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Abstract

Molecular docking is critical to structure-based virtual screening, yet the through-
put of such workflows is limited by the expensive optimization of scoring functions
involved in most docking algorithms. We explore how machine learning can accel-
erate this process by learning a scoring function with a functional form that allows
for more rapid optimization. Specifically, we define the scoring function to be the
cross-correlation of multi-channel ligand and protein scalar fields parameterized
by equivariant graph neural networks, enabling rapid optimization over rigid-body
degrees of freedom with fast Fourier transforms. Moreover, the runtime of our
approach can be amortized at several levels of abstraction, and is particularly favor-
able for virtual screening settings with a common binding pocket. We benchmark
our scoring functions on two simplified docking-related tasks: decoy pose scoring
and rigid conformer docking. Our method attains similar but faster performance on
crystal structures compared to the Vina and Gnina scoring functions, and is more
robust on computationally predicted structures.

1 Introduction

Proteins are the macromolecular machines that drive almost all biological processes, and much of
early-stage drug discovery focuses on finding molecules which bind to and modulate their activity.
Molecular docking—the computational task of predicting the binding pose of a small molecule to a
protein target—is an important step in this pipeline. Traditionally, docking has been formulated as
an optimization problem over a scoring function designed to be a computational proxy for the free
energy (Torres et al., 2019; Fan et al., 2019). Such scoring functions are typically a sum of pairwise
interaction terms between atoms with physically-inspired functional forms (Quiroga & Villarreal,
2016). While these terms are simple and hence fast to evaluate, exhaustive sampling or optimization
over the space of ligand poses is difficult and leads to the significant runtime of docking software.

ML-based scoring functions for docking have been an active area of research, ranging in sophistication
from random forests to deep neural networks (Yang et al., 2022; Crampon et al., 2022). These efforts
have largely sought to more accurately model the free energy based on a docked pose, which is
important for downstream identification of binders versus non-binders (virtual screening). However,
they have not addressed nor reduced the computational cost required to produce these poses in the first
place. Hence, independently of the accuracy of these workflows, molecular docking for large-scale
structure-based virtual screening remains computationally challenging, especially with the growing
availability of large billion-compound databases such as ZINC (Tingle et al., 2023).

In this work, we explore a different paradigm and motivation for machine learning scoring functions,
with the specific aim of accelerating scoring and optimization of ligand poses for high-throughput
molecular docking. To do so, we forego the physics-inspired functional form of commonly used
scoring functions, and instead frame the problem as that of learning scalar fields independently
associated with the 3D structure of the protein and ligand, respectively. We then define the score to
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Figure 1: Overview of the scalar field-based scoring function and docking procedure. The transla-
tional FFT procedure is shown here; the rotational FFT is similar, albeit harder to visualize. (A) The
protein pocket and ligand conformer are independently passed through equivariant scalar field net-
works (ESFs) to produce scalar fields. (B) The fields are cross-correlated to produce heatmaps
over ligand translations. (C) The ligand coordinates are translated to the argmax of the heatmap.
Additional scalar field visualizations are in Appendix D.

be the cross-correlation between the overlapping scalar fields when oriented according to the ligand
pose. While seemingly more complex than existing scoring functions, these cross-correlations can be
rapidly evaluated over a large number of ligand poses simultaneously using Fast Fourier Transforms
(FFT) over both the translational space R3 and the rotational space SO(3). This property allows for
significant speedups in the optimization over these degrees of freedom.

Further contrasting with existing ML scoring functions, the computational cost of our method can be
amortized at several levels of abstraction, significantly accelerating runtimes for optimized workflows.
For example, unlike methods that require one neural network forward pass per pose, our network
is evaluated once per protein structure or ligand conformer independently. Post-amortization, we
attain translational and rotational optimization runtimes as fast as 160 µs and 650 µs, respectively,
with FFTs. Such throughputs, when combined with effective sampling and optimization, could make
docking of very large compound libraries feasible with only modest resources.

Empirically, we evaluate our method on two simplified docking-related tasks: (1) decoy pose scoring
and (2) rigid conformer docking. On both tasks, our scoring function is competitive with—but faster
than—the scoring functions of Gnina (Ragoza et al., 2017; McNutt et al., 2021) and Vina (Trott
& Olson, 2010) on PDBBind crystal structures and is significantly better on ESMFold structures.
We then demonstrate the further advantages of runtime amortization on the virtual screening-like
setup of the PDE10A test set (Tosstorff et al., 2022), where—since there is only one unique protein
structure—our method obtains a 50x speedup in total inference time at no loss of accuracy.

2 Method

2.1 Equivariant Scalar Fields

We consider the inputs to a molecular docking problem to be a pair of protein structure and ligand
molecule, encoded as a featurized graphs GP , GL, and with the protein structure associated with
alpha carbon coordinates XP = [xP

1 , . . .x
P
NP

] ∈ R3×NP . The molecular docking problem is to
find the ligand atomic coordinates XL = [xL

1 , . . .x
L
NL

] ∈ R3×NL of the true binding pose. To this
end, our aim is to parameterize and learn (multi-channel) scalar fields ϕP := ϕ(x;GP ,XP ) and
ϕL := ϕL(x;GL,XL) associated with the protein and ligand structures, respectively, such that the
scoring function evaluated on any pose XL ∈ R3NL is given by

E(XP ,XL) =
∑
c

∫
R3

ϕPc (x;G
P ,XP )ϕLc (x;G

L,XL) d3x (1)

where ϕc refers to the cth channel of the scalar field. While neural fields that directly learn functions
R3 → R have been previously developed as encodings of molecular structures (Zhong et al., 2019),
such a formulation is unsuitable here as the field must be defined relative to the variable-sized
structure graphs GP , GL and transform appropriately with rigid-body motions of their coordinates.
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Instead, we propose to parameterize the scalar field as a sum of contributions from each ligand atom
or protein alpha-carbon, where each contribution is defined by its coefficients in a spherical harmonic
expansion centered at that atom (or alpha-carbon) coordinate in 3D space. To do so, we choose a set
Rj : R+ → R of radial basis functions (e.g., Gaussian RBFs) in 1D and let Y ℓ

m be the real spherical
harmonics. Then we define

ϕc(x;G,X) =
∑

n,j,ℓ,m

Acnjℓm(G,X)Rj(∥x− xn∥)Y m
ℓ

(
x− xn

∥x− xn∥

)
(2)

where here (and elsewhere) we drop the superscripts L,P for common definitions. Given some
constraints on how the vector of coefficients Acnjℓm transforms under SE(3), this parameterization
of the scalar field satisfies the following important properties:
Proposition 1. Suppose the scoring function is parameterized as in Equation 2 and for any R ∈
SO(3), t ∈ R3 we have Acnjℓm(G,R.X+ t) =

∑
m′ Dℓ

mm′(R)Acnjℓm′(G,X) where Dℓ(R) are
the (real) Wigner D-matrices, i.e., irreducible representations of SO(3). Then for any g ∈ SE(3),

1. The scalar field transforms equivariantly: ϕc(x;G, g.X) = ϕc(g
−1.x;G,X).

2. The scoring function is invariant: E(g.XP , g.XL) = E(XP ,XL).

See Appendix B for the proof. We choose to parameterize Acnjℓm(G,R.X) with E3NN graph neural
networks (Thomas et al., 2018; Geiger & Smidt, 2022), which are specifically designed to satisfy
these equivariance properties and produce all coefficients in a single forward pass. The core of
our method consists of the training of two such equivariant scalar field networks (ESFs), one for
the ligand and one for the protein, which then parameterize their respective scalar fields. While
the second property (invariance of the scoring function) is technically the only one required by
the problem symmetries, the first property ensures that different ligand poses related by rigid-body
transformations can be evaluated via transformations of the scalar field itself (without re-evaluating
the neural network) and is thus essential to our method.

