
Recurrent Memory Transformer

Aydar Bulatov1
bulatov.as@phystech.edu

Yuri Kuratov1,2
yurii.kuratov@phystech.edu

Mikhail S. Burtsev1,2
burtcev.ms@mipt.ru

1Neural Networks and Deep Learning Lab,
Moscow Institute of Physics and Technology, Dolgoprudny, Russia

2AIRI, Moscow, Russia

Abstract

Transformer-based models show their effectiveness across multiple domains and
tasks. The self-attention allows to combine information from all sequence elements
into context-aware representations. However, global and local information has to
be stored mostly in the same element-wise representations. Moreover, the length
of an input sequence is limited by quadratic computational complexity of self-
attention. In this work, we propose and study a memory-augmented segment-level
recurrent Transformer (RMT). Memory allows to store and process local and global
information as well as to pass information between segments of the long sequence
with the help of recurrence. We implement a memory mechanism with no changes
to Transformer model by adding special memory tokens to the input or output se-
quence. Then the model is trained to control both memory operations and sequence
representations processing. Results of experiments show that RMT performs on
par with the Transformer-XL on language modeling for smaller memory sizes
and outperforms it for tasks that require longer sequence processing. We show
that adding memory tokens to Tr-XL is able to improve its performance. This
makes Recurrent Memory Transformer a promising architecture for applications
that require learning of long-term dependencies and general purpose in memory
processing, such as algorithmic tasks and reasoning.

1 Introduction

Figure 1: Recurrent Memory Transformer.
Memory is added as tokens to the input sequence
and memory output is passed to the next segment.
During training gradients flow from the current
segment through memory to the previous segment.

Transformers (Vaswani et al., 2017) have been widely
adopted across multiple domains and tasks (Radford
et al., 2018; Dong et al., 2018; Devlin et al., 2019;
Dosovitskiy et al., 2021; Ramesh et al., 2021; Jaegle
et al., 2021). The key component of Transformer
layer is a self-attention. Self-attention allows to up-
date each sequence element representation with in-
formation from all other elements in the sequence.
As a result, rich contextual representation for every
element is generated at the end of encoding. This
way, global sequence-level and local information are
stored in a single representation. However, this mix-
ing of two types of information in a single represen-
tation has limitations. Distributed storage of global
features across all sequence elements results in global features "blurring" and makes it harder to
access them. Another well-known deficiency of Transformers is poor scaling of self-attention with

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



input sequence length that hurts its applications to long inputs (Child et al., 2019; Guo et al., 2019;
Dai et al., 2019; Beltagy et al., 2020; Ainslie et al., 2020; Zaheer et al., 2020; Wang et al., 2020;
Choromanski et al., 2020).

Our work introduces a memory-augmented segment-level recurrent Transformer named Recurrent
Memory Transformer (RMT). RMT uses a memory mechanism based on special memory tokens (Burt-
sev et al., 2020) added to the input sequence. Memory tokens provide additional reserved capacity to
the model that could be used to process information which is not directly representing any element in
the input sequence. To process long sequences, we split them into segments and pass memory states
from a previous to a current segment. This memory passing makes the model recurrent and removes
the input sequence length limitations. RMT model can theoretically work with infinite lengths but, in
practice, it is limited by memory capacity and the efficiency of memory access/update operations.
Our implementation of both memory and recurrence in RMT requires no changes to the Transformer
model because modifications are made only to the input and output sequences of the model.

We tested RMT on the tasks that require global information about the whole input sequence to be
solved. We use copy, reverse, and associative retrieval tasks in the setting where the input sequence
is split into segments. RMT and Transformer-XL perfectly solve these tasks, but exceeding some
value of sequence length, RMT starts to outperform Transformer-XL. Also, we experimentally show
that the proposed Recurrent Memory Transformer requires less memory size to perform closely to
Transformer-XL on language modeling tasks. RMT code and experiments are available1.

Contributions

1. In this study we augment Transformer with token based memory storage and segment-level
recurrence.

2. We experimentally evaluate proposed architecture as well as vanilla Transformer and Transformer-
XL on memory-intensive tasks such as copy, reverse, associative retrieval, and language modeling.
We show that RMT outperforms Transformer-XL for sequence processing tasks and on par with
Transformer-XL on language modeling but requires less memory.

3. We show that Tr-XL cache could be combined with RMT leading to better performance on
language modeling.

4. We analysed how the Transformer model learns to use memory. Specific interpretable memory
read-write patterns of attention are shown.

