
Dissecting the Interplay of Attention Paths in a
Statistical Mechanics Theory of Transformers

Lorenzo Tiberi1,2 Francesca Mignacco3,4 Kazuki Irie1,2 Haim Sompolinsky1,2,5
1Center for Brain Science, Harvard University, Cambridge, MA, USA
2Kempner Institute for the Study of Natural and Artificial Intelligence,

Harvard University, Cambridge, MA, USA
3Graduate Center, City University of New York, NY, USA

4Joseph Henry Laboratories of Physics, Princeton University, NJ, USA
5Edmond and Lily Safra Center for Brain Sciences,
Hebrew University of Jerusalem, Jerusalem, Israel

ltiberi@fas.harvard.edu, fmignacco@princeton.edu
kirie@fas.harvard.edu, hsompolinsky@mcb.harvard.edu

Abstract

Despite the remarkable empirical performance of transformers, their theoretical
understanding remains elusive. Here, we consider a deep multi-head self-attention
network, that is closely related to transformers yet analytically tractable. We de-
velop a statistical mechanics theory of Bayesian learning in this model, deriving
exact equations for the network’s predictor statistics under the finite-width thermo-
dynamic limit, i.e., N,P → ∞, P/N = O(1), where N is the network width and
P is the number of training examples. Our theory shows that the predictor statistics
are expressed as a sum of independent kernels, each one pairing different attention
paths, defined as information pathways through different attention heads across
layers. The kernels are weighted according to a task-relevant kernel combination
mechanism that aligns the total kernel with the task labels. As a consequence, this
interplay between attention paths enhances generalization performance. Experi-
ments confirm our findings on both synthetic and real-world sequence classification
tasks. Finally, our theory explicitly relates the kernel combination mechanism to
properties of the learned weights, allowing for a qualitative transfer of its insights to
models trained via gradient descent. As an illustration, we demonstrate an efficient
size reduction of the network, by pruning those attention heads that are deemed
less relevant by our theory.1

1 Introduction

In recent years, transformer models based on multi-head self-attention layers [1–6] have achieved
remarkable performance at natural language processing and vision tasks [7–9]. Yet, theoretical
characterizations accounting for the success of these architectures remain sparse. Two fundamental
questions remain to a large extent unsolved: First, interpretability—how can we discern task-relevant
structures within the learned weights? Second, generalization—what specific aspects of the trans-
former architecture are responsible for their effective learning? We posit that one important feature of
transformers is the combination of layer-wise multi-head organization with depth. This provides the
network with a large number of attention paths, defined as specific sequences of heads through the
attention layers. Their interplay is still poorly understood by deep learning theory.

1Our code is public: https://github.com/tiberilor/attention-paths-interplay

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/tiberilor/attention-paths-interplay

In most cases, theoretical characterizations of transformers’ expressivity [10], inductive bias [11, 12],
generalization [13–15] and training dynamics [16–18] rely on simplifying assumptions on the network
architecture. A characterization of attention paths is inaccessible in these models, either because
attention paths are not defined in the first place, as in models consisting of a single-head [19, 15], a
single-layer [10, 11], or both [12–14, 16, 18, 20], or because the interplay between paths cannot be
fully described due to constraints imposed on the learnable weights [17]. A few works consider a
multi-head, multi-layer architecture [21–24], but address different questions than the present study,
such as expressivity, generalization bounds, or phenomenological models. Further details on these
and analogous works are discussed in Appendix I.

One characterization of the complete transformer architecture has been obtained in the Bayesian
framework under the infinite-width thermodynamic limit N → ∞ (and infinite number of heads
H → ∞) [25, 26], an actively studied regime in which neural networks become equivalent to
Gaussian processes (GP) [27, 28]. However, the attention paths interplay is lost in this limit because
the network’s hidden weights remain statistically independent after learning. This limitation can
be overcome by considering the finite-width thermodynamic limit [29–32], where also the number
of examples P → ∞ such that P/N → α ∈ R+. In this regime, for example, multi-gated deep
networks showcase task-relevant interplay between gates, mediated by the learned weights [33].

In this work, we apply the statistical mechanics theory of finite-width networks to a deep multi-
head self-attention model, which closely mimics the attention paths interplay in transformers, while
remaining analytically tractable. Our main contributions can be summarized as follows:

• We derive exact equations for the predictor statistics under Bayesian learning of the network’s
value weights, at fixed query and key weights.

• We shed light on the interplay between attention paths by uncovering a task-relevant kernel
combination mechanism, emerging beyond the GP limit (α > 0). This constructs the
network’s mean predictor as an optimally weighted sum of many “path-path kernels”, defined
as similarity matrices between pairs of attention paths, thereby improving generalization.

• We provide interpretability to this mechanism, by directly relating it to the magnitude and
correlations developed by the learned weights. This allows our insights to be transferred out-
side the Bayesian framework, to networks trained with gradient descent. As an application,
we show that a trained network can be reduced in size with minimal performance loss, by
pruning those attention paths that are deemed less relevant by our theory.

• We corroborate our findings on both synthetic and real-world sequence classification tasks,
illustrating the two main benefits of kernel combination: task-relevant weighting and
correlation of the attention paths, respectively.

2 Model

We consider a transformer-like [1] architecture consisting of a linear input projection layer; L multi-
head self-attention (MHA) layers, each having H attention heads; and a linear readout layer. The
network input x ∈ RN0×T is a sequence of T tokens xt ∈ RN0 , with token index t ∈ {1, . . . , T},
and dimension N0. The input projection layer performs the transformation

x
(1)
t =

1√
N0

V (0) · xt, V (0) ∈ RN×N0 , (1)

where N is the hidden layers’ width. With the operator "·" we denote matrix-matrix or matrix-vector
multiplication. The ℓ-th MHA layer with index ℓ ∈ {1, . . . , L} performs the transformation

x
(ℓ+1)
t =

1√
NH

H∑
h=1

T∑
s=1

V (ℓ)h · x(ℓ)
s Ω

(ℓ)h
st , V (ℓ)h ∈ RN×N , (2)

where, for each head h, we define the attention matrix Ω(ℓ)h ∈ RT×T with matrix elements

Ω
(ℓ)h
st = ζ

(
1

N0

√
G
x⊤
s ·W (ℓ)h⊤

K ·W (ℓ)h
Q · xt

)
, W

(ℓ)h
Q ,W

(ℓ)h
K ∈ RG×N0 . (3)

2

 = () + () + () + () + …KFW V(eff)π1 ⊤⟩⟨V(eff)π1 V(eff)π2 ⊤⟩⟨V(eff)π1 ⟨V(eff)π2 ⟨V(eff)π2 V(eff)π2 ⊤⟩V(eff)π1 ⊤⟩

 = (1) + (0) + (0) + (1) + …KGP

μ = 1
μ = P

μ = 2

…

…

… …

V(eff)π1 ⊤V(eff)π1

V(eff)π2 ⊤V(eff)π2 V(eff)π2V(eff)π1 ⊤

V(eff)π1V(eff)π2 ⊤

Order parameter: U

(b) (c)

(d)

KGP
KFW Y

h(2)
3

Attention
path π1

Attention
path π2

= Attention
 heads

= Value
 matrices

Input Output

h(1)
1

h(1)
2

h(1)
3

h(2)
1

h(2)
2

V(1)1

V(1)3

V(3)1

V(2)2

h(3)
3

h(3)
1

h(3)
2

V(3)2

a

(a)

:=V(eff)π1 V(1)1V(2)2V(3)1a ⋅1
NL ⋅ ⋅

⋅

⋅

⋅

⋅

⋅ ⋅ ⋅ ⋅

⟨ ⟨

⟨ ⟨⟩ ⟩

⟩⟩

Figure 1: Scheme of the model and theory (a) Scheme of the model in terms of attention paths.
(b) The order parameter assigns to each pair of paths a weight, given by the overlap between the
corresponding effective weights. (c) Alignment of the kernel PCs with the vector of task labels Y ,
in the finite-width (FW) vs GP regimes. (d) Kernel as the weighted sum of many path-path kernels.
Task-relevant kernel combination occurs in the finite-width regime (FW), but not in the GP limit, in
which cross-path kernels are discarded, and same-path kernels are equally weighted. The result is an
improved kernel-task alignment in the finite-width regime (shown in (c)), enhancing generalization.

Here ζ is the softmax function, applied along the direction of the token index s, while G is the
dimension of the query-key feature space. The linear readout returns the scalar output

f =
1√
N

a · x(L+1)
t∗ , a ∈ R1×N . (4)

Here xt∗ can stand for different options for reducing the token dimension at readout, namely
reading from a specific token t∗ or averaging over all tokens (xt∗ := 1

T

∑
xt). The network’s

learnable parameters are the input projection weights V (0); the value, query and key weights{
V (ℓ)h,W

(ℓ)h
Q ,W

(ℓ)h
K

}L,H

ℓ,h=1
; and the readout weights a.

Comparison to the Standard Transformer. The above architecture presents two main simplifi-
cations w.r.t. the standard transformer. First, the network is linear in the value weights, while the
standard transformer has a nonlinear feedforward block after each MHA layer. Second, in any layer
ℓ, the attention (Eq. 3) is always computed as a direct function of the bare input x, rather than the
processed input x(ℓ). These simplifications allow us to apply back-propagating kernel renormal-
ization (BPKR) techniques [29, 33], enabling the characterization of the network beyond the GP
limit. Despite these simplifications, the insights gained by going beyond the GP limit are substan-
tial: we will show that, in the finite-width regime, an important mechanism—task-relevant kernel
combination—emerges, accounting for a considerable improvement in generalization performance.

Attention paths formulation. Note that, despite the linearization in the value weights, the network
is still highly nonlinear in the input, thanks to the attention operation (Eq. 3). This can be seen by the
following equivalent description of the network (Fig. 1(a)). We introduce the concept of attention
paths, by defining a path “index” π := (h1, h2, . . . , hL), where h1, . . . , hL ∈ {1, . . . ,H}, which
uniquely identifies each possible combination of the head indices across layers, i.e., each possible
path through the attention heads. The network output can be rewritten as

f =
1√

HLNN0

∑
π∈Π

V (eff)π · V (0) · ξπ (5)

where Π is the set of all possible paths, and we define the “effective weights” as

V (eff)π :=
1√
NL

a · V (L)hL · V (L−1)hL−1 · . . . · V (2)h2 · V (1)h1 , V (eff)π ∈ R1×N (6)

and the “attentioned input” as

ξπ :=

T∑
t0,...,tL−1=1

xt0Ω
(1)h1

t0t1 Ω
(2)h2

t1t2 . . .Ω
(L−1)hL−1

tL−2tL−1
Ω

(L)hL

tL−1t∗ , ξπ ∈ RN0 . (7)

3

In Eq. (5), the network can be seen as a deep linear network applied to a nonlinearly expanded
input—the attentioned input ξπ. Through Eq. (7), we can see that the bare input x is nonlinearly
expanded from an N0-dimensional space to an N0H

L-dimensional space, by means of HL nonlinear
operations: one for each attention path.

The goal of our theory is to understand how the network learns to combine these different attention
paths, by means of the effective weights (Eq. 6). Note that the network also has other learnable
parameters: the query and key weights, which parameterize the nonlinear expansion of the input to ξ.
The learning of these parameters is not described by our theory. As we will see in Sec. 3, our theory
characterizes the learned effective weights (Eq. 6) for a given, fixed realization of the query and key
weights.

3 Theory

A fundamental quest of deep learning theory is to understand how deep neural networks, which are
often overparameterized, manage to avoid overfitting, achieving good generalization performance
[34, 35]. One important role is played by the specific choice of network architecture, which can
impose an inductive bias towards better generalizing configurations of parameters, among the many
that fit the training data. To study this problem, we adopt the Bayesian framework. Given a dataset
of P example-label pairs {xµ, yµ}Pµ=1, we seek to characterize the Bayesian posterior [36–38], or

Gibbs distribution, over the parameters Θ :=
(
V (0),

{
V (ℓ)h

}L,H

ℓ,h=1
, a
)

p (Θ) ∝ exp

{
− 1

2T

P∑
µ=1

[f (xµ,Θ)− yµ]
2 − 1

2σ2
∥Θ∥2

}
. (8)

Here f (xµ,Θ) is the network output (Eq. 4) corresponding to the input xµ, where we emphasize its
dependence on Θ, ∥·∥ is the Frobenius norm, σ2 is the variance of the weights’ Gaussian prior (set
to σ = 1 throughout this paper), and T > 0 is the error variance, or Gibbs temperature (not to be
confused with the number of tokens T). Characterizing the Gibbs distribution allows to gain insights
into the inductive bias imposed by the network architecture. Indeed, note that, in overparameterized
networks, the Gibbs distribution for T → 0+ describes the statistics of those parameter configurations
that perfectly fit the training data, with a bias towards small weights induced by the Gaussian prior.
These statistics depend on the choice of network architecture, which can therefore bias the distribution
towards better generalizing parameter configurations. For T > 0, parameter configurations that do
not achieve perfect fitting are also allowed, which can help to prevent overfitting.

Note that, as discussed at the end of Sec. 2, we characterize the statistics of the weights Θ (the linear
projection, value, and readout weights) for a fixed realization of the query and key weights. The fixed
query and key weights can be given, for example, by pre-training the network with gradient descent,
or by some task-informed initialization. In Sec. 4.2 we will show that the insights gained by our
theory on the weights Θ can also be applied to the network trained with gradient descent on all of its
learnable parameters, including the query and key weights.