Next, we show how this parameterization enables ligand poses related by rigid body motions to some
reference pose to be rapidly evaluated with fast Fourier transforms (all derivations in Appendix B).
There are actually two ways to do so: we can evaluate the score of all poses generated by translations
of the reference pose, or via rotations around some fixed point (which we always choose to be the
center of mass of ligand). These correspond to FFTs over R3 and SO(3), respectively.

2.2 FFT Over Translations

We first consider the space of poses generated by translations. Given some reference pose XL, the
score as a function of the translation is just the cross-correlation of the fields ϕL and ϕP :

E(XP ,XL + t) =
∑
c

∫
R3

ϕPc (x)ϕ
L
c (x− t) d3x =

∑
c

(ϕLc ⋆ ϕ
P
c )(t) (3)

where we have dropped the dependence on G,X for cleaner notation and applied Proposition 1. By
the convolution theorem, these cross-correlations may be evaluated using Fourier transforms:

ϕLc ⋆ ϕ
P
c =

1

(2π)3/2
F−1

{
F [ϕLc ] · F

[
ϕPc

]}
(4)

Hence, in order to simultaneously evaluate all possible translations of the reference pose, we need to
compute the Fourier transforms of the protein and ligand scalar fields. One naive way of doing so
would be to explicitly evaluate Equation 2 at an evenly-spaced grid of points spanning the structure
and then apply a fast Fourier transform. However, this would be too costly, especially during training
time. Instead, we observe that the functional form allows us to immediately obtain the Fourier
transform via the expansion coefficients Acnjℓm:

F [ϕc] (k) =
∑
n

e−ik·xn

∑
ℓ

(−i)ℓ
∑
m,n

AcnjℓmHℓ[Rj ](∥k∥)Y m
ℓ (k/∥k∥) (5)

where now Y m
ℓ must refer to the complex spherical harmonics and the coefficients must be trans-

formed correspondingly, and
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Hℓ[Rj ](k) =

√
2

π

∫ ∞

0

jℓ(kr)Rj(r)r
2 dr (6)

is the ℓth order spherical Bessel transform of the radial basis functions. Importantly,Hℓ[Rj ] and Y m
ℓ

can be precomputed and cached at a grid of points independently of any specific structure, such that
only the translation terms and expansion coefficients need to be computed for every new example.

2.3 FFT Over Rotations

We next consider the space of poses generated by rotations. Suppose that given some reference pose
XL, the protein and ligand scalar fields are both expanded around some common coordinate system
origin using the complex spherical harmonics and a set of global radial basis functions Sj(r):

ϕc(x) =
∑
j,ℓ,m

BcjℓmSj(∥x∥)Y m
ℓ (x/∥x∥) (7)

We seek to simultaneously evaluate the score of poses generated via rigid rotations of the ligand,
which (thanks again to Proposition 1) is given by the rotational cross-correlation

E(XP , R.XL) =
∑
c

∫
R3

ϕPc (x)ϕ
L
c (R

−1x) d3x (8)

Cross-correlations of this form have been previously studied for rapid alignment of crystallographic
densities (Kovacs & Wriggers, 2002) and of signals on the sphere in astrophysics (Wandelt & Górski,
2001). It turns out that they can also be evaluated in terms of Fourier sums:∫

R3

ϕPc (x)ϕ
L
c (R

−1x) d3x =
∑

ℓ,m,h,n

dℓmhd
ℓ
hnI

ℓ
mne

i(mξ+hη+nω) (9)

where ξ, η, ω are related to the the Euler angles of the rotationR, dℓ is the (constant) WignerD-matrix
for a rotation of π/2 around the y-axis, and

Iℓmn =
∑
j,k

BP
cjℓmB

L
ckℓnGjk where Gjk =

∫ ∞

0

Sj(r)Sk(r)r
2 dr (10)

Thus the main task is to compute the complex coefficients Bcjℓm of the ligand and protein scalar
fields, respectively. This is not immediate as the fields are defined using expansions in “local" radial
and spherical harmonic bases, i.e., with respect to the individual atom positions as opposed to the
coordinate system origin. Furthermore, since we cannot (in practice) use a complete set of radial
or angular basis functions, it is generally not possible to express the ligand or protein scalar field
as defined in Equation 2 using the form in Equation 7. Instead, we propose to find the coefficients
Bcjℓm that give the best approximation to the true scalar fields, in the sense of least squared error.

Specifically, suppose that R ∈ RNgrid×Nlocal are the values of Nlocal real local basis functions (i.e.,
different origins, RBFs, and spherical harmonics) evaluated at Ngrid grid points and A ∈ RNlocal is the
vector of coefficients defining the scalar field ϕc. Similarly define S ∈ RNgrid×Nglobal using the real
versions of the global basis functions. We seek to find the least-squares solution B ∈ RNglobal to the
overdetermined system of equations RA = SB, which is given by

B = (STS)−1STRA (11)

Notably, this is simply a linear transformation of the local coefficients Acnjℓm. Thus, if we can
precompute the inverse Gram matrix of the global bases (STS)−1 and the inner product of the global
and local bases STR, then for any new scalar field ϕc the real global coefficients are immediately
available via a linear transformation. The desired complex coefficients can then be easily obtained
via a change of bases. At first glance, this still appears challenging due to the continuous space of
possible atomic or alpha-carbon positions, but an appropriate discretization makes the precomputation
relatively inexpensive without a significant loss of fidelity.
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2.4 Training and Inference

We now study how the rapid cross-correlation procedures presented thus far are used in training and
inference. For a given training example with protein structure XP , the scoring function E(XP ,XL)

should ideally attain a maximum at the true ligand pose XL = XL⋆. We equate this task to that of
learning an energy based model to maximize the log-likelihood of the true pose under the model
likelihood p(XL) ∝ exp

[
E(XP ,XL)

]
. However, as is typically the case for energy-based models,

directly optimizing this objective is difficult due to the intractable partition function.

Instead, following Corso et al. (2023), we conceptually decompose the ligand pose XL to be a tuple
XL = (XC , R, t) consisting of a zero-mean conformer XC , a rotation R, and a translation t, from
which the pose coordinates are obtained: XL = R.XC + t. Then consider the following conditional
log-likelihoods:

log p(t | XC , R) = E(XP ,XL)− log

∫
R3

exp
[
E(XP , R.XC + t′)

]
d3t′ (12a)

log p(R | XC , t) = E(XP ,XL)− log

∫
SO(3)

exp
[
E
(
XP − t, R′.XC

)]
dR′ (12b)

We observe that these integrands are precisely the cross-correlations in Equations 3 and 8, respectively,
and can be quickly evaluated and summed for all values of t′ and R′ using fast Fourier transforms.
Thus, the integrals—which are the marginal likelihoods p(XC , R) and p(XC , t)—are tractable
and the conditional log-likelihoods can be directly optimized in order to train the neural network.
Although neither technically corresponds to the joint log-likelihood of the pose, we find that these
training objectives work well in practice and optimize their sum in our training procedure.

At inference time, a rigid protein structure XP is given and the high-level task is to score or optimize
candidate ligand poses XL. A large variety of possible workflows can be imagined; however, for
proof of concept and for our experiments in Section 3 we describe and focus on the following
relatively simple inference workflows (presented in greater detail in Appendix C):

• Translational FFT (TF). Given a conformer XC , we conduct a grid-based search over R
and use FFT to optimize t in order to find the best pose (XC , R, t). To do so, we compute
the Fourier coefficients (Equation 5) of the protein XP once and for each possible ligand
orientation R.XC . We then use translational cross-correlations (Equation 3) to find the best
translation t for each R and return the highest scoring combination.