2 Related work

In our study we add a memory to general purpose attention based neural architecture. Memory is
a recurrent topic in neural networks research. It had started from the early works (McCulloch and
Pitts, 1943; Stephen, 1956) and significantly progressed in 90’s with introduction of Backpropagation
Through Time learning algorithm (Werbos, 1990) and Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) neural architecture. Today memory-augmented neural networks (MANNs)
usually rely on some kind of recurrent external-memory which is separate from the model’s pa-
rameters. Neural Turing Machines (NTMs) (Graves et al., 2014) and Memory Networks (Weston
et al., 2014) are equipped with a storage for vector representations that can be accessed with an
attention mechanism. Memory Networks (Weston et al., 2014; Sukhbaatar et al., 2015) were designed
to enable reasoning by sequential attention over to the content of a memory. NTMs followed by
Differentiable Neural Computer (DNC) (Graves et al., 2016) and Sparse DNC (Rae et al., 2016)
are implemented as recurrent neural networks able to write to memory storage over time. All these
models are differentiable and can be trained via backpropagation through time (BPTT). Parallel line
of research extends recurrent neural networks such as LSTM with data structures like stacks, lists,
or queues (Joulin and Mikolov, 2015; Grefenstette et al., 2015). MANN architectures with a more
advanced addressing mechanisms such as address-content separation and multi-step addressing were
proposed in (Gulcehre et al., 2016, 2017; Meng and Rumshisky, 2018). The Global Context Layer
model (Meng and Rumshisky, 2018) uses the idea of address-content separation to solve the difficulty
of training content-based addressing in the canonical NTM.

1https://github.com/booydar/LM-RMT. The code, results of the raw experiments and hyperparameters
are provided in the supplementary materials and on GitHub.

2

https://github.com/booydar/LM-RMT


The recent rise of Transformer models also resulted in introduction of a number of new memory
architectures. Transformer-XL (Dai et al., 2019) introduces a segment-level recurrence at the level of
hidden representations. These representations of a sequence are computed and stored in the cache
to be reused as an extended context for the next segment. Compressive Transformer (Rae et al.,
2019) adds the second layer of memory to Transformer-XL. This memory compresses and stores
information from the cache. ∞-former (Martins et al., 2021) utilizes continuous-space attention and
represents input sequence as a continuous signal to make long-term memory unbounded. Memory
Layers (Lample et al., 2019) model has a product key memory layer instead of a feed-forward layer
within Transformer block to increase model capacity.

In many variations of Transformer different sorts of global representations are added. Among them
are Star-Transformer (Guo et al., 2019), Longformer (Beltagy et al., 2020), GMAT (Gupta and Berant,
2020), Extended Transformer Construction (ETC) (Ainslie et al., 2020) and Big Bird (Zaheer et al.,
2020). All these architectures re-design self-attention mechanism to reduce it computational com-
plexity with and ensure input coverage with the help of global representations. Memory Transformer
(Burtsev et al., 2020) keeps Transformer model intact and adds memory by extending input sequence
with special memory tokens. Perceiver IO (Jaegle et al., 2021) maps an entire arbitrary input to the
fixed number of latent representations. Transformer layers do further processing over latent memory
representations only.

Segment-level recurrence in Transformers is actively explored in a number of studies. Transformer-
XL, Compressive Transformer keep previous states and re-use them in subsequent segments. Ernie-
Doc (Ding et al., 2021) improves processing by using same-layer recurrence instead of attending to
previous layer outputs of a precedent segment. Memformer (Wu et al., 2020) introduces a dedicated
memory module to keep previous hidden states in summarized representations. Memformer uses two
special layers added to the Transformer model. Memory cross-attention layer reads from memory
and memory slot attention layer updates it. MART (Lei et al., 2020) has a similar approach as
Memformer but uses memory update rules analogous to LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014). FeedBack Transformer (Fan et al., 2020) goes further with full, and not
segment-level, recurrence. FeedBack Memory merges past hidden representations from all layers
into a single vector and makes it accessible to the computations at any layer. The disadvantage of full
recurrence is that it is less parallelizable. FeedBack Memory requires every sequence element to be
processed sequentially. In segment-level recurrent models, all elements of a segment are processed by
Transformer layers in parallel. Only segments are processed sequentially. Staircase Transformer (Ju
et al., 2021) combines segment-level recurrence and depth recurrence. Staircase models use the
output for previous segments and pass them as input for the next segment. Our Recurrent Memory
Transformer is based on special memory tokens similar to Memory Transformer, segment-level
recurrence as in Transformer-XL, and depth-recurrent mechanism for memory processing similar to
Staircase.

3 Recurrent Memory Transformer

Transformer-XL (Dai et al., 2019) extends Transformer model with state re-use cache mechanism
for segment-level recurrence and relative position encoding. Input sequence is split on segments
processed sequentially. Hidden states computed for the previous segment Mn are cached for each
transformer layer n. The input of the layer n consists of the last m states from the cached memory
and output of previous Transformer layer for the current segment τ :

H̃n−1
τ = [SG(Mn−1

−m:) ◦Hn−1
τ ],

here, SG stands for stop-gradient, ◦ denotes concatenation. Cached states allow to increase effective
context size of Transformer model and save on compute operations.