The main theoretical result of this work is an expression for the expectation E [f (x∗)] of the network’s
output on a new test example x∗, under the Gibbs distribution (Eq. 8). In Sec. 3.1 below, we provide
this formal result, accompanied by a sketch of its derivation and a discussion of the significance of
the infinite-dimensional—or thermodynamic— limit under which our result is derived. In Sec. 3.2
we discuss the result’s interpretation and its insights into the network’s generalization capabilities.

3.1 Statement of theoretical results

Definitions. Consider a training dataset consisting of P inputs xµ ∈ RN0×T and associated labels
yµ ∈ R, where µ = 1, . . . P . Call X := {xµ}Pµ=1 the set of training inputs and Y ∈ RP the vector
of training labels with µ-th component yµ. Consider a network defined by Eqs. (1-4) and in particular
call f∗ the network output (Eq. 4) corresponding to a test input x∗ ∈ RN0×T .

Assumptions. Assume the query and key weights
{
W

(ℓ)h
Q ,W

(ℓ)h
K

}L,H

ℓ,h=1
are fixed, while all other

weights Θ :=
(
V (0),

{
V (ℓ)h

}L,H

ℓ,h=1
, a
)

are distributed according to the Bayesian posterior distribu-

4

tion defined in Eq. (8). Assume the “thermodynamic limit” N,N0, P → ∞, with P/N := α ∈ R+

and P/(N0H
L) := α0 ∈ R+, where α, α0 as well as other size parameters T,H,L ∈ N are finite.

Result 1. The mean predictor under the posterior distribution (Eq. 8) is given by

E [f∗] = k⊤ · (K + T I)−1
Y, (9)

The vector k ∈ RP×1 and the matrix K ∈ RP×P , called training kernel, are defined in terms of
a kernel function K : RN0×T × RN0×T → R as kµ := K (x∗, xµ) and Kµν := K (xµ, xν), for
µ, ν = 1, . . . , P . The kernel function is given by

K (x, x′) =
1

HL

∑
π,π′∈Π

Uππ′
Cππ′ with Cππ′ :=

1

N0
ξπ (x)

⊤ · ξπ
′
(x′) , (10)

where ξπ (x) is the “attentioned input” corresponding to an input x ∈ RN0×T , along path π ∈ Π, as
defined in Eq. (7). The kernel function depends on a positive semi-definite matrix U ∈ RHL×HL

,
called order parameter, which is given by

U = argmin
Ũ

S(Ũ ;X,Y) with S(U ;X,Y) = −L(U) + αE(U ;X,Y) , (11)

The scalar function S, called the action, consists of an “entropy” term L, and an “energy” term

E(U ;X,Y) =
1

P
ln det (K(U ;X) + T I) +

1

P
Y ⊤ · (K(U ;X) + T I)−1 · Y, (12)

where K(U ;X) := K is the training kernel matrix. The expression for the entropy L is lengthy and
is given in Appendix B.1. In the special case of H = 1, U is a scalar, and L (U) = −σ−2(L+1)U +

ln (U). For general H , the entropy L (U) is always maximized by Uππ′
= σ2(L+1)δπ,π′ , which

therefore is the solution of Eq. (11) in the GP limit defined by α → 0+.

Result 2. The matrix U obeys the following relation

Uππ′
=

1

N
E[V (eff)π · V (eff)π′⊤] (13)

where V (eff)π ∈ R1×N are the effective weights along path π , defined in Eq. (6).

Derivation. See Appendix II.

The derivation, which uses the BPKR technique [29, 33], can be sketched as follows. Computing
E [f∗] under the posterior distribution p (Θ) involves evaluating a high-dimensional integral in the
weights Θ. The idea is to first reduce this computation into an integration over a lower-dimensional,
‘macroscopic’ variable U . Importantly, while Θ becomes infinite-dimensional as N → ∞, U remains
finite-dimensional. The reduced integral is an expectation of the r.h.s. of Eq. (9), treated as a function
of U , under the distribution p (U) ∝ exp

{
− 1

2NS (U)
}

, where S is the action defined in Eq. (11).
Then, this integral can be solved in the thermodynamic limit N → ∞, using the saddle-point method,
which implies evaluating Eq. (9) at the U that minimizes the action (cf. Eq. 11). Crucially, the end
result is fully characterized by this low-dimensional quantity U , commonly called order parameter
in physics, which has a direct interpretation in terms of the network weights, given by Eq. (13).

In practice, the results obtained in the thermodynamic limit represent a good approximation also for
the case of large but finite N . In this regard, the scaling of other hyperparameters with N → ∞ is of
particular importance, especially the number of training examples P . In the GP limit, one considers
P finite. This is also called the infinite-width thermodynamic limit because in practice, for a given
and typically large P , it is a good approximation only for very wide networks, when N ≫ P . In
contrast, here we consider the finite-width limit in which P/N = α ∈ R+ (which includes the GP
limit for α → 0+). As can be seen from Eq. (11), the action gains a new term for α > 0, which, as we
shall discuss below, is fundamental to account for the learning of an attention paths interplay. Finally,
we note that in our numerical experiments (Sec. 4) we will consider Bayesian networks which are
overparameterized, i.e. P < N0H

L, which is the network capacity at fixed query and key weights.

5

3.2 Results interpretation and implications for generalization capability

Eq. (9) is a commonly found expression in thermodynamic theories of Bayesian learning, relating
the network’s mean predictor to kernel regression. In particular, the theory of kernel regression
[39] suggests that generalization improves when the training kernel K is well aligned with the task,
meaning its largest principal components (PCs) are well aligned with the vector of training labels Y .

Our result for the transformer’s kernel (Eq. 10) enables insights into how the transformer architecture
favors this kernel-task alignment (Fig. 1(d)). The kernel consists of the sum, weighted by the order
parameter U , of many path-path kernels Cππ′ , each computing the similarity between the attentioned
input on two attention paths π and π′. A notable property of the multi-head architecture is that,
despite the number of attention heads growing only linearly with the depth L, the number of attention
paths grows exponentially ∝ HL. Therefore, the network has at its disposal an exponentially large
number of path-path kernels, which it can learn, through U , to optimally combine into a total kernel
with improved task alignment.

This phenomenon, which we term task-relevant kernel combination, is indeed predicted by our results
Eqs. (11-12). These state that the learned U minimizes a function S (Eq. 11), which, through the
energy term E , favors kernel-task alignment. This can be seen by interpreting the energy term (Eq. 12)
as the negative log-likelihood of the training labels Y under a centered Gaussian distribution, whose
covariance matrix is the training kernel K. This negative log-likelihood can be minimized by aligning
the largest PCs of the covariance (i.e. the kernel K) as much as possible with Y (Fig. 1(c)).

In contrast, in the GP limit α → 0+, the action S (Eq. 11) consists only of the entropy term L, which
does not contain any task relevant information. Its only effect is to attract U towards the GP limit
solution Uππ′

= σ2(L+1)δπ,π′ . Note that, in this limit, the benefits of kernel combination are lost
(Fig. 1(d), bottom line): First, out of all the path-path kernels Cππ′ , only the same-path kernels
(π = π′) are used, while the cross-path kernels (π ̸= π′) are discarded; Second, all same-path kernels
are weighted equally, without making use of any task-specific information. Note that this is true
not only for our simplified model, but also for the full transformer architecture under its known GP
limit [25]. A task-relevant kernel combination can therefore only emerge beyond the GP limit, in the
finite-width regime α > 0 studied in this work.

Finally, our result Eq. (13) relates the order parameter to a macroscopic measure of the network
weights, allowing for a direct interpretation of the kernel combination mechanism: correlating the
effective weights across paths allows the network to make use of cross-path kernels, while controlling
their magnitude allows to weigh the different path-path kernels in a task-relevant manner.

4 Experiments

To corroborate our theoretical results, we “train” our model (Eqs. 1-4) by sampling its weights Θ
(i.e. all weights except the fixed query and key weights) from the posterior distribution Eq. (8), using
Hamiltonian Monte Carlo sampling (see Appendix F for details). We consider the following two tasks:
hidden Markov chain (HMC) classification, and one-shot image classification by in-context learning.
The first task is defined on a synthetic dataset. Its purpose is to have a minimal, controllable setting
to illustrate the effects of task-relevant kernel combination. In the second task, we will proceed to
show analogous effects on classic image datasets (Omniglot [40], MNIST [41], and FashionMNIST
[42]), and compare these results with those obtained from the same network trained with standard
gradient descent on all of its parameters (i.e. including the query and key weights).

4.1 Hidden Markov chain sequence classification

Task definition. The HMC classification task is defined as follows (Fig. 2(a)). The µ-th example in
the dataset corresponds to an hidden Markov chain qµ1 , . . . , q

µ
T of length T = 30, alternating between

two hidden states, qµt ∈ {+,−}. The probability of transition to the opposite state (± → ∓) is pµ.
The µ-th chain can belong to one of two classes, labeled yµ = ±1, depending on whether pµ = 0.3
or pµ = 0.7, respectively. The input tokens are a noisy, higher dimensional representation of the
hidden states. These are given by xµ

t = vqµt + ηµt , where v± ∈ RN0 are two orthogonal feature
vectors corresponding to the states “±”, with O (1) entries, while ηµt is a zero-mean Gaussian noise,
with ⟨ηµt η

µ′⊤
t′ ⟩ = δµ,µ′δt,t′(σ

2
∥P

⊤
∥ ·P∥ + σ2

⊥P
⊤
⊥ ·P⊥), where P∥ and P⊥ are the projectors along the

6

…

v+v−

Visible statesHidden states

Class (a)

Class (b)

—

—

—

—
—

—

+
+

+

+
+

+

High-dimensional
embedding

(a)

b)a)

c)
d)

e)

good head
good (g)

denoising (d)

adversarial #1 (a1)

adversarial #2 (a2)

paths legend:
good head

random headrandom head

ℓ = 1ℓ = 2

FW

Figure 2: Hidden Markov chain task. (a) Illustration of the task. (b) Schematics of the network and
its attention paths. (c) Top: Classification accuracy for varying N (theory: blue crosses, joined by
blue line; samples: black dots). Red lines: GP limit for a network consisting of all paths (solid), the
good path (dashed), and the good and denoising paths (dotted). Bottom: Matrix elements of U , for
varying N . The matrix indices are labeled with the corresponding path name, according to the legend
in (b). (d) Normalized overlap, or cosine similarity, between the PCs of the kernel K and the vector
of task labels Y (N = 10: blue; GP limit: orange). PCs are ranked by their eigenvalues, from largest
to smallest. Only the first 30 PCs are shown. (e) Same as (c), but for increased σ⊥ = 5 and a network
consisting of only the good and denoising paths.

subspace parallel or perpendicular to the plane spanned by v+ and v−. Unless specified, σ∥ = σ⊥ = 1.
The separate parameterization of the parallel (σ∥) and perpendicular (σ⊥) noise strengths is motivated
by their distinct effect on task performance: while the first corrupts information about the underlying
hidden states, inevitably putting an upper bound on the classification accuracy, the second can always
be filtered out by learning appropriate weights. We use P = 100 examples for training. We test the
network performance in terms of the classification accuracy A = 1

P∗

∑
µ δyµ,sign(⟨fµ⟩), where the

sum is over a number P ∗ = 1000 of test examples. Additional task details are given in Appendix G.1.

4.1.1 Results

We consider a network of L = 2 layers and H = 2 heads per layer, with readout from the first token.
The network has a total of 4 attention paths, schematically depicted in Fig. 2(b). For this synthetic
task, we design the fixed query and key weights, and therefore the network’s attention paths, to clearly
illustrate the effects of task-relevant kernel combination (for details, see Appendix G.2).

We design the first head of each layer to give rise to a “good” attention path (green path) such that a
network consisting of this good path alone achieves a high classification accuracy, A ∼ 94%. Along
this path, the first head makes use of the Markov nature of the task by attending exclusively to nearby
tokens, and only if they correspond to the same hidden state ±; the second head performs uniform
attention, effectively counting how many times the first head detected the same-state transition
± → ±. In contrast, each layer’s second head is initialized randomly. This results in the three
remaining paths having chance-level classification accuracy A ∼ 50%, when considered in isolation.
However, these paths have very different effects, when combined with the good path. We term two of
these paths “adversarial” (red and purple paths) because they deteriorate the network performance,
while we term the remaining path “denoising” (blue path) because it can be effectively combined
with the good path to improve robustness to noisy data.

7

x=
++++++++

?

++++

t = 1

t = T

c)

d)

b)

e) f) accuracy after pruning

heads

0 83.8

1 81.8 88.2

2 80.2

71.6 82.3

88.9

3

pruned
omniglot fashion

MNIST

86.6

t=1t=2 t=3 t=T... ...

v+ v- v- v- v- v? v? v? v?v+ v+ v+

a) "+1" "-1"

FW
FW

FW
FW

"?"

FW
FW

FW

Figure 3: One-shot image classification task. (a) Scheme of the task. (b) Classification accuracy in
the GP limit (red line) and the finite-width regime (FW) for varying N (theory: blue crosses, joined
by blue line; samples: black dots). (c) Matrix elements of U . The “theory” and “sampled” Us are for
N = 10. The matrix indices are labeled with the path index π = (h1, h2). (d) Kernel PCs’ overlap
with the task, in the GP limit and in the finite-width regime for N = 10. Only the first 50 PCs are
shown. (e) Head score (blue) and performance drop (red) after pruning the head, for the model trained
with gradient descent. (f) Classification accuracy of the model trained with gradient descent, after
pruning a growing number of heads, in order of their head score.

