-106, 1986.
J Ross Quinlan. C4. 5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

John E Roemer and Alain Trannoy. Equality of opportunity. In Handbook of income distribution,
volume 2, pp. 217-300. Elsevier, 2015.

Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4):476-487,
2005.

Franz Rothlauf et al. Design of modern heuristics: principles and application, volume 8. Springer,
2011.

Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings
of the annual symposium on computer application in medical care, pp. 261. American Medical
Informatics Association, 1988.

Farhad Soleimanian, Peyman Mohammadi, and Parvin Hakimi. Application of decision tree algorithm
for data mining in healthcare operations: a case study. Int J Comput Appl, 52(6):21-26, 2012.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position: Leverage foundational models for black-box optimization. In Forty-first International
Conference on Machine Learning, 2024.

W Nick Street, William H Wolberg, and Olvi L Mangasarian. Nuclear feature extraction for breast
tumor diagnosis. In Biomedical image processing and biomedical visualization, volume 1905, pp.
861-870. SPIE, 1993.

14



Published as a conference paper at ICLR 2025

Colin Sullivan, Mo Tiwari, and Sebastian Thrun. Maptree: Beating “optimal” decision trees with
bayesian decision trees. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 9019-9026, 2024.

Toru Tanigawa and Qiangfu Zhao. A study on efficient generation of decision trees using genetic
programming. In Proceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation, pp. 1047-1052, 2000.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49-60, 2014.

Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret. Using centroidal
voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. /EEE
Transactions on Evolutionary Computation, 22(4):623-630, 2017.

Sahil Verma and Julia Rubin. Fairness definitions explained. In Proceedings of the international
workshop on software fairness, pp. 1-7, 2018.

Sicco Verwer and Yingqgian Zhang. Learning optimal classification trees using a binary linear program
formulation. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp.
1625-1632, 2019.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

David H Wolpert and William G Macready. No free lunch theorems for optimization. [EEE
transactions on evolutionary computation, 1(1):67-82, 1997.

Chih M Wong, Nathaniel M Hawkins, Mark C Petrie, Pardeep S Jhund, Roy S Gardner, Cono A Ariti,
Katrina K Poppe, Nikki Earle, Gillian A Whalley, Iain B Squire, et al. Heart failure in younger
patients: the meta-analysis global group in chronic heart failure (maggic). European heart journal,
35(39):2714-2721, 2014.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
034009.

Haoran Ye, Jiarui Wang, Zhiguang Cao, and Guojie Song. Reevo: Large language models as
hyper-heuristics with reflective evolution. ArXiv, abs/2402.01145, 2024. URL https://api.
semanticscholar.org/CorpusID:267406792.

Huimin Zhao. A multi-objective genetic programming approach to developing pareto optimal decision
trees. Decision Support Systems, 43(3):809-826, 2007.

Arman Zharmagambetov, Suryabhan Singh Hada, Magzhan Gabidolla, and Miguel A Carreira-
Perpindn. Non-greedy algorithms for decision tree optimization: An experimental comparison. In
2021 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 2021.

15


https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://api.semanticscholar.org/CorpusID:267406792
https://api.semanticscholar.org/CorpusID:267406792

Published as a conference paper at ICLR 2025

A  ADDITIONAL DISCUSSIONS

A.1 EXTENDED RELATED WORKS

Tree induction algorithms. Greedy algorithms sequentially grow trees by optimizing a given
objective myopically. Popular methods in this class of algorithms are CART (Breiman et al., 1984),
ID3 (Quinlan, 1986) and C4 .5 (Quinlan, 1993). These algorithms differ in the predictive tasks in
which they can be applied. These algorithms mainly differ in the criterion used to split the nodes at
each local node, including Gini impurity (Breiman et al., 1984) or information gain (Quinlan, 1993).
Owing to their greedy nature, they are computationally efficient in searching the combinatorial space.
In contrast, a branch of work employs exact combinatorial optimization techniques to search for
sparse, optimal trees, e.g. branch and bound (Lin et al., 2020) and dynamic programming (Aglin
et al., 2020). Notable works include BinOCT (Verwer & Zhang, 2019), DL.85 (Aglin et al., 2020),
OSDT (Hu et al., 2019), and GOSDT (Lin et al., 2020). These approaches are fundamentally limited
by the N P-hardness of the tree induction problem, and struggle to scale to larger size problems.
Additionally, they have exclusively focused on the classification setting, and are limited in the types
of feature (e.g. binary or continuous features) and objective functions that can be optimized. We
compare LLEGO with representative tree induction methods in Table

Table 3: Comparison with the related works. LLEGO provides a general framework for global
optimization of decision trees, contrasting with prior works along several dimensions: computational
complexity, support for different objective and regularization functions, task types, and incorporation
of structural and semantic priors.

Worst-case Objective Arbitrary Task Priors
complexity function regularization Classification Regression  Structural Semantic
CART Greedy o2h) Gini impurity/MSE X v v v X
(Breiman
et al.,
1984)
c4.5 Greedy o2h) Information gain X v X v X
(Quinlan,
1993)
DL8.5 DP o(d!) Additive functions X v X v X
(Aglin

et al.,
2020)
GOSDT DP o(d!) Monotonic functions X v X v X
(Lin et al.,
2020)
LLEGO GP O(GN) Any v v v v v

Method Algorithm

Genetic programming. GP is an evolutionary optimization framework, particularly effective for
a variety of combinatorial optimization problems, since it only requires the provision of a fitness
function to evaluate and evolve a population of solutions to find optimal solutions (Koza, 1994a).
As such, GP has been used in diverse tasks including tree induction (Tanigawa & Zhao, 2000; Kuo
et al., 2007; Zhao, 2007; Koza, 1990), discovery symbolic mathematical expressions (Augusto &
Barbosa, 2000; Qian et al., 2022), scheduling problems (Guillaume et al., 2007), neural architecture
search (Broni-Bediako et al., 2020), and policy design (Hein et al., 2018). While the design of
genetic operators differ significantly across domains, genetic operators share several limitations,
being agnostic to the solution semantics, relying on stochastic perturbations without any search
directionality, and narrow contexts. Several works in semantic genetic programming have considered
the first two limitations and proposed variation operators (Krawiec & Pawlak, 2013; Moraglio
et al., 2012) or rejection sampling mechanisms (Krawiec & Lichocki, 2009) to obtain semantic
consistency between the offspring and their parents. However, these methods are domain-specific:
for example, (Krawiec & Pawlak, 2013) considers convex combinations in the particular case of
symbolic expressions. This limits their generalizability, and we note that no semantic operator has
been designed for the tree induction setting which is the focus of our work.

LLM and optimization. Recent studies have explored LLMs for optimization tasks, exploiting their
domain priors to enhance optimization efficiency (Song et al., 2024). Notable applications include
prompt (Yang et al., 2024), reward-function (Ma et al., 2024), and code optimization (Liventsev
et al., 2023). Particularly relevant is research employing LL.Ms as variation operators. (Lehman
et al., 2023; Nasir et al., 2024; Brownlee et al., 2023) use LLMs as mutation operators for code

16



Published as a conference paper at ICLR 2025

evolution, sampling mutation instructions from predefined sets. LLMs also have been utilized as
variation operators for prompt optimization (Fernando et al., 2024), where task prompts contain
explicit directives for generating variations. These approaches generate unguided variations, primarily
utilizing LLMs’instruction-following capabilities. For example, in (Guo et al., 2024), crossover is
performed using the prompt template: "Cross over the following prompts and generate a new prompt".
Recent works have also considered the integration of LLMs with advanced evolutionary frameworks,
namely quality-diversity algorithms (Pugh et al., 2016), to evolve both neural architectures and
variation prompts (Nasir et al., 2024). In contrast, LLEGO generates guided variations, utilizing in-
context learning of patterns in parent solutions to generate intelligent variations. Specifically, LLEGO
steers offspring towards high-fitness regions by conditioning on desired fitness, while LLEGO controls
diversity and exploration with the hyperparameter to define the offspring sampling distribution.
Finally, recent work (Ye et al., 2024) has proposed using LLM for meta-heuristic optimization. It
differs from LLEGO as it focuses on finding general meta-heuristics for a set of optimization tasks
rather than tailoring the search with dataset-specific characteristics and relevant domain knowledge
as LLEGO does.

A.2 No FREE LUNCH

In accordance with the principle of No Free Lunch (Wolpert & Macready, 1997), we expect LLEGO
to excel in domains with the following characteristics:

1. Natural language representation: Problems where solutions are expressible in natural language,
enabling LLEGO to employ the LLM’s semantic and contextual understanding for effective
variations.

2. Complex genotype-phenotype mapping: Tasks with low locality, where LLEGO’s semantic prior
enhances variation efficacy.