• Rotational FFT (RF). Given a conformer XC , we conduct a grid-based search over t
and use FFT to optimize R. To do so, we compute the global expansion coefficients
BP

cjℓm of the protein XL − t relative to each possible ligand position t and once for the
ligand XC relative to its (zero) center of mass (Equation 11). We then use rotational cross-
correlations (Equation 8) to find the best orientation R for each t and return the highest
scoring combination.

• Translational scoring (TS). Here we instead are given a list of poses (XC , R, t) and wish to
score them. Because the values of R nor t may not satisfy a grid structure, we cannot use the
FFT methods. Nevertheless, we can compute the (translational) Fourier coefficients of the
protein XP and for each unique oriented conformer R.XC of the ligand using Equation 5.
We then evaluate

E(XP , R.XC + t) =
∑
c

∫
R3

F [ϕPc ](k) · F [ϕLc ( · ;R.XC)](k) · e−ik·t d3k (13)

Since the Fourier transform is an orthogonal operator on functional space, this is equal to
the real-space cross-correlation.

• Rotational scoring (RS). Analogously, we can score a list of poses (XC , R, t) using the
global spherical expansions Bcjℓm. We obtain the real expansion coefficients of the protein
relative to each t and for each ligand conformer XC using Equation 11. The score for
(XC , R, t) is then given by the rotational cross-correlation

E(XP , R.XC + t) =
∑

c,j,k,ℓ,m,n

BP
cjℓm(XP − t)BL

ckℓn(X
C)Dℓ

mn(R)Gjk (14)

where Gjk is as defined in Equation 10 and Dℓ
mn are the real Wigner D-matrices.
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Table 1: Typical runtimes of the computations involved in inference-time scoring and optimization
procedures, measured on PDBBind with one V100 GPU. The three sets of rows delineate computa-
tions that are protein-specific, ligand-specific, or involve both protein and ligand, respectively.

Frequency Computation TF RF TS RS Runtime

Per protein structure Coefficients Acnjℓm ✓ ✓ ✓ ✓ 65 ms
FFT coefficients ✓ ✓ 7.0 ms

↪→ Per translation Global expansion Bcjℓm ✓ ✓ 80 ms

Per ligand conformer Coefficients Acnjℓm ✓ ✓ ✓ ✓ 4.3 ms
Global expansion Bcjℓm ✓ ✓ 17 ms

↪→ Per rotation FFT coefficients ✓ ✓ 1.6 ms

Per conformer × rotation Translational FFT ✓ 160 µs
Per conformer × translation Rotational FFT ✓ 650 µs

Translational scoring ✓ 1.0 µsPer pose Rotational scoring ✓ 8.2 µs

The runtime of these workflows can vary significantly depending on the parameters, i.e., number
of proteins, ligands, conformers, rotations, and translations, with amortizations possible at several
levels. Table 1 provides a summary of the computations in each workflow, their frequencies, and
typical runtimes. We highlight that the RF workflow is well-suited for virtual screening since the
precomputations for the protein and ligand translations within a pocket can be amortized across all
ligands. Furthermore, if the ligands are drawn from a shared library, their coefficients can also be
precomputed independent of any protein, leaving only the rotational FFT as the cost per ligand-protein
pair. Thus our method can lend itself to the engineering of very high-throughput workflows.

3 Experiments

We train and test our model on the PDBBind dataset (Liu et al., 2017) with splits as defined by Stärk
et al. (2022) providing 16379, 968, and 363 train, validation, and test complexes, respectively. We
train two variants of our model: ESF and ESF-N, where the latter is trained with rotational and
translational noise injected into the examples to increase model robustness. In both, the protein
network operates on all heavy atom nodes, but only the alpha-carbons contribute to the scalar field.
The input features and message-passing layers are otherwise similar to Corso et al. (2023), except
without ESM features. Hyperparameters are detailed in Appendix E. For evaluation, we consider
both the co-crystal structures in the PDBBind test split and their counterpart ESMFold complexes as
prepared by Corso et al. (2023). We also collect a test set of 77 crystal structures (none of which are
in PDBBind) of phosphodiesterase 10A (PDE10A) with different ligands bound to the same pocket
(Tosstorff et al., 2022). This industrially-sourced dataset is representative of a real-world use case for
molecular docking and benchmarks the benefits of runtime amortization with our approach.

To evaluate our method against baselines, we note that a scoring function by itself is not directly
comparable to complete docking programs, which also include tightly integrated conformer search,
pose clustering, and local refinement algorithms. Here, however, we focus on the development of the
scoring function itself independently of these other components. Thus, we consider two simplified
settings for evaluating our model: (1) scoring decoy poses with the aim of identifying the best pose
among them, and (2) docking rigid conformers to a given pocket, similar to the re-docking setup in
Stärk et al. (2022). The first setting focuses on evaluating only the quality of the scoring function
itself, whereas the second is a simplified version of a typical docking setting that circumvents some
of the confounding factors while still allowing the benchmarking of FFT-accelerated optimization.

We select Gnina (McNutt et al., 2021) as the baseline docking software, which runs parallel MCMC
chains to collect pose candidates that are then refined and re-ranked to produce the final prediction.
For the scoring function, we evaluate Gnina’s namesake CNN (Ragoza et al., 2017) as the state-of-
the-art ML scoring function, as well as the traditional scoring function of Vina (Trott & Olson, 2010),
one of the most well-established docking programs in the development of the field. Both scoring
functions are widely used and are natively supported by the Gnina program.
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Table 2: Decoy scoring results. All RMSDs are heavy-atom symmetry aware. For ease of comparison,
the best numbers from our method (ESF) are underlined if not bolded.

Crystal structures ESMFold structures Time per

Method <2 Å
AUROC

Top
RMSD

Top
Rank

%
<2 Å

<2 Å
AUROC

Top
RMSD

Top
Rank

%
<2 Å Pose Complex

Vina 0.93 0.54 2 91 0.86 2.43 419 43 3.4 ms 110 s
Gnina 0.90 0.59 3 83 0.84 2.19 1110 46 13.0 ms 426 s

ESF-TS 0.87 0.59 3 87 0.82 1.38 24 57 1.0 µs 3.2 s
ESF-RS 0.87 0.63 3 85 0.82 1.75 22 53 8.2 µs 5.7 s
ESF-N-TS 0.92 0.69 4 81 0.87 1.64 22 54 1.0 µs 3.2 s
ESF-N-RS 0.92 0.75 5 80 0.87 1.74 26 53 8.2 µs 5.7 s

3.1 Scoring Decoys

For each PDBBind test complex, we generate 323 − 1 = 32767 decoy poses by sampling 31
translational, rotational, and torsional perturbations to the ground truth pose and considering all their
possible combinations. On median, the RMSD of the closest decoy is 0.4 angstroms (Å), and 1.6% of
all poses (n = 526.5) are below 2 Å RMSD (Appendix E). We then score all poses using the Vina
and Gnina scoring functions and with our method in both TS (Equation 13) and RS (Equation 14)
modes. The quality of each scoring function is evaluated with the AUROC when used as a <2Å
RMSD classifier, the RMSD of the top-ranked pose (Top RMSD), the rank of the lowest-RMSD pose
(Top Rank), and the fraction of complexes for which the identified pose is under 2 Å RMSD.

