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Abstract

Policy alignment of large language models refers to constrained policy optimization, where
the policy is optimized to maximize a reward while staying close to a reference policy based
on an f -divergence like KL divergence. The best of n alignment policy selects the sample
with the highest reward from n independent samples. Recent work shows that the reward
improvement of the aligned policy scales as

√
KL, with an explicit bound on the KL for

best of n policies. We show that this
√

KL bound holds if the reference policy’s reward has
sub-gaussian tails. For best of n policies, the KL bound applies to any f -divergence through
a reduction to exponential order statistics using the Rényi representation. Tighter control
can be achieved with Rényi divergence if additional tail information is known. Finally, we
demonstrate how these bounds transfer to golden rewards, resulting in decreased golden
reward improvement due to proxy reward overestimation and approximation errors.

1 Introduction

Aligning Large Language Models (LLMs) with human preferences allows a tradeoff between maintaining the
utility of the pre-trained reference model and the alignment of the model with human values such as safety
or other socio-technical considerations. Alignment is becoming a crucial step in LLMs training pipeline,
especially as these models are leveraged in decision making as well as becoming more and more accessible
to the general public. Policy alignment starts by learning a reward model that predicts human preferences,
these reward models are typically fine-tuned LLMs that are trained on pairwise human preference data
(Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022). The reward is then
optimized using training time alignment i.e via policy gradient based reinforcement learning leading to the
so called Reinforcemnent Learning from Human Feedback (RLHF) (Christiano et al., 2017). RLHF ensures
that the reward is maximized while the policy π stays close to the initial reference policy πref in the sense
of the Kullback-Leibler divergence KL(π||πref). Other variants of these training time alignment have been
proposed via direct preference optimization (Rafailov et al., 2024) (Zhao et al., 2023) (Ethayarajh et al.,
2024). Another important paradigm for optimizing the reward is test time alignment via best of n sampling
from the reference policy and retaining the sample that maximizes the reward. The resulting policy is known
as the best of n policy. The best of n policy is also used in controlled decoding settings (Yang & Klein, 2021;
Mudgal et al., 2023) and in fine-tuning LLMs to match the best of n policy responses (Touvron et al., 2023).

Gao et al. (2023) and Hilton & Gao (2022) studied the scaling laws of reward models optimization in both the
RL and the best of n setups. Gao et al. (2023) distinguished between “golden reward” that can be thought of
as the golden human preference and “proxy reward” which is trained to predict the golden reward. For proxy
rewards Gao et al. (2023) found experimentally for both RL and best of n policies that the reward improve-
ment on the reference policy scales as

√
KL(π||πref). Similar observations for reward improvement scaling in

RL were made in (Bai et al., 2022). For golden rewards, Gao et al. (2023) showed for both RL and best of n
policies that LLMs that optimize the proxy reward suffer from over-optimization in the sense that as the pol-
icy drifts from the reference policy, optimizing the proxy reward results in deterioration of the golden reward.
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This phenomena is referred to in (Gao et al., 2023) (Hilton & Gao, 2022) as Goodhart’s law. A qualitative
plot of scaling laws discovered in (Gao et al., 2023) is given in Figure 1. For the best of n policy, most works
in this space assumed that KL(π||πref) = log(n) − n−1

n (Stiennon et al., 2020; Coste et al., 2024; Nakano
et al., 2021; Go et al., 2024; Gao et al., 2023). Recently Beirami et al. (2024) showed that this is in fact an
inequality under the assumption that the reward is one to one map (a bijection) and for finite alphabets.

Figure 1: Qualitiative plot of centered rewards vs. KL of Proxy and Gold Rewards for both Best of n and
RL policies. (See Fig. 1 a) and b) in (Gao et al., 2023) for scaling laws in policy alignment).

The main contributions of this paper are :

1. In Theorem 1 (Section 2), we provide a new proof for the best of n policy inequality KL(π||πref) ≤
log(n) − n−1

n , showing it results from the data processing inequality of KL. We extend this beyond
Beirami et al. (2024)’s setup of one-to-one rewards and finite alphabets to surjective rewards and
beyond finite alphabets, also giving conditions for equality and generalizing to f -divergences and
Rényi divergences.

2. In Section 3, we show that the policy improvement scaling laws in (Gao et al., 2023) are information-
theoretic upper bounds, derived from transportation inequalities with KL under sub-gaussian reward
tails. We discuss how the KL dependence is driven solely by the reward tails and can only improve
if they are fatter than sub-gaussian (e.g., sub-gamma or sub-exponential).

3. In Theorem 4, we examine the tightness of these bounds when the optimized policy’s tails are known,
deriving new transportation inequalities for Rényi divergence Dα for α ∈ (0, 1). We show that the√

KL upper bound cannot be met, reflecting Goodhart’s law (Gao et al., 2023).

4. We show in Section 3.3, that
√

KL policy improvement upper bounds for best of n polices with
bounded and calibrated rewards are loose and tighter upper bounds can be obtained leveraging our
best of n upper bounds for the total variation distance.

5. In Section 4, we study the transfer of transportation inequalities from proxy to golden rewards,
proving that golden reward improvement is limited by the proxy reward’s overestimation, as reported
empirically in (Gao et al., 2023).

Our work answers positively the following question:

“Without performing alignment, can we predict an upper bound on the expected reward for a given KL level
given the distribution of the reward of the reference model?" Indeed from the tails of the reward under the
reference model we can predict the upper bound for alignment as shown in Figures 7 and 8.

2



Under review as submission to TMLR

2 The Alignment Problem

2.1 RLHF: A Constrained Policy Optimization Problem

Let X be the set of prompts and Y be the set of responses y ∈ Y from a LLM conditioned on a prompt
x ∈ X . The reference LLM is represented as policy πref(y|x), i.e as a conditional probability on Y given a
prompt x ∈ X . Let ρX be a distribution on prompts, and a r a reward, r : X × Y → R, r represents a safety
or alignment objective that is desirable to maximize.
Given a reference policy πref , the goal of alignment is to find a policy π∗ that maximizes the reward r and
that it is still close to the original reference policy for some positive ∆ > 0:

π∗
y|x = arg max

πy|x

Ex∼ρX Ey∼π(.|x)r(x, y)

s.t
∫

X
KL(π(y|x)||πref(y|x))dρX (x) ≤ ∆, (1)

where KL(π(y|x)||πref(y|x)) = Ey∼π(·|x) log
(

π(y|x)
πref(y|x)

)
. With some abuse of notation, we write π(x, y) =

π(y|x)ρX (x) and πref(x, y) = πref(y|x)ρX (x). Let P(X × Y) be joint probability defined on X × Y that has
ρX as marginal on X . Hence we can write the alignment problem (1) in a more compact way as follows:

sup
π∈P(X ×Y)

∫
rdπ s.t KL(π||πref) ≤ ∆. (2)

For γ > 0, we can also write a penalized form of this constrained policy optimization problem as follows1:

sup
π∈P(X ×Y)

∫
rdπ − 1

γ
KL(π||πref).