In Fig. 2(c, top) we show the network’s classification accuracy as a function of the width N (blue,
solid curve), compared to the GP limit (red, solid line). At lower N , well into the finite-width regime,
we observe a considerable improvement in performance with respect to the GP limit. This can be
understood in terms of an improved kernel-task alignment, as shown in Fig. 2(d).

This improved alignment is ensured by the order parameter U , plotted in Fig. 2(c, bottom) for varying
N . For N = 10, well into the finite-width regime, the order parameter clearly implements the two
main benefits of kernel combination: the possibility to weigh the path-path kernels differently, and
the ability to make use of the cross-path kernels. The first benefit is particularly apparent in the
suppression of all kernels associated with the adversarial paths. In contrast, when N = 1000 and the
order parameter is very close to its GP limit Uππ′

= δπ,π′ , these paths are not suppressed, causing a
deterioration in performance compared to that of the good path alone (red, dashed line in Fig. 2(c,
top)). The second benefit is apparent in the strong off-diagonals of U , anti-correlating the good and
denoising paths. We can see that, while also in the GP limit the denoising and good paths combined
(dotted, red line in Fig. 2(c, top)) have a better performance than the good path alone (dashed, red
line), the performance boost is even higher in the renormalized regime, which makes use of the
cross-path kernels. This additional improvement in performance becomes more apparent with noisier
data. This is shown in Fig. 2(e), where we plot the classification accuracy of the network consisting
of only the good and denoising paths, on data with stronger perpendicular noise σ⊥ = 5.

4.2 One-shot image classification

Task definition. The one-shot image classification task (Fig. 3(a)) is formulated in an in-context
learning setting. The network is presented with a sequence of three image-label pairs. The first

8

two images belong to two distinct classes of a categorized dataset (Omniglot, FashionMNIST or
MNIST in our case). They are assigned the label “+” or “−” in no particular order. The third image
is assigned the label “?”, and belongs to one of the classes of the first two images. The network has to
output ±1 according to the label of the matching image. The sequence is fed to the network as follows.
Following the idea of the vision transformer (ViT) [8], each image is divided into p patches. The
patch i ∈ {1, . . . , p} of image a ∈ {1, 2, 3} corresponds to the token x(a−1)p+i, for a total of T = 3p

tokens. We encode the labels +, −, ? using three fixed random vectors v+, v−, v? ∈ RN0 , which we
directly add to each patch (i.e., token) of the corresponding image. We also encode the token position
with additive sinusoidal positional encoding [1]. The network is trained on the Omniglot dataset [40],
while we test its classification accuracy on both in-distribution (ID) unseen classes of Omniglot, and
out-of-distribution (OOD) FashionMNIST dataset (we also report results on MNIST in Appendix H).

4.2.1 Results

We consider a network of L = 2 attention layers and H = 4 heads per layer, with average pooling
readout, trained on a subset of P = 600 examples from Omniglot (analogous results for a deeper
network with L = 3, H = 3 are also reported in Appendix H.2.2). For the fixed query and key
weights required by our Bayesian network, we use the query and key weights obtained from training
the same network using gradient descent, with N = 512, G = 128, and P = 528k (i.e., the entire
training set from Omniglot). We refer to Appendix H.1 for further details on this process.

The plots shown in Fig. 3 are analogous to those for the HMC task (Fig. 2), and illustrate analogous
kernel combination phenomena. Fig. 3(b) shows the classification accuracy for varying N . Again,
we observe a performance gap between the finite-width and GP regimes. Interestingly, this improve-
ment in performance is preserved also OOD, on FashionMNIST. Again, Fig. 3(d) shows that the
performance gap can be understood in terms of an improved kernel-task alignment: PCs that are well
aligned with Y are of higher rank, and have a larger overlap than in the GP limit.

The order parameter (Fig. 3(c), “theory” and “sampled”) for N = 10 is clearly far from its GP limit,
accounting for the improvement in performance observed in the finite-width regime. We observe
similar kernel combination phenomena as in the HMC task, with strong off-diagonal elements, and a
stronger weighting of certain paths w.r.t. others. Interestingly, the block diagonal structure of the
order parameter allows for a simple interpretation of the interplay between paths: correlations mostly
occur between paths sharing the same head h1 in the first layer, which also determines which paths
are overall enhanced (h1 = 1, 3) or suppressed (h1 = 2, 4).

This structure of the order parameter transfers qualitatively well also to the network trained with
gradient descent. In Fig. 3(c, “gradient descent”) we show an empirical order parameter, obtained by
computing Eq. 13 using a single realization of the network’s weights trained with gradient descent.
Both the order parameter’s block structure and matrix element signs are qualitatively preserved in this
empirical estimate. We emphasize that the network is trained with the full set of training examples
(P = 528k) rather than the restricted one used for the Bayesian network (P = 600), and on all
learnable parameters including the query and key weights, making this qualitative agreement more
relevant to potential applications. One example application is provided below.

Application: model reduction via head pruning. Our theory allows us to prune certain heads in the
model trained with gradient descent (leading to a model size and compute reduction), with marginal
performance loss. This is achieved by using the order parameter to assign a score to each attention
head, according to its contribution to kernel combination. The lowest-scoring heads are then pruned
from the model. The head h at layer ℓ is assigned the score s(ℓ)h =

∑
π,π′∈Π(ℓ)h |Uπ,π′ |, where Π(ℓ)h

is the set of all paths passing through that head, and U is the order parameter derived from theory.
Fig. 3(e) shows the score of each head, normalized by the largest one, compared against the drop
in classification accuracy caused by pruning that head. Note that the network is not retrained after
pruning, but only reevaluated on the test examples. We observe a performance drop qualitatively
in line with the head scores. Most importantly, the two lowest scoring heads only cause a marginal
drop in performance. In Fig. 3(f) we report the classification accuracy after pruning an increasing
number of heads, in order of their score. Up until the first two heads (amounting to 25% of the
total number of network parameters), the in-distribution classification accuracy is only marginally
worsen. Interestingly, the OOD classification accuracy is even improved, possibly indicating an
overspecialization of the pruned heads in solving only the in-distribution task. In Appendix H.2.3 we
achieve an analogous size reduction of 25% on a larger model with H = 8 heads.

9

Agreement with sampled statistics. Finally, we note that both figures 2(c,e) and 3(b,c) show good
agreement of our theory with the mean predictor and order parameter sampled from Eq. 8. While
our theory becomes exact in the N,P → ∞ limit, the agreement holds even for small N = 10. In
particular, in figures 3(b,c), it holds even if N < HL

(
HL + 1

)
/2 = 136, the number of independent

entries in the order parameter, which is supposed to be a finite quantity in our theory.

5 Conclusion and Discussion

Conclusion. We introduce a transformer-like model featuring deep multi-head self-attention,
amenable to theoretical characterization within the Bayesian framework. Our results unveil the
important role of attention paths in accounting for transformers’ remarkable performance. We demon-
strate that, in scenarios involving the interplay of attention paths at finite widths, generalization
consistently improves compared to the GP regime, where such interplay is absent. Our theory
explains this paths interplay in terms of a task-relevant kernel combination mechanism, where the
network’s total kernel results from the sum of many kernels, specific to pairs of paths, and optimally
weighted to improve generalization. This mechanism is confirmed by experiments on both synthetic
and real-world sequence classification tasks. More broadly, our results are relevant to the theory of
deep learning, as they provide an example of non-scalar kernel renormalization [33, 43] in a widely
adopted architecture such as the transformer, illustrating its importance in accounting for network
performance. Non-scalar, as opposed to scalar [29], renormalization can affect the network’s mean
predictor and therefore lead to improved generalization. Our work provides a novel interpretation of
its benefits in terms of an optimized kernel-task alignment.

Interpretability of our Theory. We provide interpretability to the kernel combination mechanism,
by relating it to observable structures in the network weights, specifically to their magnitude and
correlations. These predicted structures transfer well outside the Bayesian framework, to the weights
of networks trained with gradient descent, broadening the applicability of our theory. As an example,
we show that a trained network can be reduced in size with minimal performance loss, by pruning
those heads that are deemed less relevant by our theory. The large size reduction achieved (25%)
appears in line with observations that a few specialized heads are responsible for most of the network
performance [44], and the proposal of head pruning schemes during training [45]. Our theoretical
insights may therefore be relevant to the quest for minimalistic and resource-efficient models [46, 47].

Limitations and Outlook. The above results are enabled by our theory’s ability to go beyond the
GP limit [25], as well as incorporating a multi-head, multi-layer architecture—a prerequisite for the
very existence of attention paths. However, various limitations could still be addressed, opening
for exciting research directions. For example, attention in our model is only a function of the bare
input, rather than the previous layer’s postactivation, as in standard transformers. In this case, the
theoretical challenge would be to disentangle the learning of attention paths interplay from the
learning of the attention paths themselves, since now also the attention matrix would depend on the
value weights. Another limitation of our model is its linearity in the value weights. It may be possible
to heuristically extend the theory to include nonlinear MLP blocks in between attention layers, by
replacing the GP path-path kernels appearing in Eq. (10) with the corresponding GP kernels for
the nonlinear case—an approach which has proven successful in deep ReLU networks for certain
regimes [29]. Introducing nonlinearities, strong feature learning may also emerge [48–50]. Note
that, instead, our theory is readily extendable to the case of linear MLP blocks, as well as multiple
outputs, following [29, 33]. Here we chose a minimal setting focusing only on those renormalization
phenomena specific to the transformer architecture. Indeed, the presence of multiple outputs causes
the same kind of renormalization independently of the network architecture (i.e., adding two new
output indices to the order parameter), while deeper linear blocks would not alter the essence of
attention paths interplay, only affecting details in the entropy part of the action. Extending the theory
to include skip connections also seems viable. A very open challenge, instead, is to characterize the
learning of the query and key weights, which relates to the more general challenge of extending the
BPKR technique to nonlinear deep networks. Finally, our approach characterizes the inductive bias
imposed by the network architecture on the parameter configurations that fit the training data, but not
the bias imposed by a learning algorithm. It would therefore be interesting to import our theory to
methods characterizing deep neural networks’ training dynamics [51–53].

10

Acknowledgements

We acknowledge support of the Swartz Foundation, the Kempner Institute for the Study of Natural
and Artificial Intelligence at Harvard University, the Office of Naval Research (ONR) grant No.
N0014-23-1-2051, and the Gatsby Charitable Foundation. This research was supported in part by
grant NSF PHY-2309135 to the Kavli Institute for Theoretical Physics (KITP). FM was supported
by the Simons Foundation (Award Number: 1141576). We have benefitted from helpful discussions
with Alexander van Meegen, Haozhe Shan and Qianyi Li.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural
Information Processing Systems (NIPS), pages 5998–6008, Long Beach, CA, USA, December
2017.

[2] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention networks.
In Int. Conf. on Learning Representations (ICLR), Toulon, France, April 2017.

[3] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable
attention model for natural language inference. In Proc. Conf. on Empirical Methods in Natural
Language Processing (EMNLP), pages 2249–2255, Austin, TX, USA, November 2016.

[4] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine
reading. In Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP),
pages 551–561, Austin, TX, USA, November 2016.

[5] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. In Int. Conf. on Learning
Representations (ICLR), Toulon, France, April 2017.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Int. Conf. on Learning Representations (ICLR), San Diego,
CA, USA, May 2015.

[7] Tom B Brown et al. Language models are few-shot learners. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), Virtual only, December 2020.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In Int. Conf. on Learning Representations (ICLR), Virtual only, May 2021.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proc. North American
Chapter of the Association for Computational Linguistics on Human Language Technologies
(NAACL-HLT), pages 4171–4186, Minneapolis, MN, USA, June 2019.

[10] Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? A
study through the random features lens. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), New Orleans, LA, USA, December 2023.

[11] Arda Sahiner, Tolga Ergen, Batu Ozturkler, John M. Pauly, Morteza Mardani, and Mert Pilanci.
Unraveling attention via convex duality: Analysis and interpretations of vision transformers. In
Proc. Int. Conf. on Machine Learning (ICML), Baltimore, Maryland, USA, July 2022.

[12] Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), New Orleans, LA, USA, December 2023.

[13] Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition be-
tween positional and semantic learning in a solvable model of dot-product attention. Preprint
arXiv:2402.03902, 2024.

11

[14] Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. Mapping of attention
mechanisms to a generalized potts model. Phys. Rev. Res., 6:023057, Apr 2024.

[15] Lorenzo Noci, Chuning Li, Mufan Bill Li, Bobby He, Thomas Hofmann, Chris J. Maddison,
and Dan Roy. The shaped transformer: Attention models in the infinite depth-and-width limit.
In Proc. Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA,
USA, December 2023.

[16] Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow
vision transformers: Learning, generalization, and sample complexity. In Int. Conf. on Learning
Representations (ICLR), Kigali, Rwanda, May 2023.

[17] Enric Boix-Adserà, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua M Susskind.
Transformers learn through gradual rank increase. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Proc. Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, USA, December 2023.

[18] Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S. Du. Scan and Snap: Understanding
training dynamics and token composition in 1-layer transformer. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, USA, December 2023.

[19] Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical
perspective on transformers. Preprint arXiv:2312.10794, 2023.

[20] Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear
transformers learn and generalize in in-context learning? In Proc. Int. Conf. on Machine
Learning (ICML), Vienna, Austria, July 2024.

[21] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020.