3. Contextual knowledge: Domains benefiting from broader knowledge, where contextual knowl-
edge (e.g. clinical guidelines for risk scoring) can be flexibly incorporated via prompt design (C).
This integration remains non-trivial for traditional evolutionary algorithms.

4. Challenging operator design: Areas where conventional semantic operators are difficult to craft
(e.g. preserving semantics in program synthesis). LLEGO offers broadly applicable and flexibly
customizable semantic variation operators.

These characteristics are prevalent in many applications, including decision trees, mathematical
equations, and symbolic programs.

B COMPLETE PROMPTS

Prompt design. In this section, we describe the details of the prompts. To recap, each of the genetic
operations is realized through natural language queries to the LLM. Each prompt is constructed of
three essential elements:

1. Task context. This includes information about the input space X, the output space ), and the
characteristics of the dataset D, e.g. number of samples, categorical features, continuous features.
It also includes feature summary characteristics that are computed on the training set.

2. Parent trees. This contains the tree structure of each parent and possibly the fitness metric (in the
case of crossover). These are translated to natural language and provided as few-shot examples to
perform ICL in each genetic operation.

3. Task-specific instructions. For each genetic operator, we include task-specific instructions on
offspring generations and guidelines on the format of the response.

The structured prompt for mutation is described in Figure 8. Descriptions enclosed in {}, such as
{task_description} represent placeholder values that are populated dynamically at run-time. For a
concrete example of this, the mutation prompt on credit dataset is shown in full in Listing
Similarly, the structured prompt for crossover is described in Figure 9 with a concrete example shown
in Listing

17



Published as a conference paper at ICLR 2025

{task_description}. The dataset contains {n_samples} samples and {n_attributes} features, of
which {n_numerical} are numerical and {n_categorical} are categorical. The target variable
is {target_name}, it is {target_type}, {label_information}. The features and their ranges are:
{feature_semantics}. You should generate a diverse decision tree that is more interpretable. Please
generate decision trees in the desired JSON format, you can use any of the features, but are only
allowed to use operators [<, >, <=, >=]. Return only the JSON in the format ## tree ##.

Figure 8: Prompt structure for mutation operation.

{task_description}. The dataset contains {n_samples} samples and {n_attributes} features, of
which {n_numerical} are numerical and {n_categorical} are categorical. The target variable
is {target_name}, it is {target_type}, {label_information}. The features and their ranges are:
{feature_semantics}. Generate a different, interpretable decision tree which should have the
improved fitness. Please generate decision trees in the desired JSON format, you can use any of
the features, but are only allowed to use operators [<, >, <=, >=]. Return only the JSON in the
format ## tree ##.

Figure 9: Prompt structure for crossover operation.

The task is to classify people described by a set of attributes as good
or bad credit risks. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is class, it is binary, the label distribution is
[0: 29.17%, 1: 70.83%]. The features and their ranges are:
[checking_status (int) [0, 3], duration (float) [5.00, 60.00],
credit_history (int) [0, 4], purpose (int) [0, 9], credit_amount
(float) [276.00, 15672.00], savings_status (int) [0, 4], employment
(int) [0, 4], installment_commitment (float) [1.00, 4.00],
personal_status (int) [0, 3], other_parties (int) [0, 2],
residence_since (float) [1.00, 4.00], property_magnitude (int) [O,
3], age (float) [19.00, 74.00], other_payment_plans (int) [0, 2],
housing (int) [0, 2], existing_credits (float) [1.00, 4.00], Jjob
(int) [0, 3], num_dependents (float) [1.00, 2.00], own_telephone
(int) [0, 1], foreign_worker (int) [0, 1]]. You should generate a
diverse decision tree that is more interpretable. Please generate
decision trees in the desired JSON format, you can use any of the
features, but are only allowed to use operators [<, >, <=, >=].
Return only the JSON in the format ## tree ##.

Expression: ## {’credit_history’: {’<= 1.5000": {’property_magnitude’:

{’<= 0.5000": {’employment’: {’<= 1.5000": {’value’: 1}, ’> 1.5000":
{"value’: 0}}}, "> 0.5000": {"value’: O}}}, > 1.5000":
{’savings_status’: {’<= 3.5000’: {’'property_magnitude’: {’'<=
0.5000": {’value’: 0}, "> 0.5000": {’value’: 1}}}, "> 3.5000":
{’employment’: {’<= 2.5000": {’value’: 1}, ’> 2.5000": {’value’:
Thrhhrry #4#

Expression: ## {’other_payment_plans’: {’/<= 1.5000":
{"property_magnitude’: {’<= 1.5000’: {’own_telephone’: {’<= 0.5000":
{"value’: 0}, > 0.5000": {’"value’: O}}}, "> 1.5000":
{’num_dependents’: {’<= 1.5000": {’value’: 1}, "> 1.5000": {’value’:
O+, "> 1.5000’": {’'purpose’: {’'<= 6.5000": {’residence_since’:
{7<= 1.5000": {’value’: 1}, ’> 1.5000": {’value’: 1}}}, ’> 6.5000":
{"housing’: {’<= 0.5000": {’value’: 1}, > 0.5000": {’value’:
TyrhhrrY ##

Expression: ## {’credit_history’: {’<= 3.5000’: {’duration’: {’<=
34.5000": {’checking_status’: {’<= 1.5000": {'value’: 1}, ’>
1.5000": {’"value’: 1}}}, "> 34.5000': {’credit_amount’: {’'<=
10552.5000": {’value’: 1}, 7> 10552.5000": {’'value’: O}}}}}, ’>
3.5000": {’credit_amount’: {’<= 9597.5000’: {’employment’: {’<=

18




Published as a conference paper at ICLR 2025

1.5000": {"value’: 1}, "> 1.5000": {’value’: 1}}}, 7> 9597.5000":
{"value’: 0}}}}} #+#

Expression: ## {’property_magnitude’: {’<= 0.5000": {’duration’: {’<=
33.0000": {’housing’: {’<= 1.5000": {’value’: 1}, ’> 1.5000":
{"value’: 0}}}, 7> 33.0000": {’employment’: {’<= 0.5000": {’value’:
0}, "> 0.5000": {’value’: O}}}}}, "> 0.5000": {"employment’: {’<=
0.5000": {’credit_amount’: {’'<= 3359.5000": {’'value’: 0}, ">
3359.5000": {’value’: 1}}}, "> 0.5000": {’purpose’: {’'<= 5.5000':
{("value’: 1}, ’> 5.5000": {’value’: 1}}}}}}} #4#

Expression: #i

Listing 1: Example mutation prompt. On credit dataset.

The task is to classify people described by a set of attributes as good
or bad credit risks. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is class, it is binary, the label distribution is
[0: 29.17%, 1: 70.83%]. The features and their ranges are:
[checking_status (int) [0, 3], duration (float) [5.00, 60.00],
credit_history (int) [0, 4], purpose (int) [0, 9], credit_amount
(float) [276.00, 15672.00], savings_status (int) [0, 4], employment
(int) [0, 4], installment_commitment (float) [1.00, 4.00],
personal_status (int) [0, 3], other_parties (int) [0, 2],
residence_since (float) [1.00, 4.00], property_magnitude (int) [O,
3], age (float) [19.00, 74.00], other_payment_plans (int) [0, 2],
housing (int) [0, 2], existing_credits (float) [1.00, 4.00], Jjob
(int) [0, 3], num_dependents (float) [1.00, 2.00], own_telephone
(int) [0, 1], foreign_worker (int) [0, 1]]. Generate a different,
interpretable decision tree which should have the improved fitness.
Please generate decision trees in the desired JSON format, you can
use any of the features, but are only allowed to use operators [<,
>, <=, >=]. Return only the JSON in the format ## tree ##.

fitness: 0.5882, Expression: ## {’purpose’: {/<= 5.5000": {’housing’:
{"<= 0.5000": {’residence_since’: {’'<= 2.5000’: {’value’: 0}, ’'>
2.50007: {’value’: 1}}}, > 0.5000": {"Job’: {’<= 1.5000": {’value’:
0}, "> 1.5000": {’value’: 1}}}}}, "> 5.5000": {’duration’: {’<=
25.5000” : {’credit_history’: {’<= 3.5000": {’value’: 1}, ’> 3.5000":
{"value’: 1}}}, > 25.5000’: {’residence_since’: {’'<= 3.5000’:
{"value’: 1}, ’> 3.5000": {’value’: O}}}}}}} ##

fitness: 0.5930, Expression: ## {’savings_status’: {/<= 2.5000":
{’credit_amount’: {’<= 9597.5000’: {’credit_history’: {’<= 0.5000":

{"value’: 0}, > 0.5000": {’"value’: 1}}}, "> 9597.5000’: {’value’:
0}}}y, "> 2.5000": {’checking_status’: {’<= 0.5000":
{’property_magnitude’: {’<= 0.5000": {’value’: 0}, "> 0.5000":