As shown in Table 2, our method is competitive with the Gnina and Vina scoring functions on
crystal structures and better on ESMFold structures. This improved robustness is expected since
the interaction terms in traditional scoring functions are primarily mediated by sidechain atoms,
which are imperfectly predicted by ESMFold, whereas our scalar fields only indirectly depend on the
sidechains via residue-level coefficients. The noise-augmented training obtains higher AUROC but
is weaker in terms of identifying the best poses. Curiously, this is also true on ESMFold structures,
where we expect robustness to be more important. Overall, TS is superior in performance to RS,
likely due to the spatially coarser representation of the scalar fields in the global spherical harmonic
expansion (i.e., Equation 7) relative to the grid-based Cartesian expansion.

In terms of runtime per pose, our method is faster than Vina by several orders of magnitude, with
even greater acceleration compared to the neural network-based Gnina. The runtime improvement
per complex is more tempered since the different proteins and ligand in every complex limit the
opportunity for amortization. In fact, of the total runtime per complex in Table 2, only 1% (TS) to 5%
(RS) is due to the pose scoring itself, with the rest due to preprocessing that must be done for every
new protein and ligand independently. Hence, the total possible runtime improvement per complex is
significantly greater for more suitable workflows.

3.2 Docking Conformers

We consider the task of pocket-level docking where all methods are given as input the ground-truth
conformer in a random orientation. Following common practice (McNutt et al., 2021), we aim to
provide 4 Å of translational uncertainty around the true ligand pose in order to define the binding
pocket. To do so, we provide Gnina with a bounding box with 4 Å of padding around the true pose,
and provide our method with a cube of side length 8 Å as the search space for t (with a random grid
offset). For PDE10A, we define the pocket using the pose of the first listed complex (PDB 5SFS)
and cross-dock to that protein structure. In all docking runs, we deactivate all torsion angles so that
Gnina docks the provided conformer to the pocket. Default hyperparameters—and results for varying
hyperparameters—are detailed in Appendix E and Appendix F, respectively.

As shown in Table 3, the baseline scoring functions obtain excellent performance on the PDBBind
crystal structures, with a success rate of 79%. Our method is slightly weaker but also obtains high
success rates (73%). The performance decrease in terms of Median RMSD is somewhat larger,
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Table 3: Rigid conformer docking results. All RMSDs are heavy-atom symmetry aware. The
median RMSD of our method (ESF) is lower-bounded at 0.5–0.6 Å by the resolution of the search
grid (Appendix F). The runtime is shown as an average per complex, excluding / including pre-
computations that can be amortized. The best numbers from ESF are underlined if not bolded.

PDBBind test

Crystal ESMFold PDE10A

Method
%

<2 Å
Med.

RMSD
%

<2 Å
Med.

RMSD Runtime
%

<2 Å
Med.

RMSD Runtime

Vina 79 0.32 24 6.1 20 s 74 0.75 6.1 s
Gnina 77 0.33 28 5.9 23 s 73 0.77 6.0 s

ESF-TF 70 1.13 31 4.6 0.8 s / 8.3 s 67 1.20 1.0 s / 7.1 s
ESF-RF 71 0.97 32 4.4 0.5 s / 67 s 73 0.82 0.5 s / 1.5 s
ESF-N-TF 72 1.10 46 2.9 0.7 s / 8.2 s 64 1.11 1.0 s / 7.2 s
ESF-N-RF 73 1.00 47 3.0 0.5 s / 68 s 70 1.00 0.5 s / 1.5 s

likely due to the coarse search grid over non-FFT degrees of freedom (Appendix F) and the lack of
any refinement steps (which are an integral part of Gnina) in our pipeline. On ESMFold structures,
however, our method obtains nearly twice the success rate (47% vs 28%) of the baseline scoring
functions. Unlike in decoy scoring, noisy training noticeably contributes to the performance on
ESMFold structures, and the RF procedure generally outperforms TF, likely due to the relatively
finer effective search grid in rotational cross-correlations (Appendix F).

Because of the nature of the PDBBind workflow, the total runtime is comparable to or slower than the
baselines when precomputations are taken into account. However, in terms of the pose optimization
itself, our method is significantly faster than the Gnina baselines, despite performing a brute force
search over the non-FFT degrees of freedom. While it is also possible to trade-off performance and
runtime by changing various Gnina settings from their default values, our method expands the Pareto
front currently available with the Gnina pipeline (Appendix F; Figure 6). This favorable tradeoff
affirms the practical value-add of our method in the context of existing approaches.

To more concretely demonstrate the runtime improvements of our method with amortization, we then
dock the conformers in the PDE10A dataset. Our method again has similar accuracy to the baselines
(Table 3); however, because of the common pocket, all protein-level quantities are computed only once
and the total runtime is significantly accelerated. For the RF procedure in particular, the computation
of global coefficients on the translational grid is by far the most expensive step (Appendix F; Table 5),
and the remaining ligand precomputations are very cheap. The amortization of these coefficients leads
to a 45x speedup in the overall runtime (67 s→ 1.5 s). (The runtime for Gnina is also accelerated,
although to a lesser extent, due to the smaller ligand size.) As the number of ligands increases further,
the total runtime per complex of our method would further decrease.

4 Conclusion

We have proposed a machine-learned based scoring function for accelerating pose optimization
in molecular docking. Different from existing scoring functions, the score is defined as a cross-
correlation between scalar fields, which enables the use of FFTs for rapid search and optimization.
We have formulated a novel parameterization for such scalar fields with equivariant neural networks,
as well as training and inference procedures with opportunities for significant runtime amortization.
Our scoring function shows comparable performance but improved runtime on two simplified
docking-related tasks relative to standard optimization procedures and scoring functions. Thus, our
methodology holds promise when integrated with other components into a full docking pipeline.
These integrations may include multi-resolution search, refinement with traditional scoring functions,
and architectural adaptations for conformational (i.e., torsional) degrees of freedom—all potential
directions of future work. In a broader context, we hope our work serves as a bridge between
graph-based molecular machine learning and the literature on cross-correlations in computational
structural biology and inspire related methods for other applications.
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A Background

Molecular docking. The two key components of a molecular docking algorithm are (1) one or more
scoring functions for ligand poses, and (2) a search, sampling, or optimization procedure. There
is considerable variation in the design of these components and how they interact with each other,
ranging from exhaustive enumeration and filtering (Shoichet et al., 1992; Meng et al., 1992) to genetic,
gradient-based, or MCMC optimization algorithms (Trott & Olson, 2010; Morris et al., 1998; McNutt
et al., 2021). We refer to reviews elsewhere (Ferreira et al., 2015; Torres et al., 2019; Fan et al., 2019)
for comprehensive details. These algorithms have undergone decades of development and have been
given rise to well-established software packages in academia and industry, such as AutoDock (Morris
& Lim-Wilby, 2008), Vina (Trott & Olson, 2010) and Glide (Halgren et al., 2004). In many of these,
the scoring function is designed not only to identify the binding pose, but also to predict the binding
affinity or activity of the ligand (Su et al., 2018). In this work, however, we focus on learning and
evaluating scoring functions for the rapid prediction of binding poses.

ML methods in docking. For over a decade, ML methods have been extensively explored to improve
scoring functions for already-docked ligand poses, i.e., for prediction of activity and affinity in
structural-based virtual screens (Li et al., 2021; Yang et al., 2022; Crampon et al., 2022). On the other
hand, developing ML scoring functions as the direct optimization objective has required more care
due the enormous number of function evaluations involved. MedusaNet (Jiang et al., 2020) and Gnina
(Ragoza et al., 2017; McNutt et al., 2021) proposed to sparsely use CNNs for guidance and re-ranking
(respectively) in combination with a traditional scoring function. DeepDock (Méndez-Lucio et al.,
2021) used a hypernetwork to predict complex-specific parameters of a simple statistical potential.
Recently, geometric deep learning models have explored entirely different paradigms for docking via
direct prediction of the binding pose (Stärk et al., 2022; Zhang et al., 2022; Lu et al., 2022) or via a
generative model over ligand poses (Corso et al., 2023).

