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ABSTRACT
This paper introduces a new model to generate rhythmically rel-
evant non-verbal facial behaviors for virtual agents while they
speak. The model demonstrates perceived performance compara-
ble to behaviors directly extracted from the data and replayed on
a virtual agent, in terms of synchronization with speech and be-
lievability. Interestingly, we found that training the model with
two different sets of data, instead of one, did not necessarily im-
prove its performance. The expressiveness of the people in the
dataset and the shooting conditions are key elements. We also
show that employing an adversarial model, in which fabricated
fake examples are introduced during the training phase, increases
the perception of synchronization with speech. A collection of
videos demonstrating the results and code can be accessed at:
https://github.com/aldelb/non_verbal_facial_animation.
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1 INTRODUCTION
Interest in virtual agents has grown in the last few years, their
applications are multiplying in games or virtual environments,
for instance in the medical domain [1, 50]. However, these virtual
agents are not yet widely used in practice, partly because of their
lack of natural interaction, which discourages user engagement [5].

In order to address this issue, Cassell [8] propose to integrate
various natural modalities of human behavior into the virtual agent,
including speech, facial expressions, hand gestures, body gestures,
and more. Facial expressions, gestures, and gaze direction are ex-
amples of non-verbal behavior, encompassing actions distinct from
speech. While psychologists argue about the percentage of informa-
tion non-verbally exchanged during an interaction [77], it is clear
that the non-verbal channel plays an important role in understand-
ing human behavior.

Several studies show that facial expressions, gaze direction, and
head movements are essential non-verbal behaviors that play a
crucial role in conveying a speaker’s intentions and emotional state
[49], and could even improve the way a virtual agent is perceived
in general [6, 42]. Munhall et al. [46] also showed that the rhythmic
beat of head movements increases speech intelligibility. In the same
way, Tinwell et al. [63] showed that "uncanniness” is increased
for a character with a perceived lack of facial expressions. In this
paper, we present a machine-learning based model to generate non-
verbal facial behaviors that take into account facial expressions,
head movements and gaze direction.

The process of generating non-verbal behavior for a specific
speech can be approached from different angles, such as generating
natural and believable behaviors, generating behaviors that are
rhythmically synchronized with the speech, adapted to the intona-
tion or appropriate to the semantic content of the speech. In this
work, we chose to focus on generating rhythmically relevant and
believable non-verbal behaviors for the virtual agent as he speaks.
This involves creating a framework that generates non-verbal fea-
tures that align with the rhythmic patterns of speech.

The paper is organized as follows. We provide an overview of
existing works in section 2, followed by the formulation of the
learning problem in section 3. After presenting the datasets used
and their processing methodologies in section 4, we describe the
used architecture in section 5. In section 6 we present our research
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question and hypotheses. The section 7 is dedicated to our eval-
uation methods and results. Finally, we conclude the paper and
introduce perspectives in section 8.

2 RELATEDWORK
The research works on behavior generation can be characterized
by various aspects, such as the adopted approach (rule-based or
data-driven), the dataset characteristics, the inputs, and outputs
of the model, and more. To provide a structured overview of the
state-of-the-art, we organize it as follows: in section 2.1, we present
examples of rule-based models; in section 2.2, we describe data-
driven models including deep learning models; in section 2.3 we
present the different possible input for the models and their impact
on the generated behaviors; and in section 2.4, we discuss the
output’s representation of the models.

2.1 Rule-based approaches
The first approaches explored for the automatic generation of vir-
tual characters’ behavior were based on sets of rules. The rules
describe the mapping of words or speech features to a facial ex-
pression or gesture. One of the first works to explore the latent
relationship between speech and gesture to generate realistic ani-
mation was Cassell et al. [9] with Animated Conversation. Kopp and
Wachsmuth [33] proposed a model-based approach for generating
complex multimodal utterances (i.e., speech and gesture) from XML
specifications.

The development of new rule-based systems often required the
development of a new domain-specific language (DSL). These DSLs
were often incompatible with each other, even if the systems solved
similar or overlapping goals [49]. A group of researchers developed
a unified language for generating multimodal behaviors for virtual
agents, called behavior Markup Language (BML). BML has become
the standard format for rule-based systems, and many other works
have followed using this format [43, 56].

It is important to point out that these approaches focused on
intention. They were highly effective in terms of communication,
but not very natural, since they mainly inserted predefined ani-
mations [49]. More recent research has therefore begun to explore
data-driven systems.

2.2 Data-driven approaches
Data-driven approaches do not depend on experts in animation
and linguistics. They learn the relationships between speech and
movements or facial expressions from data. They are born out of
proof of a strong correlation between an individual’s speech and
her/his non-verbal behavior [31, 44]. For example, Yehia et al. [70]
and Honda [27] show that pitch is correlated with head motions.