{"value’: 1}}}, > 0.5000": {’"residence_since’: {’<= 2.5000":
{"value’: 1}, > 2.5000": {’value’: 1}}}}}}} ##

fitness: 0.6162, Expression: ## {’/property magnitude’: {’<= 0.5000":
{’duration’: {’<= 33.0000": {’housing’: {’<= 1.5000": {’value’: 1},
> 1.5000": {’'value’: 0}}}, "> 33.0000’": {’employment’: {’'<=
0.5000": {’value’: 0}, ’> 0.5000": {’value’: O}}}}}, > 0.5000":
{"employment’: {’<= 0.5000": {’credit_amount’: {’<= 3359.5000":
{’value’: 0}, ’> 3359.5000”": {’value’: 1}}}, "> 0.5000": {’purpose’:
{’<= 5.5000": {’value’: 1}, > 5.5000": {’value’: 1}}}}}}} ##

fitness: 0.6815, Expression: ## {’checking status’: {’<= 1.5000":
{"property_magnitude’: {’<= 1.5000": {’other_parties’: {’<= 0.5000":
{"value’: 0}, > 0.5000": {’"value’: O}}}, "> 1.5000": {’duration’:
{"<= 20.5000": {’'value’: 1}, "> 20.5000": {’value’: 1}}}}}, ’'>
1.5000": {’credit_history’: {’<= 2.5000’: {’num_dependents’: {’<=
1.5000": {"value’: 1}, "> 1.5000": {’value’: O0}}}, "> 2.5000":
{’other_payment_plans’: {’<= 1.5000": {’value’: 1}, ’> 1.5000":
{"value’: 1}}}1}1}) ##

fitness: 0.6908, Expression:

Listing 2: Example crossover prompt. On credit dataset.

19



Published as a conference paper at ICLR 2025

Tree representation. We represent trees in natural language as a nested dictionary. This dictionary
represents a decision tree where each key is a feature and the subsequent nested dictionaries corre-
spond to decision rules and their outcomes. An example is illustrated in Figure 10 on the iris dataset.
In this example, if ‘petal width (cm)’ is less than or equal to 0.80, the classification is 0; otherwise,
further splits are made on ‘petal width (cm)’ at 1.75, leading to classifications of 1 or 2 depending on
the condition.

{

petal width (cm) <= 0.8

Gini = 0.667 "petal width (cm)": {
samples = 150 - . .
value =p[50. 50, 50] "<= 0.80": {"value": 0},
class = setosa "> 0.80": {
£ — .
petal width {cm) <=1.75 "petal width (cm)": {
samples = 100 "o ". " w.
(amples <100 1 <= 1.75": {"value": 1},
class = versicolor "> 1.75": {"value": 2}
gini = 0.168 }

samples = 54

value = [0, 49, 5] }
class = versicolor }

}

Figure 10: Example decision tree. And its corresponding natural language representation as a nested
dictionary.

B.1 ABLATION PROMPTS
In our ablation study, we removed all semantic information from the prompts, with examples

illustrated in Listing 3 and 4. Here, we remove the semantic description of the task, and replace its
features names with X;.

The task is to generate interpretable and high-performing decision trees
given a set of attributes. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is y, it is binary, the label distribution is [O:
29.17%, 1: 70.83%]. The features and their ranges are: [X_0 (int)

[0, 31, X_1 (float) [5.00, 60.00], X_2 (int) [0, 4], X_3 (int) [0,
9], X_4 (float) [276.00, 15672.00], X_5 (int) [0, 41, X_6 (int) IO,
41, X_7 (float) [1.00, 4.00], X_8 (int) [0, 3], X_9 (int) [0, 2],
X_10 (float) [1.00, 4.00], X_11 (int) [0, 31, X_12 (float) [19.00,
74.00], X_13 (int) [0, 2], X_14 (int) [0, 2], X_15 (float) [1.00,
4.00], X_16 (int) [0, 31, X_17 (float) [1.00, 2.00], X_18 (int) IO,
1], X_19 (int) [0, 1]]1. You should generate a diverse decision tree
that is more interpretable. Please generate decision trees in the
desired JSON format, you can use any of the features, but are only
allowed to use operators [<, >, <=, >=]. Return only the JSON in the
format ## tree ##.

Expression: ## {’X_167: {/<= 1.5000": {’X_12": {’'<= 38.5000": {'X_4":
{’<= 2443.0000": {’'value’: 1}, ’'> 2443.0000": {’value’: O}}}, ">
38.5000": {'X_1’': {’<= 21.0000": {’value’: 0}, ’'> 21.0000":
{"value’: 1}}}}}, 7> 1.50007: {"X_0": {’<= 1.5000": {’X_3': {’'<=
5.5000": {’value’: 0}, ’> 5.5000": {’value’: 1}}}, ’'> 1.5000":
{7X_1": {’'<= 19.0000": {’'value’: 1}, "> 19.0000": {’value’: 1}}}}}}}
##

Expression: ## {’X_0": {/<= 0.5000": {"X_47: {’'<= 976.5000": {’X_3":
{"<= 3.5000": {’value’: 0}, "> 3.5000": {’value’: 0}}}, >
976.5000": {"X_5": {’'<= 1.5000": {’value’: 0}, > 1.5000": {’'value’:
1}y, 7> 0.50007: {'X_4": {’<= 13765.5000": {'X_12": {’<=
22.5000": {’value’: 0}, ’> 22.5000": {’'value’: 1}}}, "> 13765.5000":
{"value’: 0}}}}} ##

Expression: ## {’/X_5": {’/<= 2.5000": {’X_4’: {’<= 9597.5000": {’X_2'":
{"<= 0.5000": {’value’: 0}, "> 0.5000": {’value’: 1}}}, >
9597.5000": {’value’: 0}}}, 7> 2.5000": {’X_0": {’'<= 0.5000":
{"X_11": {'<= 0.5000": {’value’: 0}, "> 0.5000": {’value’: 1}}}, ">
0.5000": {"X_10": {’<= 2.5000": {’'value’: 1}, ’'> 2.5000": {’'value’:
1yYrYhh) #4

20




Published as a conference paper at ICLR 2025

Expression: ## {’/X_2’: {’<= 0.5000": {’X_12": {’<= 23.5000": {'value’:
1}, 7> 23.5000": {"value’: O0}}}, "> 0.5000": {’X_5": {’'<= 3.5000’":
{rX_12": {’<= 25.5000": {’value’: 0}, "> 25.5000": {’'value’: 1}}},
> 3.5000": {'X_4’: {’'<= 1034.5000’": {’value’: 0}, "> 1034.5000":
{"value’: 1}}}}}}} #+#

Expression: i

Listing 3: Example mutation prompt with semantics removed. On credit dataset.

The task is to generate interpretable and high-performing decision trees
given a set of attributes. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is y, it is binary, the label distribution is [O0:
29.17%, 1: 70.83%]. The features and their ranges are: [X_0 (int)

[0, 31, X1 (float) [5.00, 60.00], X_2 (int) [0, 4], X_3 (int) [O,
9], X_4 (float) [276.00, 15672.00], X_5 (int) [0, 4], X_6 (int) IO,
41, X_7 (float) [1.00, 4.00], X_8 (int) [0, 31, X_9 (int) [0, 21,
X_10 (float) [1.00, 4.00], X_11 (int) [0, 3], X_12 (float) [19.00,
74.00], X_13 (int) [0, 2], X_14 (int) [0, 2], X_15 (float) [1.00,
4.00], ¥X_16 (int) [0, 31, X_17 (float) [1.00, 2.00], X_18 (int) [O,
11, X_19 (int) [0, 1]]. Generate a different, interpretable decision
tree which should have the improved fitness. Please generate
decision trees in the desired JSON format, you can use any of the
features, but are only allowed to use operators [<, >, <=, >=].
Return only the JSON in the format ## tree #4#.

