CHARACTERIZING NONLINEAR DYNAMICS VIA SMOOTH PROTOTYPE EQUIVALENCES

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026027028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Characterizing the long term behavior of dynamical systems given limited measurements is a common challenge throughout the physical and biological sciences. This is a challenging task due to transient variability in systems with equivalent longterm dynamics. We address this by introducing smooth prototype equivalences (SPE), a framework for matching sparse observations to prototypical behaviors using invertible neural networks which model smooth phase space deformations. SPE can localize the invariant sets describing long-term behavior of the observed dynamics through the learned mapping from prototype space to data space. Furthermore, SPE enables classification of dynamical regimes by comparing the data residual of the deformed measurements to prototype dynamics. Our method outperforms existing techniques in the classification of oscillatory systems and can efficiently identify invariant structures like limit cycles and fixed points in an equation-free manner, even when only a small, noisy subset of the phase space is observed. Finally, we show how our method can be used for the detection of biological processes like the cell cycle trajectory from high-dimensional single-cell gene expression data.

1 Introduction

Predicting the long-term behavior of dynamical systems from sparse data is a challenging problem in the physical and life sciences (Weisshaar, 2012; Dimitriadis, 2017; Chervov & Zinovyev, 2022). This situation is further exacerbated in realistic cases where equations are unknown and behavior must be estimated from sparse, noisy or high-dimensional data. To this end, substantial work has been devoted to accurately estimating the vector fields underlying observed sequential data in the form of ordinary differential equations (ODEs) (e.g Chen et al. 2018; Brunton et al. 2016; Farrell et al. 2023; Kochkov et al. 2021; Brunton et al. 2017). However, even when there is access to the full governing equations of the underlying ODE, understanding the overall behavior of the dynamical system is notoriously difficult (Smale, 2000). When only sparse, noisy observations from the vector field are available, even just classifying between a limit cycle or a node attractor in two dimensions becomes a difficult problem (Moriel et al., 2023). Detecting these long-term behaviors can be crucial across different fields; for example, in biology, the cell cycle is often modeled as a limit cycle in gene expression space (Riba et al., 2022; Schwabe et al., 2020; Karin et al., 2023), pinpointing the genes participating in and timings of this fundamental process is the subject of substantial work in computational biology (e.g. Mahdessian et al. 2021; Zheng et al. 2022; Kedziora & Stallaert 2024; Zinovyev et al. 2021; Stallaert et al. 2021). In many such scenarios, it can be useful to leverage domain expertise about the overall dynamical behavior expected in the observed data, like the existence of a limit cycle in the cell cycle example above. If such domain expertise is used, then the search space for invariant structures can be greatly simplified, from all possible structures to only a few which are plausible in the system considered.

We propose a method for determining the type and location of invariant sets from vector field data, subject to constraints introduced by domain expertise. Specifically, we assume that there is a true (hidden) dynamical system governed by an ordinary differential equation (ODE) $\frac{dx}{dt} = f(x)$, and we only have access to sparse observations from this ODE. These observations come in the form of snapshots of the dynamics: pairs of positions x_i and noisy estimates of velocities in those positions, $\dot{x}_i = f(x_i) + \epsilon_i$, where ϵ_i is a noise vector. To extract information about the long-term behavior of

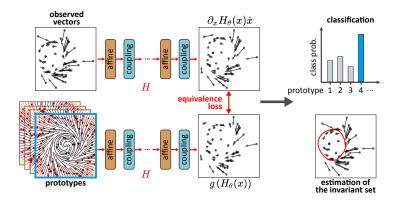


Figure 1: Schematic for the process of fitting dynamical prototypes using smooth prototype equivalences (SPE). The observed dynamics are compared to each of the chosen prototypes, which involves training an INN $H_{\theta}(x)$, for each prototype g(y). After training each of the INNs, the observed dynamics are classified as the prototype with the smallest equivalence loss. Given a trained INN $H_{\theta}(x)$, we have access to a mapping between the data space and the prototype space, which allows us to estimate the long-term behavior, i.e. invariant set, of the dynamics underlying the observed data.

the underlying dynamics, we leverage the fact that the behavior of a dynamical system is not affected by a smooth, invertible change of coordinates. Two systems related by such an invertible mapping are called *smoothly equivalent*, and share the same invariant sets (Chen et al., 2024). The main intuition behind our approach, which we termed *smooth prototype equivalences* (SPE), is to learn an invertible mapping between the data and a *prototypical* version of the behavior which the data is assumed to follow, turning the problem into a form of prototype learning (Rosch, 1973; Bonilla & Robles-Kelly, 2012; Chen et al., 2023).

Our contributions include the following:

- We first demonstrate how SPE can localize limit cycles in a synthetic dataset of 2D dynamical systems drawn from across the physical and life sciences.
- We show how SPE can be used to classify between node and limit cycle attractors, highly
 abundant and biologically meaningful prototypes, in these synthetic systems, despite the absence of closed-form governing equations. Moreover, we benchmark SPE against previously
 proposed methods to classify dynamics on a dense grid. Furthermore, SPE, unlike previous
 methods, is robust to noisy and low-sample conditions, illustrating the compatibility of SPE
 to real data-driven scenarios.
- We then demonstrate that SPE can naturally extend to more dimensions by applying it to the synthetic six-dimensional repressilator gene regulatory network (Elowitz & Leibler, 2000).
- Finally, we illustrate how SPE can be used in a real scientific scenario, by deploying our method to localize cell-cycle dynamics from noisy, high-dimensional single-cell gene expression measurements, without relying on a gene expression reference atlas.

2 RELATED WORKS

Data driven approaches in dynamical equivalences. Early notions of equivalence of dynamical systems are due to Poincaré (1892–1899), who introduced foundational ideas like qualitative analysis of trajectories, periodic orbits, and invariant sets. Building on these findings, a large body of work was established to better understand when two systems can be called equivalent (Andronov & Pontryagin, 1937; Hartman, 1960; Sternberg, 1957). Subsequently, in recent years a growing body of work have leveraged relaxed notions of these equivalences (Skufca & Bollt, 2007; 2008) in order to model and compare between nonlinear dynamical systems (Chen et al., 2024; Bramburger et al., 2021; Redman et al., 2022; Glaz, 2024). These characterizations are attractive as they focus on the qualitative behaviors of dynamical systems, such as the stability and type of invariant set. These methodologies

are especially relevant in the field of data-driven scientific discovery, which frequently seeks to compare between experimentally collected dynamical data and analytically derived systems. These approaches, however, typically require explicit access to the functional form of the dynamical systems, a limiting factor in their application to experimentally collected data.

For experimentally collected data, Ostrow et al. introduced DSA which utilizes a modified form of Procrustes analysis in order to align between the delay-embeddings of two observed time series. In this manner, under Taken's embedding theorem (Takens, 1981), the two sequences will only be well aligned when they are conjugate and enough delays are used for the embedding. However, DSA requires sequences of observations long enough for the delay embedding to be beneficial, data which is not always available. Alternatively, Moriel et al. took an empirical approach to the categorization of the invariant set in an observed vector field by training a deep network to distinguish random samples from two conjugacy classes representing oscillatory and non-oscillatory dynamics. This enables classification of systems when the underlying governing equations are hidden, without relying on time series data, but is restricted to conjugacy classes defined during the training of the network and cannot provide more detailed insights beyond the classification of two-dimensional dynamics, such as those related to the structure of the invariant set, or extensions to higher dimensions.

Modeling vector field data. Recent advances in experimental biology and related fields have highlighted the need for improved methods to characterize dynamical systems from noisy data. Increasingly, new techniques generate datasets with partially or completely unordered temporal information. A prominent example is single-cell RNA-sequencing along with RNA velocity (Bergen et al., 2020; La Manno et al., 2018), which defines a vector field in gene expression space and offers insights into cellular dynamics. Another example of note is the changing proportions of different cell types over time, which can be represented as noisy vector field data (Mayer et al., 2023). Often, these systems come with a qualitative understanding of their underlying topology as it often corresponds to classes of physiological or pathological processes (Nitzan & Brenner, 2021; Karin et al., 2023; Zhou et al., 2018; Adler et al., 2020). However, aligning this conceptual model with noisy data remains a challenging task, which is typically pursued separately for each subsystem (Riba et al., 2022; Farrell et al., 2023). Better methods to characterize such data can have enormous potential, but to the best of our knowledge there is currently no unified approach to the analysis of such vector field data.

3 Method

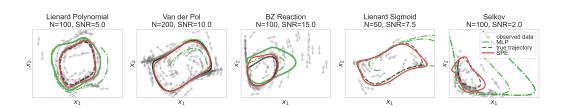


Figure 2: **Estimation of limit cycles using SPE for various 2D dynamical systems.** Examples of invariant sets predicted from observed vectors (in gray), for different dynamical systems which exhibit a limit cycle attractor. For each system, a ground-truth trajectory was simulated from the hidden system and plotted in black. The red curves are the limit cycles predicted using SPE. In all plots, SPE is qualitatively compared to an MLP (in green) trained to reconstruct the vector field.

Throughout this work, we assume that we only observe a sparse subset of the phase space of an ordinary differential equation (ODE), matching observations common to recent advances in computational biology (Bergen et al., 2020; La Manno et al., 2018). Mathematically, let $\mathcal{D} = \{(x_i, \dot{x}_i)\}_{i=1}^N$ be a dataset composed of N pairs of positions $x_i \in \mathbb{R}^d$ and their respective velocities $\dot{x}_i \in \mathbb{R}^d$. We assume that these velocities originate from a *hidden* ground-truth ODE and that we only have access to noisy measurements of the true velocities.

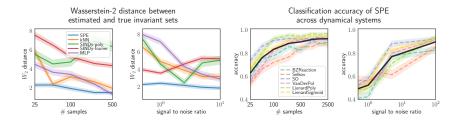


Figure 3: Wasserstein distance (left) and classification accuracy (right) as a function of the number of observed points and amount of observation noise. Left: W2 distance between the estimated and true invariant sets, averaged over 1000 randomly sampled datasets (see Appendix C.2), for each method. When changing the number of samples the SNR is held at 2.5, and conversely N=100 points were used when evaluating performance with varying amounts of noise. Shaded areas correspond to standard error of the mean. **Right:** classification performance of SPE, averaged over 1000 randomly sampled datasets (see Appendix C.4). The shaded areas for the different systems represent the standard error of the mean for that system. The black line is the average accuracy over all systems (simple oscillator (SO), BZ reaction, Selkov, Liénard sigmoid, Liénard polynomial and Van der Pol). When changing the number of samples the data was kept noiseless, and N=500 points were used when evaluating performance with varying amounts of noise.