Mariooryad and Busso [42] proposed to replace rules with Dy-
namic Bayesian Networks (DBN). In Chiu and Marsella [10], a
Gaussian Process Latent Variable Model (GPLVM) has been used
to learn a low-dimensional layer and select the most likely move-
ments given the speech as input. Recently, Yang et al. [69] proposed
a motion graph-based statistical system that generates gestures and
other body movements for dyadic conversations. Hidden Markov
Models (HMM) were used to select the most likely body motion
[39, 43] or head motion [60] based on speech. However, these re-
search works are still based on an animation dictionary, limiting the

diversity of the generated movements. Moreover, in these models,
there is only one motion sequence for an input audio signal. It sup-
ports the hypothesis that the speech-to-motion correspondence is
injective, but the correspondence between acoustic speech features
and non-verbal behavior is a “One-To-Many” problem [38].

More recently, deep neural networks have demonstrated their
superiority in learning from large datasets by generating a sequence
of features for non-verbal behavior. The main objectives of these
deep learning-based systems are the naturalness and the synchro-
nization between audio and speech. For example, Kucherenko et al.
[35] proposed an encoder-decoder speech to motion. However, the
traditional deterministic generative models employed in this ap-
proach often suffer from a limitation: they tend to generate average
motion representations [36]. To address this limitation, researchers
have explored the integration of probabilistic components into their
generative models. Notably, popular probabilistic models such as
Generative Adversarial Networks (GANs) [18, 58, 62], Variational
Autoencoders (VAEs) [21, 24, 40], and diffusion models [12, 13, 73]
have been employed.

GANs [20] can be used to convert acoustic speech features into
non-verbal behaviors while preserving the diversity and multiple
nature of the generated non-verbal behavior. However, GANs are
reputed to be unstable and suffer from a specific problem called the
collapse mode. The collapse mode is a very common failure that
causes the model to generate only one behavior. Numerous of work
has been done to improve their training [2, 45].

In comparisonwith rule-based approaches, data-driven approaches
have made advancements in terms of naturalness. The generated
behaviors played on virtual agent have shown a perceived natural-
ness that, in certain work, surpasses the actual behaviors. However,
several limitations persist, particularly concerning the perceived
appropriateness of these behaviors in relation to the accompanying
speech, still quite far away from the ground truth [38].

Moreover, even though numerous gestural properties can still
be inferred from speech, the generated behaviors will unavoidably
overlap with the audio and text channels [37]. That implies that
data-driven approaches are significantly less communicative than
rule-based approaches.

New architecture has recently begun to combine these two ap-
proaches, in an attempt to take advantage of the benefits of both
while minimizing the drawbacks. For example, the work of Zhuang
et al. [76] uses a transformer-based encoder-decoder for face ani-
mation and a motion graph retrieval module for body animation.
Another example is the work of Ferstl et al. [19], who generates
parameters such as acceleration or velocity of motion from the
audio, before finding a corresponding motion in a database.

As we chose to focus on the generation of behaviors that are
rhythmically coherent and believable, regardless of semantic ap-
propriateness, we chose a data-driven approach. Given the perfor-
mance of GANs in the area of non-verbal behavior generation, we
implemented an adversarial model, more precisely a Wasserstein
Generative Adversarial Network (WGAN).

2.3 Inputs of the models
Inputs to motion generation models can take the form of audio
input [26, 34], textual input [4, 72], or both [17, 71].
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Kucherenko et al. [37] showed that text and audio differ in their
use, the time-aligned text helps predict gesture semantics, and
prosodic audio features help predict gesture phase. Early deep learn-
ing systems ignored semantics, taking only audio inputs. These
approaches using only audio can produce well-synchronized move-
ments, which correspond to rhythmic gestures, but the absence of
text transcription implies that they will lack structure and context,
such as semantic meaning [49]. More recent approaches attempt
to integrate semantics to generate meaningful gestures, taking as
input text or audio and text.

Other forms of input are used, such as non-linguistic modalities
(e.g. interlocutor behavior) [28, 48] or control input (e.g. style pa-
rameters transmitted during model inference) [17, 23]. The ability
to control body motion based on a specific input signal, such as
their emotional state or a social attitude, can significantly improve
the usability of the method [23].

Since our objective in this work is limited to generating behaviors
that are as rhythmically coherent and credible as possible, we will
only use audio as input for our model.

2.4 Outputs of the models
Speech-driven facial animation is a process that automatically syn-
thesizes speaking characters based on speech signals. The major-
ity of work in this field, such as those presented above, creates a
correspondence between audio and behavioral features. Then the
behavioral features are used to animate a character, such as the
Greta virtual agent. This is the approach we use in our work.