[22] Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In Proc. Int. Conf. on Machine Learning (ICML),
Baltimore, MD, USA, July 2022.

[23] Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent. In Proc. Int. Conf. on Machine Learning (ICML), Vienna, Austria, July 2024.

[24] Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In Int. Conf. on Learning Representations (ICLR), Vienna, Austria, May
2024.

[25] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: NNGP
and NTK for deep attention networks. In Proc. Int. Conf. on Machine Learning (ICML), pages
4376–4386, Virtual only, July 2020.

[26] Itay Lavie, Guy Gur-Ari, and Zohar Ringel. Towards understanding inductive bias in transform-
ers: A view from infinity. Preprint arXiv:2402.05173, 2024.

[27] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In Int. Conf. on Learning
Representations (ICLR), Vancouver, Canada, April 2018.

[28] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In Int. Conf. on
Learning Representations (ICLR), Vancouver, Canada, April 2018.

[29] Qianyi Li and Haim Sompolinsky. Statistical mechanics of deep linear neural networks: The
backpropagating kernel renormalization. Physical Review X, 11(3):031059, 2021.

[30] Boris Hanin and Alexander Zlokapa. Bayesian interpolation with deep linear networks. Proc.
of the National Academy of Sciences (PNAS), 120(23), May 2023.

12

[31] R Pacelli, S Ariosto, M Pastore, F Ginelli, M Gherardi, and P Rotondo. A statistical mechanics
framework for bayesian deep neural networks beyond the infinite-width limit. Nature Machine
Intelligence, 5(12):1497–1507, 2023.

[32] Hugo Cui, Florent Krzakala, and Lenka Zdeborova. Bayes-optimal learning of deep random
networks of extensive-width. In Proc. Int. Conf. on Machine Learning (ICML), Honolulu, HI,
USA, July 2023.

[33] Qianyi Li and Haim Sompolinsky. Globally gated deep linear networks. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, November 2022.

[34] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proc. of the National Academy of
Sciences (PNAS), 116(32):15849–15854, 2019.

[35] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In Int. Conf. on Learning Representations
(ICLR), Toulon, France, April 2017.

[36] Tishby Naftali, Levin Esther, and Sara A Solla. Consistent inference of probabilities in layered
networks: predictions and generalizations. In Proc. Int. Joint Conf. on Neural Networks (IJCNN),
pages 403–409, Washington, DC, USA, June 1989.

[37] David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[38] Radford M Neal. Bayesian learning for neural networks. Springer, 1996.

[39] Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model
alignment explain generalization in kernel regression and infinitely wide neural networks.
Nature communications, 12(1):2914, 2021.

[40] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[41] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits. URL http://yann.lecun.com/exdb/mnist, 1998.

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. Preprint arXiv:1708.07747, 2017.

[43] Zechen Zhang and Haim Sompolinsky. Robust learning in bayesian parallel branching graph
neural networks: The narrow width limit. Preprint arXiv:2407.18807, 2024.

[44] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proc.
Association for Computational Linguistics (ACL), pages 5797–5808, Florence, Italy, July 2019.

[45] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shri-
vastava, Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu: Contextual
sparsity for efficient LLMs at inference time. In Proc. Int. Conf. on Machine Learning (ICML),
Honolulu, Hawaii, USA, July 2023.

[46] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. Preprint arXiv:2302.13971, 2023.

[47] Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? Preprint arXiv:2305.07759, 2023.

[48] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2020(11):113301, 2020.

13

[49] Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width kernel and prediction fluc-
tuations in mean field neural networks. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), New Orleans, LA, USA, December 2023.

[50] Alexander van Meegen and Haim Sompolinsky. Coding schemes in neural networks learning
classification tasks. Preprint arXiv:2407.18807, 2024.

[51] Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proc. of the National Academy of Sciences (PNAS), 116
(23):11537–11546, 2019.

[52] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2023(11):
114009, 2023.

[53] Yehonatan Avidan, Qianyi Li, and Haim Sompolinsky. Connecting NTK and NNGP: A unified
theoretical framework for neural network learning dynamics in the kernel regime. Preprint
arXiv:2309.04522, 2023.

[54] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In Int. Conf. on
Learning Representations (ICLR), Virtual only, April 2020.

[55] Samy Jelassi, Michael E. Sander, and Yuanzhi Li. Vision transformers provably learn spatial
structure. In Proc. Advances in Neural Information Processing Systems (NeurIPS), New Orleans,
LA, USA, November 2022.

[56] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, USA, December 2023.

[57] Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai.
How do transformers learn in-context beyond simple functions? a case study on learning with
representations. In Int. Conf. on Learning Representations (ICLR), Vienna, Austria, 2024.

[58] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In Proc. Int. Conf. on
Machine Learning (ICML), Honolulu, HI, USA, July 2023.

[59] Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models
in-context. Journal of Machine Learning Research (JMLR), 25(49):1–55, 2024.

[60] Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does
in-context learning learn? Bayesian model averaging, parameterization, and generalization.
Preprint arXiv:2305.19420, 2023.

[61] Mikhail Vasil’evich Fedoryuk. The saddle-point method. Nauka, Moscow, 1977.

[62] Mikhail Vasil’evich Fedoryuk. Asymptotic methods in analysis. In Analysis I: integral repre-
sentations and asymptotic methods, pages 83–191. Springer, 1989.

[63] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Int. Conf.
on Learning Representations (ICLR), San Diego, CA, USA, May 2015.

[64] Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. Preprint
arXiv:1701.02434, 2018.

[65] Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible and acceler-
ated probabilistic programming in NumPyro. Preprint arXiv:1912.11554, 2019.

[66] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
universal probabilistic programming. Journal of Machine Learning Research (JMLR), 20(28):
1–6, 2019.

14

[67] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Proc. Advances in Neural Information Processing Systems
(NIPS), pages 3630–3638, Barcelona, Spain, December 2016.

[68] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio. Torch-
meta: A meta-learning library for PyTorch. Preprint arXiv:1909.06576, 2019.

15

Appendices

I Further discussion on related theory works 16

II Theory 18

A Definitions 18

A.1 Variables and parameters . 18

A.2 Model definition . 18

A.3 Posterior distribution . 19

A.4 Attention paths notation . 19

B Results enunciation 20

B.1 Predictor statistics . 21

B.2 Order parameter interpretation . 21

C Derivation of the predictor statistics 22

C.1 Partition function . 22

C.2 Weights integration . 22

C.3 Integration of the auxiliary variable t . 26

D Derivation of the order parameter interpretation 27

D.1 Partition function . 28

D.2 Integration of the input projection weights . 28

D.3 Integration of the auxiliary variable t . 30

III Experiments 32

E Numerical evaluation of the order parameter 32

F Hamiltonian Monte Carlo sampling 32

G Hidden Markov chain classification task 32

G.1 Task definition . 32

G.2 Query and Key weights initialization . 33

H One-shot image classification task 35

H.1 Training with gradient descent . 35

H.2 Additional results . 35

16

Part I

Further discussion on related theory works
The theoretical properties of attention-based models have been investigated from various perspectives
in recent years. Different lines of works have studied the expressivity [10, 22, 21, 54], the inductive
bias [11, 12] and the training dynamics [17, 16, 18] of attention layers. In particular, [54] shows that
multi-layer attention networks are universal approximators for certain classes of functions, such as
equivariant sequence-to-sequence functions, while [21] highlights their computational limitations,
demonstrating that self-attention cannot model periodic finite-state languages, nor hierarchical
structure, unless the number of layers or heads increases with input length. [16, 22] derive error
bounds for non-linear models, with trainable queries and keys. As in our work, [19, 10, 55] focus on
the training of value matrices. In [19, 10] query and key matrices are fixed and untrainable, while
[55] sets them equal to the identity. Several theoretical studies have focused on in-context learning
[56–60]. However, the works mentioned above derive generalization bounds and do not provide a
tight characterization of the learning curves. A first tight analysis was done in [14], considering a
single-layer model with factored self-attention. The authors of [13] provide a tight analysis of a
single-layer attention model with trainable tied queries and keys and value weights fixed to the identity.
Previous theoretical works have mainly focused on a single transformer block, where attention paths
are not defined. For instance, [44] finds that one transformer block can learn different linguistic tasks
according to the position of the self-attention layer. [58] shows that a transformer block can learn
to encode topical models. [55] shows that one transformer block can encode patch associations. A
different line of works has studied attention layers in the infinite-width limit [25, 26]. In particular,
[25] establishes an equivalence between Gaussian processes and infinitely-wide multi-layer attention
models with infinitely many attention heads. [26] leverages this framework and studies the inductive
bias of infinitely-wide transformers towards permutation symmetric functions in sequence space.

17

Part II

Theory
A Definitions

We recall the definitions for our transformer model and theory, Sec. 2 and 3 of the main text.

A.1 Variables and parameters

The hyperparameters are

T : number of tokens
L : number of attention layers
H : number of attention heads per layer
N0 : input width
N : hidden layers width
G : query-key internal dimension
P : number of training examples
T : Gibbs temperature (theory only)
σ : Gaussian prior variance (theory only)

The network weights are

V (0) ∈ RN×N0 : input projection weights

V (ℓ)h ∈ RN×N : value weights

a ∈ R1×N : readout weights

W
(ℓ)h
Q ,W

(ℓ)h
K ∈ RG×N : query and key weights (fixed in the theory)

where h = 1, . . . ,H , and ℓ = 1, . . . , L.

The network input is

x ∈ RN0×T : input sequence

xt ∈ RN0 : single token in the sequence

where t = 1, . . . , T .

We append an additional index µ = 1, . . . , P to quantities that refer to a specific example in the
training set, such as, e.g.

xµ ∈ RN0×T : µ-th example in the training set
yµ ∈ R : µ-th training label

We further define

X := {xµ}Pµ=1

Y := {yµ}Pµ=1 the vector of training labels

A.2 Model definition

The network performs the following sequence of input transformations (Fig. 4). The input projection
layer is defined as

x
(1)
t =

1√
N0

V (0) · xt (14)

18

…

N0

12

Ttokens …
12

T
tokens

head
(1)

…

Layer 1

head
(1)

…

Layer 2

head
(1)

…

Layer L

input

linear
projection

…
12

T
tokens

…
12

T
tokens

…
12

T
tokens

readout

output

N N N N

a

head
(2)

head

head
(2)

head
(3)

head
(2)

head
(3)

Layer

T
Nℓ

×

Nℓ

G

×
G

Nℓ

×

Nℓ

T

V (h)
head

(h) =

Layer ℓ

N

N

×

N

T

×N

T

ζ

(H) (H) (H)

Attention path : π h1 = (1) → h2 = (1) → . . . → hL = (2)

N0

N0

T

T

x
x

N0

N0

…

Figure 4: Schematic representation of the architecture under consideration.

The output from each attention layer ℓ = 1, . . . , L is defined recursively as:

x
(ℓ+1)
t =

1√
NH

H∑
h=1

T∑
s=1

V (ℓ)h · x(ℓ)
s Ω

(ℓ)h
st , t = 1, . . . , T (15)

where, for each head h, we define the attention matrix Ω(ℓ)h ∈ RT×T with matrix elements

Ω
(ℓ)h
st = ζ

(
1

N0

√
G
x⊤
s ·W (ℓ)h⊤

K ·W (ℓ)h
Q · xt

)
(16)

The function ζ denotes the softmax applied along the direction of the token indexed by s. The linear
readout is defined as

f =
1√
N

a⊤ · x(L+1)
t∗ . (17)

where we adopt the unified notation

x
(L+1)
t∗ =

{
1
T

∑T
t=1 x

(L+1)
t average over all the tokens

x
(L+1)
t∗ readout from a single token at position t = t∗

(18)

in order to consider different options of token readout, adopted in different tasks.

A.3 Posterior distribution

We are interested in computing the posterior distribution over the network’s weights Θ :=(
V (0),

{
V (ℓ)h

}L,H

ℓ,h=1
, a
)

. This is analogous to the Gibbs distribution in statistical physics and
is defined as

p (Θ) =
1

Z
exp

{
− 1

2T

P∑
µ=1

[f (xµ,Θ)− yµ]
2 − 1

2σ2
∥Θ∥2

}
, (19)

where ∥·∥ is the Frobenius norm, and Z indicates the normalization, also called partition function.

A.4 Attention paths notation

In the main text, we introduce the concept of attention paths, by defining a path index

π := (h1, . . . , hL) with h1, . . . , hL ∈ {1, . . . ,H} (20)

19

which uniquely identifies each possible combination of the head indices, i.e. each possible path
through the attention heads (Fig. 4). The network output can be written as

f =
1√

HLNN0

∑
π∈Π

V (eff)π · V (0) · ξπ (21)

where Π is the set of all possible paths, and we define the effective weights as

V (eff)π :=
1√
NL

a · V (L)hL · V (L−1)hL−1 · . . . · V (2)h2 · V (1)h1 , V (eff)π ∈ R1×N (22)

and the attentioned input

ξπ =

T∑
t0,...,tL−1=1

xt0Ω
(1)h1

t0t1 Ω
(2)h2

t1t2 . . .Ω
(L−1)hL−1

tL−2tL−1
Ω

(L)hL

tL−1t∗ . (23)

In order to present our theoretical results and their derivation, it is useful to also introduce the
following notation.

Partial-path indices. We indicate with

πℓ := (hℓ, hℓ+1, . . . , hL) with hℓ, . . . , hL ∈ {1, . . . ,H} (24)

a collection of head indices, from layer ℓ up to layer L. For ℓ = 1, π1 ≡ π is the path index defined
above, Eq. 20, and in the main text. For ℓ ̸= 1, πℓ corresponds more generally to a partial path,
starting from layer ℓ. We call the set of such paths Πℓ. For ℓ = 1, Π1 ≡ Π is the collection of all
complete paths defined above and in the main text.