3.1 Smooth prototype equivalences

In many practical modeling scenarios, there is strong prior information as to the possible behaviors of the data. For instance, cyclic processes such as the cell cycle or the circadian rhythm in single-cell RNA sequencing (scRNA-seq) typically correspond to a limit cycle behavior (Riba et al., 2022; Schwabe et al., 2020; Karin et al., 2023), or hierarchical processes such as the differentiation of cells correspond to convergence to fixed points in gene expression space (Lange et al., 2022; Farrell et al., 2023). We can use this information to effectively shrink the search space when modeling the dynamics of the observed data, constraining the model to approximately follow our prior knowledge. In other words, we can constrain our model to only match dynamical systems similar to a candidate set of governing equations, $\dot{y}=g(y)$. In this scenario, the dynamics of g(y) form a *prototype* for the behavior expected to exist in the observed data.

We utilize *smooth equivalences* between dynamical systems in order to constrain the model to the prototype's dynamics (Chen et al., 2024). Specifically, two systems $\dot{x} = f(x)$ and $\dot{y} = g(y)$ are said to be smoothly equivalent if:

$$\exists H \text{ s.t. } \partial_x H(x) \, \dot{x} = g(H(x))$$
 (1)

where $H:\mathcal{X}\to\mathcal{Y}$ is a diffeomorphism and $\partial_x H(x)$ is the abbreviated notation for the Jacobian of H with respect to x. If two systems obey this equivalence relation, each orbit of the system f(x) has a smooth one-to-one mapping to an orbit in g(y), and thus the two systems share the same qualitative behavior, such as the types and stabilities of their invariant sets. In this work, we parametrize the diffeomorphism using an invertible neural network (INN), $H_{\theta}(x)$, which is optimized in order to approximately satisfy Equation (1). This is achieved by minimizing the following equivalence loss (Chen et al., 2024):

$$L_{E}(H_{\theta}, g) = \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{\partial_{x_{i}} H_{\theta}(x_{i}) \dot{x}_{i}}{\|\partial_{x_{i}} H_{\theta}(x_{i}) \dot{x}_{i}\|} - \frac{g(H_{\theta}(x_{i}))}{\|g(H_{\theta}(x_{i}))\|} \right\|^{2}$$
(2)

When the equivalence loss is 0, the dynamics that generated \dot{x} and g(y) are smoothly equivalent for any point $x \in \mathcal{D}$. In practice, this does not necessarily mean the two systems are equivalent over the whole space, but it was shown that it provides a good indication of similarity between dynamical systems when there is access to a large amount of samples (Chen et al., 2024). To improve convergence, we optimize the diffeomorphism using a regularized version of Equation (2), penalizing transformations with a large determinant and those that push the prototype's invariant set far from the data (see A.5 for details).

3.2 INVARIANT SET LOCALIZATION AND PROTOTYPE CLASSIFICATION WITH SPE

Our explicit construction using a mapping between the prototype and the observed data allows us to effectively localize structures in the observed data, which are in general very difficult to find (Smale, 2000). As in our running example, suppose that our prototype g(y) has a limit cycle, and we can generate points on this limit cycle $\gamma=\{y_1,\cdots,y_M\}$. Because we learned an explicit mapping between the two spaces, then $H_{\theta}^{-1}\left(\gamma\right)=\{H_{\theta}^{-1}(y_1),\cdots,H_{\theta}^{-1}(y_M)\}$ is guaranteed to be a closed loop in data space. Moreover, if the equivalence loss between the observed data and the prototype is low, then $H_{\theta}^{-1}\left(\gamma\right)$ will be a set of points close to the limit cycle of the true hidden system.

Moreover, SPE allows for classification between a set of prototypes, as the equivalence loss directly corresponds to a measure of dissimilarity. So, given a dictionary of possible prototypes $\{g_k(y)\}_{k=1}^K$, we optimize an INN $H_k(x)$ for each, using the equivalence loss from Section 3.1. We then calculate the equivalence loss, $L_E(H_k,g_k)$, between the observed data and each of the prototypes. If a prototype and the observed data are smoothly equivalent, and the NN is adequately optimized, then the equivalence loss for that prototype will be small. This allows us to classify the observed data according to the prototype that has the smallest equivalence loss.

3.3 Modeling diffeomorphisms with INNs

An important aspect of the equivalence loss from Equation (2) is the differentiable and smooth mapping between data and prototype space. In our work, we use INNs adapted from normalizing flows (NFs, Papamakarios et al. 2021) to model our parametric diffeomorphisms. This choice is guided by the need for efficient and explicit computations of both the log-determinants of the Jacobian as well as the Jacobian-vector products (JVPs), $\partial_x H_\theta(x)\dot{x}$, needed to calculate the equivalence loss.

Our INNs utilize a relatively small number of blocks, composed of alternating invertible linear transformations and affine coupling layers (Dinh et al., 2014). Both of these layer types are adapted so that their JVPs can be calculated in closed form. Specifically, instead of using multi-layer perceptrons (MLPs) typically found in affine coupling layers (Papamakarios et al., 2021) we use cosine features, which we call *Fourier feature coupling*. These Fourier feature coupling layers are highly expressive even when the network is narrow and shallow, and their JVPs can be calculated efficiently and in closed form. For details, see Appendix A.

Other options for invertible mappings exist, such as invertible ResNets (Behrmann et al., 2019; Chen et al., 2024) or Neural ODEs (Chen et al., 2018). However, while these options are typically more expressive than INNs adapted from NFs, they come with steep overheads in the calculations of the inverse function, JVPs and their log-determinants. Because of this, we opted to use sufficiently expressive networks comprised of affine coupling layers.

4 RESULTS

4.1 RECONSTRUCTING ATTRACTORS FROM SPARSE DATA

First, we demonstrate how SPE can be used to locate attractors in sparse data. This is a challenging problem since sparsity and noise make the underlying, unknown dynamical equations strongly undetermined. We demonstrate how SPE circumvents this difficulty on data simulated from a set of standard families of two-dimensional dynamical systems exhibiting limit cycles. The governing equations for these families of systems can be found in Appendix B.1.

To that end, we match between observed systems and a single limit cycle prototype, chosen to flexibly model point and oscillatory dynamics, which is defined in polar coordinates by:

$$\dot{r} = r(a - r^2), \qquad \dot{\theta} = \omega \tag{3}$$

Here, a is an order parameter that controls whether the system has a node attractor (negative values) or a limit cycle (positive values), and ω determines the orientation of the cycle (clockwise when negative and counter-clockwise when positive). Data were acquired by sampling initial conditions and points along simulated trajectories (details in Appendix B).

After fitting an INN $H_{\theta}(x)$ between the observed data \mathcal{D} and our limit cycle prototype, we estimated the location of the limit cycle in data space by uniformly sampling a sequence of points, $T_{\mathcal{V}} =$

Table 1: Comparison of the classification accuracy of SPE to different models across various families of dynamical systems, when classifying between periodic and node dynamics. The classification accuracy is averaged over 100 instanced for each family of system (see Appendix B.1 for details). The observed vectors were positioned on a dense 64×64 grid, with the addition of Gaussian noise with a standard deviation of $\sigma = 0.1$ on the velocities. Where relevant, the errors in accuracy are one standard deviation, calculated over different initializations. The highest scores for each column are shown in bold, with the second highest underlined.

	SO	Aug. SO	Liénard Poly	Liénard Sig- moid	Van der Pol	BZ Reaction	Selkov	Attractor estima-
SPE	91±1	81±1	96±1	92±1	97±3	88±2	68±1	√
TWA	98±1	93±1	86±13	92±7	83±15	82±11	65±3	X
Critical Points	54	56	70	49	56	84	51	X
Phase2vec	73±8	71±4	49±6	48 ± 0.1	49±4	50±0.1	49 ± 0.1	X
Autoencoder	95±3	<u>87±1</u>	63±16	88±9	81±16	82±13	49±2	X

 $\{y_j\}_{j=1}^M$, which lie along the limit cycle in prototype space, \mathcal{Y} . Each point was then mapped back into data space to define a trajectory along the estimated invariant set of the observed dynamics: $\hat{T}_{\mathcal{X}} = H_{\theta}^{-1}(T_{\mathcal{Y}}) = \left\{H_{\theta}^{-1}(y_j)\right\}_{j=1}^M$. Examples of predicted limit cycles can be seen in Figure 2, where the black orbits are the true limit cycles underlying the observed vectors while the red orbits are the estimated locations of the same limit cycles by SPE, based on the observed vectors. We observed a tight fit between predicted and true limit cycles in all example systems (Figures 2 and 6).

To more quantitatively evaluate SPE, we calculate the Wasserstein (W_2) distance between samples from the invariant set of the ground-truth system and those from the invariant set of the fitted model. To do so, we sample a large number of initial conditions from the phase space of the true system. We then simulate long trajectories starting from these initials conditions, taking the final position of these trajectories as an estimate for samples from the true invariant sets. In this manner, we are also able to compare SPE to baseline methods for estimating vector fields from noisy data. The baselines we compare to SPE are (Appendix C.1): a k-nearest neighbor (kNN) interpolator which estimates the velocity at a position to be the average velocities of the k nearest neighbors to the position; SINDy (Brunton et al., 2016), which approximates the vector as a sparse linear regression with a prespecified dictionary of functions; MLP, which approximates the underlying ODE using a multilayer perceptron. Note that while these methods serve as useful baselines for the reconstruction quality of the underlying vector field, unlike SPE they do not explicitly model the invariant sets and do not allow for its direct reconstruction.

When the positions x_i are sparse, or the vectors are noisy, SPE more accurately reconstructs the underlying invariant sets than other baselines (Figure 3). In particular, when the phase space is very sparsely populated or noisy, the baselines tend to estimate a vector field with large or none existent invariant sets, an example of which is shown in Figure 2 (right). In contrast, as SPE is constrained to model only stable dynamics, it is able to more closely reconstruct the underlying vector field.