It is easy to see that the optimal policy of the penalized problem is given by:

πγ,r(y|x) = exp(γr(x, y))πref(y|x)∫
exp(γr(x, y))dπref(y|x) ρX almost surely. (3)

The constrained problem (2) has a similar solution (See for e.g (Yang et al., 2024)):

πλ∆,r(y|x) =
exp( r(x,y)

λ∆
)πref(y|x)∫

exp( r(x,y)
λ∆

)dπref(y|x)
ρX almost surely, (4)

where λ∆ > 0 is a lagrangian that satisfies
∫

X KL(πλ∆,r(y|x)||πref(y|x))dρX (x) = ∆.

2.2 Best of n Policy Alignment

Let X be the random variable associated with prompts such that Law(X) = ρX . Let Y be the random
variable associated with the conditional response of πref given X. Define the conditional reward of the
reference policy :

R(Y )|X := r(X,Y ) where Y ∼ πref(.|X),
we assume that R(Y )|X admits a CDF denoted as FR(Y )|X and let F−1

R(Y )|X be its quantile:

F
(−1)
R(Y )|X(p) = inf{η : FR(Y )|X(η) ≥ p} for p ∈ [0, 1].

Let Y1 . . . Yn be independent samples from πref(.|X). We define the best of n reward as follows:

R(n)(Y )|X = max
i=1...n

R(Yi)|X, (5)

this the maximum of n iid random variables with a common CDF FR(Y )|X . The best of n policy corresponds
to Y (n)|X := arg maxi=1...n r(X,Yi). We note π(n)

r,ref(.|X) the law of Y (n)|X. π(n)
r,ref is referred to as the best

of n alignment policy. We consider two setups for the reward:
1The regularizer 1

γ
is usually referred to as β.
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Assumption 1 We assume that the reward r is a one to one map for a fixed x, and admits an inverse
hx : R → Y such that hx(r(x, y)) = y.

This assumption was considered in (Beirami et al., 2024). Nevertheless this assumption is strong and not
usually met in practice, we weaken this assumption to the following:

Assumption 2 We assume that there is a stochastic map HX such that HX(RY |X) d= Y |X and
HX(RY (n)|X) d= Y (n)|X.

Under Assumption 2, the reward can be surjective which is more realistic but we assume that there is
a stochastic map that ensures invertibility not point-wise but on a distribution level. Our assumption
means that we have conditionally on X: R|X → Y |X form a markov chain i.e exists A(Y |R,X) so that
PY |X = A(Y |R,X)PR|X , and PY (n)|X = A(Y |R,X)PR(n)|X . Note that Assumption 2, will always hold from
Bayes rule as long as this Markov kernel A is well defined.

Best of n Policy KL Guarantees: A reduction to Exponentials and Data Processing Inequalities
In what follows for random variables Z,Z ′ with laws pZ , pZ′ we write interchangeably: KL(pZ ||pZ′) =
KL(Z||Z ′).

Our goal in this section is to relate the Kullback-Leibler (KL) divergence KL(Y (n)||Y |X), which measures the
difference between the best of n policy (Y (n)|X) and the reference policy (Y |X), to KL(R(n)(Y )||R(Y )|X),
which quantifies the divergence between the reward distribution under the best of n policy (R(n)(Y )|X) and
the reward distribution under the reference policy (R(Y )|X). Another objective is to express this latter
divergence as a function of n. To achieve this, we will leverage a powerful tool in information theory known
as Strong Data Processing Inequalities (DPI).

In information theory, the Data Processing Inequality (DPI) (Polyanskiy & Wu, 2023) establishes a funda-
mental limit on how information evolves under transformations. It states that the Kullback-Leibler (KL)
divergence between two random variables, U and U ′, cannot increase after applying the same transformation
to both. This transformation can be either a deterministic function h or a probabilistic mapping, commonly
referred to as a “channel” and denoted by H = PV |U . Formally, DPI asserts that:

KL(V ||V ′) ≤ KL(U ||U ′), (6)

where V and V ′ are the transformed versions of U and U ′, respectively. This ensures that information
content, as measured by KL divergence, cannot increase through processing. DPI is tight if h is a one to one
function (Polyanskiy & Wu, 2023).

U

U ′

h or PV |U

V

V ′

KL(V ||V ′) ≤ KL(U ||U ′)

Figure 2: Data Processing Inequality for the KL divergence.

Under Assumption 1, the reward function is a bijection, allowing us to transform the rewards R(n)(Y )|X =
R(Y (n))|X and R(Y )|X into Y (n)|X and Y |X via the inverse mapping hX of r(X, .). On the other hand,
under Assumption 2, this transformation is achieved through the Markov kernel A(Y |R,X).
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These transformations are illustrated in Figure 3. By applying the strong Data Processing Inequality for the
KL divergence, we obtain:

KL
(
π

(n)
r,ref ||πref|X

)
= KL(Y (n)||Y |X) ≤ KL(R(n)(Y )||R(Y )|X). (7)

Inequality (7) is tight under Assumption 1.

R(n)(Y )|X

R(Y )|X

r−1 = hX or A(Y |R,X)

Y (n)|X

Y |X

Figure 3: From rewards to outputs via r−1 under Assumption 1 or via the stochastic map (Markov kernel
A) under Assumption 2.

Turning to KL(R(n)(Y )||R(Y )|X), our goal is to bound or express it as a function of n. To achieve this, we
aim to leverage the Data Processing Inequality (DPI). Specifically, we seek to transform a pair of random
variables, for which the KL divergence has a known analytical expression in terms of n, into R(n)(Y )|X and
R(Y )|X, respectively.

Transporting one random variable to another is at the core of optimal transport theory. In the following, we
demonstrate that an exponential random variable E and the maximum of n i.i.d. exponentials, E(n), allow
such transformation via the optimal transport map.