Then, H̃n−1
τ goes to Transformer layer TL to produce layer n outputs for segment τ :

Hn
τ = TL(Qn

τ ,K
n
τ , V

n
τ ), Qn

τ = Wn
q H

n−1
τ ;Kn

τ = Wn
k H̃

n−1
τ , V n

τ = Wn
v H̃

n−1
τ .

In Transformer-XL, self-attention layers are modified to use relative position encodings to improve
generalization to longer attention lengths. The overall architecture is shown in the Figure 2.

Memory augmented Transformers such as GMAT, ETC, Memory Transformer (Gupta and Berant,
2020; Ainslie et al., 2020; Burtsev et al., 2020) proposed to use special global tokens as storage

3



Figure 2: Comparison of Recurrent Memory Transformer (RMT) and Transformer-XL architectures.
Recurrent Memory Transformer augments Transformer with global memory tokens and passes them to allow a
segment-level recurrence. Special read/write memory tokens are added to the input sequence. Multiple memory
tokens can be used in each read/write block. Updated representations of write memory are passed to the next
segment. During training, RMT uses BPTT to propagate gradient to previous segments through memory tokens
representation. Effective context length for recurrence with memory is not limited by the depth of a network
which is the case for the cache of Transformer-XL.

for representations. Usually, memory tokens are added to the beginning of the input sequence.
However, in decoder-only architectures the causal attention mask makes impossible for memory
tokens at the start of the sequence to collect information from the subsequent tokens. On the other
hand, if memory tokens are placed at the end of the sequence then preceding tokens unable to
access their representations. To solve this problem we add a recurrence to the sequence processing.
Representations of memory tokens placed at the end of the segment are used as an input memory
representations at the start as well as at the end of the next segment.

In the Recurrent Memory Transformer input is augmented with special [mem] tokens, processed in
a standard way along with the sequence of tokens. Each memory token is a real-valued vector. m
memory tokens are added at the beginning of the segment tokens representations H0

τ and the same m
tokens are added at the end:

H̃0
τ = [Hmem

τ ◦H0
τ ◦Hmem

τ ], H̄N
τ = Transformer(H̃0

τ ), [H
read
τ ◦HN

τ ◦Hwrite
τ ] := H̄N

τ ,

here N is a number of Transformer layers.

The starting group of memory tokens functions as a read memory that allows sequence tokens to
attend to memory states produced at the previous segment. The ending group works as a write
memory that can attend to all current segment tokens and update representation stored in the memory.
As a result, Hwrite

τ contains updated memory tokens for the segment τ .

Segments of the input sequence are processed sequentially. To enable recurrent connection between
segments, we pass outputs of the memory tokens from the current segment to the input of the next
segment:

Hmem
τ+1 := Hwrite

τ , H̃0
τ+1 = [Hmem

τ+1 ◦H0
τ+1 ◦Hmem

τ+1 ].

Both memory and recurrence in the RMT are based only on global memory tokens. It allows to
keep the backbone Transformer unchanged and make RMT memory augmentation compatible with
any model from the Transformer family. Memory tokens operate only on the input and output of
the model. In this study we implement RMT on top of the original Transformer-XL code. Both
architectures are shown in Figure 2.

Recurrence in the RMT is different compared to the Transformer-XL because the former stores only
m memory vectors per segment. On the other hand, the Transformer-XL stores m×N vectors per
segment. Also, in the RMT model memory representations from the previous segment are processed
by Transformer layers together with the current segment tokens. This makes memory part of RMT
effectively deeper in a number of applied Transformer layers τ × N . Additionally, we allow all
memory tokens in the read/write block to access all other tokens in the same block. The causal
attention mask is applied only to tokens of the input sequence (Figure 6(d)).

We train the RMT with Backpropagation Through Time (BPTT). During backward pass, unlike in
Transformer-XL, memory gradients are not stopped between segments. The number of previous
segments to backpropagate is a hyperparameter of a training procedure. We vary BPTT unroll in our
experiments from 0 to 4 previous segments. Increasing this parameter is computationally expensive

4



and requires a lot of GPU RAM. However, techniques such as gradient checkpointing could be used
to alleviate this problem.

4 Experiments

We designed our experiments to evaluate the ability of Recurrent Memory Transformers to preserve
long-term dependencies across multiple input segments. The first set of experiments includes copy,
reverse, associative retrieval, and quadratic equations tasks. The second one addresses language
modeling task for word-level on WikiText-103 (Merity et al., 2017) and for character-level on
enwik8 (Mahoney, 2006). We compare Recurrent Memory Transformer with Transformer and
Transformer-XL models.