FFT methods in docking. Methods based on fast Fourier transforms have been widely applied for
the related problem of protein-protein docking. Katchalski-Katzir et al. (1992) first proposed using
FFTs over the translational space R3 to rapidly evaluate poses using scalar fields that encode the
shape complementarity of the two proteins. Later works extended this method to rotational degrees
of freedom (Ritchie & Kemp, 2000; Ritchie et al., 2008; Padhorny et al., 2016) and additional scoring
terms, such as pairwise electrostatic potentials and solvent accessibility (Gabb et al., 1997; Mandell
et al., 2001; Chen & Weng, 2002). Today, FFT methods are a routine step in protein-protein docking
programs such as PIPER (Kozakov et al., 2006), ClusPro (Kozakov et al., 2017), and HDOCK (Yan
et al., 2020), where they enable the evaluation of billions of poses, typically as an initial screening
step before further evaluation and refinement with a more accurate scoring function.

In contrast, FFT methods have been significantly less studied for protein-ligand docking. While
a few works have explored this direction (Padhorny et al., 2018; Ding et al., 2020; Nguyen et al.,
2018), these algorithms have not been widely adopted nor been incorporated into established docking
software. A key limitation is that protein-ligand scoring functions are typically more complicated
than protein-protein scoring functions and cannot be easily expressed as a cross-correlation between
scalar fields (Ding et al., 2020). To our knowledge, no prior works have explored the possibility of
overcoming this limitation by learning cross-correlation based scoring functions.

B Mathematical Details

B.1 Proof of Proposition 1

Proposition 1. Suppose the scoring function is parameterized as in Equation 2 and for any R ∈
SO(3), t ∈ R3 we have Acnjℓm(G,R.X+ t) =

∑
m′ Dℓ

mm′(R)Acnjℓm′(G,X) where Dℓ(R) are
the (real) Wigner D-matrices, i.e., irreducible representations of SO(3). Then for any g ∈ SE(3),

1. The scalar field transforms equivariantly: ϕc(x;G, g.X) = ϕc(g
−1.x;G,X).

2. The scoring function is invariant: E(g.XP , g.XL) = E(XP ,XL).
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Proof. Let the action of g = (R, t) ∈ SE(3) be written as g : x 7→ Rx+ t and hence g−1 : x 7→
RT (x− t). We first note that ∥x− g.xn∥ = ∥g−1.x−xn∥ and RT (x− g.xn) = g−1.x−xn. Then

ϕc(x;G, g.X) =
∑

n,j,ℓ,m

Acnjℓm(G,R.X+ t)Rj(∥x− g.xn∥)Y m
ℓ

(
x− g.xn

∥x− g.xn∥

)

=
∑

n,j,ℓ,m′

Acnjℓm′(G,X)Rj(∥x− g.xn∥)
∑
m

Dℓ
mm′(R)Y m

ℓ

(
x− g.xn

∥x− g.xn∥

)

=
∑

n,j,ℓ,m′

Acnjℓm′(G,X)Rj(∥x− g.xn∥)Y m′

ℓ

(
RT (x− g.xn)

∥x− g.xn∥

)

=
∑

n,j,ℓ,m′

Acnjℓm′(G,X)Rj(∥g−1.x− xn∥)Y m′

ℓ

(
g−1.x− xn

∥g−1.x− xn∥

)
= ϕc(g

−1.x;G,X)

Next,

E(g.xP , g.xL) =
∑
c

∫
R3

ϕPc (x;G
P , g.XP )ϕLc (x;G

L, g.XL) d3x

=
∑
c

∫
R3

ϕPc (g
−1x;GP ,XP )ϕLc (g

−1x;GL,XL) d3x

=
∑
c

∫
R3

ϕPc (x
′;GP ,XP )ϕLc (x

′;GL,XL) d3x′

where the last line has substitution x′ = g−1x with g volume preserving on R3.

B.2 Derivations

In this section we describe the derivations for the various equations presented in the main text. We
use the following convention for the (one-dimensional) Fourier transform and its inverse:

F [f ](k) = 1√
2π

∫
e−ikxf(x) dx (15a)

F−1[f ](x) =
1√
2π

∫
eikxf(k) dk (15b)

Equation 5 It is well known (Wikipedia, 2023) that given a function over R3 with complex spherical
harmonic expansion

f(r) =
∑
ℓ,m

fℓ,m(∥r∥)Y m
ℓ (r/∥r∥) (16)

its Fourier transform is given by

f(k) =
∑
ℓ,m

(−i)ℓFℓ,m(∥k∥)Y m
ℓ (k/∥k∥) (17)

where

Fℓ,m(k) =
1√
k

∫ ∞

0

√
rfℓ,m(r)Jℓ+1/2(kr) r dr (18)

with Jℓ the ℓth-order Bessel function of the first kind. Relating these to the spherical Bessel functions
jℓ via Jℓ+1/2(x) =

√
2x/πjℓ(x), we obtain

Fℓ,m(k) =

√
2

π

∫ ∞

0

fℓ,m(r)jℓ(kr) r
2 dr := Hℓ[fℓ,m](k) (19)

which is the form of Equation 6. To apply this to our scalar fields, we define the translation operator
Tr[f ](x) = f(x− r) and note its composition with the Fourier transform

(F ◦ Tr)[f ] = e−ik·rF [f ] (20)
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We then decompose the form of our scalar fields (Equation 2) into contributions from zero-origin
spherical harmonic expansions

ϕc(x) =
∑
n

Txn
[ϕcn](x) (21a)

ϕcn(x) =
∑
ℓ,m

∑
j

AcnjℓmRj(∥x∥)︸ ︷︷ ︸
ϕcnℓm(∥x∥)

Y m
ℓ (x/∥x∥) (21b)

Hence, the Fourier transform of each contribution is

F [ϕcn](k/∥k∥) =
∑
ℓ,m

(−i)ℓHℓ[ϕcnℓm](∥k∥)Y m
ℓ (k/∥k∥) (22)

Equation 5 is then obtained via Equation 20 and the linearity of the Fourier and spherical Bessel
transforms.

Equation 9 We source (with some modifications) the derivation from Kovacs & Wriggers (2002).
We consider the cross-correlation

c(R) =

∫
R3

ϕ(x)ψ(R−1x) d3x (23)

which is the same as Equation 8 with ϕ = ϕPc and ψ = ϕLc since ϕLc is a real field. Expanding in
complex spherical harmonics Y m

ℓ and radial bases Sj :

ϕ(x) =
∑
j,ℓ,m

ΦjℓmSj(∥x∥)Y m
ℓ (x/∥x∥) ψ(x) =

∑
j,ℓ,m

ΨjℓmSj(∥x∥)Y m
ℓ (x/∥x∥) (24)

We then obtain

c(R) =
∑

j,j′,ℓ,ℓ′,m,n,m′

Dℓ
nm′(R)ΦjℓmΨj′ℓ′m′

∫
R3

[Sj · Sj′ ](∥x∥)[Y m
ℓ · Y n

ℓ′ ](x/∥x∥) d
3x (25a)

=
∑

j,j′,ℓ,ℓ′,m,n,m′

Dℓ
nm′(R)ΦjℓmΨj′ℓ′m′

∫ ∞

0

[Sj · Sj′ ](r) r
2 dr︸ ︷︷ ︸

Gjj′

∫
S2

[Y m
ℓ · Y n

ℓ′ ](r̂) dr̂︸ ︷︷ ︸
δℓℓ′δmn

(25b)