Attentioned input at layer ℓ. We define the attentioned input at layer ℓ, for ℓ = 1, . . . , L, as

ξ(ℓ)πℓ = ξ(ℓ)hℓhℓ+1...hL :=

T∑
tℓ,tℓ+1,...,tL=1

x
(ℓ)
tℓ

Ω
(ℓ)hℓ

tℓtℓ+1
. . .Ω

(L)hL

tL,t∗ , ξ(ℓ)πℓ ∈ RN (25)

were we remind the reader of the compact notation t∗ defined in Eq. 18. The attentioned inputs at
subsequent layers are related by

ξ(ℓ)πℓ =
1√
NH

H∑
hℓ−1=1

V (ℓ−1)hℓ−1 · ξ(ℓ−1)hℓ−1πℓ (26)

Recall that ξ(ℓ−1)hℓ−1πℓ := ξ(ℓ−1)hℓ−1hℓhℓ+1...hL , according to the notation defined in Eq. 24.

We also give specific definitions for the cases ℓ = 0 and ℓ = L+1. For ℓ = 0, we define ξ(0)π1 ≡ ξπ ,
corresponding to the attentioned input defined above, Eq. 23, and in the main text. The following
relation holds

ξ(0)π1 =
1√
N0

V (0) · ξ(1)π1 ξ(0)π1 ∈ RN0 . (27)

For ℓ = L+ 1 we define

ξ(L+1) =
1√
NH

H∑
hL=1

V (L)hL · ξ(L)hL (28)

B Results enunciation

Here we enunciate our theoretical results, for which a derivation is given in Appendix C and
Appendix D.

20

B.1 Predictor statistics

We derive (Appendix C) the statistics of the network prediction f (x∗) := f∗ on a new test example
x∗. These are given by

⟨f∗⟩ = k⊤ · (K + T I)−1 · Y (29)〈
(δf∗)

2
〉
= Ktest − k⊤ · (K + T I)−1 · k (30)

where ⟨·⟩ denotes the expectation under the posterior distribution Eq. 19, and δf∗ = f∗ − ⟨f∗⟩.
The quantities Ktest ∈ R, k ∈ RP , and K ∈ RP×P are defined in terms of a kernel function
K : RN0×T × RN0×T → R. For µ, ν = 1, . . . , P we define Ktest := K (x∗, x∗), kµ := K (x∗, xµ),
and Kµν := K (xµ, xν).

We derive the following form for the kernel

K (x, x′) =
1

HL

∑
π,π′∈Π

Uππ′
Cππ′ (x, x′) with Cππ′ (x, x′) :=

1

N0
ξπ⊤ (x) · ξπ

′
(x′) , (31)

where ξπ (x) is the attentioned input corresponding to an input x, while U , called order parameter, is
a path-by-path matrix of size |Π| × |Π|, where |Π| = HL denotes the size of the set Π. The value of
the order parameter is determined self-consistently by minimizing a scalar function S, called action
in the physics literature. This is defined as

S

({
U (ℓ)

}L+1

ℓ=1
;X,Y

)
:= −L

(
U (L+1)

)
−

L∑
ℓ=1

L
(
U (ℓ) · U (ℓ+1)−1

ext

)
+ αE

(
U (1);X,Y

)
(32)

where, for any matrix M , we define

L (M) = −σ−2Tr (M) + ln det (M) (33)

and

E
(
U (1);X,Y

)
=

1

P
ln det

(
K(U (1);X) + T I

)
+

1

P
Y ⊤ ·

(
K(U (1);X) + T I

)−1

· Y (34)

Note that K(U (1);X) is simply the kernel defined above, through Eq. 31, where we have explicitly
written its dependence on U (1) and X . Here we have defined a collection of matrix order parameters
U (ℓ) for ℓ = 1, . . . , L, of size |Πℓ| × |Πℓ|, were |Πℓ| = HL+1−ℓ denotes the size of the set Πℓ.
We called U (1) ≡ U . The order parameter U (L+1) is instead a scalar. We also defined U

(ℓ+1)
ext for

ℓ = 1, . . . , L as the matrix of size |Πℓ| × |Πℓ| with elements

U
(ℓ+1)πℓ,π

′
ℓ

ext = U
(ℓ+1)hℓπℓ+1,h

′
ℓπ

′
ℓ+1

ext := U (ℓ+1)πℓ+1,π
′
ℓ+1δhℓ,h′

ℓ

where πℓ, π
′
ℓ ∈ Πℓ and πℓ+1, π

′
ℓ+1 ∈ Πℓ+1 are the partial-path indices defined in Eq. 24, while

hℓ, hℓ′ = 1, . . . ,H .

The action must be minimized w.r.t. all of the order parameters. Note that in the main text we defined
S as a function of U (1) ≡ U alone. By this we mean S evaluated at its minimum for a fixed U (1), so
that only the minimization w.r.t. U (1) is left to perform.

The self-consistent solution for the order parameters is obtained numerically by minimizing Eq. 32
with gradient descent methods. Details on the procedure are given in Appendix E.

B.2 Order parameter interpretation

We derive (Appendix D) the following expression for the order parameter in terms of the network
weights

Uππ′
=

1

N

〈
V (eff)π · V (eff)π′⊤

〉
π, π′ ∈ Π. (35)

where ⟨·⟩ denotes statistical averaging over the posterior distribution Eq. 19.

21

C Derivation of the predictor statistics

Here we provide the derivation of our result for the predictor statistics, reported in Sec. B.1.

C.1 Partition function

Let us recall the posterior distribution (Eq. 19)

p (Θ) =
1

Z
exp

{
− 1

2T

P∑
µ=1

[f (xµ,Θ)− yµ]
2 − 1

2σ2
∥Θ∥2

}
, (36)

where Z indicates the normalization, also called partition function.

It is useful to introduce a vector t ∈ RP of P auxiliary variables in order to linearize the squared
error in Eq. 36. The partition function then reads

Z ∝
∫

DtDΘexp

(
P∑

µ=1

ıtµ (fµ − yµ)

)
, (37)

where ı is the imaginary unit, tµ is the µ-th component of t, while fµ is shorthand for f (xµ,Θ), and
we use the symbol “∝” to indicate that we are neglecting multiplicative constants. We also defined
the Gaussian integration measures Dt = dt exp

(
−T

2 ∥t∥2
)

and DΘ = dΘexp
(
− 1

2σ2 ∥Θ∥2
)

.

Calling f∗ := fP+1, we add a source term ∝ ıtP+1fP+1 to the exponential in the partition function,
corresponding to the test example x∗ := xP+1, obtaining

Z
[
ıtP+1

]
∝
∫

DtDΘexp

(
−ı

P∑
µ=1

tµyµ +

P+1∑
µ=1

ıtµfµ

)
. (38)

In what follows we write Z
[
ıtP+1

]
as Z, without writing its argument explicitly. The partition

function Eq. 38 allows us to obtain the predictor statistics on the test example by differentiation

⟨f∗⟩ :=
〈
fP+1

〉
=

d

d (ıtP+1)
ln (Z)

∣∣∣
tP+1=0

(39)

⟨δf∗⟩ :=
〈
δfP+1

〉
=

d2

d (ıtP+1)
2 ln (Z)

∣∣∣
tP+1=0

(40)

where δfP+1 = fP+1 −
〈
fP+1

〉
, and ⟨·⟩ denotes statistical averaging over the posterior distribution

(Eq. 19). In what follows, we will neglect any multiplicative constants in the partition function, that
are independent of ıtP+1, since they are irrelevant for the computation of Eq. 39 and Eq. 40.

C.2 Weights integration

We proceed to compute the partition function (Eq. 38) by integrating all of the network weights Θ,
and finally the auxiliary variable t. We use the back-propagating kernel renormalization (BPKR)
method [29, 33], which consists in the successive integration of the weights, starting from the last
layer down to the first layer.

Let us write Eq. 38 as

Z ∝
∫

Dt exp

(
−ı

P∑
µ=1

tµyµ

)
I (t) . (41)

where we define

I (t) =

∫
DΘexp

(
P+1∑
µ=1

ıtµfµ

)
(42)

Below we focus on computing I(t). In what follows, we will write I (t) as I , without writing its
argument explicitly.

22

C.2.1 Integration over the readout weights

We start by integrating over the readout weights a. In Eq. 42, we substitute fµ = a · ξ(L+1)µ,
obtaining

I =

∫
DΘexp

(
ı

P+1∑
µ=1

a · ξ(L+1)µtµ

)
(43)

In what follows, it is useful to define q(L+1) =
∑P+1

µ=1 tµξ(L+1)µ and in general

q(ℓ)πℓ =

P+1∑
µ=1

tµξ(ℓ)πℓ,µ, πℓ ∈ Πℓ (44)

We compute the Gaussian integral in the readout weights a, obtaining

I ∝
∫

DΘ(L) exp

(
−1

2

σ2

N
q(L+1)⊤ · q(L+1)

)
(45)

With Θ(ℓ) we indicate the collection of weights Θ(ℓ) :=

(
V (0),

{
V (ℓ′)h

}ℓ,H

ℓ′,h=1

)
, i.e. all weights

up to layer ℓ.

C.2.2 Integration over the weights at layer L

Plugging q(L+1) = 1√
NH

∑H
hL=1 V

(L)hL · q(L)hL into Eq. 45 we have

I ∝
∫

DΘ(L) exp

−1

2

σ2

N

1

NH

H∑
hL,h′

L=1

q(L)hL⊤V (L)hL⊤ · V (L)h′
Lq(L)h′

L

 (46)

We perform the integral over the value weights
{
V (L)h

}H
h=1

, by noticing that it is given by the
product of N identical integrals of the form∫ [N∏

i=1

H∏
hL=1

dV
(L)hL

1i

]
exp

− 1

2σ2

N∑
i,i′=1

H∑
hL,h′

L=1

V
(L)hL

1i AihL,i′h′
L
V

(L)h′
L

1i′

 (47)

where we defined

AihL,i′h′
L

= δi,i′δhL,h′
L
+

σ2

N

σ2

NH
q
(L)hL

i q
(L)h′

L

i′ (48)

with i, i′ = 1, . . . , N and hL, h
′
L = 1, . . . ,H . Here q

(L)hL

i indicates the i-th element of the vector
q(L)hL ∈ RN . We may consider A as an NH ×NH matrix, whose two indices run over the pairs
(i, hL) and (i′, h′

L). With this notation, the result of the value weights integration is

I ∝
∫

DΘ(L−1) exp

(
−1

2
N ln det (A)

)
(49)

Using the matrix determinant lemma2, we find

I ∝
∫

DΘ(L−1) exp

(
−1

2
N ln

(
1 +R(L+1)

))
(50)

where we defined the scalar R(L+1)

R(L+1) =
σ2

N

σ2

NH

H∑
hL=1

q(L)hL⊤ · q(L)hL (51)

2det
(
I+ qq⊤

)
= 1 + q⊤ · q, where q is a vector.

23

We now enforce the identity of Eq. 51 by Fourier representation of the Dirac delta function, introducing
the auxiliary scalar variable U (L+1). We obtain

I ∝
∫

dR(L+1)dU (L+1)DΘ(L−1) exp

{
+

1

2

N

σ2
U (L+1)R(L+1) − 1

2
N ln

(
1 +R(L+1)

)
− 1

2

σ2

NH
U (L+1)

H∑
hL=1

q(L)hL⊤ · q(L)hL

}
(52)

In the statistical physics language, R(L+1) and U (L+1) are called order parameters. Since N → ∞,
we can solve the integral in R(L+1) with the saddle point method [61, 62]. The value of R(L+1) at
the saddle point is

R(L+1) = σ2U (L+1)−1 − 1 (53)

Therefore, we obtain

I ∝
∫

dU (L+1)DΘ(L−1) exp

{
N

2
L
(
U (L+1)

)
− 1

2

σ2

NH

∑
πL,π′

L∈ΠL

U
(L+1)πL,π′

L
ext q(L)πL⊤ · q(L)π′

L

}
(54)

where we defined the “entropy” term

L
(
U (L+1)

)
= − 1

σ2
U (L+1) + ln

(
U (L+1)

)
(55)

an we introduced the |ΠL| × |ΠL| matrix U
(L+1)
ext , with matrix elements

U
(L+1)πL,π′

L
ext = U

(L+1)hL,h′
L

ext = U (L+1)δhL,h′
L
. (56)

Here πL, π
′
L ∈ ΠL are the partial-path indices defined in Eq. 24, which in this case coincide with

hL, hL′ = 1, . . . ,H . While the definition of U (L+1)
ext may appear superfluous here, it is useful to

perform the proof by induction in Sec. C.2.4.

C.2.3 Integration over the weights at layer L− 1

Next, we perform the integration over the weights at layer L− 1. The steps are almost identical to
those taken in Sec. C.2.2, but will lead to the introduction of a matrix of order parameters. After this
layer, we will be able to provide the results for the integration of the weights at subsequent layers by
induction.