Our RMT implementation is based on Transformer-XL repository2. The full set of hyperparameters
is available in our repository as well as in supplementary materials. Language modeling experiments
follow the same model and training hyperparameters as Transformer-XL. WikiText-103 experiments
use 16-layer Transformers (10 heads, 410 hidden size, 2100 intermediate FF), enwik8 – 12 layer
Transformers (8 heads, 512 hidden size, 2048 intermediate FF). We used Adam optimizer Kingma and
Ba (2015) with linear schedule learning rate starting from 0.00025 for 200,000 steps for WikiText-103
and 400,000 steps for enwik8. We refer to Transformer-XL with memory size equal to zero as a
Baseline. With this experimental setup we were able to reproduce results for the Transformer-XL
model close to the original paper.

Algorithmic Tasks. We evaluate RMT on algorithmic tasks that require information about the whole
input sequence to be solved successfully. In a recurrent setting, the model has to keep information
about all previous segments to make predictions.

In the Copy task, an input sequence should be replicated twice after a special start-to-generate token.
In the Reverse task, an input sequence should be generated in a reverse order. Input for the Associative
Retrieval task consists of N key-value pairs. Then one key is randomly selected, and the task is to
produce an appropriate value for the selected key. Another task is to solve quadratic equations. One
example consists of an equation, its solution with discriminant, and an answer. The task is to generate
a solution and answer, while only answer quality is evaluated.

For all tasks, input and output sequences are split into segments and processed by models sequentially.
Datasets for algorithmic tasks were randomly pre-generated, the same data was used in all experiments,
and character-level tokenization was used. Because Transformer-XL and RMT are decoder-only
Transformer models, we don’t compute loss over the input sequence before the start-to-generate
token. The loss is computed over target sequence segments only (see Appendix A.1 for details).

Language Modeling and NLP. We use two standard benchmarks for language modeling: WikiText-
103 and enwik8. WikiText-103 (Merity et al., 2017) is used for word-level language modeling
and contains 103M words from English Wikipedia articles. Enwik8 (Mahoney, 2006) is used for
character-level and consists of 108 first bytes of XML text dump of the English Wikipedia. Vocabulary
contains 267735 words and 204 characters for Wikitext-103 and enwik8 tokenizers accordingly.

We compare Recurrent Memory Transformer with decoder-only Transformer and Transformer-XL
as baselines. Model size and training parameters are selected to match Transformer-XL paper. For
Wikitext-103 an input context length was set to 150 tokens, and for enwik8 it was set to 512 characters.
Another set of experiments inspected how RMT handles long-term dependencies and recurrence. We
increased the number of segments and recurrent steps by making segments smaller (50 tokens for
WikiText-103, 128 characters for enwik8). The increased number of recurrent steps makes language
modeling tasks harder for RMT because information has to be stored in the same amount of memory
for more steps.

As a testbed for the real-life application scenario we select popular long-text classification benchmark
Hyperpartisan news (Kiesel et al., 2019). Instead of pre-training RMT from scratch we add recurrent
memory mechanism to the most widely adopted models from HuggingFace Transformers (Wolf et al.,
2020). Specifically, we augment 500 input tokens of already pretrained BERT-base, RoBERTa-base,
DeBERTa-base and T5-base with the recurrent memory of size 10 and fine-tune on the target task.

2https://github.com/kimiyoung/transformer-xl

5

https://github.com/kimiyoung/transformer-xl


5 Results

Baseline, Transformer-XL (Tr-XL) and RMT perform perfectly in the single segment setting on copy
and reverse tasks (Figure 3). In this case, the models do not need recurrence because the whole
sequence is available. When the number of segments is larger than one, non-recurrent baseline
struggles to solve tasks, but both memory models demonstrate ability to retain required information
from the previous segments in memory.

Figure 3: RMT outperforms Transformer-XL on Copy and Reverse tasks as a number of segments
increases. Panels show test set per-character accuracy on copy, reverse, and associative retrieval tasks (from left
to right). Memory/cache size equals to the length of a segment for both models. RMT does not pass gradients
between segments in this experiment. MT results are the same as for the Baseline. Source/target sequence
lengths for copy, reverse, and associative retrieval tasks: 24/48, 24/24, 10/1.

On Copy and Reverse tasks as a number of segments increases, RMT starts to outperform Transformer-
XL with memory sizes less than the number of all previous tokens. With the number of segments
up to 6 mean accuracy of Transformer-XL drops by up to 0.2 points, and with 9 segments plunges
close to the baseline without memory. Associative Retrieval results are similar with the number of
segments up to 4. RMT manages to solve the task with Transformer-XL closely behind. However,
in the setting with 5 segments, RMT performance slightly decreases and Transformer-XL average
accuracy rises higher.