Other systems directly generate face images, often from real in-
dividuals, without relying on behavioral features. We are not going
to discuss these models in detail, as their outputs are very different
from ours. However, we note that the architectures employed are
relatively similar. Vougioukas et al. [65], Zhou et al. [75] used a
temporal GAN, and Kim and Ganapathi [32] used a VAE model.

Works that generate behavioral features can generate them in
various categories. Many studies focus on the automatic generation
of body movements [13, 74]. Most head- and/or face-based methods
generate either facial animations or head movements exclusively.
The generation of facial expressions and head movements poses dis-
tinct challenges: head movements exhibit greater diversity across
individuals compared to facial expressions. However, it is important
to acknowledge that facial expressions and head movements are in-
herently interconnected and synchronized with speech [9]. Habibie
et al. [25] or Delbosc et al. [11] introduced an adversarial approach
for the automatic generation of facial expressions and head move-
ments jointly. Drawing inspiration from these works, our research
focuses on analyzing facial expressions and head movements in a
combined manner, with a representation of facial expressions using
explainable features, specifically facial action units.

Body and head movements are generated using 3D coordinates,
ensuring uniformity in their representation. However, the genera-
tion of facial expressions offers a range of approaches. They can be
generated directly with the 3D coordinates of the face, like Karras
et al. [30] or describe using a model, such as FLAME model [41] in
Jonell et al. [28], FaceWarehouse model [7] in Pham et al. [54] or
Basel Face ModelPaysan et al. [52].

Our task requires a representation that allows the encoding of
the facial gestures from video, the simulation of them on a virtual

agent, and the possibility to manipulate the generated facial expres-
sions. Therefore, we represent the facial expressions using action
units (AUs) based on the well-known Facial Action Coding System
(FACS)[15]. Thanks to this representation, we can use Openface
to extract the facial expression from videos, play our generated
facial expression on the Greta platform and, in the future, adapt the
generated action units to express particular social attitude [14, 64]
(see section 8). This is why we consider it particularly important to
represent facial expressions with AUs.

3 PROBLEM FORMULATION
Our task can be formulated as follows: given a sequence of acoustic
speech features 𝐹𝑠𝑝𝑒𝑒𝑐ℎ [0 : 𝑇 ] extracted from a specific segment
of speech input at regular intervals 𝑡 , the task is to generate the
sequence of corresponding behavior 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 [0 : 𝑇 ] that a virtual
agent should perform while speaking.

The sequence 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 [0 : 𝑇 ] consists of three components:
𝜃ℎ𝑒𝑎𝑑 [0 : 𝑇 ], 𝜃𝑔𝑎𝑧𝑒 [0 : 𝑇 ], and 𝜃𝐴𝑈 [0 : 𝑇 ], representing head move-
ments, gaze orientation, and facial expressions, respectively. The
head movements 𝜃ℎ𝑒𝑎𝑑 [0 : 𝑇 ] and gaze orientation 𝜃𝑔𝑎𝑧𝑒 [0 : 𝑇 ]
are specified using 3D coordinates, while the facial expressions
𝜃𝐴𝑈 [0 : 𝑇 ] are defined using action units (AUs) based on the Fa-
cial Action Coding System (FACS) [15]. These notations will be
consistently employed throughout this article.

After generating the behaviors, we evaluate them with both
objective and subjective evaluations. To simulate the generated
behaviors on a virtual agent, we use the Greta platform [53]. This
process of generating and evaluating the behaviors is visually de-
scribed in figure 1.

Figure 1: The generation and evaluation process

Compared to the state of the art, the contributions of this work
are: (1) a new adversarial model for speech-driven non-verbal fa-
cial behavior generation, with facial behavior generation based on
action units; (2) a comparison between using a small amount of
suitable data and a larger amount of data (adding less suitable data),
to train our model; (3) an evaluation of the effects of adding new
relevant fake fabricated examples during the training phase of the
adversarial model.

4 FACIAL BEHAVIORS DATASETS
Among the main challenges linked to the generation of non-verbal
behaviors, the research community frequently highlights some
issues. In particular, the difficulty of finding suitable training data.

Various methods, which differ in terms of cost and time require-
ments, are available for data collection. On one hand, there are
expensive and time-consuming approaches, such as employing
multiple cameras and motion capture systems. On the other hand,
faster but less precise methods involve simple recording techniques
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combined with tools designed to extract the desired features di-
rectly from videos. Even if datasets exist, they may be small, not
contain the required features, their quality can be insufficient, etc.