4.2 CLASSIFYING DYNAMICAL SYSTEMS WITH PROTOTYPE EQUIVALENCE

The results of Section 4.1 relied on knowing that the observed system exhibited a particular invariant set. Here, we show that SPE can discover this information directly from the data by fitting multiple prototypes and using the loss to classify the behavior of the dynamics. As our prototype set, we choose all four effective behaviors implied by Equation (3), with $a=\pm\frac{1}{4}$ and $\omega=\pm\frac{1}{2}$. Four diffeomorphisms, $H_k(x)$, were fit to each observed system in parallel and the one with the minimal value of the equivalence loss defined in Equation (2) was used to determine class membership.

We begin by benchmarking SPE next to existing methods for classifying between node or cyclic behaviors on the dataset introduced by Moriel et al. 2023. This dataset is based on simulated families of systems whose order parameters correspond to either a node or a periodic attractor (details for governing equations can be found in Appendix B.1). Accordingly, the task is to classify each system in the dataset as either a point or periodic attractor. Systems in the dataset are comprised of a set of positions $x_i \in \mathbb{R}^2$ and the velocities corresponding to those positions, $\dot{x}_i \in \mathbb{R}^2$, organized on

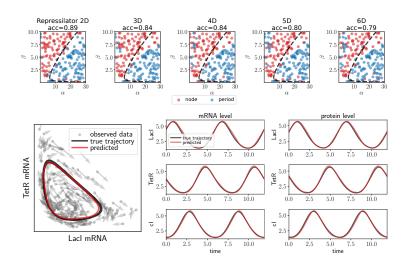


Figure 4: Classifying dynamics in higher dimensions and recovering the limit cycle from the repressilator system. Top: each point in the scatter represents a system with specific parameters that was classified by SPE as either a 2D embedded limit cycle (blue) or node attractor (red). The dashed black line depicts the ground truth bifurcation boundary between periodic and node behavior. Each column depicts dynamics projected onto a different dimensionality. Bottom: qualitative results of fitting a 6-dimensional repressilator system, projected to the LacI-TetR mRNA plane (left). The gray arrows depict observed position-velocity pairs, (x_i, \dot{x}_i) , the black line is the ground-truth invariant set of the dynamics and the red line is the predicted invariant set using SPE. Time series of the gene expression (center) and protein levels (right) can be extracted from the predicted limit cycle (shown in red). These are overlayed on top of a trajectory simulated from the underlying (hidden) system, which was simulated for a long time to ensure convergence to the limit cycle, shown in black.

a dense, regular 64×64 grid for a total of N=4096 observations. Table 1 shows the average accuracy of our method for each family of systems, compared to the following baselines (more details in Appendix C.3): **TWA** (Moriel et al., 2023), a convolutional network trained to classify between periodic and point dynamical systems; **Critical Points** (Helman & Hesselink, 1989; 1991), a heuristic approach that identifies critical points in the vector field; **Phase2vec** (Ricci et al., 2023), a deep learning approach for dynamical systems embedding, which learns vector field representations; and **Autoencoder**, an autoencoder trained to reconstruct the vectors, whose latent code is used to classify the dynamics. SPE outperforms existing baselines across all families of systems except for the family of simple oscillators (SO) and Augmented SO, where TWA, which was trained on thousands of these systems using a dense grid of points in phase space, is more performant (Table 1).

Note that, unlike most of the available baselines, SPE is not restricted to systems defined on a regular grid and can directly localize the invariant set (as shown in Section 4.1). To test the capabilities of SPE in sparse and noisy scenarios, in Figure 3 (right) we track the classification accuracy when decreasing the number of observed vectors N and under increasingly noisy scenarios, with low signal-to-noise ratios (SNRs) (see Appendix C.4 for details regarding data). The decline in performance is gradual along both of these axes - even when classifying using only 50 random vectors, average accuracy was still relatively high, at $\sim 70\%$.

SPE's classification and localization performance is not limited to limit cycles and node attractors, and can be flexibly generalized to additional prototypes. To demonstrate such capabilities, we evaluated the performance of SPE on a challenging classification of multistable systems with a varying number of basins of attraction (Appendix E.1). Our results show that SPE can successfully distinguish between dynamical systems with varying numbers of fixed points, and can additionally localize them in space (Figure 9). Furthermore, as the loss used to train SPE corresponds to a graded notion of equivalence, we found that SPE is also able to capture dominant behaviors of the system even when there is a mismatch between the true behavior and the chosen prototype. We tested this on the classification of the orientation of the flow in Appendix E.2.

4.3 BEYOND TWO DIMENSIONS

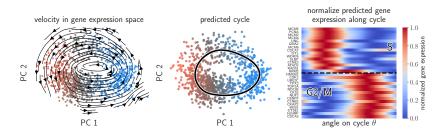


Figure 5: Recovering the cell cycle gene expression pattern from single-cell data. Left: gene expression velocity of cells undergoing proliferation in PCA space. Colors denote the cycle phase score based on marker gene expression; red corresponds to high expression of S-phase markers, blue to high expression of G2/M-phase genes, and gray to low levels in both. Middle: SPE was used to fit a periodic prototype to the RNA velocity data; the resulting attractor is plotted in black. The cells' locations and colors are as in the plot on the left. Right: predicted normalized gene expressions along the cycle attractor predicted by SPE. Specifically, the normalized expression is plotted vs. the angle on the limit cycle (θ) , for a set of common marker genes of the S (top of the heatmap) and G2/M (bottom of the heatmap) phases. See details in Appendix D.

Empirical measurements of dynamical systems, whose intrinsic behavior often lies on a low-dimensional manifold, are often embedded in high-dimensional spaces (Champion et al., 2019). Characterizing higher-dimensional systems, whether by localization of invariant structures or by classification of qualitative behaviors from a set of possibilities, is a challenging problem as the location of the lower-dimensional invariant set needs to be identified, and then matched, within the higher dimensional ambient space.

To test our approach in higher-dimensional systems, we first classify and localize invariant structures in data from the repressilator model of gene regulation (Elowitz & Leibler, 2000) (see Appendix B.3 for governing equations). The repressilator models a genetic regulatory network in bacteria, based on the mRNA and protein counts of three genes - TetR, LacI and λ phage cI - which inhibit each other in a cyclic fasion. Even though this family of systems spans six dimensions, under specific parameter values it exhibits either a 2D point attractor or contains an embedded limit cycle (Verdugo, 2018a; Potvin-Trottier et al., 2016). As such, to model data from this system we use higher-dimensional prototypes that are the combination of two behaviors: (1) a 2D limit cycle/equilibrium behavior as in Equation (3); (2) exponential decay to a fixed point along variables uncoupled from the embedded 2D system. Mathematically, we define these prototypes as:

$$g(y) = [g_{2D}(y_1), \quad -\tau \cdot y_2]^T \tag{4}$$

with $y_1 \in \mathbb{R}^2$, $y_2 \in \mathbb{R}^{d-2}$, where $g_{2D}(\cdot)$ are velocities in two dimensions, and τ is a decay factor. We used $\tau = 1/2$ in all of our experiments.

We then classify repressilator systems into node or cycle attractors using SPE, when the systems vary in terms of transcription α , and protein/mRNA degradation rates β . For each system, we simulate N=1000 observed pairs of positions and vectors using the same sampling scheme for the data as described in Section 4.1, Figure 4. To compare the performance along different dimensionalities, we project the observed positions x_i and velocities \dot{x}_i onto a predefined subset of the six dimensions (see Appendix B.3 for details). We observed (Figure 4) that our model can classify two-dimensional repressilator systems better than earlier work (Moriel et al., 2023), whose accuracy was 87% (next to our 89%), and that SPE can accurately distinguish point from cyclic behavior across all dimensionalities considered. Classification of this kind, carried out explicitly in higher dimensionalities, is infeasible using techniques from previous work. Moreover, our optimized diffeomorphisms in the six-dimensional case can be used to accurately locate the cyclic dynamics of the repressilator system, recapitulating the behavior of the system and its invariant set (Figure 4).

4.4 Uncovering the cell cycle expression pattern in single-cell data

Finally, we show how SPE can be used to trace the periodic gene expression dynamics of proliferating cells. The expression of cell-cycle genes follows a well-defined trajectory through different phases: initial growth (G1), DNA replication (S phase), further growth (G2), and mitosis (M). Here, we analyze single-cell RNA-sequencing data from a human cell line, profiling over 50,000 genes across more than 1,000 cells (Mahdessian et al., 2021). Previous approaches have inferred cell-cycle progression using marker genes (Tirosh et al., 2016), a learned projection (Zheng et al., 2022; Riba et al., 2022), or using structural priors (Schwabe et al., 2020; Karin et al., 2023), but these do not directly leverage the fact that the cycle has a characteristic dynamical structure in the form of a limit cycle. Here, we show that cell cycle structure can be estimated from RNA velocity (Bergen et al., 2021; Gorin et al., 2022), effective local velocities of cells in gene expression space that are based on differences in spliced and unspliced RNA counts.

Using scVelo (Bergen et al., 2020), we infer high-dimensional RNA velocities for all sampled cells and project them together with their associated gene expression profiles, into a 100-dimensional space using principal component analysis (PCA). The resulting streamlines (Figure 5, left) reveal a noisy trajectory traversing across distinct S-phase and G2/M-phase gene expression states. We then fit a high-dimensional limit-cycle attractor (as described in Equation (4)) to the RNA velocity data, capturing the periodic nature of the cell cycle (Figure 5, middle, see Appendix D for more details on data and prototype). Utilizing the PCA projection, we can map the learned attractor back to gene expression space, revealing periodic, anti-correlated expression patterns of key cell-cycle marker genes for the S and G2/M-phase (Figure 5, right). This demonstrates our method's ability to recover biologically meaningful periodic processes directly from high-dimensional, noisy and sparse experimental data. These results generalize across datasets; in Figure 8 in the appendix, we analyze an additional dataset of proliferating human fibroblasts (Riba et al., 2022), and show that there too SPE is able to localize the cell-cycle from single-cell gene expression and RNA velocity alone, using the same preprocessing and fitting procedure as described for Figure 5 (Appendix D).