Let E ∼ Exp(1). The optimal transport map TX = F−1
R(Y )|X ◦ FE from the exponential distribution E to

R(Y )|X (see, for example, Theorem 2.5 in (Santambrogio, 2015), noting that E is atomless while R(Y )|X
can take discrete values) allows us to express:

R(Y )|X d= TX(E), (8)

where d= denotes equality in distribution. This representation illustrates that the target reward distribution
can be generated through the optimal transport map TX = F−1

R(Y )|X ◦ FE as illustrated below:

e u r

Exponential E ∼ Exp(1) Target R

FE(e)

U ∼ Uniform(0, 1)

F−1
R (u)

Figure 4: Optimal tansport map from an Exponentially distributed random variable E to the random variable
R representing the reward.

On the other hand, let R(1)(Y )|X ≤ · · · ≤ R(n)(Y )|X be the order statistics of the rewards of n independent
samples Yi, i = 1 . . . n, Yi ∼ πref(.|X). The order statistics refer to sorting the random variable from the
minimum (index (1)) to the maximum (index (n)). Consider n independent exponential E1, . . . En, where
Ei ∼ Exp(1), and their order statistics E(1) ≤ E(2) ≤ . . . E(n). The Rényi representation of order statistics
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(Rényi, 1953), similar to the Optimal Transport (OT) representation allows us to express the distribution
of the order statistics of the rewards in terms of the order statistics of exponentials as follows:(

R(1)(Y )|X, . . . , R(n)(Y )|X
)
d=
(
F−1
R(Y )|X ◦ FE(E(1)), . . . , F−1

R(Y )|X ◦ FE(E(n))
)

d=
(
TX(E(1)), . . . TX(E(n))

)
(9)

The central idea in the Rényi representation is that the mapping TX = F−1
R(Y )|X ◦ FE is monotonic and

hence ordering preserving and by the OT representation each component is distributed as R(Y )|X. See
(Boucheron & Thomas, 2012) for more account on the Rényi representation of order statistics. Note that
we could have used uniform random variables instead of exponential, we use exponentials to stay faithful to
Rényi representation as exponential order statistics have nice properties.

Thanks to the mapping TX , we can transform an exponentially distributed random variable E as well as
the maximum of n iid Exponentials E(n) to R(Y )|X and R(n)(Y )|X respectively. This transformation is
illustrated in Figure 5.

E(n)

E

TX

R(n)(Y )|X

R(Y )|X

Figure 5: Transforming exponential and maximum of exponentials to the reward and maximum reward
random variables via the optimal transport map TX , by virtue of the OT representation (8), and the Rényi
representation (9) respectively. We recognize TX as the “channel” in Data Processing Inequalities.

Hence using the OT representation in (8) and the Rényi representation of the maximum (9) and the data
processing inequality, we can bound the KL between the rewards to a KL on functions of exponentials and
their order statistics:

KL
(
R(n)(Y )||R(Y )

∣∣∣X) = KL(TX(E(n))||TX(E)) ≤ KL(E(n)||E), (10)

the tightness of this inequality depends on the properties of the map TX and the space Y.

Hence chaining the two data processing inequalities given in (7) and (10) we obtain finally :

KL
(
π

(n)
r,ref ||πref|X

)
≤ KL

(
R(n)(Y )||R(Y )

∣∣∣X) ≤ KL(E(n)||E), (11)

tightness of each inequality depends on the tightness of each DPI.

The following Lemma gives a closed form expression for KL(E(n)||E):

Lemma 1 (KL Between Exponential and Maximum of Exponentials) Let E ∼ Exp(1), and
E1, . . . En be iid exponentials and E(n) their maximum, we have:

KL(E(n)||E) = log(n) − n− 1
n

. (12)

The following result establishes the the best of n policy KL expression or bounds in terms of n :
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Theorem 1 The best of n policy satisfies under (i) Assumption 1 (reward one to one) and for finite Y or
under (ii) Assumption 2 (existence of stochastic “inverse”) :

KL(π(n)
r,ref ||πref) ≤ KL(E(n)||E) = log(n) − n− 1

n
. (13)

Under Assumption 1, for infinite Y and assuming FR(Y |X) is continuous and strictly increasing for all X we
have:

KL(π(n)
r,ref ||πref) = KL(E(n)||E) = log(n) − n− 1

n
. (14)

Divergence f(x) Bound on Df (π(n)
r,ref ||πref)

KL x log(x) log(n) − n−1
n

Chi-squared (x− 1)2 (n−1)2

2n−1
Total Variation f(x) = 1

2 |x− 1| ( 1
n ) 1

n−1 − ( 1
n ) n

n−1

Hellinger distance (1 −
√
x)2 2 (1−

√
n)2

n+1
Forward KL − log(x) n− 1 − log(n)

α Rényi Divergence NA 1
(α−1) log

(
nα

α(n−1)+1

)
Table 1: Best of n policy f -Divergence and α Rényi Divergence Bounds.

Beirami et al. (2024) showed this result under condition (i) which is not a realistic setting and used the
finiteness of Y to provide a direct proof. Our analysis via chaining DPI and using OT and Rényi repre-
sentations to reduce the problem to exponentials allows us to extend the result to a more realistic setup
under condition (ii) i.e the existence of a stochastic “inverse", without any assumption on Y. Furthermore
our analysis sheds the light on the underlying assumptions of invertible reward and continuous space Y that
was implicitly made in previous works that stated this bound as an equality (Stiennon et al., 2020) (Coste
et al., 2024; Nakano et al., 2021; Go et al., 2024) (Hilton & Gao, 2022) (Gao et al., 2023). Singh et al. (2025)
recently built on this result to analyze the KL divergence of best of n in diffusion models.

Our approach of reduction to exponentials using Rényi representation of order statistics and data processing
inequalities extends to bounding the f -divergence Df (π(n)

r,ref ||πref) as well as the α Rényi divergence. The
Rényi divergence for α ∈ (0, 1) ∪ (1,∞) is defined as follows:

Dα(P ||Q) = 1
(α− 1) log

(∫
pα(x)q1−α(x)dx

)
the limit as α → 1 coincides with KL, i.e: D1(P ||Q)) = KL(P ||Q). These bounds are summarized in Table
1. Full proofs and theorems are in the Appendix.

Best of n-Policy Dominance on the Reference Policy. The following proposition shows that the best
of n policy leads to an improved reward on average:

Proposition 1 R(n) dominates R in the first order dominance that is R(n) dominates R on all quantiles:
QR(n)(t) ≥ QR(t),∀t ∈ [0, 1]. It follows that we have ER(n) ≥ ER.