In our specific task, we require dataset that emphasize facial
recordings. For anticipating our future work, we also need them to
contain interaction scenarios and various social attitudes. Without
a doubt, behaviors generated through data-driven approaches will
inevitably be constrained by the data on which they are trained.
For instance, when it comes to generating behaviors based on a
particular social attitude, the ability to generate “angry” behavior
will rely on the presence of such behavior in the initial dataset. We
utilize two datasets in our research.

4.1 Selected datasets
We utilize the Trueness dataset [51], a newly created multimodal
corpus containing 18 interaction scenes on discrimination aware-
ness in a forum theater. All interactions are in French. We chose it
for several reasons. Firstly, it contains scenes of interaction, sim-
ulating conflicts, played by actors with different social attitudes
(denial, aggressive, conciliatory). What’s more, the scenes are shot
by actors who make sure they stay in the camera’s field of view, so
the camera only films the face and torso.

For a larger amount of data, we employ additionally the Cheese
dataset [55], selecting 10 interaction scenes involving free conver-
sation of students, in French. We chose this dataset because it also
contains interaction scenes. The difference with Trueness is that
these aren’t actors, and they aren’t conflict scenes, so their behav-
ior is less expressive. This dataset also differs in terms of shooting
conditions, the students are located a little further away from the
camera and almost their entire bodies are filmed.

For both dataset, each video is divided into two parts, repre-
senting the perspectives of the first and second persons of the
interaction. We obtain approximately 3h40 of recording time for
Trueness and approximately 5h of recording time for Cheese. As
these are interaction scenes, we’ve made sure that both parts of the
same interaction belong to the same subset (train set or test set).

We aim to investigate the impact of incorporating the second
dataset during training on the model’s performance. By utilizing
both datasets, the model will have access to a larger volume of
training data. However, the Trueness dataset contains more expres-
sive facial expressions, and the actors are filmed at closer angles.
Consequently, throughout this article, we will refer to the other
dataset, Cheese, as having “farther-away shooting conditions” and
being “less expressive”.

To integrate these data sets into our models, we automatically
extract behavioral features and acoustic speech features from the
existing videos using state-of-the-art tools, namely Openface [3]
and OpenSmile [16].

4.2 Features extraction and processing
Openface is a toolkit that detects automatically the head position,
gaze orientation, and facial action units of a person on a video.
Features are extracted at the frequency of 25 frames per second
(25 fps). We consider the eye gaze position represented in world
coordinates, the eye gaze direction in radians, the head rotation

Figure 2: Extraction and processing of data

in radians, and 17 facial action units in intensity from 1 to 51. We
obtain a total of 28 features characterizing the head, gaze, and facial
movements. These features, noted 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ∈ R28, are used for the
training and constitute the output of the generation model.

OpenSmile is a toolbox that extracts the eGeMAPS audio features
from speech. This tool extracts features at a frequency of 50 fps.
To eliminate redundancy between acoustic speech features, we
conducted a correlation study, and we finally kept seven spectral
and frequency parameters2. For each of them, the first and second
derivatives are computed [25, 68]. We also add a binary feature
that indicates whether the person is speaking or not (i.e. 1 for
“speaking” and 0 for “listening”). In total, we consider 22 audio
features. The audio features extracted from the human speech are
noted 𝐹𝑠𝑝𝑒𝑒𝑐ℎ ∈ R22.

To ensure that our model learns from clean and plausible data, we
need to remove the frames that Openface has incorrectly processed.
For example, frames where faces are obscured by a hand or hair, or
where excessive head movements are done. Thanks to the visual
analysis of a few behaviors extracted with Openface and directly
replayed on Greta, we identify outliers and the treatment required:

• identification and deletion of outliers frames;
• creation of transitions if frames have been deleted;
• smoothing of features with a median filter with a window
size of 7 to eliminate Openface noises;

• centering of the head and gaze coordinates so that the virtual
agent faces the user;

• alignment of acoustic speech and behavioral features at 25
fps.

Finally, to enhance the model’s understanding of speaking and
listening behaviors and improve behavior synchronization with
speech, we set the coordinates of the head and gaze, and the inten-
sity of the AUs at a constant when the protagonist is not speaking.
These adjustments highlight the distinction between “speaking”
and “listening” behaviors.

The most widely used method for the generation of human
behavior consists in working on short segments over a sliding
window varying from a few seconds to several minutes depending
on the socio-emotional phenomena studied [47]. Inspired by this
method, the videos in the dataset were cut into segments of 4
seconds.