fitness: 0.5882, Expression: ## {/X _37: {/<= 5.5000": {’/X_147: {’'<=
0.5000": {’X_10': {’<= 2.5000": {’'value’: 0}, "> 2.5000’: {’value’:
1}y, 7> 0.50007: {’X_16": {’<= 1.5000": {’value’: 0}, ’> 1.5000":
{"value’: 1}}}}}, "> 5.50007: {'X_1': {’'<= 25.5000": {'X_2": {’'<=
3.5000": {’value’: 1}, ’> 3.5000": {’value’: 1}}}, ’'> 25.5000":
{"X_10": {’'<= 3.5000": {’value’: 1}, ’'> 3.5000": {’'value’: O}}}}}}}
##

fitness: 0.5930, Expression: ## {/X_5’: (/<= 2.5000": {'X_47: {/<=
9597.5000": {’X_2": {’'<= 0.5000": {’'value’: 0}, "> 0.5000":
{"value’: 1}}}, > 9597.5000’: {’value’: 0O}}}, > 2.5000": {’'X_0O’:
{7<= 0.5000": {’X_11": {'"<= 0.5000": {’value’: 0}, "> 0.5000":
{value’: 1}}}, > 0.5000": {"X_10": {’'<= 2.5000": {'value’: 1}, ">
2.50007: {’value’: 1}}}}r}r)r} #4#

fitness: 0.6162, Expression: ## {/X_117: {/<= 0.5000": {’'X_1": {’'<=
33.0000": {'X_14": {'<= 1.5000": {’value’: 1}, ’'> 1.5000": {’'value’:
O}y, "> 33.0000": {"X_6": {’<= 0.5000": {’value’: 0}, '> 0.5000":
{"value’: O}}}}}, 7> 0.50007: {'X_6": {’<= 0.5000": {'X_4'": {'<=
3359.5000": {’value’: 0}, ’> 3359.5000’": {’'value’: 1}}}, "> 0.5000":
{7X_3": {’<= 5.5000": {’'value’: 1}, "> 5.5000": {’'value’: 1}}}}}}} ##

fitness: 0.6815, Expression: ## {/X_0’: {/<= 1.5000": {’'X_11": {’'<=
1.5000": {"X_9": {’'<= 0.5000": {’value’: 0}, ’> 0.5000": {’'value’:
O}y, "> 1.5000": {"X_1": {’<= 20.5000": {’'value’: 1}, '> 20.5000":
{"value’: 1}}}}}, 7> 1.50007: {’X_2": {’<= 2.5000": {’X_17": {’'<=
1.5000": {’value’: 1}, > 1.5000": {’value’: 0}}}, 7> 2.5000":
{"X_13": {'<= 1.5000": {’value’: 1}, ’'> 1.5000": {’'value’: 1}}}}}}}
##

fitness: 0.6908, Expression:

Listing 4: Example crossover prompt with semantics removed. On credit dataset.

C DETAILS OF EXPERIMENTAL PROCEDURES

In this section, we outline the benchmark datasets employed in our evaluations, as well as implemen-
tation details of our method and considered baselines.

21



Published as a conference paper at ICLR 2025

C.1 DATASET DETAILS

We employ a total of 12 datasets for our evaluation, of which 7 are classification tasks, and 5 are
regression tasks. Additionally, we consider 2 propriety datasets in Appendix D.2, for which the LLM
would not have seen during pretraining, and thus used to check for any memorization concerns.

Open-source datasets. The 12 open-source tabular datasets are sourced from OpenML (Vanschoren
et al., 2014). The classification datasets were selected from the curated suite OpenML-CC18 (Bischl
et al., 2019) with the following criteria: < 20 features, < 10000 samples, binary labels and no
missing data. This stems from the fact that optimal tree induction methods scale exponentially
with the number of features and samples, and some baselines only support binary classification.
Additionally, we excluded datasets lacking semantically meaningful feature names and descriptions,
required by LLEGO. Regression datasets were selected from OpenML-CTR23 (Fischer et al., 2023)
with identical criteria. We detail dataset characteristics, including OpenML ID, number of attributes,
number of samples and label distribution in Table 4. These datasets can be loaded by querying their
OpenML IDs. The datasets describe:

* credit (Kelly et al.): This dataset classifies people as good or bad credit risks.

* diabetes (Smith et al., 1988): This dataset classifies patients based on WHO definition of diabetes.

* compas (Inc., 2016): Contains criminal history, jail and prison time, demographics, and is used to
predict two year recidivism.

* heart (hea): Prediction of heart disease in patients.

* liver (Kelly et al.): This data set contains 416 liver patient records and 167 non liver patient
records.The data set was collected from north east of Andhra Pradesh, India. The class label divides
the patients into 2 groups (liver patient or not). This data set contains 441 male patient records and
142 female patient records.

* heart (Street et al., 1993): Features are computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. The
target feature records the prognosis (malignant or benign).

* vehicle (Pete & Shepherd): The dataset classifies a given silhouette as one of four types of vehicle,
using a set of features extracted from the silhouette. The target label is re-relabelled, where the
majority class as positive ("P’) and all others as negative "N’).

* cholesterol (Janosi et al., 1988): The dataset predicts the cholesterol level among patients diagnosed
with heart disease.

» wine (Cortez et al., 2009): The task is to predict quality of white and red wine.

» wage (Berndt, 1991): The task is to predict individual wages using the Current Population Survey
(CPS), used to supplement census information between census years.

* abalone (Nash et al., 1995): Predicting the age of abalone from physical measurements. The age
of abalone is determined by cutting the shell through the cone, staining it, and counting the number
of rings through a microscope — a boring and time-consuming task.

* cars (Bohanec, 1997): Dataset of the suggested retail prices (column Price) and various character-
istics of each car.

Table 4: Open-source datasets. Details of open-source datasets from OpenML (Vanschoren et al.,
2014). # Cat: number of categorical attributes, # Num: number of numerical attributes, Label dist:
label distribution.

Dataset ID # Samples # Attributes #Num # Cat Label Label distr
credit 31 1000 20 7 13 binary 0: 29.17%, 1: 70.83%
diabetes 37 768 8 8 0 binary 0: 66.30%, 1: 33.70%
compas 42192 5278 13 5 8 binary 0: 52.50%, 1: 47.50%
heart 53 270 13 5 8 binary 0: 52.58%, 1: 47.42%
liver 1480 583 10 9 1 binary 0: 67.94%, 1: 32.06%
breast 15 699 9 9 0 binary 0: 65.34%, 1: 34.66%
vehicle 994 846 18 18 0 binary 0: 73.03%, 1: 26.97%
cholesterol 204 303 13 6 7 continuous -

wine 287 6497 11 11 0 continuous -

wage 534 534 10 3 7 continuous -

abalone 44956 4177 8 7 1 continuous -

cars 44994 804 17 1 16 continuous -

22



Published as a conference paper at ICLR 2025

Dataset preprocessing. We preprocess the dataset using a train-validation-test split ratio of
[0.2,0.4,0.4]. The low training split is used to accentuate the difference in performance as given
sufficient training data, all methods perform comparably. For each run, we only vary the seed used for
data splitting, such that for seed 0, we use train_test_split (seed=0). For any algorithms
that have inherent randomness (i.e. CART and GATree), we seed them with seed=42. As such, the
randomness reported is induced only by different datasets.

We do not apply any additional preprocessing to continuous features. For categorical features, we
follow the recommendations provided in §9.2.4 of (Hastie et al., 2009), where we rank each category
of the predictor by calculating the proportion of observations that fall into the outcome class 1 (Hastie
et al., 2009). This results in a ranking of the categories based on these proportions. No additional
preprocessing is applied to categorical or continuous labels.

C.2 IMPLEMENTATION DETAILS

Baselines. To assess the performance of LLEGO, we compare it against a comprehensive set of
state-of-the-art algorithms, covering representative methods from main categories of tree induction.
Specifically, CART and C4.5 are greedy tree induction methods, GOSDT and DLS8.5 are optimal
tree induction methods, and GATree is a genetic programming based approach:

* CART (Classification and Regression Trees) (Breiman et al., 1984): CART is a decision tree algo-
rithm that splits data into subsets based on feature values, creating a binary tree for classification or
regression tasks using measures like Gini impurity or mean squared error. We use the implemen-
tation provided in sklearn.tree, https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html.

* C4.5 (Quinlan, 1993): C4.5 is an extension of the ID3 algorithm that generates decision trees by
handling both categorical and continuous data, and uses information gain ratio to choose splits.
We use the implementation provided in the PyPI package c45-decision-tree, https:
//pypi.org/project/c45-decision-tree/.

* GOSDT (Lin et al., 2020): GOSDT constructs decision trees by optimizing a trade-off be-
tween accuracy and complexity, ensuring sparsity and interpretability through global opti-
mization techniques. We use the implementation provided by the original authors https:
//github.com/ubc-systopia/gosdt—guesses.

* DL8.5 (Aglin et al., 2020): DL8.5 is a decision tree learning algorithm that focuses on constructing
optimal decision trees given specific constraints, using dynamic programming to find the best tree
structure. We use the implemented provided in the PyPI package d18.5, https://github.
com/ubc-systopia/gosdt—-guesses.

* GATree (Lahovnik, 2024): GATree is a Python library designed for implementing evolution-
ary decision trees using a genetic algorithm approach. We use the official implementation
https://gatree.readthedocs.io/en/latest/ and keep the defaults settings of the
implementation (i.e. tournament selection, subtree crossover and subtree mutation).