=
∑

ℓ,m,m′

Dℓ
mm′(R)

∑
j,j′

ΦjℓmΨj′ℓm′Gjj′︸ ︷︷ ︸
Iℓ
mm′

(25c)

Now to evaluate the complex Wigner D-matrix, we adopt the extrinsic zyz convention for Euler
angles (applied right-to-left) and note that any rotation (ϕ, θ, ψ) can be decomposed as

R(ϕ, θ, ψ) = Rz(ϕ− π/2︸ ︷︷ ︸
ξ

)Ry(π/2)Rz(π − θ︸ ︷︷ ︸
η

)Ry(π/2)Rz(ψ − π/2︸ ︷︷ ︸
ω

) (26)

Next, one can easily check (using the standard spherical harmonics) that the Wigner D-matrix for a
rotation about the z-axis is diagonal and given by Dℓ

mn(Rz(ω)) = δmne
−inω . Hence,

Dℓ
mn(R(ϕ, θ, ψ)) = e−imξdℓmhe

−hηdℓhne
−iωn (27)

where dℓ = Dℓ(Ry(π/2)) are constant and real. Complex conjugation then gives Equation 9.

Equation 12 The conditional likelihood is

log p(t | XC , R) = log
p(XC , R, t)

p(XC , R)
(28a)

= log p(XC , R, t)− log

∫
R3

p(XC , R, t′) d3t′ (28b)

= logE(XP ,XL)− log

∫
R3

exp
[
E(XP , R.XC + t′)

]
d3t′ (28c)
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Similarly,

log p(R | XC , t) = log
p(XC , R, t)

p(XC , t)
(29a)

= log p(XC , R, t)− log

∫
SO(3)

p(XC , R′, t) dR′ (29b)

= logE(XP ,XL)− log

∫
SO(3)

exp
[
E(XP , R.XC + t)

]
dR′ (29c)

Finally, we move t to the protein coordinates (invoking the invariance of the score E) to obtain a
form consistent with the rotational cross-correlations (Equation 8).

Equation 13 Given a pose XL = R.XC + t, we evaluate

E(XP , R.XC + t) =
∑
c

∫
R3

ϕPc (x)ϕ
L
c (x;R.X

C + t) d3x (30)

The functional inner product is equivalent in Fourier space:

E(XP , R.XC + t) =
∑
c

∫
R3

F [ϕPc ](k) · F [ϕLc ( · ;R.XC + t)](k) d3k (31)

Then with the translation operator T defined previously,

ϕLc (x;R.X
C + t) = Tt[ϕ( · ;R.XC)](x) (32a)

F [ϕLc ( · ;R.XC + t)](k) = e−ik·tF [ϕLc ( · ;R.XC)](k) (32b)

We then substitute into Equation 31 to obtain Equation 13.

Equation 14 Given a pose XL = R.XC + t, we assume that the field ϕPc ( · ;XP − t) and
ϕLc ( · ;XC) are written in the real global spherical harmonic expansion:

ϕPc (x;X
P − t) =

∑
j,ℓ,m

BP
cjℓmSj(∥x∥)Y m

ℓ (x/∥x∥) (33a)

ϕLc (x;X
C) =

∑
j,ℓ,m

BL
cjℓmSj(∥x∥)Y m

ℓ (x/∥x∥) (33b)

Then, analogously to Equation 25,

E(XP , R.XC + t) = E(XP − t, R.XC) (34a)

=
∑
c

∫
R3

ϕPc (x;X
P − t)ϕLc (R

−1x;XC) d3x (34b)

=
∑

c,ℓ,m,m′

Dℓ
mm′(R)

∑
j,j′

BP
cjℓmB

L
cj′ℓm′Gjj′ (34c)

Complex conjugation has been omitted because the coefficients and D-functions are now real.
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C Algorithmic Details

Below, we present in detail the four inference procedures introduced in Section 2.4. The three blocks
of computations are color-coded corresponding to protein preprocessing (green), ligand preprocessing
(blue), and the core computation (red) and labelled with typical runtimes from Table 1 (unlabelled
lines have negligible runtime). The various loop levels make clear that depending on the workflow, the
protein and ligand processing precomputations can be amortized and approaches a negligible fraction
of the total runtime. Note, however, that for readability we have presented the algorithms assuming
that all possible combinations (i.e., of proteins, ligand conformers, rotations, and translations) are of
interest; if this is not true (for example in PDBBind, or in any typical pose-scoring setting), then the
full benefits of amortization may not be fully realized.

Algorithm 1: TRANSLATIONAL FFT

Input: Proteins {(GP
i ,X

P
i )}, conformers {(GL

h ,X
L
h )}

Output: Docked poses (XP
i ,X

L
ih) ∀i, h

foreach (GP
i ,X

P
i ) do // protein preprocessing

Compute coefficients AP
i = {AP

cjnℓm(GP
i ,X

P
i )} with neural network ; // 65 ms

Compute Fourier-space field values F [ϕP ]i using AP
i ,x

P
i ; // 7.0 ms

foreach (GL
h ,X

L
h ) do // ligand preprocessing

Compute coefficients AL
h = {AL

cjnℓm(GL
h ,X

L
h )} with neural network ; // 4.3 ms

foreach Rk ∈ {R}grid ⊂ SO(3) do
Compute rotated coefficients AL

h,k using Dℓ(Rk);
Compute Fourier-space field values F [ϕL]h,k using AL

h,k, RkX
L
h ; // 1.6 ms

foreach (GP
i ,X

P
i ) do // pose optimization

foreach (GL
h ,X

L
h ) do

foreach Rk ∈ {R}grid ⊂ SO(3) do
Compute E(XP

i , RkX
L
h + t),∀t using FFT; // 160 µs

E⋆
k , t

⋆
k ← {max, argmax}tE(XP

i , RkX
L
h + t) ;

k⋆ ← argmaxk E
⋆
k ;

XL
ih ← Rk⋆XL

h + t⋆k⋆ ;

Algorithm 2: ROTATIONAL FFT

Input: Proteins {(GP
i ,X

P
i )}, conformers {(GL

h ,X
L
h )}

Output: Docked poses (XP
i ,X

L
ih) ∀i, h

foreach (GP
i ,X

P
i ) do // protein preprocessing

Compute coefficients AP
i = {AP

cjnℓm(GP
i ,X

P
i )} with neural network ; // 65 ms

for tk ∈ {t}grid ⊂ R3 do
Compute global expansion BP

i,k = {Bcjℓm} from AP
i ,X

P
i − tk ; // 80 ms

foreach (GL
h ,X

L
h ) do // ligand preprocessing

Compute coefficients AL
h = {AL

cjnℓm(GL
h ,X

L
h )} with neural network ; // 4.3 ms

Compute global expansion BL
h = {Bcjℓm} from AL

h ,X
L
h ; // 17 ms

foreach (GP
i ,X

P
i ) do // pose optimization

foreach (GL
h ,X

L
h ) do

foreach tk ∈ {t}grid ⊂ R3 do
Compute E(XP

i − tk, R.X
L
h ),∀R using FFT ; // 650 µs

E⋆
k , R

⋆
k ← {max, argmax}RE(XP

i − tk, R.X
L
h + t) ;

k⋆ ← argmaxk E
⋆
k ;

XL
ih ← R⋆

k⋆XL
h + tk⋆ ;
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Algorithm 3: TRANSLATIONAL SCORING