1AU01, AU02, AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14, AU15, AU17,
AU20, AU23, AU25, AU26, AU45.
2alphaRatio, hammarbergIndex, mfcc1, mfcc2, mfcc3, F0semitoneFrom27.5Hz,
logRelF0-H1-H2.
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5 FACIAL BEHAVIOR GENERATION MODEL
Following the research conducted during the state of the art, our
proposedmodel3 adopts an adversarial encoder-decoder framework.
It generates head movements and gaze as 3D coordinates and facial
expressions as AUs intensities. Unlike certain works [35, 59], no
smoothing is applied to the output.

To minimize the generation of highly improbable behaviors, we
employ a normalization step at the input of our models, coupled
with sigmoid activation layers in the model’s output. The normal-
ization scales the input data between 0 and 1 and the sigmoid layer
constrains the generated data to fall within the range of values
observed in our training data. As a result, the generated data should
closely resemble real data while still allowing the generation of
novel patterns.

As we adopt an adversarial approach, the model work as a game
between two networks: a generator and a discriminator. While
the discriminator is optimized to recognize whether an input is
generated by the generator or taken from the real data, the generator
tries to fool the discriminator by learning how to generate data that
looks like real data. Figure 3 illustrates our model.

Figure 3: The overall architecture of our model

5.1 The generator
The generator generates data by sampling from a noise distribution
𝑍 and acoustic speech features 𝐹𝑠𝑝𝑒𝑒𝑐ℎ [0...𝑇 ]. The noise enables to
keep the randomness of the generated movements. To generate our
noise, we generate two random digits, and use these two values to
create a noise of size 200, with transition digits that progressively
follow between the first and second digits. This allows us to create
a gradual evolution from the first digit to the second, ensuring a
certain cohesion in the noise generated for each sequence.

The generator takes the form of a 1D encoder-decoder. It is an
adaptation of the U-Net implementation [57] originally created for
2D image segmentation. The encoder starts by learning a represen-
tation of the acoustic speech features, then concatenates it with
the noise. It consists of five blocks, which we call 𝐷𝑜𝑢𝑏𝑙𝑒𝐶𝑜𝑛𝑣 . The
𝐷𝑜𝑢𝑏𝑙𝑒𝐶𝑜𝑛𝑣 block is constituted of convolution 1D, batch normal-
ization 1D, and Relu, and those twice. The convolutional layers
have kernels of size 3 and dropout after each of them. The last 4
blocks are followed by MaxPool. Then, three decoders are created
to generate believable behaviors.

3https://github.com/aldelb/non_verbal_facial_animation.

Each decoder is associated with a data type with different value
intervals: a decoder for head movements, a decoder for eye move-
ments, and a decoder for AUs. They consist of four 𝐷𝑜𝑢𝑏𝑙𝑒𝐶𝑜𝑛𝑣
blocks and UpSampling after the first 4 blocks. As the decoders
are symmetric with the encoder, it uses skip-connectivity with
the corresponding layers of the encoder. They end with a sigmoid
activation layer. Figure 4 illustrates this architecture.

We supervise our generator 𝐺 with the following loss function:

L𝐺 = L𝑔𝑎𝑧𝑒 + Lℎ𝑒𝑎𝑑 + L𝐴𝑈

L𝑔𝑎𝑧𝑒 , Lℎ𝑒𝑎𝑑 and L𝐴𝑈 are the root mean square errors (RMSEs)
of the gaze orientation, head movement, and AUs features.

L𝑔𝑎𝑧𝑒 =

𝑇−1∑︁
𝑡=0

(𝜃𝑔𝑎𝑧𝑒 [𝑡] − 𝜃𝑔𝑎𝑧𝑒 [𝑡])2

Lℎ𝑒𝑎𝑑 =

𝑇−1∑︁
𝑡=0

(𝜃ℎ𝑒𝑎𝑑 [𝑡] − 𝜃ℎ𝑒𝑎𝑑 [𝑡])2

L𝐴𝑈 =

𝑇−1∑︁
𝑡=0

(𝜃𝐴𝑈 [𝑡] − 𝜃𝐴𝑈 [𝑡])2

5.2 The discriminator
The generator receives real examples from real data and fake ex-
amples generated by the generator. Both the generator and the
discriminator receive acoustic speech features 𝐹𝑠𝑝𝑒𝑒𝑐ℎ [0...𝑇 ]. The
discriminator can thus measure if the behavior looks natural, but
above all if the behavior looks natural with respect to these acoustic
speech features, and if the temporal alignment is respected.

An important aspect of our architecture is that the discrimina-
tor does not only receive real and fake generated examples. We
create a new data type, called 𝑁𝑒𝑤𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 . 𝑁𝑒𝑤𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 are fake
examples designed to facilitate the learning of synchronization be-
tween speech and behaviors. These examples associate acoustic
speech features of a “speaking” person with behavior features of a
“listening” person (and vice versa).