We analyze how a number of segments, sequence length, a length of training context, and memory
size affect models’ performance on Copy task (Figure 4). As we split a sequence into more segments
it becomes more crucial to be able to pass information between segments. We split 360 tokens of
source + target sequence into multiple segments. In Figure 4a we observe that Transformer-XL
performance starts to degrade and eventually falls to the baseline model performance as the number of
segments increases. In contrast, RMT continues to solve the task perfectly. In a more extreme setting,
when we keep memory size fixed, but increase the total length of a sequence to copy Transformer-XL
fails shortly, while RMT starts to gradually degrade only after the length of 720 tokens (Figure 4b).

On the Quadratic Equations task (Table 1) we have checked that it is possible to solve the task with
the Transformer baseline and no segmentation used. The baseline in this case defines upper bound for
this task. With multiple segments recurrency RMT solves the task perfectly, while Transformer-XL
finds the task challenging.

Table 1: Quadratic equations task. Sequence of 180
tokens consists of quadratic equation, a solution, and an
answer. It is split into a number of segments with an
answer in the last segment. Accuracy equals 1.0 if the
full answer is predicted correctly.

MODEL MEMORY SEGMENTS ACC±STD

BASELINE 0 1 0.99 ± 0.01
TRANSFORMER-XL 30 6 0.93 ± 0.02
RMT 30 6 0.99 ± 0.002

The results of experiments on word-level lan-
guage modeling on WikiText-103 are shown in
Table 2. In the first section with a segment length
of 150, Tr-XL and RMT outperform the base-
line and Memory Transformer (MemTr) by a
large margin. It shows the significance of in-
creased effective context length by Tr-XL cache
or RMT memory for language modeling. RMT
improves over MemTr memory mechanism with
read/write blocks. The best RMT models with
memory size 10 and 25 show similar performance as Transformer-XL with a memory size equal to
75. RMT learns to use smaller memory more effectively than Transformer-XL. Additionally, the
smaller memory size of RMT leads to reducing required GPU memory for running the model.

To force models to process longer recurrent dependencies the size of a segment is set to 50, so the
number of recurrent steps increases. RMT with memory size 1 shows similar results to Transformer-

6



(a) (b)

Figure 4: RMT scales better with a number of segments and sequence size. (a) RMT is able to solve copy
task perfectly up to 9 segments for a fixed sequence length of 360, while Tr-XL fails. (b) RMT learns to use
memory of the same fixed size (60 tokens) more effectively than TR-XL as a sequence length to copy increases
(a segment size is 120 for the both models).

XL with memory size 10. It is worth noting that Transformer-XL memory consists of hidden
representations from all layers (in this case, it is 10 × 16 vectors) when RMT memory is only
memory_size vectors. Transformer-XL with memory size 50 and RMT with memory size 5 show
similar perplexity values (see Appendix A.5).

RMT could be combined with Tr-XL cache. In this case Tr-XL cache could be seen as short-term
memory keeping the nearest context and RMT memory as long-term memory. Such combination
leads to the best results on WikiText-103 improving over Tr-XL.

Table 2: Language modeling on WikiText-103. Av-
erage perplexity for the best performed variations of
RMT models reported (see full results in Appendix A.5).
Underlined values show Tr-XL and RMT models with
close results. RMT models with smaller memory sizes
achieve similar scores to Tr-XL models with larger mem-
ory. Combination of cache with recurrent memory (Tr-
XL + RMT) shows the best performance.

MODEL MEMORY SEGMENT LEN PPL±STD

TR-XL (PAPER) 150 150 24.0

BASELINE 0 150 29.95 ± 0.15
MEMTR 10 150 29.63 ± 0.06
TR-XL (OURS) 150 150 24.12 ± 0.05

TR-XL 25 150 25.57 ± 0.02
TR-XL 75 150 24.68 ± 0.01
RMT BPTT-3 10 150 25.04 ± 0.07
RMT BPTT-2 25 150 24.85 ± 0.31
TR-XL + RMT 75+5 150 24.47 ± 0.05
TR-XL + RMT 150+10 150 23.99 ± 0.09

BASELINE 0 50 39.05 ± 0.01
TR-XL 100 50 25.66 ± 0.01
TR-XL 50 50 26.54 ± 0.01
TR-XL 25 50 27.57 ± 0.09
TR-XL 10 50 28.98 ± 0.11
RMT BPTT-1 1 50 28.71 ± 0.03
RMT BPTT-3 10 50 26.37 ± 0.01

On enwik8 RMT models with memory size 5
and Transformer-XL with memory size 40 show
similar results. Confirming that RMT learns to
use smaller amounts of memory representation
more effectively. All results for enwik8 dataset
are shown in Appendix A.4.