Best of n Policy and RL Policy The following proposition discusses the sub-optimality of the best of n
policy with respect to the alignment RL objective given in (1):

Proposition 2 Assume a bounded reward in [−M,M ]. For ∆ > 0 and n = exp(∆) the best of n policy
π

(n)
r,ref and the ∆ Constrained RL policy πλ∆,r (given in (4)) satisfy:

KL(π(n)
r,ref ||πλ∆,r) ≤

√
2πM(e

2M
λ∆ − 1)

λ∆
exp

(
−∆

2

)
.
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A similar asymptotic result appeared in (Yang et al., 2024) for ∆ → ∞, showing as n → ∞,
KL(π(n)

r,ref ||πλ∆,r) → 0, we provide here a non asymptotic result for finite n and finite ∆. This result shows
that the best of n policy can be seen as approximation of the RL policy for n = exp(∆), where ∆ is the
desired KL level.

3 Reward Improvement Guarantees Through Transportation Inequalities

Notations Let X be a real random variable. The logarithmic moment generating function of X is defined
as follows for λ ∈ R: ψX(λ) = logEXeλ(X−EX). X is said to be sub-Gaussian with variance σ2 if : ψX(λ) ≤
λ2σ2

2 for all λ ∈ R. We denote SubGauss(σ2) the set of sub-Gaussian random variables with variance σ2
ref .

X is said to be sub-Gamma on the right tail with variance factor σ2 and a scale parameter c > 0 if :
ψX(λ) ≤ λ2σ2

2(1−cλ) for every λ such that 0 < λ < 1
c . We denote SubGamma(σ2, c) the set of left and right tailed

sub-Gamma random variables. Sub-gamma tails can be thought as an interpolation between sub-Gaussian
and sub-exponential tails.

Scaling Laws in Alignment It has been observed empirically (Coste et al., 2024; Nakano et al., 2021;
Go et al., 2024; Hilton & Gao, 2022; Gao et al., 2023) that optimal RL policy πλ∆,r satisfy the following
inequality for a constant σ2

ref estimated from data :

Eπλ∆,r
r − Eπrefr ≤

√
2σ2

refKL(πλ∆,r||πref).

A similar scaling for best of n policy :

E
π

(n)
r,ref

r − Eπrefr ≤

√
2σ2

ref

(
logn− n− 1

n

)
,

and those bounds are oftentimes tight even when empirically estimated from samples.

The case of Bounded Rewards and Pinsker Inequality This hints that those bounds are information
theoretic and independent of the alignment problem. Indeed if the reward was bounded, a simple application
of Pinsker inequality gives rise to

√
KL scaling. Let TV be the total variation distance, we have: TV(π, πref) =

1
2 sup||r||∞≤1 Eπr − Eπrefr ≤

√
1
2 KL(π||πref). Hence we can deduce that for bounded rewards r with norm

infinity ||r||∞ that:
Eπr − Eπrefr ≤

√
2||r||2∞KL(π||πref).

Nevertheless this boundedness assumption on the reward is not realistic, since most reward models are
unbounded: quoting Lambert et al. (2024b) “implemented by appending a linear layer to predict one logit
or removing the final decoding layers and replacing them with a linear layer” and hence the reward is
unbounded by construction. We will show in what follows that those scalings laws are tied to the tails
of the reward under the reference policy and are instances of transportation inequalities. Note that the
reward can be rescaled and transformed to be bounded, nevertheless Pinsker inequality remains loose, as
with transportation inequality we aim at replacing the ∥r∥∞, by a second moment or a standard deviation
σ, and typically if σ ≪ ∥r∥∞ this leads to tigther bounds.

3.1 Transportation Inequalities with KL Divergence

For a policy π ∈ P(Y) and for a reward function r : Y → R , we note r♯π, the push-forward map of π through
r. The reader is referred to Appendix D.1 for background on transportation inequalities and how they are
derived from the so-called Donsker-Varadhan variational representation of the KL divergence. The following
Proposition hinges on Lemma 4.14 in (Boucheron et al., 2013)):

Proposition 3 (Transportation Inequalities) The following inequalities hold depending on the tails of
r♯πref :
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1. Assume that r♯πref ∈ SubGauss(σ2
ref). For any π ∈ P(Y) that is absolutely continuous with respect

to πref , and such that KL(π||πref) < ∞ then we have:

|Eπr − Eπrefr| ≤
√

2σ2
refKL(π||πref).

2. Assume that r♯πref ∈ SubGamma(σ2
ref , c). For any π ∈ P(Y) that is absolutely continuous with

respect to πref , and such that KL(π||πref) < ∞ then we have:

|Eπr − Eπrefr| ≤
√

2σ2
refKL(π||πref) + cKL(π||πref)

In particular we have the following Corollary:

Corollary 1 (Expected Reward Improvement) If r♯πref ∈ SubGauss(σ2
ref) the following holds for the

optimal RL policy πλ∆,r
and for the best of n policy π(n)

r,ref :

1. For the optimal RL policy πλ∆,r
we have:

0 ≤ Eπλ∆,r
r − Eπrefr ≤

√
2σ2

refKL(πλ∆,r
||πref) ≤

√
2σ2

ref∆.

2. For any feasible policy πRL of the RL problem (1) (for example the one obtained via gradient descent),
we have:

|EπRLr − Eπrefr| ≤
√

2σ2
refKL(πRL||πref) ≤

√
2σ2

ref∆

3. For the Best of n policy π(n)
r,ref , under Assumption 2 we have:

0 ≤ E
π

(n)
r,ref

r − Eπrefr ≤
√

2σ2
refKL(π(n)

r,ref ||πref) ≤

√
2σ2

ref

(
logn− n− 1

n

)

A similar statement holds under sub-gamma tails of the reward of the reference model. Item (1) in Corollary
1 shows that the

√
σ2

refKL provides an upper bound on the reward improvement of the alignment under
subgaussian tails of the reference reward. Under subgaussian tails of the reference, this information theoretic
barrier can not be broken with a better algorithm. On way to improve on the

√
KL ceiling is by aiming at

having a reference model with a reward that has subgamma tails to improve the upper limit to
√
σ2

refKL+cKL,
or to subexponential tails to be linear in the KL. Item (2) can be seen as a refinement on the classical√

2σ2
ref log(n) upper bound on the expectation of maximum of subgaussians see for e.g Corollary 2.6 in

(Boucheron et al., 2013). If in addition r is positive and for X = r♯πref − Eπrefr we have for t > 0 ,
P(X > t) ≥ P(|g| > t), where g ∼ N (0, σ2

ℓ ) (where σ2
ℓ is a variance), then we have a matching lower bound

for π(n)
r,ref that scales with

√
σ2
ℓ log(n) for sufficiently large n (See (Kamath, 2015)).