Input: Proteins {(GP
i ,X

P
i )}, conformers {(GL

h ,X
L
h )}, rotations {Rk}, translations {tℓ}

Output: Scores E(XP
i , RkX

L
h + tℓ) ∀i, h, k, ℓ

foreach (GP
i ,X

P
i ) do // protein preprocessing

Compute coefficients AP
i = {AP

cjnℓm(GP
i ,X

P
i )} with neural network ; // 65 ms

Compute Fourier-space field values F [ϕP ]i using AP
i ,x

P
i ; // 7.0 ms

foreach (GL
h ,X

L
h ) do // ligand preprocessing

Compute coefficients AL
h = {AL

cjnℓm(GL
h ,X

L
h )} with neural network ; // 4.3 ms

foreach Rk do
Compute rotated coefficients AL

h,k using Dℓ(Rk);
Compute Fourier-space field values F [ϕL]h,k using AL

h,k, RkX
L
h ; // 1.6 ms

foreach (GP
i ,X

P
i ) do // scoring

foreach (GL
h ,X

L
h ) do

foreach Rk do
foreach tℓ do

Compute E(XP
i , RkX

L
h + tℓ) using Equation 13; // 1.0 µs

Algorithm 4: ROTATIONAL SCORING

Input: Proteins {(GP
i ,X

P
i )}, conformers {(GL

h ,X
L
h )}, rotations {Rk}, translations {tℓ}

Output: Scores E(XP
i , RkX

L
h + tℓ) ∀i, h, k, ℓ

foreach (GP
i ,X

P
i ) do // protein preprocessing

Compute coefficients AP
i = {AP

cjnℓm(GP
i ,X

P
i )} with neural network ; // 65 ms

for tk ∈ {t}grid ⊂ R3 do
Compute global expansion BP

i,k = {Bcjℓm} from AP
i ,X

P
i − tk ; // 80 ms

foreach (GL
h ,X

L
h ) do // ligand preprocessing

Compute coefficients AL
h = {AL

cjnℓm(GL
h ,X

L
h )} with neural network ; // 4.3 ms

Compute global expansion BL
h = {Bcjℓm} from AL

h ,X
L
h ; // 17 ms

foreach (GP
i ,X

P
i ) do // scoring

foreach (GL
h ,X

L
h ) do

foreach Rk do
foreach tℓ do

Compute E(XP
i , RkX

L
h + tℓ) using Equation 14; // 8.2 µs
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D Learned Scalar Fields

6qqw

6jap

6np2

Figure 2: Visualizations of learned scalar fields. All five channels of the ESF-N learned scalar
fields ϕL (top row) and ϕP (bottom row) are shown on the xy-plane passing through the center of
mass of the ligand, with a box diameter of 20 Å. Positive values of the field are in blue and negative
values in red. At left, the ligand and pocket structures are shown looking down the z-axis. Note that
as the fields are only 2D slices, not all 3D features visible in the structures are visible in the fields.
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Figure 3: Visualizations of learned scalar fields, continued.
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E Experimental Details

E.1 Decoy Set

Given a zero-mean ground-truth ligand pose XL⋆, we generate 323 − 1 = 32767 decoy poses via the
following procedure.

• Sample 31 translational pertubations: ti ∼ N (0, I3), i = 1 . . . 31 and set t0 = 0, with units
in Å.

• Sample 31 rotational perturbations: Rj = FromRotvec(rj), rj ∼ N (0, 0.5I3), j = 1 . . . 31
and set R0 = I3.

• Sample 31 noisy conformers XC
k , k = 1 . . . 31 by sampling torsional updates ∆τk ∼

NT(0, (π/2)Im) where NT is a wrapped normal distribution (Jing et al., 2022) and m is
the number of torsion angles. The torsional updates are applied to the smaller side of the
molecule. Set XC

0 = XL⋆.

• Set XL
ijk = RjX

C
k + ti, i, j, k = 0 . . . 31 and discard XL

000 = XL⋆.

PDB ID 6A73 is excluded from the procedure due to the high level of graph symmetry and significant
runtime for computing RMSDs for all decoys. Summary statistics for the decoy sets of the remaining
362 PDB IDs are presented in Figure 4.

0 5 10 15 20

0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20
0.0
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0.4

0.6

0.8

1.0

CD
F

0 2
0.000

0.002

RMSD

Figure 4: Decoy set statistics. Top left: histogram of RMSDs across all decoys sets (12 M total).
Bottom left: histogram of minimum RMSDs among the decoy sets. All sets have a pose less than
RMSD <1 Å from the true pose. Right: cumulative density function of RMSDs in each decoy set.
Bottom right inset: all decoy sets have at least 23 poses with RMSD <2 Å.

E.2 Hyperparameters

Our method involves hyperparameters at several levels.

• The learned scalar fields have 5 channels.
• To parameterize the scalar field (Equation 2), we use spherical harmonics up to ℓ = 2 and

5 Gaussian RBFs evenly spaced from 0 Å to 5 Å.
• All translational Fourier coefficients (Equation 5) are evaluated with a grid of frequencies

corresponding to a sampling interval of 1 Å and a cubical domain with side length 40 Å.
The integral over R3 in the training objective (Equation 12) is computed only over the

20



cubical FFT domain. During training and default inference, the cross-correlation is also
computed with a sampling interval of 1 Å, but denser sampling intervals at inference-time
(i.e., by zero-padding in the Fourier domain) are explored in Appendix F.

• Global spherical harmonic expansions (Equation 7) are computed up to ℓ = 10, with
25 Gaussian RBFs evenly spaced from 0 Å to 20 Å. During training and default inference,
the evaluation of rotational cross-correlations with FFTs (Equation 9) is always performed
up to ℓ = 50 and ℓ = 25, respectively, by zero-padding in the Fourier domain, with other
inference orders at inference-time explored in Appendix F.

• Local-to-global transformation matrices (Equation 11) were precomputed for discretized
positions along the +z axis from 0 Å to 20 Å at 1 Å intervals.

• Data featurization and model hyperparameters are adapted from the default settings of Corso
et al. (2023), giving a model size of 2.2 M parameters for both the ligand and protein model.

• By default, in the RF procedure, we evaluate 93 = 729 translational grid points at inference
time, filling a 8 Å cube at 1 Å intervals. In the TF procedure, we use an m = 2 grid
over SO(3) as implemented by Zhong et al. (2019) and Yershova et al. (2010), yielding
4608 grid points. Other resolutions are explored in Appendix F.

These hyperparameters were not extensively tuned, and further tradeoffs and improvements in
performance and runtime could be explored by modifying them.

E.3 Runtime Measurements

All runtime measurements were performed on a machine with 64 Intel Xeon Gold 6130 CPUs and 8
Nvidia Tesla V100 GPUs. Gnina was run with default thread count settings. All of our processes
were run on a single V100 GPU. For our method, we performed runtime analysis using CUDA
events to remove the effects of asynchronous CUDA execution. Script loading, model loading, and
algorithmic-level precomputations (which, if necessary, can be cached on disk) were excluded from
the analysis. For Gnina, we attempted to remove similar overhead by timing single-pose scoring-only
runs as representative of constant overhead costs. We report conformer docking runtimes in Table 3
using the PDBBind crystal structures; ESMFold runtimes are marginally shorter. Typical runtimes
reported in Table 1 and Appendix C are obtained from timing runs with our method across the entire
PDBBind test set.