5 DISCUSSION AND FUTURE DIRECTIONS

Our proposed approach, *smooth prototype equivalences*, addresses a challenging problem in datadriven dynamical systems: characterizing long-term behavior from sparse, noisy data. The key idea is to learn the correspondence between idealized prototype dynamics and their noisy, real-world counterparts in a way that reveals long-term structure. We demonstrated the efficacy and efficiency of this approach on both challenging synthetic and real-world data sets. Furthermore, SPE can be used as a way to classify the long-term dynamics in situations where there are multiple possible ground-truth behaviors.

In this work, our focus was the detection and classification of long-term behaviors that are robust to noise, such as limit cycles and node attractors. Indeed, our main focus were phenomena from empirical biological systems, where dynamics need to be repeatable for proper function. Examples for such dynamics are differentiation of cells into different types (Bergen et al., 2020), the oscillatory process of the circadian clock (Karin et al., 2023), attractors of artificial and biological recurrent neural networks, or the cell cycle (Riba et al., 2022; Mahdessian et al., 2021; Schwabe et al., 2020) which we explored in Section 4.4, among others. At the other side of this scale are chaotic systems and their strange attractors. Applying prototype equivalence approaches to these systems is an important future challenge, since strange attractors of different fractal dimensions are not smoothly equivalent to each other, leaving open the question of how to learn appropriate invariances, especially when subject to experimental noise. While we have shown that SPE is a useful tool for characterizing of dynamical systems, it explicitly depends on the definition of prototypes which are to be matched to empirical data. SPE makes up for its reliance on pre-defined prototypes, however, with its relaxed notion of equivalence, where a best possible transformation between prototype and data can be found, so that even a partially matching prototype can help localize and categorize dynamical behaviors of scientific interest (demonstrated in Appendix E.2).

Our method directly addresses challenges faced in scientific domains such as biology, neuroscience, and physics. By offering an equation-free approach for the detection and classification of invariant sets, our method has the potential to advance the understanding of complex, nonlinear processes in systems where analytical modeling is impractical.

REPRODUCIBILITY STATEMENT

All details necessary to reproduce the results of this work can be found in the appendix:

- Full specifications of our invertible NNs are in Appendix A.
- Hyperparameter choices for all experiments can be found in Appendix A.7.
- Governing equations of all simulated systems are described in Appendix B.1 for 2D systems and Appendix B.3 for the 6D repressilator system.
- Detailed instructions to generate observations from the simulated systems are given in Appendix B.2.

Furthermore, the code will be made publicly available.

REFERENCES

- Miri Adler, Avi Mayo, Xu Zhou, Ruth A Franklin, Matthew L Meizlish, Ruslan Medzhitov, Stefan M Kallenberger, and Uri Alon. Principles of cell circuits for tissue repair and fibrosis. *IScience*, 23 (2), 2020.
- Aleksandr A. Andronov and Lev S. Pontryagin. Systèmes grossiers. *Doklady Akademii Nauk SSSR*, 14:247–251, 1937. Translated as "Rough Systems" in later works.
- Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible residual networks. In *International conference on machine learning*, pp. 573–582. PMLR, 2019.
- Volker Bergen, Marius Lange, Stefan Peidli, F Alexander Wolf, and Fabian J Theis. Generalizing rna velocity to transient cell states through dynamical modeling. *Nature biotechnology*, 38(12): 1408–1414, 2020.
- Volker Bergen, Ruslan A Soldatov, Peter V Kharchenko, and Fabian J Theis. Rna velocity—current challenges and future perspectives. *Molecular systems biology*, 17(8):e10282, 2021.
- Christopher M Bishop, Markus Svensén, and Christopher KI Williams. Gtm: The generative topographic mapping. *Neural computation*, 10(1):215–234, 1998.
- Edwin Bonilla and Antonio Robles-Kelly. Discriminative probabilistic prototype learning. *arXiv* preprint arXiv:1206.4686, 2012.
- Jason J Bramburger, Steven L Brunton, and J Nathan Kutz. Deep learning of conjugate mappings. Physica D: Nonlinear Phenomena, 427:133008, 2021.
- Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proc. Natl. Acad. Sci. U. S. A.*, 113(15): 3932–3937, 2016.
- Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan Kutz. Chaos as an intermittently forced linear system. *Nature communications*, 8(1):19, 2017.
- Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of coordinates and governing equations. *Proc. Natl. Acad. Sci. U. S. A.*, 116(45):22445–22451, 2019.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in neural information processing systems*, 31, 2018.
- Ruiqi Chen, Giacomo Vedovati, Todd Braver, and ShiNung Ching. Dform: Diffeomorphic vector field alignment for assessing dynamics across learned models. *arXiv preprint arXiv:2402.09735*, 2024.
- Shiming Chen, Wenjin Hou, Ziming Hong, Xiaohan Ding, Yibing Song, Xinge You, Tongliang Liu, and Kun Zhang. Evolving semantic prototype improves generative zero-shot learning. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.

- Alexander Chervov and Andrei Zinovyev. Computational challenges of cell cycle analysis using single cell transcriptomics. *arXiv* [*q-bio.QM*], August 2022.
- Brian M de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J Nathan Kutz, and Steven L Brunton. PySINDy: A python package for the sparse identification of nonlinear dynamics from data. 2020.
 - Grigorios Dimitriadis. Introduction to nonlinear aeroelasticity. John Wiley & Sons, 2017.
- Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. *arXiv preprint arXiv:1410.8516*, 2014.
 - Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. *Advances in neural information processing systems*, 32, 2019a.
 - Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. *Advances in neural information processing systems*, 32, 2019b.
 - Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regulators. *Nature*, 403(6767):335–338, 2000.
 - Spencer Farrell, Madhav Mani, and Sidhartha Goyal. Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics. *Cell Reports Methods*, 3(9), 2023.
 - Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):1–8, 2021. URL http://jmlr.org/papers/v22/20-451.html.
 - Bryan Glaz. Efficient pseudometrics for data-driven comparisons of nonlinear dynamical systems, 2024. URL https://arxiv.org/abs/2409.18681.
 - Gennady Gorin, Meichen Fang, Tara Chari, and Lior Pachter. Rna velocity unraveled. *PLOS Computational Biology*, 18(9):e1010492, 2022.
 - Philip Hartman. A lemma in the theory of structural stability of differential equations. *Proceedings of the American Mathematical Society*, 11(4):610–620, 1960. doi: 10.2307/2034363.
 - James Helman and Lanbertus Hesselink. Representation and display of vector field topology in fluid flow data sets. *Computer*, 22(08):27–36, 1989.
 - James L Helman and Lambertus Hesselink. Visualizing vector field topology in fluid flows. *IEEE Computer Graphics and Applications*, 11(3):36–46, 1991.
 - Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.
 - Jonathan Karin, Yonathan Bornfeld, and Mor Nitzan. scPrisma infers, filters and enhances topological signals in single-cell data using spectral template matching. *Nat. Biotechnol.*, February 2023.
 - Katarzyna M Kedziora and Wayne Stallaert. Cell cycle mapping using multiplexed immunofluorescence. *Methods Mol. Biol.*, 2740:243–262, 2024.
 - Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
 - Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer. Machine learning–accelerated computational fluid dynamics. *Proceedings of the National Academy of Sciences*, 118(21):e2101784118, 2021.
 - Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan, et al. Rna velocity of single cells. *Nature*, 560(7719):494–498, 2018.

- Marius Lange, Volker Bergen, Michal Klein, Manu Setty, Bernhard Reuter, Mostafa Bakhti, Heiko Lickert, Meshal Ansari, Janine Schniering, Herbert B Schiller, et al. Cellrank for directed single-cell fate mapping. *Nature methods*, 19(2):159–170, 2022.
 - Diana Mahdessian, Anthony J Cesnik, Christian Gnann, Frida Danielsson, Lovisa Stenström, Muhammad Arif, Cheng Zhang, Trang Le, Fredric Johansson, Rutger Schutten, et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. *Nature*, 590(7847):649–654, 2021.
 - Shimrit Mayer, Tomer Milo, Achinoam Isaacson, Coral Halperin, Shoval Miyara, Yaniv Stein, Chen Lior, Meirav Pevsner-Fischer, Eldad Tzahor, Avi Mayo, et al. The tumor microenvironment shows a hierarchy of cell-cell interactions dominated by fibroblasts. *Nature communications*, 14(1):5810, 2023.
 - Noa Moriel, Matthew Ricci, and Mor Nitzan. Let's do the time-warp-attend: Learning topological invariants of dynamical systems. *arXiv preprint arXiv:2312.09234*, 2023.
 - Mor Nitzan and Michael P Brenner. Revealing lineage-related signals in single-cell gene expression using random matrix theory. *Proceedings of the National Academy of Sciences*, 118(11): e1913931118, 2021.
 - Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond geometry: Comparing the temporal structure of computation in neural circuits with dynamical similarity analysis. *Advances in Neural Information Processing Systems*, 36:33824–33837, 2023.
 - George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine Learning Research*, 22(57):1–64, 2021.
 - Henri Poincaré. *Les Méthodes Nouvelles de la Mécanique Céleste*, volume 1–3. Gauthier-Villars, Paris, France, 1892–1899. Available as a reprint from Dover Publications, 1957.
 - Laurent Potvin-Trottier, Nathan D Lord, Glenn Vinnicombe, and Johan Paulsson. Synchronous long-term oscillations in a synthetic gene circuit. *Nature*, 538(7626):514–517, 2016.
 - William T. Redman, Maria Fonoberova, Ryan Mohr, Ioannis G. Kevrekidis, and Igor Mezić. Algorithmic (semi-)conjugacy via koopman operator theory, 2022. URL https://arxiv.org/abs/2209.06374.
 - Andrea Riba, Attila Oravecz, Matej Durik, Sara Jiménez, Violaine Alunni, Marie Cerciat, Matthieu Jung, Céline Keime, William M Keyes, and Nacho Molina. Cell cycle gene regulation dynamics revealed by rna velocity and deep-learning. *Nature communications*, 13(1):2865, 2022.
 - Matthew Ricci, Noa Moriel, Zoe Piran, and Mor Nitzan. Phase2vec: Dynamical systems embedding with a physics-informed convolutional network. *Proceedings of the 11th International Conference on Learning Representations, ICLR, Kigali, Rwanda, May 1-5*, 2023.
 - Eleanor H Rosch. Natural categories. Cognitive psychology, 4(3):328–350, 1973.
 - Daniel Schwabe, Sara Formichetti, Jan Philipp Junker, Martin Falcke, and Nikolaus Rajewsky. The transcriptome dynamics of single cells during the cell cycle. *Mol. Syst. Biol.*, 16(11):e9946, November 2020.
 - Joseph D. Skufca and Erik M. Bollt. Relaxing conjugacy to fit modeling in dynamical systems. *Phys. Rev. E*, 76:026220, Aug 2007. doi: 10.1103/PhysRevE.76.026220. URL https://link.aps.org/doi/10.1103/PhysRevE.76.026220.
- Joseph D Skufca and Erik M Bollt. A concept of homeomorphic defect for defining mostly conjugate dynamical systems. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 18(1):013118, 2008.
 - Steve Smale. Mathematical problems for the next century. *Mathematics: frontiers and perspectives*, pp. 271–294, 2000.