Remark 1 (Tightness of KL Transportation Inequality) If we assume that r is one to one , and that
rewards are gaussian with same variance σ2: r♯πref ∼ N (µ, σ2) and r♯πref ∼ N (µ′, σ2), then we have
KL(π||πref) = KL(r♯π||r♯πref) = (µ−µ′)2

2σ2 .Assume µ ≥ µ′, in that case we have: Eπr − Eπrefr = µ − µ′ =√
2σ2KL(π||πref), and the inequality is tight in this case.

We turn now to providing a bound in high probability on the empirical reward improvement of RL. The
following Theorem gives high probability bounds for the excess reward when estimated from empirical sam-
ples:

9
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Theorem 2 (High Probability Empirical Reward Improvement For RL) Assume r♯πref ∈
SubGauss(σ2

ref). Let γ > 1 and t0 > 0. Let πγ,r be the optimal policy of the penalized RL problem
given in Equation (3). Let Ri,γ and Ri,ref , i = 1 . . .m be the rewards evaluated at m samples from πγ,r and
πref . Assume that the γ-Rényi divergence Dγ(πγ,r||πref) and KL(πγ,r||πref) are both finite. The following

inequality holds with probability at least 1 − e
−

mt2
0

2σ2
ref − e−m(γ−1)t0 :

1
m

m∑
i=1

Ri,γ − 1
m

m∑
i=1

Ri,ref ≤
√

2σ2
refKL(πγ,r||πref) + Dγ(πγ,r||πref) − KL(πγ,r||πref)

γ
+ 2t0.

Note that in Theorem 2, we did not make any assumptions on the tails of r♯πγ,r and we see that this results
in a biased concentration inequality with a non-negative bias Dγ (πγ,r||πref)−KL(πγ,r||πref)

γ ≥ 0. For the best
of n policy, if the reward was positive and has a folded normal distribution (absolute value of gaussians),
Boucheron & Thomas (2012) provides concentration bounds, owing to subgamma tails of maximum of
absolute Gaussians.

3.2 Tail Adaptive Transportation Inequalities with the Rényi Divergence

An important question on the tightness of the bounds rises from the bounds in Corollary 1. We answer this
question by considering additional information on the tails of the reward under the policy π, and we obtain
tail adaptive bounds that are eventually tighter than the one in Corollary 1. Our new bounds leverage a
variational representation of the Rényi divergence that uses the logarithmic moment generating function of
both measures at hand.

Preliminaries for the Rényi Divergence The Donsker-Varadahn representation of KL was crucial in
deriving transportation inequalities. In (Shayevitz, 2011) the following variational form is given for the Rényi
divergence in terms of the KL divergence, for all α ∈ R

(1 − α)Dα(P ||Q) = inf
R
αKL(R||P ) + (1 − α)KL(R||Q) (15)

A similar variational form was rediscovered in (Anantharam, 2018). Finally a Donsker-Varadahn-Rényi
representation of Dα was given in (Birrell et al., 2021). For all α ∈ R+, α ̸= 0, 1 we have :

1
α
Dα(P ||Q) = sup

h∈H

1
α− 1 log

(
EP e(α−1)h

)
− 1
α

log
(
EQeαh

)
, (16)

where H =
{
h
∣∣∣ ∫ e(α−1)hdP < ∞,

∫
eαhdQ < ∞

}
. Birrell et al. (2021) presents a direct proof of this

formulation without exploring its link to the representation given in (15), we show in what follows an
elementary proof via convex conjugacy, the duality relationship between equations (15) and (16).

Theorem 3 For 0 < α < 1 Equations (15) and (16) are dual of one another. For α > 1 they are Toland
Dual.

We collect in what follows elementary lemmas that will be instrumental to derive transportation inequalities
in terms of the Rényi divergence. Proofs are given in the Appendix.

Lemma 2 Let α ∈ (0, 1) ∪ (1,∞), and define H = {h|e(α−1)(h−
∫
hdP ) ∈ L1(P ), e(α)(h−

∫
hdQ) ∈ L1(Q)}. We

have for all h ∈ H and for α ∈ (0, 1) ∪ (1,∞)∫
hdP −

∫
hdQ ≤ 1

α
Dα(P ||Q) − 1

α− 1 log
(∫

e(α−1)(h−
∫
hdP )dP

)
+ 1
α

log
(∫

eα(h−
∫
hdQ)dQ

)
.

Lemma 3 The following limit holds for the Rényi divergence limα→0
1
αDα(P ||Q) = KL(Q||P ).

10
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Transportation Inequalities with Rényi Divergence. The following theorem shows that when con-
sidering the tails of π we can obtain tighter upper bounds using the Rényi divergence that is more tail
adaptive:

Theorem 4 (Tail Adaptive Transportation Inequalities) Let α ∈ (0, 1). Assume r♯π ∈ SubGauss(σ2
π)

and r♯πref ∈ SubGauss(σ2
ref) then we have for all α ∈ (0, 1):

Eπr − Eπrefr ≤
√

2((1 − α)σ2
π + ασ2

ref)
Dα(π||πref)

α
. (17)

In particular if there exits α ∈ (0, 1) such that Dα(π||πref) ≤ ασ2
ref

(1−α)σ2
π+ασ2

ref
KL(π||πref), then the tail adap-

tive upper bound given in Equation (17) is tighter than the one provided by the tails of πref only i.e√
σ2

refKL(π||πref). Note that this is possible because Dα is increasing in α ∈ (0, 1) (van Erven & Harremos,
2014), i.e Dα(π||πref) ≤ KL(π||πref), and ασ2

ref
(1−α)σ2

π+ασ2
ref

≤ 1. Note that taking limits α → 0 (applying Lemma
3) and α → 1, and taking the minimum of the upper bounds we obtain:

Eπr − Eπrefr ≤
√

2 min(σ2
πref

KL(π||πref), σ2
πKL(πref ||π)),

this inequality can be also obtained by applying Proposition 3 twice: on the tails of π and πref respectively.

Another important implication of Theorem 4, other than tighter than KL upper bound, is that if we were
to change the RL alignment problem (1) to be constrained by Dα, α ∈ (0, 1) instead of KL, we may end up
with a smaller upper limit on the reward improvement. This Dα constrained alignment may lead to a policy
that under-performs when compared to a policy obtained with the KL constraint. This was indeed observed
experimentally in (Wang et al., 2024a) that used constraints with α- divergences for α ∈ (0, 1) (that are
related to Rényi divergences) and noticed a degradation in the reward improvement w.r.t policies obtained
using KL.