Plugging q(L)πL = 1√
NH

∑H
hL−1=1 q

(L−1)hL−1πL into Eq. 54, we get

I ∝
∫

dU (L+1)DΘ(L−1) exp

{
+

N

2
L
(
U (L+1)

)
− σ2

2N2H2

H∑
hL−1,h′

L−1=1

∑
πL,π′

L∈ΠL

U
(L+1)πL,π′

L
ext ×

× q(L−1)hL−1πL⊤ · V (L−1)hL−1⊤ · V (L−1)π′
L · q(L−1)h′

L−1π
′
L

}
(57)

24

Once again we see that the integral in the value weights
{
V (L−1)h

}H
h=1

is given by the product of N
identical integrals of the form∫ N∏

i=1

H∏
hL−1=1

dV
(L−1)hL−1

1i

×

× exp

− 1

2σ2

N∑
i,i′=1

H∑
hL−1,h′

L−1=1

V
(L−1)hL−1

1i AihL−1,i′h′
L−1

V
(L−1)h′

L−1

1i′

 (58)

where we defined

AihL−1,i′h′
L−1

= δi,i′δhL−1,h′
L−1

+
σ2

N

σ2

NH2

∑
πL,π′

L∈ΠL

q
(L−1)hL−1πL

i U
(L+1)πL,π′

L
ext q

(L−1)h′
L−1π

′
L

i′ (59)

with i, i′ = 1, . . . , N and hL, h
′
L = 1, . . . ,H .

Again, we may consider A as an NH ×NH matrix, whose two indices run over the pairs (i, hL−1)
and

(
i′, h′

L−1

)
. With this notation, the result of the value weights integration is

I ∝
∫

dU (L+1)DΘ(L−2) exp

(
N

2
L
(
U (L+1)

)
− 1

2
N ln det (A)

)
(60)

Using the matrix determinant lemma3, we find

I ∝
∫

dU (L+1)DΘ(L−2) exp

(
N

2
L
(
U (L+1)

)
− 1

2
N ln det

(
I+ U

(L+1)
ext ·R(L)

))
(61)

where we introduced the |ΠL| × |ΠL| matrix R(L), with matrix elements defined as

R(L)πL,π′
L =

σ2

N

σ2

NH2

H∑
hL−1=1

q(L−1)hL−1πL⊤ · q(L−1)hL−1π
′
L , πL, π

′
L ∈ ΠL (62)

With the same procedure as in Sec. C.2.2, we introduce the order parameter R(L) and its conjugate
U (L), also a |ΠL| × |ΠL| matrix. We have

I ∝
∫

dU (L+1)dR(L)dU (L)DΘ(L−2) exp

{
N

2
L
(
U (L+1)

)
+

1

2

N

σ2
Tr
(
U (L)R(L)

)
− 1

2
N ln det

(
I+ U

(L+1)
ext ·R(L)

)
− 1

2

σ2

NH2

∑
πL,π′

L∈ΠL

U (L)πL,π′
L

H∑
hL−1=1

q(L−1)hL−1πL⊤ · q(L−1)hL−1π
′
L

}
(63)

Again, we solve the integral in R(L) with the saddle point method. The value of R(L) at the saddle
point is

R(L) = σ2U (L)−1 − U
(L+1)−1
ext (64)

Therefore we obtain

I ∝
∫

dU (L+1)dU (L)DΘ(L−2) exp

{
N

2
L
(
U (L+1)

)
+

N

2
L
(
U (L)·U (L+1)−1

ext

)
− 1

2

σ2

NH2

∑
πL−1,π′

L−1∈ΠL−1

U
(L)πL−1,π

′
L−1

ext q(L−1)πL−1⊤ · q(L−1)π′
L−1

}
(65)

3det
(
I+Q · U ·Q⊤) = det

(
I+ U ·Q⊤ ·Q

)
, with Q and U being m×n and n×n matrices respectively.

25

where we give a more general definition of the entropy Eq. 55, such that it can take a matrix argument

L
(
U (L)·U (L+1)−1

ext

)
= − 1

σ2
Tr
(
U (L)·U (L+1)−1

ext

)
+ ln det

(
U (L)·U (L+1)−1

ext

)
(66)

and we introduced the |ΠL−1| × |ΠL−1| matrix U
(L)
ext , with matrix elements

U
(L)πL−1,π

′
L−1

ext = U
(L)hL−1πL,h′

L−1π
′
L

ext = U (L)πL,π′
LδhL−1,h′

L−1
. (67)

Here πL−1, π
′
L−1 ∈ ΠL−1 and πL, π

′
L ∈ ΠL and are the partial-path indices defined in Eq. 24, while

hL−1, h
′
L−1 = 1, . . . ,H .

C.2.4 Integration over the weights at a generic layer ℓ

We can now compute the integration over the remaining value weights by induction. We claim that,
after integration of the weights at layer ℓ, I will have the form

I ∝
∫

dU (L+1)dU (L) . . . U (ℓ+1)DΘ(ℓ−1) exp

{
N

2
L
(
U (L+1)

)
+

N

2
L
(
U (L)·U (L+1)−1

ext

)
+ . . .+

N

2
L
(
U (ℓ+1)·U (ℓ+2)−1

ext

)
− 1

2

σ2

NHL+1−ℓ

∑
πℓ,π′

ℓ∈Πℓ

U
(ℓ+1)πℓ,π

′
ℓ

ext

H∑
hℓ=1

q(ℓ)πℓ⊤ · q(ℓ)π
′
ℓ

}
(68)

Here we defined a collection of matrix order parameters, one for each integrated layer. The order
parameter U (ℓ) is a partial-path-by-partial-path matrix of size |Πℓ| × |Πℓ|, were |Πℓ| = HL+1−ℓ

denotes the size of the set Πℓ. We also defined U
(ℓ+1)
ext as the matrix of size |Πℓ| × |Πℓ| with elements

U
(ℓ+1)πℓ,π

′
ℓ

ext = U
(ℓ+1)hℓπℓ+1,h

′
ℓπ

′
ℓ+1

ext := U (ℓ+1)πℓ+1,π
′
ℓ+1δhℓ,h′

ℓ
(69)

where πℓ, π
′
ℓ ∈ Πℓ and πℓ+1, π

′
ℓ+1 ∈ Πℓ+1 are the partial-path indices defined in Eq. 24, while

hℓ, hℓ′ = 1, . . . ,H .

Eq. 68 is verified for layer ℓ = L− 1, which we derived in Sec. C.2.3. The induction step, integrating
over the weights at layer ℓ − 1, is done by plugging q(ℓ)πℓ =

∑H
hℓ−1=1 V

(ℓ−1)hℓ−1 · q(ℓ−1)hℓ−1πℓ

into Eq. 68 and applying exactly the same steps presented in Sec. C.2.3.

C.3 Integration of the auxiliary variable t

After integrating all of the network weights, we have

Z ∝
∫

Dt exp

(
−ı

P∑
µ=1

tµyµ

)
I (t) . (70)

with

I (t) ∝
∫ [L+1∏

ℓ=1

dU (ℓ)

]
exp

{
N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=1

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
− 1

2

σ2

NHL

∑
π1,π′

1∈Π1

U (1)π1,π
′
1q(0)π1⊤ · q(0)π

′
1

}
(71)

plugging q(0)π1 =
∑P+1

µ=1 ξ(0)π1,µtµ into Eq. 71, we see that we need to perform the following
integral in t ∈ RP

exp

(
−1

2
tP+1Ktestt

P+1

)∫ [P∏
µ=1

dtµ

]
exp

(
−1

2
t⊤ · (K + T I) · t−

(
tP+1k + ıY

)⊤ · t
)
(72)

26

where for convenience we report here the kernel definitions given in Sec. B.1. The quantities Ktest ∈
R, k ∈ RP , and K ∈ RP×P are defined in terms of a kernel function K : RN0×T × RN0×T → R.
For µ, ν = 1, . . . , P we define Ktest := K (x∗, x∗), kµ := K (x∗, xµ), and Kµν := K (xµ, xν). The
form of the kernel is

K (x, x′) =
1

HL

∑
π1,π′

1∈Π1

U (1)π1,π
′
1Cπ1π′

1
(x, x′) , (73)

with

Cπ1π′
1
(x, x′) :=

1

N0
ξ(0)π1⊤ (x) · ξ(0)π

′
1 (x′) , (74)

Computing the Gaussian integral (Eq. 72) we obtain

Z ∝
∫ [L+1∏

ℓ=1

dU (ℓ)

]
exp

(
−N

2
S

({
U (ℓ)

}L+1

ℓ=1

))
exp

(
1

2
ıtP+1

[
Ktest − k⊤ · (K + T I)−1 · k

]
ıtP+1 + ıtP+1kT · (K + T I)−1 · Y

)
(75)

where we report here for convenience the definition of the action S given in Sec. B.1

S

({
U (ℓ)

}L+1

ℓ=1

)
:= −L

(
U (L+1)

)
−

L∑
ℓ=1

L
(
U (ℓ) · U (ℓ+1)−1

ext

)
+ αE

(
U (1)

)
(76)

with

E
(
U (1)

)
=

1

P
ln det (K + T I) +

1

P
Y ⊤ · (K + T I)−1 · Y (77)

In the limit N,P → ∞, P
N → α ∈ R+, we solve the integrals in

{
U (ℓ)

}L+1

ℓ=1
with the saddle point

method [61, 62]. The partition function therefore takes the final form

Z ∝
∫

exp

(
1

2
ıtP+1

[
Ktest − k⊤ · (K + T I)−1 · k

]
ıtP+1 + ıtP+1k⊤ · (K + T I)−1 · Y

)
(78)

where we recall that Ktest, k, and K all depend on U (1), which must be evaluated at the minimum of
the action Eq. 76 with respect to all of its arguments

{
U (ℓ)

}L+1

ℓ=1
.

Differentiating by ıtP+1 the partition function Eq. 78 (see Eq. 39 and Eq. 40), we obtain the results
for the predictor mean (Eq. 29) and variance (Eq. 30) presented in Sec. B.1.

D Derivation of the order parameter interpretation

Here we provide the derivation of our result on the order parameter interpretation, exposed in Sec. B.2.
The derivation is almost identical to that for the predictor statistics given in Sec. C. What follows
below should be considered as a continuation of Sec. C, to which we refer for definitions.

For convenience, we report here the result we want to derive

U (1)π1π
′
1 =

1

N

〈
V (eff)π1 · V (eff)π′

1⊤
〉
. (79)

where π1, π
′
1 ∈ Π1 are the path indices defined in Eq. 24, while ⟨·⟩ denotes statistical averaging over

the posterior distribution Eq. 19. We also recall the definition of the network effective weights

V (eff)π1 :=
1√
NL

a · V (L)hL · V (L−1)hL−1 · . . . · V (2)h2 · V (1)h1 , V (eff)π1 ∈ R1×N (80)

27

D.1 Partition function

As in Sec. C.1, we start from the partition function

Z ∝
∫

DtDΘexp

(
P∑

µ=1

ıtµ (fµ − yµ)

)
. (81)

To the partition function, we add a source term ∝
∑

π1∈Π1
V (eff)π1 · q(1)π1

∗ , with q
(1)π1
∗ ∈ RN

Z ∝
∫

DtDΘexp

(
−ı

P∑
µ=1

tµyµ +

P∑
µ=1

ıtµfµ +
ı√

NHL

∑
π1∈Π1

V (eff)π1 · q(1)π1
∗

)
. (82)

such that differentiating by q
(1)π1
∗ allows us to obtain

1

N

〈
V (eff)π · V (eff)π′⊤

〉
= −HL 1

Z

N∑
i=1

dZ

dq
(0)π1

∗,i dq
(0)π′

1
∗,i

∣∣∣∣∣
q
(0)
∗ =0

(83)

where q
(0)π1

∗,i indicates the i-th component of the vector q(0)π1
∗ ∈ RN , while q

(0)
∗ ∈ RN×HL

is the

matrix whose π1-th component is q(0)π1
∗ .

As in Sec. C, we proceed to compute the partition function (Eq. 82) by integrating all of the network
weights Θ, and finally the auxiliary variable t. We make the following observation. In Eq. 82, we
can write explicitly fµ = 1√

NHL

∑
π1∈Π1

V (eff)π1 · ξ(1)π1,µ. Furthermore, as in Sec. C.2.1 we can

define q(L+1) =
∑P

µ=1 t
µξ(L+1)µ and in general

q(ℓ)πℓ =

P∑
µ=1

tµξ(ℓ)πℓ,µ, πℓ ∈ Πℓ (84)

Then Eq. 82 takes the form

Z ∝
∫

DtDΘexp

(
−ı

P∑
µ=1

tµyµ +
ı√

NHL

∑
π1∈Π1

V (eff)π1 ·
(
q(1)π1 + q

(1)π1
∗

))
(85)

Renaming q(1)π1 + q
(1)π1
∗ → q(1)π1 , we see that the steps for computing Eq. 85 are identical to those

in Sec. C, until the integration over the input projection weights V (0).