Hyperparameter search ranges. Next, we detail the hyperparameters of each method, and their
respective search ranges. Across experiments, we keep max_depth fixed to enable fair comparison,
the details of tunable hyperparameters are detailed in Table

Hyperparameter tuning. We use Optuna (Akiba et al., 2019) and the default Tree-Parzen Estimator
for hyperparameter tuning (HPT) (Watanabe, 2023). For all baselines, we permit wall-clock time to a
maximum of 10 minutes. This allows 50 iterations of HPT for CART and C4.5, and 10 iterations
for the computationally more intensive DL8.5, GOSDT, and GATree. In each iteration of HPT, we
evaluate the objective on the validation set, selecting the best configuration to evaluate on the test set.

Computer resources. We run all experiments on an AMD EPYC 7V13 64-Core Processor.

C.3 LLEGO IMPLEMENTATION DETAILS

For our instantiation of LLEGO in Section 5, we use N = 25 and G = 25. We seed the algorithm
with a population of trees generated by CART, where each tree is fitted on 25% of the Dy, We
use the same population to initialize GATree. In each iteration, we generate 25 crossover offspring
and 25 mutation offspring, using a rejection mechanism where invalid solutions are discarded (in
Section 5, ~ 86% of crossover and ~ 88% of mutation offspring are syntactically valid). We use

23


https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://pypi.org/project/c45-decision-tree/
https://pypi.org/project/c45-decision-tree/
https://github.com/ubc-systopia/gosdt-guesses
https://github.com/ubc-systopia/gosdt-guesses
https://github.com/ubc-systopia/gosdt-guesses
https://github.com/ubc-systopia/gosdt-guesses
https://gatree.readthedocs.io/en/latest/

Published as a conference paper at ICLR 2025

Table 5: Hyperparameter search ranges. Hyperparameter search ranges for all baselines.

min_samples_split | [int, 2, 16]
min_samples_split | [int, 1, 16]
CART max_depth fixed
splitter best
criterion [’squared_error’ (reg), ’gini’ (clas)]
min_samples_split | [int, 2, 16]
C4.5 min_samples_split | [int, 1, 16]
max_depth fixed
min_sup [int, 1, 10]
DL8.5 max_depth fixed
regularization [float, 0.001, 1]
GOSDT max_depth fixed
population_size [int, 10, 50]
mutation_prob [float, 0.1, 0.5]
GATree | crossover_prob [float, 0.1, 0.95]
max_iterations 100
tournament size 2
max_depth fixed

elitism selection to preserve the top 25 trees after merging the offspring of the crossover and the
mutation. To compute the desired fitness, we use o = 0.1, based on observations in Section as
the value that balanced diversity and fitness. We use 7 = 10 for diversity guidance. For each genetic
operation, we use A = 4 parent trees. For our experiments, we use gpt —35-turbo, version 0301
with default hyperparameters temperature = 0.7 and top_p = 0.95.

Function and terminal set. For both LLEGO and GATree, the function set is {<, >, <, >} and the
terminal set includes numerical constants based on target feature values.

In Section 5.2, we perform 3 steps of crossover starting from the initial population, for both LLEGO
and GATree to obtain Figure 5. We similarly perform 3 steps of mutation starting from the initial
population to obtain Figure 6.

C.4 EVALUATION METRICS

MSE. For regression dataset, we report MSE (sklearn.metrics.mean_squared_error):

N
MSE(D, f) - % Z ||f(xn) - yn||2
n=1

Balanced accuracy. For classification datasets, we report balanced accu-
racy, which is equivalent to accuracy with class-balanced sample weights
(sklearn.metrics.balanced_accuracy_score). This has the effect of giving
equal importance to both the positive and negative classes, thereby mitigating the impact of class
imbalance and providing a more reliable assessment of the classifier’s performance across all classes:

1
BAcc = —
CcC 2(

TP n TN
TP+ FN TN+ FP

Difference in equal opportunity. When evaluating fairness, we consider difference in equal opportu-
nity (DEO). This score measures the difference in recall between unprivileged and privileged groups,
where a value of DEO = 0 indicates equality of opportunity.

DEO = [p(j = 1| group = 1,y = 1) —p(§ = 1| group = 0,y = 1)

We utilize the implementation ai £360.sklearn.metrics.equal_opportunity_difference
providedin https://aif360.readthedocs.io/ (Bellamy et al., 2019; Roemer & Trannoy,
2015).

24


https://aif360.readthedocs.io/

Published as a conference paper at ICLR 2025

Population Fitness. In order to assess the fitness of the populations evolved by the GP-based
algorithms, we compute for a given population P:

Fitness = Median({f'(t) | t € P})

where f’(t) denotes the normalized accuracy, calculated as — ! S)}E‘;TE? f (2 7y Where f (t)
tep’ mlnte ’

here denotes the accuracy. P’ is the union of all individuals produced by all methods for a particular

seeded run on a particular dataset. In other words, the best accuracy obtained by any method on a

particular seed for a particular dataset will have f/(¢) = 1 and the worst will have f’(¢) = 0. This

normalization allows accuracy results from different datasets, seeds, and methods to be compared.

Population diversity. In order to assess the diversity of the populations evolved by the GP-based
algorithms, we compute for a given population P:

Diversity = Median({||¢(t) — o(t)||1 | (t,t') € P?})

where ¢(t) denotes the functional signature of ¢, i.e. the vector (t(x1), ..., t(xy,)).

D ADDITIONAL RESULTS

In this section of the appendix, we provide additional empirical results. Specifically:

1. In Appendix D.1, we analyze the train-test generalization gap.

2. In Appendix D.2, we report generalization performance on tasks with all semantics removed. The
objectives of this experiment are to (/) check for memorization and (2) evaluate the contribution
of semantic priors to search efficiency. We also evaluate LLEGO on proprietary datasets.

3. In Appendix , we investigate the potential for bias and the flexibility of LLEGO in optimizing
for fairness-regularized objectives.

4. In Appendix D.4, we demonstrate that the log-probabilities of candidate trees is directly correlated
with the structural distances.
5. In Appendix D.5, we compare LLEGO against a version of GAT ree running with larger population

sizes and more generations than LLEGO.

6. In Appendix D.6, we report the runtimes of LLEGO and the baselines.

7. In Appendix , we perform additional ablation studies on key variables, including prompting
strategies, choice of underlying LLM, genetic operation arity, and different parent sampling
mechanisms, and population initialization strategies.

8. In Appendix D.8, we provide fine-grained results of the aggregate analysis presented in the main
paper.

D.1 GENERALIZATION GAP

In Table 6, we report the generalization gap (defined as BA“%:E;?“”“) averaged across the
classification datasets for each method. The results show that LLEGO consistently achieve a lower
generalization gap compared to the baselines. In particular, the difference between LLEGO and the
baselines is more noticeable at depth 4, where the baselines are more susceptible to overfitting, such
as the optimal induction method DL.85. This aligns with empirical observations in recent works
(Zharmagambetov et al., 2021; Marton et al., 2023; Sullivan et al., 2024).

Table 6: Relative generalization gap. Averaged over the classification datasets.

Method | Depth=3 Depth=4

C45 0.073 0.086
CART 0.078 0.101
DL85 0.131 0.161

GATREE 0.086 0.092
GOSDT 0.044 0.052
LLEGO 0.043 0.043

25



Published as a conference paper at ICLR 2025

D.2 INVESTIGATION INTO MEMORIZATION

As with any LLM application, there is a concern about LLM memorization. Although it is highly
unlikely that the LLM has encountered the optimal trees for the considered datasets—especially
given that high-performing solutions can vary significantly across different training splits, seeds,
and preprocessing steps—we empirically investigate this concern. This is done by removing any
dataset-specific metadata or semantic information that could identify the underlying data. For prompts
with semantics removed, please refer to Appendix . We refer to this setting as LLEGOpo_semantics
and compare its performance against LLEGO with semantics included in Table 7. We observe that
LLEGOno_semantics achieves similar performance, even outperforming LLEGO on two of the tasks.

Table 7: Performance on classification tasks. Comparing LLEGO with LLEGOy0,_semantics (i-€. all
semantic information removed). Best results are emboldened.

Method | Compas Credit Diabetes Heart Liver
depth = 3

LLEGOno_semantics | 0-654(0.010) 0.683(0.012) 0.700(0.033)  0.726(0.030)  0.643(0.033)

LLEGO 0.652(0'004) 0.679(0'007) 0.713(0_015) 0.736(0_024) 0.672(0_019)
depth = 4

LLEGOno_semantics | 0-6990.011)  0.667(0.024y  0.701(g.013)  0.716(0.038)  0.651(0.025)

LLEGO 0.663(0.005) 0.684(0_011) 0.721(0_017) 0.751(0_042) 0.676(0‘021)

To further verify that LLEGO’s superior performance does not rely on memorization, we evaluate it
on two proprietary datasets (requiring authorized access, and hence extremely unlikely to be in the
LLM training corpus): MAGGIC (heart failure, (Wong et al., 2014)) and CUTRACT (prostate cancer,
(CUTRACT, 2019)). We report the results against CART and GATree for depth = 4 in Table &,
showing that LLEGO achieves superior performance on these private datasets, further demonstrating
that it relies on generalized semantic priors rather than dataset-specific memorization.