3.3 TV-Transportation Inequalities for Bounded and Calibrated Rewards

While in the previous sections we focused on potentially unbounded rewards and analyzed their tail behavior
to derive transportation inequalities linking rewards to KL or Rényi divergences, in this Section, we turn to
establishing sharp transportation inequalities for the best of n policy under bounded rewards. Such rewards
may be inherently bounded, as in the case of win rates (Azar et al., 2024), or they may be obtained through
transformation or calibration. For instance, one approach is to use the cumulative distribution function
(CDF) of the reward under the reference model, Fr,πref , to calibrate the reward of the best of n policy
(Beirami et al., 2024; Balashankar et al., 2024; Nitsure et al., 2024; Belgodere et al., 2024).

The total variation (TV) distance, being both an integral probability metric and an f -divergence, satisfies
the data processing inequality. Under Assumption 2, as demonstrated in Table 1, we have:

TV(π(n)
r,ref ||πref) = 1

2 sup
||r||∞≤1

E
π

(n)
r,ref

r − Eπrefr ≤ TV(E(n)||E) =
(

1
n

) 1
n−1

−
(

1
n

) n
n−1

.

Hence, for any bounded reward:

E
π

(n)
r,ref

r − Eπrefr ≤ 2 ∥r∥∞

((
1
n

) 1
n−1

−
(

1
n

) n
n−1
)
.

We note that our bounds are translation-invariant. If r ∈ [0, 1], defining r̃ = r− 1
2 such that r̃ ∈ [− 1

2 ,
1
2 ] and

∥r̃∥∞ = 1
2 , we obtain:

E
π

(n)
r,ref

r − Eπrefr = E
π

(n)
r̃,ref

r̃ − Eπref r̃ ≤ 2 ∥r̃∥∞

((
1
n

) 1
n−1

−
(

1
n

) n
n−1
)

=
(

1
n

) 1
n−1

−
(

1
n

) n
n−1

.

11
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In particular, by calibrating the reward using Fr,πref ◦r, we obtain a bounded reward where (Fr,πref ◦r)♯πref is
uniform. Since Eπref (Fr,πref ◦ r) = 1

2 (by uniformity), we derive the following bound for the best of n policy:

E
π

(n)
r,ref

(Fr,πref ◦ r) − 1
2 ≤

(
1
n

) 1
n−1

−
(

1
n

) n
n−1

= TV(E(n)||E). (18)

Discussion The upper bound in (18) is exactly TV(E(n)||E) and is tighter than what would be obtained
using the subgaussianity of the calibrated reward. Since (Fr,πref ◦ r)♯πref ∈ SubGauss( 1

4 ), Corollary 1 (2)
yields:

E
π

(n)
r,ref

(Fr,πref ◦ r) − 1
2 ≤

√
1
2

(
log(n) − n− 1

n

)
=
√

1
2KL(E(n)||E). (19)

Comparing (18) and (19), we see that TV provides a tighter upper bound. By Pinsker’s inequality:

TV(E(n)||E) ≤
√

1
2KL(E(n)||E),

which shows that (19) provides a looser bound. Moreover Pinkser inequality is known to be vaccuous
whenerver KL > 1, a tighter upper bound for KL can be derived using the Bretagnolle-Huber inequality
Polyanskiy & Wu (2023):

TV(E(n)||E) ≤
√

1 − e−KL(E(n)||E).

Substituting KL(E(n)||E) from Lemma 1 into (18), we obtain:

E
π

(n)
r,ref

(Fr,πref ◦ r) − 1
2 ≤

(
1
n

) 1
n−1

−
(

1
n

) n
n−1

≤
√

1 − e− log(n)+ n−1
n =

√
1 − 1

n
e

n−1
n . (20)

We illustrate these bounds in Figure 6 for uniform and beta distributed random variables. We see that TV
provides the sharpest upper bound followed by the Bretagnolle-Huber’s upper bound and finally by the KL
upper bound.

(a) Bounds for uniform random variable. (b) Bounds for Beta distributed random variable

Figure 6: Information Theoretic Upper Bounds for Best of n in the bounded case.

4 Transportation Inequality Transfer From Proxy to Golden Reward

As we saw in the previous sections, the tightness of
√

KL(π||πref) upper bound in alignment can be due to
the tails of the reward of the aligned policy π (Theorem 4) and to the concentration around the mean in
finite sample size (Theorem 2). Another important consideration is the mismatch between the golden reward
r∗ that one desires to maximize that is expensive and difficult to obtain (for example human evaluation)

12
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and a proxy reward r that approximates r∗. The proxy reward r is used instead of r∗ in RL and in best of
n policy. While we may know the tails of the reward r of the reference and aligned model, we don’t have
access to this information on the golden reward r∗. We show in this section how to transfer transportation
inequalities from r to r∗ for RL and Best of n policy.

Proposition 4 (r∗ Transportation Inequality for RL Policy ) The following inequality holds:

Eπγ,rr
∗ − Eπrefr

∗ ≤ Eπγ,rr − Eπrefr − 1
γ

log
(∫

e
γ(r−r∗−

(∫
rdπref−

∫
r∗dπref

)
dπγ,r∗

)
,

Assume r♯πref ∈ SubGauss(σ2
ref), and there exists δ > 0 such that:

1
γ log

(∫
e
γ(r−r∗−

(∫
rdπref−

∫
r∗dπref

)
dπγ,r∗

)
≥ δKL(πγ,r∗ ||πref), then we have:

Eπγ,r
r∗ − Eπrefr

∗ ≤
√

2σ2
refKL(πγ,r||πref) − δKL(πγ,r∗ ||πref).

Note that 1
γ log

(∫
e
γ(r−r∗−

(∫
rdπref−

∫
r∗dπref

)
dπγ,r∗

)
is interpreted here as an interpolation between the

mean and the maximum of its argument on the support of πγ,r∗ (Proposition 9 in (Feydy et al., 2018)).
Indeed as γ → 0, this boils down to the mean on

∫
(r − r∗)dπγ,r∗ −

(∫
rdπref −

∫
r∗dπref

)
and γ → ∞ this

boils down to maxsuppπγ,r∗ {r − r∗ −
(∫
rdπref −

∫
r∗dπref

)
}. Our assumption means that r overestimates

r∗ and the overestimation is accentuated as we drift from πref on which r was learned. If r overestimates
r∗, there exists ∆ > 0 such that: r − r∗ −

(∫
rdπref −

∫
r∗dπref

)
≥ ∆ By Jensen inequality we have:

1
γ log

(∫
e
γ(r−r∗−

(∫
rdπref−

∫
r∗dπref

)
)
dπγ,r∗

)
≥ 1

γ

∫
γ(r − r∗ −

(∫
rdπref −

∫
r∗dπref

)
)dπγ,r∗ ≥ ∆. Hence our

assumption is on the overestimation error ∆ = δKL(πγ,r∗ ||πref). This assumption echoes findings in (Gao
et al., 2023) that show that the transportation inequalities suffer from overestimation of proxy reward models
of the golden reward (See Figure 8 in (Gao et al., 2023)).