D.2 Integration of the input projection weights

After integrating all of the network weights except the input projection V (0) we have

Z ∝
∫

Dt exp

(
−ı

P∑
µ=1

tµyµ

)
I (t) . (86)

with

I (t) ∝
∫

DV (0)

∫ [L+1∏
ℓ=2

dU (ℓ)

]
exp

{
+

N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=2

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
− 1

2

σ2

NHL

∑
π1,π′

1∈Π1

U
(2)π1,π

′
1

ext q(1)π1⊤ · q(1)π
′
1

}
(87)

We now substitute q(1)π1 → q(1)π1 + q
(1)π1
∗ in Eq. 87, as well as q(1)π1 = 1√

N0

∑
V (0) · q(0)π1

obtaining

28

I (t) ∝
∫

DV (0)

∫ [L+1∏
ℓ=2

dU (ℓ)

]
exp

{
+

N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=2

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
− 1

2

σ2

NHL

∑
π1,π′

1∈Π1

U
(2)π1,π

′
1

ext q
(1)π1⊤
∗ · q(1)π

′
1

∗

− 1

2

σ2

NN0HL

∑
π1,π′

1∈Π1

U
(2)π1,π

′
1

ext q(0)π1⊤ · V (0)⊤ · V (0) · q(0)π
′
1

− σ2

N
√
N0HL

∑
π1,π′

1∈Π1

U
(2)π1,π

′
1

ext q
(1)π1⊤
∗ · V (0) · q(0)π

′
1

}
(88)

The integral in V (0) in Eq. 88 has the form

∫ N∏
i=1

N0∏
j=1

dV
(0)
ij

 exp

− 1

2σ2

N∑
i=1

N0∑
j,j′=1

V
(0)
ij Aj,j′ V

(0)
ij′ −

N∑
i=1

N0∑
j=1

JijV
(0)
ij

 (89)

where we defined

Aj,j′ = δj,j′ +
σ2

N

σ2

N0HL

∑
π1,π′

1∈Π1

U
(2)π1,π

′
1

ext q
(0)π1

j q
(0)π′

1

j′ (90)

Jij =
σ2

N
√
N0HL

∑
π1,π′

1∈Π1

U
(2)π1,π

′
1

ext q
(1)π1

∗,i q
(0)π′

1
j (91)

where i = 1, . . . , N , while j, j′ = 1, . . . , N0, and with the notation q
(1)π1

∗,i and q
(0)π1

i we indicate the

i-th component of the vectors q(1)π1
∗ and q(0)π1 respectively.

We may consider Aj,j′ as the elements of an N0 ×N0 matrix A. With this notation, the partition
function after performing the integral Eq. 89 is

Z ∝
∫

Dt exp

(
−ı

P∑
µ=1

tµyµ

)∫ [L+1∏
ℓ=2

dU (ℓ)

]
×

× exp

{
N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=2

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
− N

2
ln det (A)

−1

2

σ2

NHL

∑
π1,π′

1∈Π1

q
(1)π′

1⊤
∗ q

(1)π1
∗

U
(2)π1,π

′
1

ext − σ2

N

σ2

N0HL

∑
ρ1,ρ′

1∈Π1

U
(2)π1,ρ1

ext q
(0)ρ1

j A−1
j,j′q

(0)ρ′
1

j′ U
(2)ρ′

1,π
′
1

ext

}
(92)

We now differentiate the partition function in Eq. 92 by q
(1)
∗ , as specified by Eq. 83, obtaining

1

N

〈
V (eff)π1 · V (eff)π′

1⊤
〉
=

1

Z
(
q
(0)
∗ = 0

) ∫ Dt exp

(
−ı

P∑
µ=1

tµyµ

)∫ [L+1∏
ℓ=2

dU (ℓ)

]
×

σ2

U
(2)π1,π

′
1

ext − σ2

N

σ2

N0HL

∑
ρ1,ρ′

1∈Π1

U
(2)π1,ρ1

ext q
(0)ρ1

j A−1
j,j′q

(0)ρ′
1

j′ U
(2)ρ′

1,π
′
1

ext

×

× exp

(
+
N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=2

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
− N

2
ln det (A)

)
(93)

29

The remaining steps are the same as in Sec. C. We use the matrix determinant lemma4 and the
Woodbury matrix identity5 respectively to express ln det (A) and A−1 in terms of a |Π1| × |Π1|
matrix R(1) with elements

R(1)π1,π
′
1 =

σ2

N

σ2

N0HL
q(0)π1⊤ · q(0)π

′
1 π1, π

′
1 ∈ ΠL

whose identity we enforce by Fourier representation of the Dirac delta function, introducing the
auxiliary |Π1| × |Π1| matrix U (1). The result of these operations is

1

N

〈
V (eff)π1 · V (eff)π′

1⊤
〉
=

1

Z
(
q
(0)
∗ = 0

) ∫ Dt exp

(
−ı

P∑
µ=1

tµyµ

)∫ [L+1∏
ℓ=1

dU (ℓ)

]
dR(1)×

σ2

[
U

(2)
ext

(
I−R(1) · U (2)

ext +R(1) ·
(
I+ U

(2)
ext ·R(1)

)−1

· U (2)
ext ·R(1) · U (2)

ext

)]π1,π
′
1

×

× exp

{
+

N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=2

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
+

1

2

N

σ2
Tr
(
U (1)R(1)

)
− 1

2
N ln det

(
I+ U

(2)
ext ·R(1)

)
− 1

2

σ2

NHL

∑
π1,π′

1∈Π1

U (1)π1,π
′
1q(0)π1⊤ · q(0)π

′
1

}
(94)

As in Sec. C, we solve the integral in R(1) with the saddle point method. The value of R(1) at the
saddle point is

R(1) = σ2U (1)−1 − U
(2)−1
ext (95)

Plugging this back into Eq. 94 we obtain

1

N

〈
V (eff)π1 · V (eff)π′

1⊤
〉
=

1

Z
(
q
(0)
∗ = 0

) ∫ Dt exp

(
−ı

P∑
µ=1

tµyµ

)∫ [L+1∏
ℓ=1

dU (ℓ)

]
×

× U (1)π1,π
′
1 exp

{
N

2
L
(
U (L+1)

)
+

N

2

L∑
ℓ=1

L
(
U (ℓ)·U (ℓ+1)−1

ext

)
− 1

2

σ2

NHL

∑
π1,π′

1∈Π1

U (1)π1,π
′
1q(0)π1⊤ · q(0)π

′
1

}
(96)

D.3 Integration of the auxiliary variable t

The calculation of the integral in t follows that in Sec. C.3. We obtain

1

N

〈
V (eff)π1 · V (eff)π′

1⊤
〉
=
〈
U (1)π1,π

′
1

〉
U(1)∼p(U(1))

(97)

where ⟨·⟩U(1)∼p(U(1)) denotes the expectation under the distribution

p
(
U (1)

)
∝
∫ [L+1∏

ℓ=2

dU (ℓ)

]
exp

(
−N

2
S

({
U (ℓ)

}L+1

ℓ=1

))
(98)

4det
(
I+Q · U ·Q⊤) = det

(
I+ U ·Q⊤ ·Q

)
, with Q and U being m×n and n×n matrices respectively.

5(I+Q · U ·Q⊤)−1
= I − Q ·

(
I+ U ·Q⊤ ·Q

)−1 · U · QT , with Q and U being m × n and n × n
matrices respectively.

30

where the action S is the same defined in Sec. C.3, Eq. 76. Exactly as in Sec. C.3, we compute the
expectation using the saddle point method, under the limit N,P → ∞, P

N → α ∈ R+. We therefore
arrive at the final result

1

N

〈
V (eff)π1 · V (eff)π′

1⊤
〉
= U (1)π1,π

′
1 (99)

where U (1) is the value at the saddle point of S.

31

Part III

Experiments
E Numerical evaluation of the order parameter

The order parameter in our theory is defined self-consistently as the minimum of an action,
Eq. 32. We determine this order parameter numerically, by minimizing the action using the
Adam optimizer [63]. As we describe in Appendix H.2.1, for each N (out of 10 choices among
N ∈ {a 10b, 104; a ∈ {1, 2, 5} , b ∈ {1, 2, 3}}), we search for the optimal temperature among 10
choices T ∈ {a 10−b, 1.0, 1.5; a ∈ {1, 2.5, 5, 7.5} , b ∈ {1, 2}}, resulting in 100 total configurations.
Each such run takes less than 12 hours on a single A100-40GB GPU. The learning rate is optimized
for each configuration by sweeping among {10−4, a 10−b; a ∈ {1, 5, 8} , b ∈ {0, 1, 2, 3}} for 10
iterations at the beginning of each run, and by selecting the one that achieves the lowest energy term
(averaged over these 10 first optimization steps).

F Hamiltonian Monte Carlo sampling

We sample the network weights from the posterior distribution (Eq. 19) using Hamiltonian Monte
Carlo sampling [64]. Specifically, we use the NumPyro implementation of the No U-Turn Sampler
(NUTS) [65, 66].

For N ≤ 100, we run 10 independent chains, consisting of 1000 warm-up steps and 1000 sampling
steps. We keep one sample every 10, for a total of 1000 samples. Due to limited computational
resources, the number of samples is smaller and varies for N > 100, while we did not take samples
at all for very large N ≥ 1000. Note however, that the large N regime is the least relevant to
sample, since the network is approaching the GP limit. The most important validation of our theory
is performed for the smaller values of N .

Each run sampling a model at a given N takes less than 12 hours on a single A100-40GB GPU. The
number of runs to sample all model widths for the hidden Markov chain classification task and the
one-shot image classification task is 12.

Regarding the temperature T of the Bayesian posterior Eq. 19, this is set differently depending on
the task. For the HMC task, we find the temperature T to not be relevant for improving the network’s
classification accuracy. We therefore set it to a small, but finite value of T = 0.01. In contrast, for
the one-shot image classification task, we find tuning the temperature to be particularly important
to prevent overfitting. Therefore, we always tune the temperature to the value giving the optimal
classification accuracy for the given network depth N . We refer to Appendix H.2.1 for details on the
temperature values and its optimization process.

G Hidden Markov chain classification task

Here we give additional details on the hidden Markov chain (HMC) classification task.

G.1 Task definition

Here we recall the task definition, providing a few additional details.

The µ-th example in the dataset corresponds to an hidden Markov chain qµ1 , . . . , q
µ
T of length T = 30,

alternating between two hidden states, qµt ∈ {+,−}. The transition probability to the opposite state

(”± ” → ”∓ ”) is pµ. In other words, describing the “±” states as one hot vectors + :

(
1
0

)
and

− :

(
0
1

)
, the transition probability matrix of the hidden Matkov chain is(

1− pµ pµ

pµ 1− pµ

)
.

32

good head

denoising (d)

adversarial #1 (a1)

adversarial #2 (a2)

paths legend:
good head

random headrandom head

ℓ = 1ℓ = 2

good (g)

b)

c)

a)

Figure 5: Hidden Markov chain task. (a) Schematics of the network and its attention paths. (b)
Kernels. Same-path kernels associated with the 4 paths shown in (a), total kernel in the GP limit, and
total kernel for N = 10 in the renormalized regime (RN). Examples on both the x and y axes are
ordered by class (the first half correspond to the first class, the second half correspond to the second
class). (c) Classification accuracy for a network consisting of only the good and denoising paths,
σ∥ = 1 and σ⊥ = 5. The figure is analogous to Fig. 2(f), with the difference that we have replaced
the random head involved in the denoising path with a uniform attention head.

The µ-th chain can belong to one of two classes, labeled yµ = ±1, depending on whether pµ = 0.3
or pµ = 0.7 respectively.

The network is presented with visible states - the input tokens - which are a noisy, higher dimensional
representation of the hidden states. These are given by

xµ
t = vqµt + ηµt

Here v± ∈ RN0 are two orthogonal feature vectors corresponding to the states “±”. We set N0 = 200
and

v+,i =

{√
2 if i ≤ 100

0 otherwise
v+,i =

{
0 if i ≤ 100√
2 otherwise

The term ηµt is a zero-mean Gaussian noise, with ⟨ηµt η
µ′T
t′ ⟩ = δµ,µ′δt,t′(σ

2
∥P

⊤
∥ · P∥ + σ2

⊥P
⊤
⊥ · P⊥),

where P∥ and P⊥ are the projectors along the subspace parallel or perpendicular to the plane spanned
by v+ and v−.

We also preprocess the dataset in two ways: adding to each chain a beginning-of-sentence (bos) token
of zeros at position t = 0, and concatenating to each token a one-hot positional encoding vector of
size T + 1 (i.e. the number of tokens including the bos token).

We use P = 100 examples for training and P ∗ = 1000 examples for testing. For this task, we find
the temperature T to not be relevant for improving the network performance. We therefore set it to a
small, but finite value of T = 0.01. A finite value of T is required to sample the predictor statistics,
hence comparing the theoretical results with samples.

G.2 Query and Key weights initialization

Here we give the details of the initialization of the fixed query and key weights.

We recall that we consider a network of L = 2 layers and H = 2 heads per layer, with readout from
the first token (i.e., t∗ = 1). The network has a total of 4 attention paths (Fig. 5(a)). For the first head

33

of each layer, we make a good choice of the fixed query and key weights, which defines a “good”
attention path, achieving a good classification accuracy (cf. Sec. 4.1 in the main text). The remaining
heads are initialized at random. Below we give the initialization details of these good and random
heads.

Let us recall here the definition of the attention matrix Ω(ℓ)h ∈ RT×T for head h at layer ℓ. Its matrix
elements are defined as

Ω
(ℓ)h
st = ζ

(
1

N0

√
G
x⊤
s ·W (ℓ)h⊤

K ·W (ℓ)h
Q · xt

)
, W

(ℓ)h
Q ,W

(ℓ)h
K ∈ RG×(N0+T+1)

where s, t = 0, . . . , T , while ζ is the softmax function, applied along the direction of the token index
s, and G is the dimension of the query-key feature space. We directly initialize the query-key matrix
product W (ℓ)h := W

(ℓ)h⊤
K ·W (ℓ)h

Q . Note that W (ℓ)h is an [N0 + (T + 1)]× [N0 + (T + 1)] matrix,
because we have appended a one-hot positional encoding vector to the N0-dimensional input tokens
(see Sec. G.1). In order to define the heads, it is convenient to decompose W (ℓ)h into the block
structure

W (ℓ)h = β

(
W

(ℓ)h
ff W

(ℓ)h
fp

W
(ℓ)h
pf W

(ℓ)h
pp

)
where W

(ℓ)h
pp ∈ R(T+1)×(T+1) acts only on the one-hot positional encoding subspace, W (ℓ)h

ff ∈
RN0×N0 acts only on the subspace of the tokens’ “features”, and W

(ℓ)h
fp ,W

(ℓ)h⊤
pf ∈ RN0×(T+1) mix

these two subspaces. The scalar 0 < β < ∞ is a parameter controlling the “hardness” of the softmax
function (for β → ∞, the softmax becomes a hardmax). We set it to β = 10 for all heads.