The discriminator starts by learning a representation of the
acoustic speech features and a representation of the behavioral
features. After concatenating these two representations, there are
four 𝐷𝑜𝑢𝑏𝑙𝑒𝐶𝑜𝑛𝑣 blocks and MaxPool after each block. We add
dropout after the convolutional layers. It ends with a linear layer
and a sigmoid activation layer. Figure 4 illustrates this architecture.

5.3 Training details
We choose to implement a Wasserstein GAN [2] and, more specifi-
cally, a Wasserstein GAN with gradient penalty [22]. GANs try to
replicate a probability distribution, this implementation uses a loss
function that reflects the distance between the distribution of the
data generated and the distribution of the real data.
We pose the adversarial loss function with the discriminator 𝐷 :

𝐿𝑎𝑑𝑣 (𝐺,𝐷) =E𝐹𝑠𝑝𝑒𝑒𝑐ℎ [𝐷 (𝐹𝑠𝑝𝑒𝑒𝑐ℎ,𝐺 (𝑍, 𝐹𝑠𝑝𝑒𝑒𝑐ℎ)]

−E𝐹𝑠𝑝𝑒𝑒𝑐ℎ,𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 [𝐷 (𝐹𝑠𝑝𝑒𝑒𝑐ℎ, 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 )] + 𝜆 E
𝑥∼P�̂�

[( | |∇𝑥𝐷 (𝑥) | |2 − 1)2]

The point 𝑥 , used to calculate the gradient norm, is any point
sampled between the distributions of the generated data and the

https://github.com/aldelb/non_verbal_facial_animation
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Figure 4: The detailed architecture

real data 𝑥 = 𝑡𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 + (1 − 𝑡)𝐹𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 with 0 ≤ 𝑡 ≤ 1.
As the original paper, we use 𝜆 = 10

We use Adam for training, with a learning rate of 10−4 for the
generator and 10−5 for the discriminator. Our batch is size 32.

Combining the adversarial loss with the direct supervisory loss,
our objective is :

L = L𝐺 +𝑤.L𝑎𝑑𝑣 (𝐺, 𝐷)

With w set to 0.1 to ensure that each term is equally weighted.
Based on this architecture, we would like to analyze two impor-

tant aspects: the data considered during model training and the
addition of fake examples 𝑁𝑒𝑤𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 .

6 RESEARCH QUESTIONS AND HYPOTHESES
We want to know which factors influence the model to obtain more
or less human-like behaviors and speech-matched behaviors. We
make the following assumptions:

H1 The perception of speech/behavior synchronization will be
improved with the addition of our 𝑁𝑒𝑤𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 examples
during training (section 5.2).

H2 The addition of Cheese during training, will improve the
perception of believability.

H3 The addition of Cheese during training, will degrade the
perception of synchronization.

Our intuition behind the last two hypotheses is that the actors’
dataset Trueness is more distant from everyday behavior than the
“less expressive” dataset Cheese. On the other hand, the “farther-
away shooting conditions” dataset Cheese is less suited to the gen-
eration of facial behaviors (section 4.1). Based on our hypotheses,
we will compare the following models:

𝑚1 architecture presented in section 5, trained on Trueness dataset.
𝑚2 𝑚1modelwith the association of Trueness andCheese datasets

for training.
𝑚3 model𝑚1 without our fake examples 𝑁𝑒𝑤𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 , during

model training.
𝐺𝑇𝑆 “Ground Truth Simulated” are the extracted behavior from

the data, directly simulated on the virtual agent. We use the
term “simulated” because the resulting videos are not exactly
a replication of the human’s behavior, due to the limitation
of Openface and Greta (limited number of AUs for example).

Videos of each condition can be found on YouTube4.

7 EVALUATION
We evaluate our models through both objective and subjective meth-
ods. Objective evaluations are quantitative metrics, while subjective
evaluation is done through user-perceptive study.

Objective metrics are often inappropriate [38] and always insuffi-
cient when it comes to comparing different architectures in behavior
generation. These metrics fail to capture the coherence between be-
haviors and speech, as they primarily focus on statistical similarity
to recorded motion rather than contextual appropriateness. Subjec-
tive evaluations play a crucial role in assessing the complexity of
social communication. However, conducting subjective studies can
be time-consuming and complex, which is why objective metrics
are employed to complement the evaluation process.

Comparing results across different behavior-generation studies
is challenging due to the lack of a standardized baseline in the field.
Different works often rely on disparate data sources for training

4https://www.youtube.com/playlist?list=PLRyxHB7gYN-Cs127qTMJIR78fsQu_8tZQ
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their models, the features generated differ according to their objec-
tives, and the visual representations of the generated gestures also
vary with different avatars and software, thereby influencing the
perception of the generated behavior [67].