- Wayne Stallaert, Katarzyna M Kedziora, Colin D Taylor, Tarek M Zikry, Holly K Sobon, Sovanny R Taylor, Catherine L Young, Juanita C Limas, Jeanette G Cook, and Jeremy E Purvis. The structure of the human cell cycle. *Cold Spring Harbor Laboratory*, pp. 2021.02.11.430845, February 2021.
- Shlomo Sternberg. Local contractions and a theorem of poincaré. *American Journal of Mathematics*, 79(4):809–824, 1957. doi: 10.2307/2372447.
- Floris Takens. Detecting strange attractors in turbulence. In David A. Rand and Lai-Sang Young (eds.), *Dynamical Systems and Turbulence, Warwick 1980*, volume 898 of *Lecture Notes in Mathematics*, pp. 366–381. Springer-Verlag, Berlin, Heidelberg, 1981. doi: 10.1007/BFb0091924.
- Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. *Science*, 352(6282):189–196, 2016.
- Jakub M Tomczak and Max Welling. Improving variational auto-encoders using householder flow. *arXiv preprint arXiv:1611.09630*, 2016.
- Anael Verdugo. Hopf bifurcation analysis of the repressilator model. *American Journal of Computational Mathematics*, 8(02):137–152, 2018a.
- Anael Verdugo. Hopf bifurcation analysis of the repressilator model. *American Journal of Computational Mathematics*, 8(2):137–152, 2018b.
- Terry A Weisshaar. Aeroelasticity, an introduction to fundamental problems-with an historical perspective, examples and homework problems, 2012.
- Shijie C Zheng, Genevieve Stein-O'Brien, Jonathan J Augustin, Jared Slosberg, Giovanni A Carosso, Briana Winer, Gloria Shin, Hans T Bjornsson, Loyal A Goff, and Kasper D Hansen. Universal prediction of cell-cycle position using transfer learning. *Genome Biol.*, 23(1):41, January 2022.
- Shijie C Zheng, Genevieve Stein-O'Brien, Leandros Boukas, Loyal A Goff, and Kasper D Hansen. Pumping the brakes on rna velocity by understanding and interpreting rna velocity estimates. *Genome biology*, 24(1):246, 2023.
- Xu Zhou, Ruth A Franklin, Miri Adler, Jeremy B Jacox, Will Bailis, Justin A Shyer, Richard A Flavell, Avi Mayo, Uri Alon, and Ruslan Medzhitov. Circuit design features of a stable two-cell system. *Cell*, 172(4):744–757, 2018.
- Andrei Zinovyev, Michail Sadovsky, Laurence Calzone, Aziz Fouché, Clarice S Groeneveld, Alexander Chervov, Emmanuel Barillot, and Alexander N Gorban. Modeling progression of single cell populations through the cell cycle as a sequence of switches. *bioRxiv*, pp. 2021.06.14.448414, August 2021.

A NORMALIZING FLOW DETAILS

The diffeomorphisms $H: \mathcal{X} \to \mathcal{Y}$ used in this work are invertible neural networks (INNs) with alternating *Affine* and *Fourier Feature Coupling* (FFCoupling) transforms, both of which are explained in further details below. Furthermore, the first layer of the normalizing flow was set to standardize the data, effectively an *ActNorm* layer Papamakarios et al. (2021), defined as:

$$[ActNorm(x)]_i = \frac{x_i - mean(x_i)}{std(x_i)}$$
(5)

In the above, $mean(x_i)$ and $std(x_i)$ are the mean and standard deviations of i-th coordinate of the observed data, respectively. This ActNorm layer was kept frozen after initialization, and means that the normalization of the data is explicitly part of the learned diffeomorphism.

A.1 FOURIER FEATURE COUPLING

The FFCoupling layer we used is a modification of the standard *AffineCoupling* Papamakarios et al. (2021); Dinh et al. (2014) layer used in normalizing flows. AffineCoupling splits an input x to two sub-vectors x_1 and x_2 , and the transformation itself is defined as:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \text{AffineCoupling}(x) = \begin{bmatrix} x_1 \\ \exp[f_s(x_1)] \circ x_2 + f_t(x_1) \end{bmatrix}$$
 (6)

where $f_s(\cdot)$ is a scaling function, $\exp[f_s(\cdot)]$ is the element-wise exponent of $f_s(\cdot)$, $f_t(\cdot)$ is a translation function, and \circ stands for element-wise multiplication. AffineCoupling is defined in this manner to ensure invertibility, in which case $f_s(\cdot)$ and $f_t(\cdot)$ can be arbitrarily complex functions. These two functions are typically parameterized by a multi-layer perceptron (MLP). Baked into the AffineCoupling transformation is the simple form of its log-determinant:

$$\log |\text{AffineCoupling}(x)| = \sum_{i} [f_s(x_1)]_i \tag{7}$$

Finally, note that AffineCoupling only transforms x_2 as a function of x_1 . To account for this, it is standard to chain two transformations, one where x_1 acts on x_2 and another with the roles reversed. For simplicity, we regard such a chaining of two AffineCoupling transformations as a single layer.

Unfortunately, when both the scale and the translation functions are defined as MLPs, calculating the Jacobian or Jacobian-vector products (JVPs) is not straightforward. These JVPs are needed for our loss (Equation (2)) and can potentially be found using autograd methods, albeit at a high computational cost. Furthermore, we expect these diffeomorphisms to typically be quite smooth and act on a range of frequencies, properties which are not easily enforced in MLPs. Instead, we opt to use transformations whose JVPs can be calculated in closed-form and whose properties are well understood.

For our scale and translation functions we use the following *FFCoupling*:

$$\mathcal{F}(x) = \sum_{k=1}^{K} \Theta_k \cos\left(\frac{2\pi}{R}k \cdot x + \phi_k\right)$$
 (8)

where $\cos(x)$ is an element-wise cosine. As defined, the frequency coefficients $\Theta_k \in \mathbb{R}^{d \times d}$ and phases $\phi_k \in \mathbb{R}^d$ are learnable parameters, while the number of frequencies K and the range R are hyperparameters. When K is large, this transformation is expressive enough to fit any function defined in the range [-R/2, R/2]. It also admits a very simple form for the Jacobian, given by:

$$\frac{\partial}{\partial x} \mathcal{F}(x) = -\frac{2\pi}{R} \sum_{k} k \cdot \Theta_k \operatorname{diag} \left[\sin \left(\frac{2\pi}{R} k \cdot x + \phi_k \right) \right] \tag{9}$$

A.2 AFFINE TRANSFORMATION LAYER

Besides the FFCoupling layer, we also use affine transformations. To ensure invertibility, we parameterize this transformation as:

Affine(x) =
$$WW^T x + e^{\varphi} \cdot x + \mu$$
 (10)

where $W \in \mathbb{R}^{d \times q}$ with some chosen $q, \varphi \in \mathbb{R}$ and $\mu \in \mathbb{R}^d$ are learnable parameters. This factorization ensures that the matrix $WW^T + Ie^{\varphi}$ is positive-definite (PD), and thus invertible. It also enables closed-form inversion using the matrix-inversion lemma.

A.3 HOUSEHOLDER TRANSFORMATIONS

In general, we found that the Affine and FFCoupling layers were expressive enough, when the observed data was mostly aligned with the axes of the prototype. However, in higher dimensions there is no reason to a-priori believe that this should be true. To overcome this difficulty, we used *Householder transformations* (Papamakarios et al., 2021; Tomczak & Welling, 2016), which act as building blocks for orthogonal transformations. The Householder transformation is defined as:

$$HH(x) = \left(I - \frac{2}{\|v\|^2} vv^T\right) x \tag{11}$$

where $v \in \mathbb{R}^d$ are the parameters of the transformation. This transformation is orthogonal, and so has a determinant of 1. Furthermore, it can be shown (Tomczak & Welling, 2016) that any rotation in a d-subspace can be carried out with d of these transformations. Thus, these transforms are useful for more directly rotating space, which is difficult to achieve directly with the Affine transformations defined above.

A.4 Network and training specifications

As mentioned above, the INNs we use have alternating Affine and FFCoupling transforms. A single block of our network is defined as Affine \rightarrow FFCoupling \rightarrow ReverseFFCoupling, where the ReverseFFCoupling switches the roles of x_1 and x_2 , as explained in Appendix A.1.

Before these blocks, our networks include a frozen ActNorm layer that standardizes the data and ensures that all learned diffeomorphism have similar inputs, and then a full-rank Affine transformation, with learnable weights. In the cell-cycle (Section 4.4) and multi-stable dynamics (Appendix E.1) experiments we also added d Householder transforms, where d is the dimension of the data.

A.5 OPTIMIZATION CRITERIA

In addition to the equivalence loss, L_E , we introduced a projection regularizer, L_{proj} , that aligns the invariant structures of the prototype with the observed data points. This regularization significantly improves convergence in complex scenarios and promotes identifiability of the solution by encouraging the observed data to lie close to the invariant set implied by the prototype dynamics and the learned diffeomorphism. This regularization is described in full detail in Appendix A.6. Moreover, we found it helpful to regularize the log-determinant to be close to 0, which penalizes networks excessively expanding or contracting space. The full loss used to optimize the diffeomorphism H in SPE is thus given by:

$$L_{\text{tot}}(H_{\theta}, g) = L_{\text{E}}(H_{\theta}, g) + L_{\text{proj}}(H_{\theta}, g, \lambda_{\text{proj}}) + \lambda_{\text{det}} L_{\text{det}}(H_{\theta}). \tag{12}$$

All training is carried out using the Adam optimizer Kingma (2014) with weight decay.