Recurrent Memory Transformer learns to make
predictions depending on #BPTT_unrolls
over previous segments +1 current segment.
Transformer-XL does not use BPTT and relies
only on memory_size cached states and cur-
rent segment making in total: memory_size
+ segment_length tokens. In Figure 5a, we
compare RMT and Tr-XL according to the de-
scribed value of visible context at training time.

RMT with a single memory vector could
be trained to achieve lower perplexity as
Transformer-XL with memory size 10. This
means that RMT can learn to compress in-
formation from the previous observations bet-
ter. Another observation is that RMT with
memory sizes 10 and 25 performs only a
bit weaker compared to Transformer-XL even
when Transformer-XL has access to more non-

compressed states (50, 100, 200) from previous segments. In general, training RMT with unrolling
gradients in earlier segments drastically improves scores thus showing the importance of BPTT
training but, we observe instabilities and out-of-memory issues during RMT training for a larger
memory sizes with deeper BPTT unrolls.

RMT wins a lot when only one memory token is added but then the effect from increasing memory
size from 5 to 50 fades (Figure 5b). Still, RMT with memory size 5 have performance on par with
Transformer-XL with cache 50, confirming that RMT learns to store more compact representations.
The results suggest that there is some optimal memory size for RMT to solve the task, and further
increase does not add much.

Proposed recurrent memory mechanism affects only input and gradient flows of the augmented core
model. This might be an important advantage because the memory can be added to already pretrained

7



50 75 100 125 150 175 200 225 250
Visible context while training

25

26

27

28

29

30

31

32

Te
st

 p
pl

1

5
10

25

50

1

5

10

25

50
100

200

Transformer-XL
RMT BPTT-0
RMT BPTT-1
RMT BPTT-2
RMT BPTT-3
RMT BPTT-4

(a)

0 1 5 10 25 50
Memory size

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Te
st

 p
pl

Baseline
Transformer-XL
RMT BPTT-0
RMT BPTT-1
RMT BPTT-2

(b)

Figure 5: Deeper BPPT unrolling improves RMT scores on WikiText-103 (a) Visible context at training
time can be increased by deeper BPTT unrolls for RMT or enlarging cache for Tr-XL. Larger visible context
leads to lower perplexity for both models (marker size corresponds to memory size). (b) Recurrence improves
performance of RMT compared to Tr-XL for the same memory sizes.

model. Evaluation results for four memory augmented language models fine tuned for long text
classification are presented in the Table 3. Incorporation of 10 memory tokens in the input sequence
of 512 allows to encode longer stretches of a text up to 2000 tokens and significantly improve metrics
for the majority of models. Moreover, a combination of recurrent memory with RoBERTa-base
results in state of the art performance for the Hyperpartisan news classification task (Kiesel et al.,
2019). Interestingly, many competing models have input size of 4096 that is at least twice longer
compared to RMT extended counterparts but still lag behind.

Table 3: Hyperpartisan news detection. Models starting with RMT are
taken from HuggingFace Transformers and augmented with 10 memory tokens
and recurrence before fine-tuning. Train/valid/test split as in (Beltagy et al.,
2020) and metric is F1.

MODEL [INPUT SIZE] NUMBER OF SEGMENTS
1 2 3 4

BIG BIRD [4096] (ZAHEER ET AL., 2020) 92.20
LONGFORMER [4096] (BELTAGY ET AL., 2020) 94.80
GRAPH-ROBERTA [512X100] (XU ET AL., 2021) 96.15
ERNIE-DOC-LARGE [640] (DING ET AL., 2021) 96.60
ERNIE-SPARSE [4096] (LIU ET AL., 2022) 92.81

RMT BERT-BASE-CASE [512] 91.60 94.12 93.06 94.34
RMT ROBERTA-BASE [512] 94.87 97.20 96.72 98.11
RMT DEBERTA-V3-BASE [512] 94.17 96.78 94.80 94.80
RMT T5-BASE [512] 94.99 95.32 96.12 97.20

To get an understanding of
memory operations, learned
by RMT for algorithmic
tasks we visualise atten-
tion maps for copy and re-
verse tasks (Figure 6). In
each RMT attention map se-
quence tokens are preceded
by read memory, located at
the top left corner, and fol-
lowed by write memory at
the bottom right. Diago-
nal at the central part of the
fig.6(a) (top) shows classic
attention of token sequence
to itself, but the bottom diagonal represents the operation of writing of sequence tokens to memory in
straight order. When completing reverse (fig.6(a) bottom) the model learns to write the sequence to
the memory in the reversed order, which is in line with common sense.

When it comes to reproducing the target sequence, the model accesses memory (fig.6(b)) and writes
to the output sequence. Another operation (fig.6(c)) is rewriting from read memory to write memory.
It is commonly used by RMT in settings with larger number of segments to keep information about
recent segments longer.