It is therefore important to note that, due to the unique nature
of our task, especially the differences in output compared to previ-
ous research works, direct performance comparisons with existing
models are not applicable. For the time being, comparison with
behaviors extracted and replayed directly on virtual agents enables
us to get around some of these issues, we refer to it here as ground
truth or ground truth simulated (GTS).

7.1 Objective evaluation
The objective measures are based on algorithmic approaches and
return quantitative values reflecting the performance of the model.
We consider comparisons of distributions and measurements of
acceleration and jerk.
Dynamic Time Warping: DTW is used to compare the distance
between ground truth distributions and generated distributions. We
measure the distance for each generated feature and present the
results averaged over all features. The distribution closest to the
ground truth distribution is the one with the lowest value.

Table 1: Distance between GTS and generated distributions –
Average score (mean) and standard deviation (std).

𝑚1 𝑚2 𝑚3
mean std mean std mean std

DTW 451.23 11.08 484.57 11.55 460.90 12.11

Average acceleration and jerk: The second derivative of the
position is called acceleration, and the third time derivative of
the position is called jerk. It is commonly used to quantify motion
smoothness [38]. A natural system should have average acceleration
and jerk very similar to the ground truth. We calculate these two
metrics for the first eye, the second eye, the head, and present the
results averaged over all of these features.

Table 2: Acceleration (Acc.) and jerk – Average score (mean) and
standard deviation (std).

GTS 𝑚1 𝑚2 𝑚3
mean std mean std mean std mean std

Acc. 10.71 0.79 13.49 1.38 9.10 0.42 19.02 1.89
Jerk 458.48 47.49 545.66 52.04 358.62 16.59 768.00 58.91

These metrics were evaluated for all the videos with Trueness
test set. Tables 1 and 2 show the results, the closest numbers from
the simulated ground truth are bold.

In terms of acceleration and jerk. We note that𝑚2 is smoother
than𝐺𝑇𝑆 . According to our hypotheses, the perceived believability
of the smoother model must be the best. For the distance between
the generated distributions and the ground truth distribution, the
𝑚1 model is the closest. The perception of the synchronization of

the model with the closest distribution to the ground truth must be
superior to others.

If objective metrics provide valuable insights, they have limi-
tations and are not sufficient to assess the complexity of social
communication. We need to conduct subjective studies to confirm
or refute our hypotheses (section 6).

7.2 Subjective evaluation
The subjective measures are based on the evaluation of human
observers. To select the appropriate evaluation criteria, we base
our subjective evaluation study on previous research [38, 66]. We
evaluate two criteria through direct questions:

o believability: how human-like do the behaviors appear?
o temporal coordination: how well does the agent’s behavior
match the speech? (In terms of rhythm and intonation)

We randomly selected four videos from our Trueness test set,
two with female voices and two with male voices. This selection
allowed us to demonstrate the flexibility of ourmodels in generating
non-verbal behaviors for different virtual agents on Greta.

Following the recommendation of Wolfert et al. [66], we opted
for a rating-based evaluation. In this method, participants assign
ratings to the generated behaviors in all conditions (𝐺𝑇𝑆 ,𝑚1,𝑚2,
𝑚3). Ratings rather than pairwise comparisons are recommended
when more than 3 conditions are under consideration, pairwise
comparisons tend to become unwieldy for 4 or more conditions.

Figure 5: Interface of our subjective evaluation tool

To create the study, we developed an interface inspired by the
works of Jonell et al. [29] and Schoeffler et al. [61]. Through several
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videos, we ask participants to rate the behaviors of several virtual
agents in terms of believability and coordination. We specified that
when we talked about behaviors, we referred to facial expressions,
head movements, and gaze.

We divided the evaluation of each criterion into separate parts
with specific instruction pages. First, the evaluation of believability,
in which the videos were silent, they did not include any audio.
This allows videos to be rated only with the behaviors performed
and not on their relationship to the speech. Secondly, the evaluation
of temporal coordination, for which the videos are presented with
sound corresponding to the virtual agent’s behaviors.

Figure 5 provides an example of one of the pages used in the
evaluation process. On each page, at the top and in bold, a question
is displayed, corresponding to the criterion being rated. Participants
must watch 4 videos on the page (corresponding to each condition)
and rate each video using the scales. The scale is from 0 (worst) to
100 (best) and can be set by adjusting a slider for each video. On
any given page, the videos can be viewed as many times as they
like, but they can’t go back to the previous page.