A.6 PROJECTION REGULARIZATION

When using our high-dimensional prototypes from Equation (4), we found that performance was improved by regularizing the diffeomorphism to map the data as close as possible to the invariant sets of the embedded 2D dynamics. Our definition of the high-dimensional prototypes essentially assumes that most of the observed dynamics are at, or close to, a 2D subset of the full space which contains the invariant set of the dynamics. Moreover, our explicit construction of the prototypes, with simple governing equations, allows us to project points in 2D onto their invariant sets. For dynamics of this sort, we expect the positions x_i to be close to the invariant set embedded in a higher dimension. Utilizing this knowledge during optimization can aid convergence, and can be done using our definition of the prototype. Specifically, using the diffeomorphism we can project the points onto the 2D invariant set of the prototype, and then back into data space as follows:

$$P(x; H_{\theta}) = H_{\theta}^{-1}([H_{\theta}(x)]_1, [H_{\theta}(x)]_2, 0, \cdots, 0)$$
(13)

where $[H_{\theta}(x)]_i$ is the *i*-th coordinate of $H_{\theta}(x)$ and $P(x; H_{\theta})$ denotes the projection according to $H_{\theta}(x)$.

We model the projection into data space through a Gaussian observation model, with the following loss added when training:

$$L_{\text{proj}}(H_{\theta}, g, \lambda_{\text{proj}}) = e^{\lambda_{\text{proj}}} \frac{1}{N} \sum_{i}^{N} \left\| x_i - P(x_i; H_{\theta}) \right\|^2 - \frac{1}{N} \lambda_{\text{proj}}$$
(14)

where λ_{proj} is the regularization coefficient, which takes the form of the log of the precision of the Gaussian observation model. Adding the regularization coefficient in this manner means that it can be optimized in parallel to the diffeomorphism, and allows for an adaptive fitting process. When modeled in this way, the projection is similar to generative topographic mapping (GTM, Bishop et al. (1998)) when the matching between the latent codes and the data is known.

A.7 HYPERPARAMETERS SETTINGS

For all simulated systems, hyperparameters were chosen to maximize performance on a separate, held out validation set of 100 datasets. During evaluation time, the performance of the methods was not tested on these held out datasets.

Comparison of classification on dense grids: for the comparisons in Table 1, we found that weight decay and the other regularizations were not helpful, so all regularization coefficients were set to 0. Additionally, because this data is specified on a dense grid, with the invariant set typically in the center of this grid, we found that the initial ActNorm hurt performance. The initial ActNorm layer in the INN was designed to center data that is assumed to be near the invariant set, but the grid data from Moriel et al. does not follow this assumption. Thus, for this data we did not use the initial ActNorm layer. All networks for those comparisons had 3 blocks with a width of 5 and where trained for 600 iterations with a learning rate of $1e^{-3}$. In all of these, the prototypes were the oscillator prototype defined in Equation (3), with $a=\pm 0.25$ and $\omega=\pm 0.5$.

Other results on 2D simulated datasets: for figures Figure 2 and Figure 3, all networks had 4 blocks with a width of 5, and were trained for 500 iterations. For these, we used a learning rate and weight decay of $1e^{-3}$, and the determinant regularization coefficient was $1e^{-3}$. As before, the prototypes used for these were the oscillator prototype with $a=\pm 0.25$ and $\omega=\pm 0.5$.

Repressilator system: for Figure 4, we used NFs with 3 blocks and a width of 5. These were trained for 500 iterations, with the same regularization settings as above. Additionally, to fit the systems in more than 2D, we added the projection regularization from Appendix A.6, with the initial regularization $\lambda_{\rm proj} = e^{-1}$. These were trained for 2000 iterations, and were matched to the high-dimensional versions of the oscillator prototypes from Equation (4), with $a = \pm 0.25$ and $\omega = \pm 2$.

For the hyperparameters used in the cell-cycle experiments, see Appendix D.

As our INNs are quite small, and most of the data is of a low dimension (relative to typical machine learning tasks), a single CPU with 16GB RAM was sufficient for training our networks. Fitting a single INN takes less than 10 seconds for all of the 2D simulated data and around 90-120 seconds for the cell-cycle data.

B SIMULATION DETAILS

B.1 2D SYSTEMS

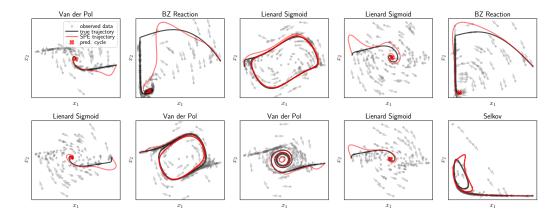


Figure 6: **Randomly picked examples of SPE on 2D synthetic data.** In all of these, notice how SPE is able to localize the invariant set from the data, even when there might be uncertainty regarding the intermediate trajectories.

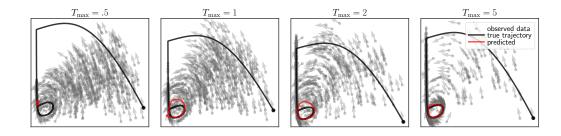


Figure 7: The effects of changing the maximum simulation sampling time T_{max} . When T_{max} is small (e.g. $T_{\text{max}} = 0.5$; left), most of the observations are transients. On the other hand, when T_{max} is large (e.g. $T_{\text{max}} = 5$; right), most of the observations are on the invariant set.

For the 2D simulated dynamics, we use the same systems as in Moriel et al.. The governing equations for these systems are shown in Table 2 (adapted from Moriel et al. 2023). We additionally study the

Table 2: Governing equations, range of phase space used for initial conditions, range of parameters for simulated systems and parameter settings that are known to correspond with a limit cycle. Adapted from Moriel et al. 2023

mom whome ct	ui. 2023.			
System Name	Equation	Initial cond.	Parameter ranges	Cycle condition
Simple Oscillator (SO)	$\dot{r} = r(a - r^2)$ $\dot{\theta} = \omega$	$x_1, x_2 \in [-1, 1]$	$a \in [-0.5, 0.5], \omega \in [-1, 1]$	a > 0
Liénard Polynomial	$\dot{x}_1 = x_2$ $\dot{x}_2 = -(ax_1 + x_1^3) - (c + x_1^2)x_2$	$x_1, x_2 \in [-4.2, 4.2]$	$a \in [0, 1], c \in [-1, 1]$	c < 0
Liénard Sigmoid	$\dot{x}_1 = x_2$ $\dot{x}_2 = -(1/(1 + e^{-ax_1}) - 0.5) - (b + x_1^2)x_2$	$x_1, x_2 \in [-1.5, 1.5]$	$a \in [0, 1], b \in [-1, 1]$	b < 0
Van der Pol	$\dot{x}_1 = x_2$ $\dot{x}_2 = \mu x_2 - x_1 - x_1^2 x_2$	$x_1, x_2 \in [-3, 3]$	$\mu \in [-1, 1]$	$\mu > 0$
BZ Reaction	$\dot{x}_1 = a - x_1 - \frac{4x_1x_2}{1+x_1^2}$ $\dot{x}_2 = bx_1\left(1 - \frac{x_2}{1+x_1^2}\right)$	$x_1, x_2 \in [0, 10]$	$a \in [2, 19], b \in [2, 6]$	$b < \frac{3a}{5} - \frac{25}{a}$
Selkov	$\dot{x}_1 = x_1 + ax_2 + x_1^2x_2$ $\dot{x}_2 = b - ax_2 - x_1^2x_2$	$x_1, x_2 \in [0, 3]$	$a \in [0.01, 0.11], b \in [0.02, 1.2]$	$b^{-2} > 2 - 4a \pm \sqrt{1 - 8a}$

Augmented SO system, which is an instance of a simple oscillator (SO) that was transformed by a random initialization of a neural spline flows Durkan et al. (2019a). All of these systems change behavior from node attractors to limit cycles, i.e. undergo a Hopf bifurcation, at known parametric settings, making them particularly relevant for our application.

See Figure 6 for randomly sampled systems, their behavior and the fitting quality of SPE.

B.2 SIMULATING SPARSE DATA

The most straightforward method to draw sparse data from each system is to draw points uniformly from the phase-space. However, for high-dimensional systems this runs the risk of under-sampling the region of the invariant set, observations which we require in order to make any meaningful prediction. Moreover, this does not accurately portray how we expect data to be collected in real scenarios. Instead, we assume that each point of the data is a point on a random trajectory, with initial conditions coming from a uniform distribution on pre-specified ranges of the phase-space. Additionally, we assume that each observed pair (x_i, \dot{x}_i) has independently traversed a different amount of time on its respective trajectory. The data sampling process can be summarized through the following steps:

- 1. For each $i \in \{1, \cdots, N\}$, draw the initial conditions $x_i^{(0)}$ uniformly from a pre-specified portion of space
- 2. Sample the amount of time t_i uniformly in the range $[T_{\min}, T_{\max}]$
- 3. Simulate a trajectory beginning at $x_i^{(0)}$ to time t_i . The point x_i reached on the trajectory in this manner is defined as the position, and $\dot{x}_i = f(x_i)$ as the velocity
- 4. Optionally, Gaussian noise with standard deviation σ is then added to \dot{x}_i

Usually we set the parameter $T_{\min}=0$, except when sampling from the repressilator, where it is set to $T_{\min}=3$. T_{\max} is a hyperparameter that effectively controls how much samples tend to concentrate around the invariant set. When T_{\max} is close to 0, then the pairs (x_i, \dot{x}_i) revert back to being uniformly sampled from phase-space.

An example of the effect of different values for $T_{\rm max}$ can be seen in Figure 7. When $T_{\rm max}$ is small, the observations mostly include transients of the dynamics, in which case not much can be estimated with regards to the invariant set of the system. As $T_{\rm max}$ increases, more points aggregate near the invariant set. For our 2D simulations we use $T_{\rm max}=3$, whereas for the repressilator system we used $T_{\rm max}=10$.