Transformer-XL mechanism of accessing memory (fig.6(d)) does not allow straightforward writing
to memory without changing sequence token representations. Sequential reading from cache is
represented by diagonals on Transformer-XL attention maps. Using token representations as storage
harms model performance in tasks with larger number of segments. For reverse task with 4 segments
Transformer-XL with limited memory size 6 (Appendix B Figure 9(b)) attempts to mix representations
of tokens and read multiple symbols from one cached state in the next segments giving average
accuracy of 0.8 on the target task. Despite having the same memory size, RMT manages to compress
the whole segment in memory tokens (Appendix B Figure 9(a)) and achieve mean accuracy 1.

Visualizations from Figure 6 and Appendix B Figure 9 provide evidence to support our hypotheses
that Tr-XL has to mix representations from previous and current segments in the same hidden states
to pass information between segments. Also, visualizations show how memory tokens in RMT help

8



mitigate such kind of mixing. RMT ability of sequence compression to memory is illustrated in
Appendix A.1 Figure 8. For copy with 6 segments RMT compresses and then reads the sequence
of 12 tokens with just 6 memory tokens. For Transformer-XL decreasing memory size harms the
accuracy score significantly with number of segments larger than 2.

Figure 6: Selected attention map patterns of memory models. (color intensity corresponds to attention score)
RMT with segment length=24, memory size=24 (a) write to memory, (b) read from memory. (c) RMT, segment
length=8, memory size=8, rewrite from read memory to write memory. (d) Transformer-XL, segment length=24,
memory size=24 read from the previous hidden states.

6 Conclusions

In this paper we introduced Recurrent Memory Transformer a simple recurrent memory augmentation
of Transformer model. RMT is implemented by extension of an input sequence with special global
memory tokens and segment-level recurrence. Importantly, our method allows to learn more compact
sequence representations and improve existing pretrained models without extensive additional com-
pute, thus making practical machine learning applications more energy efficient and environmentally
friendly.

In our experiments we compared RMT with Transformer baseline and Transformer-XL which
is a well-known modification of Transformer for long sequences. RMT almost perfectly solves
Copy, Reverse as well as quadratic equations tasks for sequences consisting of multiple segments
outperforming Transformer-XL. It also demonstrates quality for associative retrieval task on par
with Transformer-XL. As expected, baseline Transformer fails to solve these tasks for multi-segment
settings.

RMT trained as a language model performs significantly ahead of Transformer baseline and shows
quality metrics similar to Transformer-XL but for up to 10 times smaller memory size. Experimental
results demonstrate that for fixed memory size backpropagating gradients for more segments improves
performance of RMT. Proposed approach to memory augmentation is quite universal and might be
easily applied to any pretrained transformer based model as demonstrated by achievement of state of
the art results for long text classification task by fine tuning a combination of RoBERTa and RMT.

Analysis of attention maps suggests that better RMT performance can be related to more effective
storage of input representations in dedicated memory tokens compared to mixing representations
storage in Transformer-XL. RMT could be combined with Transformer-XL cache and improve the
performance of both models.

Overall, results of the study show that dedicated memory storage and recurrence provided by
Recurrent Memory Transformer make it a promising architecture for applications that require learning
of long-term dependencies and general purpose in-memory processing, such as algorithmic tasks and
reasoning. Furthermore, we believe that RMT could open the way for adding memory and recurrence
to other models in the Transformer family.

9



Acknowledgments and Disclosure of Funding

This work was supported by a grant for research centers in the field of artificial intelligence, provided
by the Analytical Center for the Government of the Russian Federation in accordance with the subsidy
agreement (agreement identifier 000000D730321P5Q0002) and the agreement with the Moscow
Institute of Physics and Technology dated November 1, 2021 No. 70-2021-00138.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Philip Pham, Anirudh Ravula, and Sumit Sanghai. Etc:

Encoding long and structured data in transformers, 2020.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast weights to attend
to the recent past. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer. arXiv preprint
arXiv:2006.11527, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers,
2019.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 103–111, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/W14-4012. URL https://aclanthology.org/W14-4012.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, 2019. URL https://aclweb.org/anthology/papers/N/N19/
N19-1423/.

SiYu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. ERNIE-Doc:
A retrospective long-document modeling transformer. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2914–2927, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.227. URL https://aclanthology.org/2021.acl-long.
227.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for
speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5884–5888, 2018. doi: 10.1109/ICASSP.2018.8462506.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Addressing some
limitations of transformers with feedback memory. arXiv preprint arXiv:2002.09402, 2020.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.