G.2.1 Good heads

Let us define the good heads, i.e. W (ℓ)h for h = 1 and ℓ = 1, 2. Note that the goal here is not to
define heads that are provably good at solving the task, but rather to make a good guess for their
initialization, based on our knowledge of the nature nature of the task.

First layer. For the head h = 1, ℓ = 1 we define

W
(1)1
ff =

1

N0

(
v+ − v−

) (
v+ − v−

)⊤
, W

(1)1
fp = W

(1)1
pf = 0

and [
W (1)1

pp

]
tt′

=
3

2
δ0,t + 1δt,t′+1 t, t′ = 1, . . . , T

where
[
W

(1)1
pp

]
tt′

is the component of W (1)1
pp at indices t,t′.

Second layer. The head h = 1, ℓ = 2 implements uniform attention Ω
(2)1
st = 1

T+1 , ∀s, t =

0, . . . , T . It is defined by W
(1)1
ff = W

(1)1
fp = W

(1)1
pf = 0, and W

(1)1
pp = 1.

As discussed in the main text, the attention path defined by the good heads achieves a good classi-
fication accuracy. We can give an intuition as to why this is the case. Intuitively speaking, in the
limit of a hardmax attention (β → ∞) and no noise

(
σ∥, σ⊥ → 0

)
, the attention path is “counting”

the number of times a token has remained in the same state after a new step in the Markov chain.
Indeed, the first head “detects” when there has not been a change of state between adjacent tokens.
It does so by either attending nearby tokens if and only if they are in the same state, or attending
“nothing” (in the sense of the zero beginning-of-sentence token). Then, the second head sums over
the tokens attended by the first head, thereby “counting” the number of times a token has not changed
state. More generally, outside the above mentioned limit, we can say that the good attention path
focuses on the two most relevant pieces of information needed to solve the task: First, it preferentially
pays attention to nearby tokens, which is important because of the memoryless nature of the Markov
process; Second, it is able to detect the type of transition occurrying between nearby tokens (i.e.
remaining in the same state, or changing state), which is important to distinguish between the two
classes, since they differ by their transition probability.

34

G.2.2 Random heads

Let us define the random heads, i.e. W (ℓ)h for h = 2 and ℓ = 1, 2. These are initialized with
Gaussian identically and independently distributed entries[

W (ℓ)h
pp

]
i,j

∼ 1

N0
N (0, 1)

[
W (ℓ)h

pp

]
t,t′

∼ N (0, 1)[
W

(ℓ)h
pf

]
t,j

∼ 1√
N0

N (0, 1)
[
W

(ℓ)h
fp

]
i,t′

∼ 1√
N0

N (0, 1)

∀i, j = 1, . . . N0 and ∀t, t′ = 0, . . . , T . Note that we take care of proper normalization of the above
matrices, depending on which subspaces they act upon (i.e. the “features” or the “one-hot positions”
subspaces).

As mentioned in the main text (Sec. 4.1), the random heads introduce three additional paths: two
adversarial paths, deteriorating the performance of the good path, and one “denoising” path, improving
the good path performance. We can get an intuition of why this is so by looking at their associated
same-path kernels, Fig. 5(b). We can see that both the good-path and the two adversarial-path kernels
appear very structured, with sharp excursions in their values for different pairs of examples. However,
while the good-path kernel structure appears to be aligned with the task, well distinguishing the two
classes, the adversarial-path kernels structure appears random w.r.t. to the task. We can expect that
adding these adversarial kernels to the good one would destroy it’s task-relevant structure, as can
be visually understood from the total GP kernel. In contrast, the total renormalized kernel, in which
the adversarial-path kernels do not contribute, preserves the task-relevant structure. Differently, the
denoising-path kernel appears less structured and more uniform, with weaker noisy excursions. In
fact, what we suspect is that there is nothing special about the specific realization of the random head
involved in the denoising path, which is just implementing a noisy version of uniform attention. We
verify this by substituting the random head with one implementing uniform attention and repeating
the same experiment shown in Fig. 2(f) in the main text. This is shown in Fig. 5(c), were we plot
the classification accuracy of the network consisting of the good and denoising paths alone, for the
case of σ∥ = 1 and σ⊥ = 5. We can see that the results are completely analogous to those shown in
Fig. 2(f) in the main text.

H One-shot image classification task

H.1 Training with gradient descent

Here we provide details of gradient descent training of our transformer-like model (Sec. 2) for the
one-shot image classification task. We use the Omniglot dataset with the standard 1028/172/432-splits
for the train/validation/test class splits [67] as implemented in torchmeta [68]. We use the Adam
optimizer [63] using an initial learning rate of 3e−4 and a batch size of 128 for 10 epochs. We check
the validation accuracy every 1000 steps and select the final model as the one that achieves the best
validation accuracy. We use the binary regression loss as in the theory. Unlike in the theory, here
we train all the model parameters including the key and query projection weight matrices. We set
N = 512. All the models considered in this work can be trained on a single A100-40GB GPU within
less than 2 hours.

H.2 Additional results

Here we report further results on the one-shot image classification task.

H.2.1 Optimal temperature

For the Bayesian model, we find tuning the Gibbs temperature T to be particularly important to
optimally perform the task. All results for the network’s classification accuracy presented in Sec. 4.2
and below are therefore shown at the optimal temperature for the given N , obtained by scanning the
set of temperatures T ∈ {a 10−b, 1.0, 1.5}, where a ∈ {1, 2.5, 5, 7.5} and b ∈ {1, 2}.

Note that temperature is optimized only for the in-distribution classification accuracy. In particular,
we do not optimize for temperature when testing out-of-distribution, but rather keep the optimal
temperature determined by evaluating the network in-distribution.

35

L=2 H=4a)

b) sampled theory

L=3 H=3

Figure 6: (a) Classification accuracy for varying N , tested both in-distribution (Omniglot) and out-of-
distribution (MNIST, fashionMNIST). We report the results for the network architecture discussed in
the main text (L = 2, H = 4) and a deeper one with one more layer (L = 3, H = 3). Theory: blue
crosses, joined by blue curve. GP limit: red line. (b) Order parameter for the L = 3, H = 3 network,
for N = 10. Similarly to the L = 2, H = 4 network shown in the main text, the order parameter
showcases attention paths interplay, presenting strong off-diagonal elements that deviate from the GP
limit.

For the network considered in the main text, we find the following optimal temperatures: T = 0.5 for
N = 10, 20, 50, 100; T = 0.25 for N = 200, 500, 1000; T = 0.1 for N = 2000, 5000; T = 0.075
for N = 10000. Note that the optimal temperature grows consistently as N becomes smaller. This
can be readily understood by inspecting the equation for the mean predictor (Eq. 29), which we report
here for convenience

⟨f∗⟩ = k⊤ · (K + T I)−1 · Y
where we recall that

Kµν =
1

HL

∑
π,π′∈Π

Uππ′
Cµν

ππ′ µ, ν = 1, . . . , P

where Cππ′ is a path-path kernel. For decreasing N , we typically observe the order parameter
growing in overall magnitude, which in turn affects the magnitude of the kernel K. As a consequence,
also the optimal temperature needs to be rescaled. The fact that U grows in magnitude for smaller
N can be understood from the energy term (Eq. 34) in the action (Eq. 32). We discussed in Sec. 3
that this can be seen as the negative log-likelihood of the labels vector Y under a centered Gaussian
distribution, whose covariance matrix is the kernel K. While the most effective way to minimize
the energy term is that described in the main text (Sec. 3), i.e. aligning the kernel with the task, one
more trivial way is to increase the log-likelihood variance in all directions (i.e. increasing the kernel’s
overall magnitude). In all of our experiments, we always observe this phenomenon of growing
magnitude to a certain extent.

36

a)

c) d)

b) accuracy after pruning

heads

0 83.8

1 81.8 88.2

2 80.2

71.6 82.3

88.9

3

pruned
omniglot fashion

MNIST

86.6

88.2

58.8

88.9

MNIST

86.6

accuracy after pruning

heads

0 86.0

1 85.5 81.0

2 84.6

83.7 83.1

79.0

3

pruned
omniglot fashion

MNIST

79.8

91.1

90.3

82.4 77.94 90.9

80.4 80.65 87.6

90.8

MNIST

91.9

Figure 7: Heads pruning experiment. (a,c) Head score (blue) and performance drop (red) after
pruning the head, for the network trained with gradient descent. (a) smaller network considered in the
main text (L = 2, H = 4); (c) larger network (L = 2, H = 8) (b,d) Classification accuracy of the
model trained with gradient descent, after pruning a growing number of heads, in order of their head
score. (b) smaller network considered in the main text (L = 2, H = 4); (d) larger network (L = 2,
H = 8)

H.2.2 Classification accuracy

We perform the same experiments on the classification accuracy for a deeper network (L = 3, H = 3).
The results are shown in Fig. 6. Note that here we also report the test accuracy on MNIST, which was
not shown in the main text. We can see that the results discussed in the main text are confirmed also
for the deeper network. In particular, for the in-distribution classification accuracy, we consistently
observe a performance improvement in the renormalized regime, with respect to the GP limit. When
testing out of distribution, we can see that in the best cases (fashionMNIST for (L = 2, H = 4);
MNIST for (L = 3, H = 3)), the performance improvement is preserved, or at the very worst
(MNIST for (L = 2, H = 4); fashionMNIST for (L = 3, H = 3)) the GP and renormalized regime
show comparable performance.

H.2.3 Heads pruning

We repeat the head pruning experiment for a network with more heads per layer (L = 2, H = 8).
We find that we can prune with marginal performance loss a similar percentage of heads as in the
smaller network. The results are shown in Fig. 7. Again, we see that the head scores determined by
our theory are qualitatively in line with the performance loss caused by pruning the corresponding
head (Fig. 7(c)). Note that we do not expect a perfect alignment between the two quantities. The
most important fact to verify is that the low scoring heads correspond to a small drop in performance.
In Fig. 7(d) we show the classification accuracy after pruning an increasing number of heads, in order
of their score. Up to 4 heads (25% of the network size) the in-distribution performance has only a
marginal drop, identical to that obtained after pruning 2 heads in the smaller network considered in
the main text (also accounting to 25% of its size, Fig. 7(b)). We can also see that pruning up to three
heads improves the out-of-ditribution performance on fashionMNIST, as we also observed for the
smaller network.

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We confirm that main claims in our abstract and introduction accurately reflect
our contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec. 2 paragraph "Comparison to the Standard Transformer", and Sec. 5
paragraph "Limitations and Outlook".
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

38

Answer: [No]
Justification: The paper uses the methods and approach of theoretical physics. As such,
it provides theoretical results in the form of formulae (clearly enunciated in Sec. 3 and
Appendix B), alongside their exact derivations (provided in completeness in Appendices C
and D). All definitions and assumptions are stated in Sections 2 and 3, as well as Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe all technical details in the paper. In particular, experimental
details are provided in Sec. 4 and Appendix III. Our code and scripts are also provided in
the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

39

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is provided in the supplemental material. We will make it publicly
available upon acceptance. The datasets we use in our experiments are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all such technical details/hyper-parameters in Appendices E, F and
H.1. Our code and scripts are also provided in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The theory and sampling of the classification accuracy and order parameter
have no error bars by definition. Our general predictions regarding the behavior of these
quantities at different network widths are confirmed on two very different tasks; Furthermore,
for the second task (one-shot image classification) we confirm these predictions for three
model-configurations that are different in terms of number of layers and heads.
Guidelines:

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the corresponding information in Appendices E, F and H.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have nothing specific to report here.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We have nothing specific to report here.

41

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Parts of the code we use are originally forked from some public repositories.
We explicitly acknowledge this and include the corresponding license files/text.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

42

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The documentations of our code are provided in the readme files in the
supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We have no such experiment in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We have no such experiment in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

43

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

44

	Introduction
	Model
	Theory
	Statement of theoretical results
	Results interpretation and implications for generalization capability

	Experiments
	Hidden Markov chain sequence classification
	Results

	One-shot image classification
	Results

	Conclusion and Discussion
	I Further discussion on related theory works
	II Theory
	Definitions
	Variables and parameters
	Model definition
	Posterior distribution
	Attention paths notation

	Results enunciation
	Predictor statistics
	Order parameter interpretation

	Derivation of the predictor statistics
	Partition function
	Weights integration
	Integration of the auxiliary variable t

	Derivation of the order parameter interpretation
	Partition function
	Integration of the input projection weights
	Integration of the auxiliary variable t

	III Experiments
	Numerical evaluation of the order parameter
	Hamiltonian Monte Carlo sampling
	Hidden Markov chain classification task
	Task definition
	Query and Key weights initialization

	One-shot image classification task
	Training with gradient descent
	Additional results