All trajectories are simulated with the Runka-Kutta method (RK4) and a step size of $\Delta t = 0.01$.

B.3 REPRESSILATOR

The repressilator system is governed by six coupled differential equations, structured as three instances of the following gene-regulation model (Elowitz & Leibler, 2000):

$$\dot{m}_i = -m_i + \frac{\alpha}{1 + p_j^n} + \alpha_0,$$

$$\dot{p}_i = -\beta(p_i - m_i),$$

where m_i and p_i denote the mRNA and protein concentrations for gene i, corresponding to **LacI**, **TetR**, and λ cI, with cyclic inhibition: i = LacI, TetR, cI and j = cI, LacI, TetR. The parameters α_0 (basal transcription), α (maximal transcription), β (protein/mRNA degradation ratio), and n (Hill coefficient) define the system's regulatory dynamics.

We analyze trajectories across $\alpha \in (0, 30)$, $\beta \in (0, 10)$, with $\alpha_0 = 0.2$, n = 2. A supercritical Hopf bifurcation emerges at critical values of β (Verdugo, 2018b):

$$\begin{split} \beta_1 &= \frac{3A^2 - 4A - 8}{4A + 8} + \frac{A\sqrt{9A^2 - 24A - 48}}{4A + 8}, \\ \beta_2 &= \frac{3A^2 - 4A - 8}{4A + 8} - \frac{A\sqrt{9A^2 - 24A - 48}}{4A + 8}, \end{split}$$

where:

$$A = \frac{-\alpha n \hat{p}^{(n-1)}}{(1+\hat{p}^n)^2}, \quad \hat{p} = \frac{\alpha}{1+\hat{p}^n} + \alpha_0$$
 (15)

These are the boundaries plotted in Figure 4 (top).

To simulate instances of the repressilator, we use the same sampling procedure as described in Appendix B.2, with $T_{\rm min}=3$ and $T_{\rm max}=10$. In this context we use $T_{\rm min}=3$ to ensure that when the samples are projected to lower than six dimensions they still define a vector field with non-intersecting trajectories. Furthermore, even though we used $T_{\rm max}=10$, a larger value than in the other simulated systems, we found that the observed points do not all lie on the invariant set of the repressilator (as can be seen in Figure 4).

C BASELINE DETAILS

C.1 BASELINES IN INVARIANT SET LOCALIZATION

In Section 4.1 we showcase the ability of SPE at estimating the position of limit cycles from observations. Few existing approaches to do so exist, and those that do rely on data which is dense on a regular grid. However, the quality of the fit can be evaluated compared to other methods for estimating the underlying ODE. Accordingly, we compared SPE to a number of simple baselines:

- kNN, a simple interpolator which uses the k-nearest observed positions in order to estimate the velocity. In our experiments, we found that k=5 neighbors approximates clean systems fairly well, and used that setting for all of our comparisons.
- SINDy (Brunton et al., 2016; de Silva et al., 2020) is an established method for estimating vector fields from empirical observations. SINDy uses sparse linear regression with a fixed library of functions to estimate the velocities of the system. For our evaluations we use the pysindy package (de Silva et al., 2020) and consider a function library with 3rd order

polynomials (SINDy-poly) or comprised of 10 Fourier features (SINDy-fourier). All other hyperparameters used were those that are the default in the pysindy package.

• MLP is a simple multi-layer perceptron with 2 hidden layers, with a width of 128 and SiLU activations (Hendrycks & Gimpel, 2016). These MLPs were trained to estimate the velocities from the positions using an MSE loss over the predicted velocities, with the Adam optimizer (Kingma, 2014), for 5000 (full-batch) iterations. We used a learning rate of 0.001 and a weight decay of 0.001. These hyperparameters were chosen as MLPs trained in such a manner accurately approximate clean systems with N > 250 observations.

All of these methods form as alternatives for approximating the underlying ODE from sparse observations. However, unlike SPE, these methods cannot directly localize the invariant set of the observed (or even, fitted) system. Even when the fit is very accurate, determining where and what kind of invariant set was learned is a very difficult problem. Instead, we opt to compare the long-term performance of SPE against all of these baselines, fully described in the next section.

C.2 EVALUATION OF INVARIANT SET LOCALIZATION

To quantitatively evaluate the localization of the invariant set, for SPE and the other baselines considered, we simulate long trajectories from fixed initial conditions in both the true (hidden) system and in the fitted systems. When the initial conditions are sampled from some distribution, these long trajectories give an effective stationary distribution of points along the invariant set of the considered systems. Accordingly, our goodness-of-fit measure is the Wasserstein-2 (W_2) distance between effective stationary distributions of the hidden governing equations and the fitted ODEs.

For the evaluations in Figure 3 (left), we randomly sampled 1000 systems which contain limit cycle behaviors. Systems were sampled uniformly from the SO, Liénard Polyonmial, Liénard Sigmoid, Van der Pol, BZ Reaction and Selkov families of systems (Appendix B.1), with order parameters uniformly sampled from the ranges corresponding to limit cycle behaviors. For each system, different numbers N of positions x_i and velocities \dot{x}_i were sampled according to the procedure described in Appendix B.2, with $T_{\text{max}}=3$. Additive Gaussian noise was then added to these velocities with a standard deviation of $\sigma=\mu/\text{SNR}$ where $\mu=\frac{1}{N}\sum_i \|\dot{x}_i\|$ and a prespecified signal-to-noise ration (SNR). Adding noise in this manner allows for direct control of the SNR of the observed velocities between different families of systems, whose phase spaces and velocities are defined on a range of sizes. Each of the methods, SPE and the baselines described in Appendix C.1, were then fitted to all N simulated positions x_i and noisy velocities \dot{x}_i in order to approximate the underlying ODE.

Each method was then evaluated by comparing their effective stationary distribution to that of the ground-truth system. To do so, M=1000 initial conditions were sampled from the range of initial conditions of the corresponding family of systems (see Appendix B.1). The same initial conditions were used to generate long trajectories under the true system and the estimated ODE, and the W_2 distance was then calculated between the last time-points for the true system and the fitted ODE. The trajectories were integrated using RK4, with a step size of $\Delta t=0.01$, for $T_{\rm eval}=100$ which we found is long enough for the true system to always be close to its invariant set. To calculate the W_2 distance we utilize the Python Optimal Package from Flamary et al. 2021.

C.3 BASELINES IN CLASSIFICATION

To benchmark SPE in the classification of dynamical systems, we turn to datasets previously considered by Moriel et al. 2023 and compare to the same methods. For all of these baselines, we use exactly the same settings as described in Section 7.4 of Moriel et al. 2023. Below we provide a brief summary of each of these methods:

• TWA (Moriel et al., 2023), a convolutional NN trained to classify between point and periodic dynamics on a dense grid. Instead of training on the input vectors directly, TWA predicts the class of the system using an angular representation of each vector in each position. TWA is trained on entirely simulated data, which is generated by sampling the order parameters from the SO family of systems. These are then augmented using neural spline flows (Durkan et al., 2019b), INNs. Augmenting in this way ensures that the same invariant structure is kept between the originally sampled SO system and the augmented version. TWA was then trained on 10,000 of these randomly augmented systems.

- 1026 1027 1028
- 1029 1030 1031 1032
- 1033 1034 1035
- 1039 1040 1041
- 1044 1045 1046

1043

1048 1049 1050

1051

- 1052 1053 1054
- 1058

1062 1063 1064

1074 1075

1076

1077 1078

1079

1067

1068

- Critical Points, is based off of an algorithm devised by Helman & Hesselink 1989 which detects and characterizes critical points from a representation of an autoencoder. A system is considered periodic under CriticalPoints if at least one detected point is a repeler, and is otherwise classified as an attractor.
- Phase2vec is a convolutional autoencoder trained to reconstruct 10,000 training systems defined by sparse polynomial equations. The encoder maps to a 100-dimensional latent space using a single layer. The output of the decoder are the predicted coefficients of the parameters, which are multiplied by the polynomial function library in order to reconstruct the original vector field. The latent representations of the autoencoder then form features for an additional linear classifier, which was trained for classification using the same dataset as
- Autoencoder is a convolutional autoencoder with a bottleneck of 10 latent dimensions, trained to directly reconstruct the vectors generated as in Phase2vec. Both encoder and decoder have three convolutional blocks with a stride of 2×2 in order to reduce the resolution of the input during training. After training, similarly to Phase2vec, the latent representations are turned into features for a linear classifier fitted to the same data as TWA.

Beyond accuracy, we also compared the F1, precision and recall scores of SPE versus each of the above methods. These comparisons are summarized in Table 3 and Table 4. In all families of systems except SO and Aug. SO, SPE most consistently achieves the highest scores.

Table 3: Comparison of the F1/Precision/Recall scores for all methods on the classification task from Moriel et al. 2023 (continued in Table 4). The highest numbers for each column and score are shown in bold.

	SO	Aug. SO	Lienard Poly	Lineard Sigmoid
SPE	90±1/ 100±0 /82±2	79±1/88±1/71±2	96±1/100±1/92±2	93±1/88±2/98±1
TWA	97±1/97±2/97±3	93±1/92±2/94±2	85±22/ 100±0 /78±23	90±13/ 100±1 /84±17
Phase2Vec	62±17/ 100±1 /47±18	60±10/ 92±2 /46±11	7±22/10±29/8±25	$0\pm0/0\pm0/0\pm0$
Autoencoder	95±2/93±5/ 99±3	87±1/84±3/92±4	55±37/54±37/64±43	84±18/100±1/75±21
Critical Points	17/87/9	34/67/23	59/96/42	7/ 100 /4

	Tab	ole 4: Continuation of	Table 3.
	Van der Pol	BZ reaction	Selkov
SPE	97±3/95±5/100±0	87±2/100±0/ 77±3	66±2/98±1/50±2
TWA	80±26/96±20/71±25	85±7/78±11/ 96±9	49±10/ 98±5 /34±11
Phase2Vec	4±12/20±40/3±8	$0\pm0/0\pm0/0\pm0$	$0\pm0/0\pm0/0\pm0$
Autoencoder	74±31/89±26/71±34	81±17/87±13/84±24	$3\pm8/12\pm32/2\pm5$
Critical Points	33/ 98 /20	87/79/ 96	15/62/9

C.4 EVALUATION IN SPARSE CLASSIFICATION

To evaluate the classification performance of SPE on sparse and noisy data, we simulated systems in the same manner as in Appendix C.2. We randomly sampled 1000 systems from the SO, Liénard Polyonmial, Liénard Sigmoid, Van der Pol, BZ Reaction and Selkov families of systems. For each system, the order parameters were uniformly sampled from their corresponding ranges (see Appendix B.1), which correspond to either node attractors or cyclic attractors. For each system, Npositions x_i and velocities \dot{x}_i were sampled according to the procedure described in Appendix B.2, with $T_{\text{max}} = 3$. Additive Gaussian noise was then added to these velocities with a standard deviation of $\sigma = \mu/\text{SNR}$ where $\mu = \frac{1}{N} \sum_i ||\dot{x}_i||$ and a prespecified signal-to-noise ration (SNR). The task was then to classify the set of pairs $\{(x_i, \dot{x}_i)\}_{i=1}^N$ either as a node attractor or a limit cycle.