10

https://proceedings.neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9f44e956e3a2b7b5598c625fcc802c36-Paper.pdf
https://aclanthology.org/W14-4012
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclanthology.org/2021.acl-long.227
https://aclanthology.org/2021.acl-long.227
https://openreview.net/forum?id=YicbFdNTTy


Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,
Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia,
Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield,
Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471–476, October 2016. ISSN 00280836. URL http:
//dx.doi.org/10.1038/nature20101.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to transduce with
unbounded memory, 2015.

Caglar Gulcehre, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Dynamic neural turing machine with
soft and hard addressing schemes. arXiv preprint arXiv:1607.00036, 2016.

Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. Memory augmented neural networks with wormhole
connections. arXiv preprint arXiv:1701.08718, 2017.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-transformer, 2019.

Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for transformers. arXiv preprint
arXiv:2006.03274, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/
neco.1997.9.8.1735.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda
Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture for
structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets, 2015.

Da Ju, Stephen Roller, Sainbayar Sukhbaatar, and Jason Weston. Staircase attention for recurrent processing of
sequences. arXiv preprint arXiv:2106.04279, 2021.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney, Benno
Stein, and Martin Potthast. Semeval-2019 task 4: Hyperpartisan news detection. In Proceedings of the 13th
International Workshop on Semantic Evaluation, pages 829–839, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015. URL
http://arxiv.org/abs/1412.6980.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Large
memory layers with product keys, 2019.

Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara L. Berg, and Mohit Bansal. Mart: Memory-augmented
recurrent transformer for coherent video paragraph captioning, 2020.

Yang Liu, Jiaxiang Liu, Li Chen, Yuxiang Lu, Shikun Feng, Zhida Feng, Yu Sun, Hao Tian, Hua Wu, and
Haifeng Wang. Ernie-sparse: Learning hierarchical efficient transformer through regularized self-attention.
arXiv preprint arXiv:2203.12276, 2022.

Matt Mahoney. Large text compression benchmark, 2006. URL http://www.mattmahoney.net/dc/text.
html.

Pedro Henrique Martins, Zita Marinho, and André FT Martins. ∞-former: Infinite memory transformer. arXiv
preprint arXiv:2109.00301, 2021.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133, 1943.

Yuanliang Meng and Anna Rumshisky. Context-aware neural model for temporal information extraction. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 527–536, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?
id=Byj72udxe.

11

http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
http://www.mattmahoney.net/dc/text.html
http://www.mattmahoney.net/dc/text.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe


Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understand-
ing by generative pre-training. 2018. URL https://www.cs.ubc.ca/~amuham01/LING530/papers/
radford2018improving.pdf.

Jack W Rae, Jonathan J Hunt, Tim Harley, Ivo Danihelka, Andrew Senior, Greg Wayne, Alex Graves, and
Timothy P Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes, 2016.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive transformers for
long-range sequence modelling, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 8821–8831. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
ramesh21a.html.

C Stephen. Kleene. representation of events in nerve nets and finite automata. Automata studies, 1956.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. In Advances in neural information processing systems, pages
5998–6008, 2017. URL http://papers.nips.cc/paper/7181-attention-is-all-you-need.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity, 2020.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):
1550–1560, 1990.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks, 2014.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pages 38–45, 2020.

Qingyang Wu, Zhenzhong Lan, Jing Gu, and Zhou Yu. Memformer: The memory-augmented transformer. arXiv
preprint arXiv:2010.06891, 2020.

Peng Xu, Xinchi Chen, Xiaofei Ma, Zhiheng Huang, and Bing Xiang. Contrastive document representation
learning with graph attention networks. arXiv preprint arXiv:2110.10778, 2021.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences. arXiv
preprint arXiv:2007.14062, 2020.

12

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We mention training instabilities

and GPU RAM issues in Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [No] The

proposed model and method do not have any specific impacts. All general negative
societal impacts applicable to the field could be potentially relative.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We include
code, training scripts, and raw experimental data in the supplementary material. The
supplemental materials would be published on github with the final version of the paper.
Instructions for language modeling data&experiments are taken from Tr-XL repo.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4, Appendix A, and provided supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] All the key experiments results are reported with std.
Furthermore, we provide raw experimental data in the supplementary materials.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We used different GPUs depending
on the task: 1080Ti, V100, A100. We provide this information in Appendix A for each
task.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We refer to the

original Tr-XL code and Tr-XL paper. We use it for establishing baselines and setting
our methods. See Section 4

(b) Did you mention the license of the assets? [No] Tr-XL license is Apache 2.0 and
available at its github repo.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Our code is in the supplemental material and on GitHub: https://github.com/
booydar/LM-RMT

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] We used publicly available Tr-XL code (Apache 2.0) and datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We use either synthetic data or datasets collected
from the Wikipedia (Wikitext-103, enwik8).

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

https://github.com/booydar/LM-RMT
https://github.com/booydar/LM-RMT