Table 8: Performance on proprietary datasets. Comparing LLEGO with CART and GATree, with
depth = 4. Best results are emboldened.

Method MAGGIC CUTRACT
CART 0.610(0_014) 0.694(0.038)
GATree 0.619(0,015) 0.706(0.024)
LLEGO 0.623(0.007) 0.710(0.009)

D.3 ADDRESSING BIAS VIA REGULARIZATION

As illustrated in the previous experiments, the genetic operators in LLEGO benefit from the properties
of LLMs (i.e. semantic priors and wide context). It is then natural to wonder if, conversely, negative
artifacts of LLMs may propagate to the decision trees found by LLEGO.

Setup. In Fhis experiment, we focus.in particular on bias.  Taple 9: Fairness aware objective.
More precisely, we assess group fairness (Verma & Ru-

bin, 2018) by computing the Difference in Equality of M Compas cace)
Opportunity (DEO) metric, defined as the difference in ethod ACC (1) DEO (})
recall between unprivileged and privileged groups (cf. Ap- ~ CART 0.651(0.012) 0.255(0.016)
pendix for an exact definition). We show an illustrative ~ C4.5 0.650(0.008) 0-2580.014)
example on the dataset COMPAS, which is known to be ~ DL85 0.666 0.006)0-264(0.008)
biased on the sensitive attribute race African American ~ GOSDPT 0.641(0.003) 0-187(0.019)
(Angwin et al., 2016). Our objective is to mitigate bias _LLECO 0.652(0.004) 0-3080.070)
with a DEO-based regularization, by defining LLEGO’s —Z2ECO 0.651(0.002) 01610 .071)
new fitness function, i.e. f/(¢t) = f(¢t)+ SDEO(t) for any

teT.

Results. As can be seen in Table 9, LLEGO does not natively return fair decision trees when the
fitness functions are based purely on accuracy. However, the DEO regularization permits LLEGO to
find decision trees with less bias compared to the other baselines. This highlights the flexibility

)
>
-

<> % X X X%

26



Published as a conference paper at ICLR 2025

of LLEGO, which can handle composite search objectives unlike the other baselines. LLEGO also
returns a population of individuals, which makes it possible to trade-off predictive performance
with fairness metrics. We show this in Figure |1, where one can choose individuals returned by
LLEGO with acceptable tradeoffs.

CART  x C45  x DL85  x GOSDT Pareto front
Depth = 3 Depth = 4
0.67 : ; ; 0.68 ; : :
X
o®x .
0.66 - 4 1 0.66 ® e
xe
A |
(L] * e $
= 065F 1 061F o * o2
) . ot e
x L)
2 0.64] % ol 062 °
d N . .
.
0.63F ‘3 1 060
.
-
0.62 ®, L L L 0.58 L * L L L L
P00 005 020 025 0300 005 000 015 020 025
DEO ({)

Figure 11: Accuracy-fairness tradeoff. On compas dataset.

D.4 CORRELATION BETWEEN LOG-PROBABILITIES AND TREE EDIT DISTANCE

We show in this experiment that the log-probabilities of the offspring trees (utilized in LLEGO’s
mutation operator) are negatively correlated with the structural distances between parent and offspring
solutions.

Experimental setting. We generate 1000 offspring trees using the LLEGO’s mutation operator with
a single parent tree. For each offspring individual, we assess its structural distance to the parent tree
by computing the Tree Edit Distance (TED) (Bille, 2005) between this individual and the parent.

Observations. As shown in Figure 12, we observe a strong negative correlation (correlation coeffi-
cient = —0.85) between log-probabilities of the offspring and TED values. This relationship indicates
that offspring with lower log-probabilities tend to exhibit greater structural differences from their
parent, as measured by the TED. This demonstrates that LLEGO’s log-probability-based selection
mechanism inherently promotes diversity in the population by favoring mutations which introduce
varied structural changes.

0 YCorrolatian = —().SSY .
—10F 1
£ -20F ]
2 :
& =30 ]
ER
w 40 b ]
3 :
—50 1
—60 F ° ]
r °
0.0 0.2 0.4 0.6 0.8

Tree Edit Distance
Figure 12: Correlation between log-probabilities and stuctural distances. There is a strong

negative correlation between log-probabilities of the offspring and their TED values with respect to
the parent tree.

27



Published as a conference paper at ICLR 2025

D.5 ADDITIONAL COMPARISON WITH GATREE

We extend our comparisons against GATree by increasing the population size to N = 100 and the
number of generations to G = 200, while keeping LLEGO’s default hyperparameters. We report the
results for the classification and regression tasks in Table 10 and Table | |. Despite GATree’s larger
number of evaluations, LLEGO evolved superior trees. This underscores the importance of LLEGO’S
integration of semantic priors, search guidance, and broader context to enhance search efficiency.
This superior search efficiency is especially important in settings where evaluation costs significantly
exceed search costs (e.g. complex simulations, hardware optimizations, robotics control).

Table 10: Comparison against GATree. Balanced accuracy (1) on classification tasks (depth
d=4).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
GATREE (N =100, G = 200) | 0.948(0.011)  0.658(0.003)  0.667(0.009)  0.684(0.013)  0.738(0.028)  0.635(0.019) 0.939(0.017)
LLEGO (N = 25, G = 25) 0.951(0.007) 0.663(0.005) 0.684(0.011) 0.721(0.017) 0.751(0.042) 0.676(0.021) 0.929¢.015)

Table 11: Comparison against GATree. MSE (]) on regression tasks (depth d = 4).

Method Abalone Cars Cholesterol Wage Wine
GATREE (N = 100, G = 200) [ 0.566(0.022) 0.099(0.012)  1.395(0.202) 11430147y 0.829(0.027)
LLEGO (N = 25, G = 25) 0.577(0.029)  0.099(0.025) 1.8322(0.145) 1.067(0.203) 0.828(0.026)

D.6 RUN-TIME COMPARISONS

We provide the total runtimes for the different methods in Table |2, averaged across the 7 classification
datasets used in Section 5.1. We also report in Table 13 the detailed timings for LLEGO and GATREE
with varying population sizes (P € {25,100}) and generations (G € {25,100, 200}), and also report
the number of functional evaluations. These results, along with the ones presented in Section 5.1,
highlight that LLEGO evolves superior trees compared to GATREE while necessitating less functional
evaluations and wall-clock time. Nevertheless, we acknowledge that there is room for improvement for
the runtime of LLEGO. Potential solutions include (1) reducing runtime through inference acceleration
techniques such as speculative decoding and vLLM serving (Leviathan et al., 2023) and (2) reducing
memory requirements through specialized fine-tuned models or quantization (Han et al., 2015).

Table 12: Runtime comparisons (all methods). Total runtime (in seconds), averaged across 7
classification datasets.

CART C4.5 DL85 GOSDT GATREE | LLEGO
Total run time (depth d = 3) | 0.0022  0.08 22,10  261.14 15.50 407.66
Total run time (depth d = 4) | 0.0023 0.13  172.70 234.44 15.77 430.32

Table 13: Runtime comparisons (GP methods). Per-generation, total runtime (in seconds), and
total number of fitness evaluations (depth d = 4, averaged across 7 classification datasets).

Per-generation runtime ~ Total run-time  # Functional evaluations
GATREE (N = 25, G = 25) 0.63 15.77 620
GATREE (N = 100, G = 100) 2.65 264.95 9600
GATREE (/N = 100, G' = 200) 3.86 772.97 19200
LLEGO (N =25, G = 25) 17.22 430.32 1250

D.7 ADDITIONAL ABLATION RESULTS

This subsection performs additional investigations into several key variables affecting LLEGO perfor-
mance. We investigate the impact of diverse prompting strategies (Appendix ), the selection of
different LLMs as genetic operators (Appendix ), and the impact of arity of genetic operations
(Appendix ). Additionally, we analyze how various parent sampling mechanisms for crossover
and mutation influence outcomes (Appendices and ), alongside an evaluation of different
population initialization strategies (Appendix ).

D.7.1 PROMPTING STRATEGIES

Experimental setting. We compare LLEGO to LLEGOp,jve, @ variant which removes the crossover
operator and changes the mutation prompt to an "improve the solution"-type of prompt.

28



Published as a conference paper at ICLR 2025

Results. We report the results in Table 14, where we see that LLEGO consistently outperforms
LLEGOnaive- This demonstrates the importance of explicit fitness-guidance via the hyperparameter o
in order to steer the search towards high-fitness regions.