E.4 Datasets

As noted previously, we use train, validation, and test splits from Stärk et al. (2022). However, due to
RDKit parsing issues with Gnina-docked poses, the following 30 complexes are excluded (leaving
333 remaining) from all rigid conformer docking comparisons against Gnina, i.e., Tables 3 and
Appendix F: 6HZB, 6E4C, 6PKA, 6E3P, 6OXT, 6OY0, 6HZA, 6E6W, 6OXX, 6HZD, 6K05, 6NRH,
6OXW, 6RTN, 6D3Z, 6HLE, 6PY0, 6OXS, 6E3O, 6HZC, 6Q38, 6E7M, 6OIE, 6D3Y, 6D40, 6UHU,
6CJP, 6E3N, 6Q4Q, 6D3X. Scoring comparisons include all test complexes except 6A73, for which
decoy poses could not be generated.

We download the 77 PDB IDs provided in Tosstorff et al. (2022) from the PDB to form the PDE10A
dataset, keeping the A chain of each assymetric unit and the Ligand of Interest (LOI) interacting with
it. We then align all ligands to the crystal structure of 5SFS using the procedure described in Corso
et al. (2023) for aligning ESMFold structures, except transforming the ligand rather than the protein.
This constitutes the construction of a cross-docking dataset due to the use of the same pocket for all
ligands. Due to RDKit parsing errors with the Gnina-docked poses, the following 7 PDB IDs are
excluded from all comparisons: 5SFA, 5SED, 5SFO, 5SEV, 5SF9, 5SDX, 5SFC. The remaining 70
ligands are shown superimposed on the 5SFS pocket in Figure 5.
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Figure 5: PDE10A ligands aligned on 5SFS

F Further Results

In Tables 4–7 below, we explore the impact of inference-time hyperparameters on the performance
and runtime of our method on the rigid conformer docking task. We use the ESF-N model variant
and experiment with the PDBBind crystal test set and PDE10A test set. For the TF procedure
(Algorithm 1), we adjust (1) the number of grid points over SO(3) with two possible resolutions,
giving 576 and 4608 possible rotations, respectively; (2) the spatial interval at which the translational
cross-correlation (Equation 3) is evaluated: either 1 Å or 0.5 Å (by zero-padding the scalar fields
in the Fourier domain), giving a cubical grid of evaluated points with side length 8 Å and 9 or 17
points on each side. For the RF procedure (Algorithm 2), we adjust (1) the number of translational
grid points with three possible resolutions, filling the 8 Å cube with 7, 9, or 13 points per side,
respectively; (2) the resolution at which the rotational cross-correlation (Equation 8) is evaluated;
this can be adjusted by zero-padding in the Fourier domain to include larger values of ℓ. The rows
corresponding to results in the main Table 3 are bolded.

In all rows, the effective number of poses searched over via both degrees of freedom is computed. To
provide an idea of the impact of discretization, we compute the median RMSD of the closest grid
point to the ground-truth pose (decomposed into rotational and translational contributions). This
serves as a hard lower bound for the median RMSD of the output docked pose. In the TF procedure,
increasing the resolution is memory-intensive; thus, the RF procedure is more effective at leveraging
FFT to conduct fine-grained search over the accelerated degree of freedom. The default reported
performance is attained with a translational offset of 0.4 Å and a rotational offset of 0.16 Å. While
performance improves with smaller grid offsets, the returns are rapidly dimishing.

The runtime of the method (averaged over 333 PDBBind complexes and 70 PDE10A complexes) is re-
ported and color-coded according to Appendix C: protein preprocessing (green), ligand preprocessing
(blue), and the pose optimization (red). The effect of the non-FFT grid resolution is also color-coded,
i.e., in TF the explicit enumeration over SO(3) grid points directly scales the ligand preprocessing,
whereas in RF the enumeration over R3 scales the protein preprocessing. As the tables show, the
preprocessing of these explicit grid points contributes to the majority of the non-amortizeable runtime.
In general, the SO(3) grid / ligand preprocessing in TF is less expensive, however, it cannot be
amortized when moving from PDBBind to PDE10A (where the ligands are still distinct). On the
other hand, the R3 grid / protein preprocessing time in RF is significantly reduced (very roughly on
the order of 70-fold, as expected) in PDE10A compared to PDBBind.
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Table 4: PDBBind TF

Grid offset Runtime (ms)

Trans.
grid

SO(3)
grid

Effective
# poses Tr. Rot. All Med.

RMSD
%
<2Å

Prot.
prep.

Lig.
prep. Opt.

9 576 420k 0.52 0.84 0.98 1.53 63 65 931 100
9 4608 3.4M 0.50 0.42 0.67 1.10 72 72 7196 715
17 576 2.8M 0.25 0.80 0.84 1.50 64 70 928 123

Table 5: PDBBind RF

Grid offset Runtime (ms)

Trans.
grid

SO(3)
ℓmax

Effective
# poses Tr. Rot. All Med.

RMSD
%
<2Å

Prot.
prep.

Lig.
prep. Opt.

7 10 3.2M 0.65 0.38 0.80 1.25 70 30k 85 158
7 25 45M 0.67 0.15 0.70 1.15 69 31k 87 225
7 50 353M 0.65 0.08 0.67 1.16 70 32k 85 704
9 10 6.8M 0.49 0.36 0.64 1.16 73 64k 85 333
9 25 97M 0.50 0.15 0.53 1.00 73 67k 87 476
9 50 751M 0.51 0.08 0.52 0.98 74 63k 84 1487

13 10 20M 0.33 0.37 0.51 1.05 74 198k 85 995
13 25 291M 0.33 0.15 0.37 0.90 72 200k 86 1430

Table 6: PDE10A TF

Grid offset Runtime (ms)

Trans.
grid

SO(3)
grid

Effective
# poses Tr. Rot. All Med.

RMSD
%
<2Å

Prot.
prep.

Lig.
prep. Opt.

9 576 420k 0.51 0.88 1.00 1.85 56 22 761 89
9 4608 3.4M 0.50 0.48 0.69 1.11 64 21 6159 736
17 576 2.8M 0.26 0.89 0.93 2.05 50 20 756 106
17 4608 23M 0.26 0.44 0.51 1.00 73 20 6147 892

Table 7: PDE10A RF

Grid offset Runtime (ms)

Trans.
grid

SO(3)
ℓmax

Effective
# poses Tr. Rot. All Med.

RMSD
%
<2Å

Prot.
prep.

Lig.
prep. Opt.

7 10 3.2M 0.72 0.38 0.83 1.60 54 476 44 161
7 25 45M 0.57 0.16 0.59 1.21 63 549 42 227
7 50 353M 0.65 0.08 0.65 1.30 64 635 59 718
9 10 6.8M 0.46 0.39 0.63 1.05 64 1014 42 327
9 25 97M 0.48 0.16 0.51 1.00 70 946 43 465
9 50 751M 0.49 0.09 0.50 0.99 64 943 42 1483

13 10 20M 0.34 0.41 0.55 1.17 64 2798 42 986
13 25 291M 0.33 0.16 0.36 0.96 69 2912 45 1469
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In Figure 6, we further investigate the tradeoff between speed and performance offered by our method
compared to Gnina (with the Vina scoring function). While in the main results (Table 3) we run
Gnina using all default settings, it is possible to reduce the runtime (and performance) by adjusting
these settings. In particular, we explore setting --max_mc_steps and --minimize_iters to 5
independently and in combination. Together with the default runs and the --score_only runs, these
trace out a Pareto frontier representing the tradeoff between runtime per complex and <2 Å RMSD
success rate. With the default settings, Gnina outperforms all variants of our method on the PDBBind
crystal and PDE10A test sets. However, Figure 6 shows that we can reach previously inaccessible
regions in the accuracy v.s. runtime tradeoff landscape.
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Figure 6: Tradeoff between speed and accuracy using our method compared to Gnina on PDBBind
crystal structures (left) and PDE10A (right). In both cases, variants of our method (blue dots) enable
possibilities not reachable with Gnina (orange curve).
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