By considering the two evaluated criteria, the four selected se-
quences of videos, and the four conditions, we obtained a total of
32 videos to rate, each approximately of 30 seconds in duration.
The whole evaluation takes about 20 minutes.

Thirty persons, with a good level of French, recruited on social
networks, participated in our study (16 males and 14 females). The
average age of the participants is 28 years, with a standard deviation
of 8.06. They viewed each of the videos, in a random order, and
rated them on each of the criteria. Table 3 presents the results of
this subjective evaluation for our three selected models and 𝐺𝑇𝑆 .

Table 3: Results of the perceptive study – Average score (mean)
and standard deviation (std) for both coordination (Coo.) and Believ-
ability (Bel.) on all 4 conditions.

𝐺𝑇𝑆 𝑚1 𝑚2 𝑚3
mean std mean std mean std mean std

Coo. 36.53 19.67 43.42 19.04 38.82 18.69 38.77 20.91
Bel. 47.60 17.33 45.39 14.81 58.74 15.48 39.02 16.17

Statistical analysis is conducted to assess significant differences
between the models. First, the normality of the data is assessed
using the Shapiro-Wilk test, which indicates that the data are from
a normally distributed population. Therefore, a repeated measures
ANOVA is performed.

The results reveal the superiority of𝑚1 compared to𝑚3 in terms
of synchronization (𝑝 < .05) and also in terms of believability
(𝑝 < .01). Our first hypothesis is significantly validated, and the
addition of our fake example during the training of our adversarial
model improves the perception of speech/behavior synchronization.

We can also observe the dominance of𝑚2 in terms of believabil-
ity compare to m1 (𝑝 < .01) but the superiority of𝑚1 in terms of
coordination (𝑝 < .05). Hypotheses two and three are also signifi-
cantly validated. The addition of “less expressive” and “farther-away
shooting conditions” data increases the perception of believability,
but reduces the perception of synchronization.

Another interesting result is the comparison between𝑚1 and
𝐺𝑇𝑆 . The differences are not significant, but𝑚1 tends to outperform
𝐺𝑇𝑆 in terms of synchronization (𝑝 = .067), an uncommon result
in the field of behavior generation. We hypothesize that setting
“listening” behaviors to 0 and adding our fake examples greatly
improves the perception of synchronization with speech.

8 DISCUSSION AND FUTUREWORK
We presented a new approach for the generation of rhythmically
coherent behavior during the speech of a virtual agent. Our model
demonstrates perceived performance comparable to behaviors ex-
tracted from data and replayed on a virtual agent, in terms of syn-
chronization with speech and believability. This approach, based
on an adversarial model, is enriched with fake examples of our own
creation and trained on one or two datasets.

We found that adding data during the training, doesn’t neces-
sarily increase performance. The expressiveness of people within
the dataset and shooting conditions are key elements. The addition
of these data during training generates smoother movements, in-
creasing the perceived believability of the generated behaviors but
reducing the perception of synchronization with speech.

The fake examples provided to the model reduce the distance
between the distributions of generated data and ground truth data,
enhancing the perception of synchronization and believability of
generated behaviors.

These results should be interpreted cautiously, especially due to
potential influences of our non-verbal behavior extraction and vi-
sualization tools on participant perception in subjective evaluation.
Given the subjective evaluation duration and complexity, we only
tested 4 randomly chosen sequences, unlikely to represent the full
dataset. Moreover, participant numbers might not unveil all notable
differences between conditions, particularly comparing simulated
ground truth and our model.

This work is part of a larger project to generate socio-affective
non-verbal behaviors during social interaction training. Several
perspectives are therefore on the horizon. After the generation of
rhythmically coherent behavior during speech, we aim to generate
semantically and contextually relevant non-verbal behaviors for
the virtual agent during speech. This entails associating specific
behaviors with the semantic content of the agent’s speech. By align-
ing non-verbal behaviors with the intended meaning of the agent’s
utterances, we will enhance the communicative effectiveness and
expressiveness of the virtual agent.

To incorporate the socio-affective dimension and be able to sim-
ulate different types of scenarios, we will introduce a constraint
in the generation process, focusing on a particular social attitude.
This step involves encoding the desired social attitude (aggressive-
ness, consilience, or denial), and using it to guide the generation of
non-verbal behaviors.

After that, we will take into account the signals and behaviors
exhibited by the human interlocutor. This will enable the virtual
agent to dynamically adjust its non-verbal behavior to match and
engage with the interlocutor.

Studies on behavior generation opens the way to agents capable
of generating expressive behaviors from speech. A great opportu-
nity in the field of training, where they can reproduce believable
situations in a safe environment, while ensuring user engagement.
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