D IDENTIFICATION OF THE CELL CYCLE TRAJECTORY FROM SINGLE-CELL RNA-SEQUENCING AND RNA VELOCITY DATA OF PROLIFERATING CELLS

We analyzed single-cell RNA-sequencing data from U2OS cell line that was integrated with the fluorescent ubiquitination-based cell cycle indicator (FUCCI) in order to investigate the spatiotemporal

dynamics of human cell cycle expression (data collected in (Mahdessian et al., 2021)). The original dataset included 1,152 cells characterized by the expression of 58,884 genes. After preprocessing, following the protocol in Zheng et al. (2023) — which involved gene and cell filtering, normalization, log transformation, and the selection of highly variable genes — 1,021 cells remained, described by 2000 genes.

To infer local measures of cellular dynamics in the high-dimensional gene expression space, we used scVelo (Bergen et al., 2020) which computes RNA velocity vectors from spliced and unspliced gene expression counts of a cell population. scVelo models the transcriptional dynamics of each gene using a dynamical model of transcription, splicing, and degradation. It applies an Expectation-Maximization algorithm to estimate gene-specific kinetic parameters and to infer the latent transcriptional state of each cell.

The gene expression data and the inferred velocities were projected into a 100-dimensional space using principal component analysis (PCA). We chose to project the data into a 100-dimensional space in order to reduce the computational load of our method. Streamlines of the resulting velocity field are visualized in Figure 5, left. Independently of the RNA velocities, we computed S-phase and G2/M-phase scores per cell by aggregating the expression of marker genes for these phases, as defined by Tirosh et al. (2016), using the function "score_genes_cell_cycle" from scVelo package (Bergen et al., 2020). The color in Figure 5, left and middle, represents the fractional component of the S-phase score relative to the combined S and G2/M scores.

We then applied our method to fit the RNA velocities, embedded in the 100-dimensional PCA space, to a 100-dimensional cyclic oscillator prototype, as defined in Equation (4) of Section 4.3. This prototype oscillates in the first two dimensions and decays exponentially in the others. The fitting parameters were as follows: angular speed $\omega=5$, radius a=1, three blocks as defined in Appendix A, K=3 frequencies per layer, weight decay of wd = $1e^{-3}$, projection regularization set to projerg = e^{-2} , determinant regularization of 0, a learning rate of $lr=5e^{-4}$, and 1,000 iterations.

Given the fitted coordinates of the cycle attractor in the 100-dimensional PCA space, we inverted the PCA transformation to reconstruct the corresponding predicted gene expression. In Figure 5 (right), we plot representative marker genes for both the S-phase (top half of the heatmap) and G2/M-phase (bottom half) taken from Tirosh et al. 2016, showing distinct oscillatory patterns consistent with cell cycle progression.

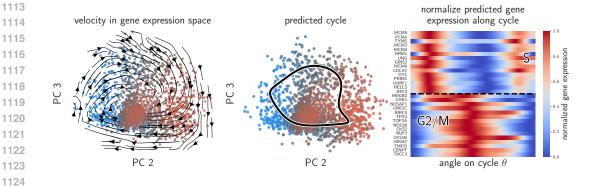


Figure 8: Fitting of the cell cycle in human fibroblasts (Riba et al., 2022). Left: gene expression velocity of cells undergoing proliferation in PCA space, as in Figure 5. PCs 2 and 3 are shown as the cycle is more apparent in this projection. Middle: the SPE localization of the cycle attractor. Right: normalized gene expressions along the cycle attractor as predicted by SPE. The heatmap depicts a set of common marker genes for the S (top of the heatmap) and G2/M (bottom of the heatmap) phases.

These qualitative results are not unique to the FUCCI dataset. Using the same preprocessing, we fit an alternative dataset of human fibroblast cells during their cell cycle (Riba et al., 2022) using 10 PCs, which results in qualitatively similar performance, as can be seen in Figure 8. 10 PCs were used in this dataset to reduce computational load.

E FURTHER EXPERIMENTS

E.1 MULTIPLE BASINS OF ATTRACTION

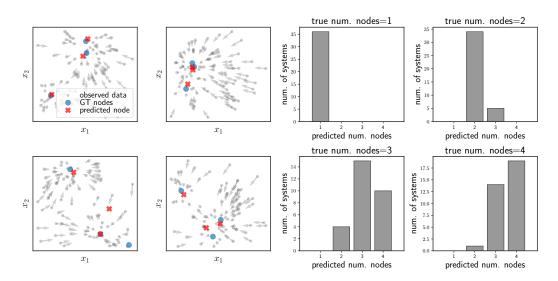


Figure 9: Classifying and localizing invariant sets in systems with multiple basins of attraction. Left: 4 examples of fitting SPE to a system with multiple basins of attraction in 3 dimensions. In each example, the positions of the node attractors was randomly sampled (these positions are depicted by the blue circles in the plot), and 100 position-velocity pairs were then sampled using the scheme described in Appendix B.2. SPE was then used to match between this data and a fixed prototype with 3 basins of attraction. The estimated positions of the attractors according to SPE is depicted by the red crosses. We find that SPE frequently matches the positions of the nodes. Right: results in the classification of the number of nodes. Each bar plot shows how SPE categorizes systems with a set number of nodes, for instance the top left plot shows the performance only on systems that had one node attractor. In each of these cases, the main mode predicted by SPE aligns with the true number of nodes in the system.

While this work mostly focused on prototypes with only a single basin of attraction, such as a node attractor or limit cycle, SPE can be used when there are multiple basins of attraction.

As a simple example, we looked at synthetic dynamics with multiple fixed points in a high-dimensional space. The governing equations for these dynamics were based on a mixture of experts decomposition of space, where each expert is a basin of attraction. Specifically, the governing equations of the dynamics were defined as:

$$f(x) = \sum_{k=1}^{K} r_k(x) \varphi_k(x - c_k)$$
(16)

$$r_k(x) = \frac{\exp\left[-\frac{1}{2s^2} \|x - c_k\|^2\right]}{\sum_{k'} \exp\left[-\frac{1}{2s^2} \|x - c_{k'}\|^2\right]}$$
(17)

where $\varphi_k(\cdot)$ are the local dynamics around the center $c_k \in \mathbb{R}^d$, s determines the strength with which one basin of attraction transitions to another, and K is the number of basins of attraction.

Under this setting, we considered systems whose centers were sampled uniformly from the range $[-0.9, 0.9]^d$, all of which were node attractors:

$$\varphi_k(y) = -y \tag{18}$$

Finally, the number of attractors was randomly chosen to be between 1 and 4. We then fit SPE with 4 different prototypes, for each number of possible basins of attraction. The positions of the nodes in

 the prototypes were fixed and distinct from the true underlying system, so that the task was both the prediction of the location of the nodes as well as the estimation of their number. Results can be seen in Figure 9 for systems with 100 points.

Throughout the experiments shown in Figure 9, INNs with 2 blocks of width 3 were used, together with 5 Householder transformations. The networks were trained for 1500 iterations, with a learning rate of $1e^{-3}$, weight decay of 0.1, with all other regularization coefficients equal to 0. The classification experiment was carried out in 5D.

E.2 MISMATCH BETWEEN PROTOTYPE AND UNDERLYING SYSTEM

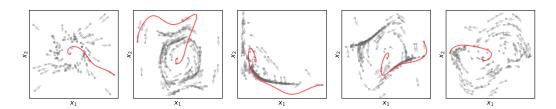


Figure 10: **Direction of angular velocity is captured, even when there is a mismatch between the prototype and the true underlying system.** Randomly sampled systems and examples of fitting SPE to an inherently oscillatory process using a node attractor prototype. Despite this mismatch between underlying behavior and prototype, SPE is still able to characterize the dominant behavior of the system, mainly the direction of the angular velocity and the focal point of the limit cycle.

SPE uses a soft notion of equivalence to match between the prototypes and the data. Thus, even when there is a mismatch between the prototype and the underlying system, we expect SPE to capture the *dominant behavior* of the system. To test this, we looked at the families of systems from Appendix B.1, and simulated data from oscillatory systems. As the limit cycle of these systems is bounded to a finite region, the dominant behavior of the system as a whole is determined by the orientation of the flow - either clockwise or counter-clockwise. To emulate a mismatch between the chosen prototype and the underlying behavior, we fit SPE using only node attractor prototypes, as opposed to the true underlying oscillatory behavior, using the same prototypes from Equation (3), with a=-0.25 and $\omega=\pm0.5$. Figure 10 demonstrates that even when there is a mismatch between the underlying dynamics and the prototype, SPE is able to capture the dominant behavior of the system - that is, the orientation of the flow is matched. Quantitatively, we find that the average accuracy when trying to predict the orientation of the SO family of systems was 98%, averaged over 100 trials using the same hyperparameters described in Appendix A.7.

This demonstration illustrates how SPE might be used, even when the prototype does not fully match the ground-truth behavior. This matches scientific scenarios, where there is usually some domain expertise as to the dominant behavior of an observed system, but this knowledge may not capture all subtleties of the empirically collected data. In such scenarios, it can still be beneficial to match between an analytical model (i.e. the prototype) and the data for scientific discovery.