Table 14: Performance of naive prompting. Test balanced accuracy (1) on classification tasks
(depth d = 4, 3 seeds), reporting meangq-

Method Breast Compas Credit Diabetes Heart Liver Vehicle
LLEGOnaive | 0.942(0.006)  0.660(0.011)  0.670(0.003)  0.708(0.019)  0.714(0.051)  0.629(0.033)  0.943(0.015)
LLEGO 095110007, 0.6630.005) 0.684(0.011) 0.721i0017) 0.751(0.042 0.676(0.021) 09290015,

D.7.2 DIFFERENT LLMSs

A key property of LLEGO’s design is that it is LLM-agnostic. To demonstrate the advantage of this
flexibility, we evaluate LLEGO’s performance using gpt —4, comparing it to gpt -3 . 5. We report
the results in Table 15 for all the classification datasets, for depth 4 problems, across 3 seeds. We
see that the gpt —4 variant of LLEGO achieves superior performance than its gpt—3. 5 counterpart.
These results have two significant implications, as they indicate that (1) LLEGO’s effectiveness is
robust across LLM architectures, and importantly that (2) its performance can scale with advances in
capabilities of the underlying LLMs.

Table 15: Performance of different LLMs. Test balanced accuracy (1) on classification tasks (depth
d = 4, 3 seeds), reporting meangq).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
LLEGO (gpt-35) | 0.951(g.007)  0.663(0.005) 0.684(0.011) 0.7210.017)  0.751(0.0a2) 0.676(0.021)  0.929(0.015)
LLEGO (gpt-4) 0.9570.005) 0.6710.011) 0.684(0.008) 0.741(0.023) 0.751(0.017y  0.640(0.025) 0.951(0.015)

D.7.3 ARITY OF GENETIC OPERATIONS

In Figure 5, we compared the crossover dynamics between LLEGOxo with v = 4 parents and
roulette wheel selection, and GATree xo with v = 2 parents and uniform parent sampling. In
Figure 13 (Left), we compare LLEGO xo with v = 2 parents and uniform parent sampling against
GATreexo with v = 2 parent and uniform parent sampling. In Figure 13 (Right), we compare
LLEGOx o with v = 4 parents and uniform parent sampling against GATree xo with v = 2 parent
and uniform parent sampling.

We observe similar dynamics as in Figure 5, where varying « enables to control the population fitness
and diversity. Additionally, v = 4 leads to significantly improved offspring fitness at the cost of a
lower diversity, highlighting the nuanced impact of higher arity on search efficiency (corroborating
the ablation results in Figure 7).

—e— LLEGO 9. /
0.6 GATREE . 04 =" 0.6 / — 5 04
2 £ \ " 2 /' =
£ o £03 * R £0.3}e
£ - — ;2 —e— LLEGO = —e— LLEGO o S —e— LLEGO
04 ,/' a GATREE 04 GATREE {1 e, GATREE
B 202 e 2.02f
= £ ~ £ .
0.2 0.1 0.2 0.1r —
—-0.25 —0.10 0.10  0.25 —0.25 —0.10 0.10  0.25 —0.25 —0.10 0.10  0.25 —0.25 —0.10 0.10  0.25
« «

Figure 13: XO dynamics. Effect of fitness guidance (o) on population and diversity using uniformly
sampled parents. (Left) v = 2 parents, (Right) v = 4 parents

D.7.4 PARENT SAMPLING: CROSSOVER

The objective of this experiment is to analyze the impact of an alternative selection mechanism on the
balance between population fitness and diversity in the crossover operator.

Experimental setting. Specifically, we replace the roulette wheel selection (fitness-proportionate)
mechanism with a tournament selection mechanism (Miller et al., 1995) with varying tournament

29



Published as a conference paper at ICLR 2025

sizes k € {1,2,3,5}. We then compute the median offspring fitness and diversity as a function of k,
following the experimental setup described in Section

Observations. The results, shown in Figure 14, demonstrate a clear trade-off between fitness and
diversity which is modulated by the tournament size. As shown in Figure , larger tournament
sizes consistently yield higher population fitness, while Figure shows a corresponding decrease
in population diversity. Indeed, larger values of k intensify selection pressure by increasing the
probability that highly fit individuals win multiple tournaments, thereby reducing population diversity.
Conversely, smaller values of k lead to an increased population diversity. For example, when & = 1,
tournament selection corresponds to random sampling, which maximizes diversity at the cost of
fitness performance. In comparison to tournament selection, the roulette wheel selection mechanism
employed in LLEGO achieves a good middle-ground by striking a balance between fitness and
diversity.

. ; ‘ : 0.20 g ‘ ‘
0.550 - ./. ® —@— Tournament
0.525 | g ---- Roulette wheel

" 20151 1
@R 00k J 7
£ 0.500 @«
= S — g
= 0475 F g = L ]
=) gowop o\
5 0.450 - 1 o,
~ o
0.425 —O— Tournament 7] 0.05 1 \ )
0.400 | ¢ ---- Roulette wheel | ° °
1 2 3 4 5 1 2 3 4 5
Tournament size Tournament size
(a) Offspring fitness. (b) Population diversity.

Figure 14: Crossover dynamics with tournament selection. (a) Population fitness increases
monotonically with tournament size, demonstrating enhanced selective pressure. (b) Population
diversity exhibits an inverse relationship with tournament size, with smaller tournaments preserving
higher diversity at the cost of reduced fitness.

D.7.5 PARENT SAMPLING: MUTATION

In this experiment, we investigate an alternative choice for the selection mechanism in LLEGO’s
mutation operator.

Experimental setting. We replace the random parent selection in the mutation operator with the
quality-diversity algorithm CVT-MAP-Elites (Vassiliades et al., 2017), which requires defining a
behavioral space. Given n training samples, we define the behavioral space for classification tasks as
‘H = [0, 1]™, encompassing the trees’ functional signatures. The CVT-MAP-Elites algorithm then
partitions H into M niches using uniformly distributed centroids found with k-means clustering.
We then select parents for the mutation operator by uniformly sampling v niches and selecting the
best individual in the sampled niches. Finally, we compute the offspring diversity, similarly as in
Section

Observations. We report the results in Figure 15, averaged across the classification datasets. We
see that the total number of niches M serves as a control parameter for offspring diversity, with an
increasing relationship between diversity and the number of niches M. When M = 1, the process
reduces to repeatedly sampling the population’s best individual, resulting in minimal diversity for the
generated offspring. Conversely, when solutions are spread into distinct niches, the sampling process
becomes equivalent to uniform sampling without replacement from the population, yielding high
diversity. Furthermore, we see in Figure 15 that the random selection of parents employed in LLEGO
comparatively yields high diversity, justifying its use in the diversity-guided mutation operator.

D.7.6 POPULATION INITIALIZATION STRATEGIES

In this experiment, we investigate the impact of a different population initialization on the search
performance of LLEGO.

30



Published as a conference paper at ICLR 2025

[ g ——— | S —— ————o-
04r / 1
ey [
:
z
A 0.2 R
2 . . .
L —@— Quality-Diversity
---- Random
00r® . L ]
1 5 10 20

Number of niches

Figure 15: Mutation dynamics with Quality-Diversity selection. Offspring diversity increases with
the number of niches employed in CVT-MAP-Elites for parent selection.

1.()j T T T T T T |
L 08F a
2
E L
= 061 b
o L
D? L
- U.4j 1
< L
S [
= L B
021 —— LLEGOii.
ook —— LLEGOjni.» |
0 5 10 15 20 25

Generations (G)

Figure 16: Ablation on the population initialization. LLEGOy,; ; initializes populations using
CART models trained on 25% bootstrap samples, while LLEGOp,;.. » uses minimal training subsets of
size 2. Results are aggregated across all classification datasets for one seed.

Experimental setting. Specifically, we compare two variants of LLEGO. The baseline variant,
LLEGOr,. 1 corresponds to the instanciation of LLEGO described in Section 5, which initializes the
population with CART models trained on bootstrap samples comprising 25% of the training data. In
contrast, LLEGOyy,, » initializes trees using CART models trained on minimal random subsets of just
two training samples, resulting in weaker initial decision trees.

Observations. Figure 16 illustrates the convergence of the mean population fitness across genera-
tions, aggregated and normalized over all classification datasets for one random seed. The results
demonstrate that LLEGOp,;. » exhibits slower convergence compared to LLEGOp;, 1, which shows
the role of effective population initialization in improving search efficiency and faster discovery of
high-quality solutions. Nevertheless, we remark that LLEGOyy,. » still achieves good performance
in the later stages of the search (after G = 20 generations), showing the effectiveness of LLEGO’s
variation operators in steering the search towards promising regions, independent of the initialization
scheme.

D.8 FINE-GRAINED RESULTS

In this subsection, we present a detailed analysis of the results from the main paper. Our examination
includes: (1) mutation dynamics observed in individual tasks; (2) convergence analysis across varying
depths, including ablation studies; and (3) convergence trajectories for specific tasks.