Note that in Proposition 4, we are evaluating the golden reward r∗ improvement when using the proxy
reward optimal policy πγ,r. We see that the golden reward of the RL policy inherits the transportation
inequality from the proxy one but the improvement of the reward is hindered by possible overestimation of
the golden reward by the proxy model. This explains the dip in performance as measured by the golden
reward depicted in Figure 1 and reported in (Gao et al., 2023).

Proposition 5 (r∗ Transportation Inequality for Best of n Policy) Let ε > 0. Let r be a surrogate
reward such that ∥r − r∗∥∞ ≤ ε and assume r♯πref ∈ SubGauss(σ2

ref) then the best of n policy π(n)
r,ref satisfies:

E
π

(n)
r,ref

(r∗) − Eπref (r∗) ≤

√
2σ2

ref

(
log(n) − n− 1

n

)
+ 2ε

((
1
n

) 1
n−1

−
(

1
n

) n
n−1
)
.

Transportation inequalities transfers for the best of n policy from r to r∗ and pays only an additional error
term ∥r − r∗∥∞ TV(π(n)

r,ref |πref) , an upper bound of this total variation as a function of n is given in Table
1. As mentioned earlier, if we have lower bounds on the tail of the reference reward, then we also have a
lower bound on the reward improvement that scales like C

√
σ2
ℓ log(n) − 2ε

(( 1
n

) 1
n−1 −

( 1
n

) n
n−1
)
. This is in

line with empirical findings in (Hilton & Gao, 2022) (Gao et al., 2023) that showed that best of n policy is
resilient as the reward model r gets closer to r∗.

Practical Implications. As the proxy reward may overestimate the golden reward, (Wang et al., 2024b)
proposed a reward transformation that reduces the tails of the reward distribution. This, in turn, improves
the golden reward by avoiding shortcuts that exploit the reward and target the unreliable tails of the
distribution, which overestimate the golden reward with high values. In our theory, this would reduce δ in
Proposition 4, leading to less catastrophic Goodhart.

13



Under review as submission to TMLR

5 Numerical Results

Prompts Dataset, LLMs and Reward Models We consider the attaq dataset (Kour et al., 2023)
consisting of 1.4k prompts that triggers undesirable behaviors in LLMs. We use as Reward model FsfairX-
LLaMA3-RM-v0.1 (Dong et al., 2023; Xiong et al., 2024) this is among the best reward model for measuring
helpfulness, safety, instruction following and lack of toxicity (Lambert et al., 2024a). We use three LLMs
from each we sample with top-p sampling and a temperature τ 100 responses for each prompt, models are:
Merlinite (Sudalairaj et al., 2024) (a base model not aligned), mixtral-8x7b-instruct (Jiang et al.,
2024) and llama-2-13b-chat (Touvron et al., 2023) (aligned models with different reward).

Figure 7: Histogram of reward and best of n reward with FsfairX-LLaMA3-RM-v0.1
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Figure 8: (y-axis) The centered reward using FsfairX-LLaMA3-RM-v0.1 reward model of best of n policy
Eπn

r,ref
r − Eπrefr versus (x-axis) KL(πnr,ref , πref) policy computed as log(n) − n−1

n . We also plot fitted curves
y = a

√
x+ bx. Coefficients are given in Tab. 3.
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Results and Discussion We plot in Figure 7 the histograms of the reward under the original LLM policy
(first panel) and under the best of n policy for n = 10, 50, 100 (second to fourth panels). We observe that
the reference rewards are not heavy-tailed and follow sub-Gaussian/sub-Gamma distributions ( appendix G
provides tests such as q-q plots to probe this). Table 2 presents statistics of these distributions. We see that
Mixtral achieves the highest mean reward using the best of n for n = 100, while Merlinite shows the greatest
improvement over the original policy.

This is due to the fact that Merlinite is a base model and not an aligned one. In Figure 8, we plot the
centered best of n rewards against the KL divergence of the best of n policy to the reference policy, and
observe that it follows the form a

√
x+ bx, indicating a sub-Gamma tail as shown in Proposition 3. Looking

at the estimated coefficient a in Table 3 and the standard deviation of the reward under reference models
in Table 2 (denoted as all), we observe that a is slightly larger than the standard deviation of the reward
under the reference policy, which aligns with our theory. If we apply Pinsker’s inequality, the upper bound
on the reward would scale with the maximum reward, as also given in Table 2 , which is much larger than a,
resulting in a loose bound. Thus, the reward/KL plots are governed by the tail properties of the reference
policy.

Model and best of n Mean Std Max

Merlinite all -1.42 2.66 9.91
Merlinite n = 10 2.33 1.81 8.44
Merlinite n = 50 4.07 1.45 9.74
Merlinite n = 100 4.76 1.40 9.91

Mixtral all 1.96 1.86 12.57
Mixtral n = 10 4.74 1.31 8.86
Mixtral n = 50 6.21 1.03 12.57
Mixtral n = 100 6.78 0.98 12.57

Llama13bchat all 1.98 1.58 9.92
Llama13bchat n = 10 4.35 1.23 9.12
Llama13bchat n = 50 5.74 1.09 9.92
Llama13bchat n = 100 6.31 1.04 9.92

Table 2: Comparison of Mean, Std, and Max values for the reward model FsfairX-LLaMA3-RM-v0.1
evaluating samples from different models using various best of n policies.

Model a b
Merlinite-7B 3.01309273 0.12227016
Mixtral-8x7B-instruct 2.03057845 0.26265606
Llama 13B-chat 1.57822599 0.36367755

Table 3: Best fitted curves coefficients y = a
√
x+ bx

Reward Versus Rényi divergence for Best of n Varying n, we compute the centered expected reward
of the best of n policy versus the α Rényi divergence. The Rényi divergence of the best of n policy is computed
using the expression given in Table 1. For α ∈ (0, 1) for smaller values of the Rényi divergence we achieve
higher reward than KL (See Figures 22, 23 and 24). For α > 1, for same value of KL, we achieve higher
reward using KL than using the Rényi divergence for α > 1, (See Figures 25, 26 and 27). This suggests
that for same value of the divergence, α-Rényi divergence for α > 1 may allow for less reward hacking. This
observation was used in (Huang et al., 2024) using the Chi-Squared regularizer (α = 2) in addition to KL to
fight reward overoptimization.