Mutation dynamics. We provide the mutation dynamics for each individual dataset in Figure 17,
showing that 7 meaningfully controls the diversity in the population for 5 of the 7 classification
datasets, where the diversity metrics are computed between parents and offspring (7op) and among
the offspring (Bottom).

31



Published as a conference paper at ICLR 2025

Breast Compas Credit Diabetes Heart Liver Vehicle
.f: 015 & 0.44 A o ., 0.46 _— o 0.48 o,
z s 048 0a3b NN — o ~.
2o — ~.—, . 0dTrer 047 ~.
o g 043 042 g 0.44 . o N N
S 0.46 3 \ T, - 046 St
Z 013 — ~e—— o 0.46 — 2
—g 0.42 0.42 0.45
- 1 5 10 25 50 1 5 10 25 50 1 5 10 25 50 1 5 10 25 50 1 5 10 25 50 1 5 10 25 50 1 5 10 25 50
: 0.22 0.48 0.50 050 0.50
go 50 0.45 050 . of 0
Z - . S 9 —_— — — .
Ao0af ~e— — 0.50 /\ / ~ 049 049f, / .\/\
o 047 O £} o s *. —, e,
o ’ 047 - . 049
2o \. 049 v \ 049 N o X g \
T ow S ] o o |
Z 0.6 048 048

049

T 5 10 2% 50 U5 10 2% 50 T 5 10 2 50 50 T 5 10 2 50 T 5 10 25 50 1 5 10 2 50

Diversity guidance (7)
Figure 17: MUT dynamics. Effect of diversity guidance (7) on (Top) median parent-offspring
distance and (Bottom) median offspring distance.

Convergence analysis. We provide separate convergence plots in this subsection, obtained when
optimizing trees of depths 3 and 4, under the experimental setup described in Section 5.1. The results
are reported in Figure and Figure . In these two settings, LLEGO leads to a more efficient
search compared to GATree. This improved efficiency also comes with a reduced diversity, showing
that LLEGO concentrates its populations in the later generations in high-fitness regions.

. Median Pop Fitness ~ Max Pop Fitness _ Median Pop Diversity o Median Pop Fitness Max Pop Fitness _~ Median Pop Diversity

—— LLEGO —— LLEGO —— LLEGO —— LLEGO —— LLEGO —— LLEGO
E GATREE, 040 GATREE 0.05 GATREE 099 GATREE 040 GATREE
09 008 0.30 0.98 0.30
0.90
s/ o 0.20 L S 0.20 \
4 0.10 08 0.96 0.10

9 0.5 .95 0
10 20 004 10 20 000 10 20 080 10 20 09 10 20 000 10 20

Generations (@) Generations (G)

(a) Depth = 3. (b) Depth = 4.

Figure 18: Convergence dynamics. Comparing LLEGO with GATREE.

Ablation study. We report the ablation study results for depth 3 and 4 in Figure 19 and Figure
These results align with the observations made in Section 5.3, highlighting the importance of using
crossover and mutation in tandem, the importance of incorporating more than 2 parents for the
operators and using semantic information. With a higher maximum depth, the space of possible
trees becomes more complex, and accentuates the need for both exploration and exploitation, which
explains why the mutation only (LLEGOy,_xo) and crossover only (LLEGOy,_mut) baselines perform
worse than LLEGO.

0.75 0.94
@ 0.70 0.92
i=] < 090
= 0.65 =
o =
A, = o088}
[S) s L
~ 0.60 % |
o A, 0.86
.= 0.55 %
54 = LLEGO ; 0841 LLEGO
— “
= 050F —— LLEGO0 o —— LLEGO
LLEGO,0 e 082 LLEGO,0 gt
0.45 —— LLEGO0 semantics | 050 —— LLEGOo somantics |
——— LLEGO, : = LLEGO,_»
1 5 10 15 20 25 1 5 10 15 20 25
Generations (G) Generations (G)
(a) Median population fitness. (b) Max population fitness.

Figure 19: Additional ablation results. Depth = 3.

Individual task results. Convergence plots comparing LLEGO and GATree for individual tasks
are given in Figure 2| and Figure 22. They show that LLEGO consistently leads to better search
efficiency compared to GAtree.

32



Published as a conference paper at ICLR 2025

0.70 p

0.65

o
3

Median Pop Fitness
o

0.95

0.93

4
o
S

@
3

4
o
&

LLEGO

Max Pop Fitness

o
%
<&

LLEGO

o5 —— LLEGOn0x0 — LLEGO0
4 LLEGOy0 mut LLEGO 0. mut
o0 —— LLEGOs0 scmantics ] 0-80 —— LLEGOo scmantics ]
: ——— LLEGO,_» —— LLEGO,_»
. . . . 0.78 ¢ . . . .
1 5 10 15 20 2 1 5 10 15 20
Generations (G) Generations (G)

(a) Median population fitness.

Figure 20: Additional ablation results. Depth = 4.

(b) Max population fitness.

breast compas credit-g
—— LLEGO 0.67F — LLEGD —— LLEGO
@ GATREE GATREE 0.700 GATREE
< 097t 0.66 F
= 0.675
= 0.65F
200 0650 F
S 0.96 F 0.64F
o
o 3F 0.625 F
E / 063 625
= 0% 0.62 0.600 f
. . . . 0.61F . . . . . . . .
1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25
compas heart-statlog
0.67F — LLEGO 0.78 | — LLEGO
2 GATREE 086 GATREE
£ 066} 0.76
=
= 0650 071 0.84F
S 064F ;
I 0.72 sl
= 063F ~
E 0.70
= 0.62
= 068 080
0.61F . . . . . . . . . . . .
1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25
liver vehicle
072 — LLEGO 0.95F —— LLEGD
2 GATREE ’ GATREE
% 0.70 F 0.93F
=
B o068 090 F
S
& 0.66F 088
Z 0.64F B
2 0.85F
= 0.62f
L L L L 083 L L L L
1 5 10 15 20 25 1 5 10 15 20 25

Generations (G)

25

Figure 21: Convergence plots. Mean population fitness (1) of LLEGO and GATREE on individual
tasks across 25 generations (depth=3).

33



Published as a conference paper at ICLR 2025

breast compas credit-g
0.98 F —— LLEGO —— LLEGO —— LLEGO
2 GATREE 0.67 GATREE o GATREE
2 .70
=]
Z oo 0.66
0.68
o 0.65
o
~
— 0.96 0.64 0.66
<
= 0.63
- 005 0.64
- 0.62
1 5 10 15 20 25 1 5 10 15 20 25 5 10 15 20
compas diabetes heart-statlog
—— LLEGO 0.80 f —— LLEGO 0.88 — LLEGO
7 067 GATREE GATREE GATREE
9] -
g 0.78
= 066 0.86
<5} .
2065 0-76 \
~ 0.8
= 0.64 0.74
g 0.82
= 063 0.72 )
0.62 . . . . 0.70 . . . . 0.80 . . . .
1 5 10 15 20 25 1 5 10 15 20 25 5 10 15 20
liver vehicle
071 - - - - - - - -
—— LLEGO —— LLEGO
7 .94
é 072 GATREE 0.9 GATREE
s
= om0 0.92
o
& o
S 068 0.90
<
S 0.66
= 0.88
0.64
1 5 10 15 20 25 1 5 10 15 20 25
Generations (G)

Figure 22: Convergence plots. Mean population fitness (1) of LLEGO and GATREE on individual
tasks across 25 generations (depth=4).

34



	Introduction
	Preliminaries
	Decision Tree Induction
	Genetic Programming
	Desiderata

	LLEGO: Genetic Operators with Semantic Priors
	LLEGO Prompt Design
	Fitness-guided Crossover Operator
	Diversity-guided Mutation Operator
	End-to-End Algorithm

	Related Works
	Experiments
	LLEGO-Evolved Trees Achieve Superior Generalization Performance
	Understanding the Sources of Gain
	Ablation Study: All Components Contribute to Enhanced Search Efficiency
	Additional results.

	Discussion
	Additional Discussions
	Extended Related Works
	No Free Lunch

	Complete Prompts
	Ablation Prompts

	Details of Experimental Procedures
	Dataset Details
	Implementation Details
	LLEGO Implementation Details
	Evaluation Metrics

	Additional Results
	Generalization Gap
	Investigation Into Memorization
	Addressing Bias via Regularization
	Correlation Between Log-probabilities and Tree Edit Distance
	Additional Comparison With GATree
	Run-time Comparisons
	Additional Ablation Results
	Prompting Strategies
	Different LLMs
	Arity of Genetic Operations
	Parent Sampling: Crossover
	Parent Sampling: Mutation
	Population Initialization Strategies

	Fine-grained Results