Calibrated Reward versus TV and KL We follow the notations of Section 3.3 for centered calibrated
rewards using the CDF Fr,πref of the reward under the reference model. In Figure 9, we plot the centered
calibrated rewards of the best of n policy for the three LLMs considered using the reward model FsfairX-
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Figure 9: (y-axis) The Calibrated centered reward using FsfairX-LLaMA3-RM-v0.1 reward model of best
of n policy Eπn

r,ref
Fr,πref ◦ r− 1

2 versus on (x-axis) (a) TV upper bound given in (18), (b)
√

1
2 KL upper bound

given (19) (c)
√

1 − e−KL upper bound given in (20).

LLaMA3-RM-v0.1 against (a) the TV upper bound given in (18), (b) the
√

1
2 KL upper bound given in

(19), and (c) the
√

1 − e−KL upper bound given in (20).

From Figure 9, we observe that (a) TV provides the sharpest upper bound, showing a linear correspondence
between the centered calibrated rewards of the best of n policy and TV. The next tightest bound is (c)
√

1 − e−KL, derived via the Bretagnolle-Huber inequality, followed by (b)
√

1
2 KL, obtained via Pinsker’s

inequality, which, as expected, is the loosest among them.

6 Conclusion

We presented in this paper a comprehensive information theoretical analysis of policy alignment using reward
optimization with RL and best of n sampling. We showed for best of n a bound on KL under realistic
assumptions on the reward. Our analysis showed that the alignment reward improvement, is intrinsically
constrained by the tails of the reward under the reference policy and controlling the KL divergence results in
an upper bound of the policy improvement. We showed that the KL bound may not be tight if the tails of
the optimized policy satisfy a condition expressed via Rényi divergence. We also explained the deterioration
of the golden reward via overestimation of the proxy reward.
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A Broader Impact and Limitations

We believe this work explaining scaling laws for reward models and alignment will give practitioners insights
regarding the limits of what is attainable via alignment. All assumptions under which our statements hold
are given. We don’t see any negative societal impact of our work.

B Proofs For Best of n Policy

B.1 Best of n Policy KL Guarantees

Proof 1 (Proof of Lemma 1)

KL(E(n)||E) =
∫ +∞

0
fE(n)(x) log

(
fE(n)(x)
fE(x)

)
dx

We have fE(x) = e−x1x≥0. Note that the CDF of maximum of exponential FE(n)(x) = (1 − e−x)1x≥0, and
hence fE(n)(x) = n(1 − e−x)n−1e−x1x≥0. Hence we have:

KL(E(n)||E) =
∫ +∞

0
n(1 − e−x)n−1e−x log

(
n(1 − e−x)n−1e−x

e−x

)
dx

=
∫ +∞

0
n(1 − e−x)n−1e−x log

(
n(1 − e−x)n−1) dx

Let u = 1 − e−x, we have du = e−xdx. It follows that :

KL(E(n)||E) =
∫ 1

0
nun−1 log

(
nun−1) du

=
∫ 1

0
nun−1 (log(n) + (n− 1) log(u)) du

= log(n)
∫ 1

0
dun + (n− 1)

∫ 1

0
nun−1 log(u)du

= log(n) + (n− 1)
∫ 1

0
d(un log u− un

n
)

= log(n) − n− 1
n

.

Proof 2 (Proof of Theorem 1) Recall that TX = F−1
R(Y )|X ◦FE, FE is one to one. If the space Y is finite,

R(Y |X) has a discontinuous CDF hence not strictly monotonic. It follows that its quantile F−1
R(Y )|X is not a

one to one map and TX as a result is not a one to one map and hence we have by DPI (that is an inequality
in this case since TX is not one to one):

KL(TX(E(n))||TX(E)) ≤ KL(E(n)||E) (21)

If the space Y is infinite and we assume that R(Y |X) is continuous and strictly monotonic then F−1
R(Y )|X is

a one to one map, and as a result TX is a one to one map and the DPI is an equality in this case:

KL(TX(E(n))||TX(E)) = KL(E(n)||E) (22)

Hence under Assumption 1 and for Y finite combining (11) and (21) we have:

KL(π(n)
r,ref ||πref|X) ≤ KL(E(n)||E), (23)

and under Assumption 1 and for Y infinite and assuming FR(Y )|X is continuous and strictly monotonic,
combining (11) and (22) we have:

KL(π(n)
r,ref ||πref|X) = KL(E(n)||E). (24)
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Under the more realistic Assumption 2 we can also apply the DPI on the stochastic map HX , since DPI also
holds for stochastic maps ( under our assumption R|X → Y |X see for example (van Erven & Harremos,
2014) Example 2)

KL(π(n)
r,ref ||πref|X) = KL(HX(Rn(Y ))||HX(R(Y ))|X))

≤ KL(Rn(Y )||R(Y )|X) = KL(TX(E(n))||TX(E)), (25)

and hence under Assumption 2 regardless whether TX is a one to one map or not, thus we have:
KL(π(n)

r,ref ||πref|X) ≤ KL(E(n)||E).

B.2 Best of n Policy f divergence and Rényi Divergence

Best of n Policy f divergence and Renyi divergence Guarantees Given that our proof technique
relies on DPI and Rényi representation, we show that similar results hold for any f -divergence and for the
Rényi divergence:

Df (P ||Q) =
∫
q(x)f

(
p(x)
q(x)

)
dx, (26)

where f is convex and f(1) = 0. Hence we have by DPI for f -divergences:

Theorem 5 Under Assumption 2 the best of n policy satisfies for any f-divergence:

Df (π(n)
r,ref ||πref) ≤

∫ 1

0
f
(
nun−1) du (27)

Proof 3 (Proof of Theorem 5)

Df (π(n)
r,ref ||πref|X) = Df (Y (n)||Y |X)

= Df (HX(Rn(Y ))||HX(R(Y ))|X)
≤ Df (Rn(Y )||R(Y )|X) By the data processing inequality (28)
= Df (TX(E(n))||TX(E)) Renyi and Optimal Transport Representations (10)
= Df (E(n)||E) since TX is a monotonic bijection DPI is an equality (29)

=
∫ +∞

0
fE(x)f

(
fE(n)(x)
fE(x)

)
dx (30)

=
∫ ∞

0
(e−x)f

(
n(1 − e−x)n−1) du (31)

=
∫ 1

0
f(nun−1)du. (32)

In particular we have the following bounds for common f divergences:

• For f(x) = x log(x) we obtain the KL divergence and we have the result:∫ 1

0
nun−1 log(nun−1)du = KL(E(n)||E) = log(n) − n− 1

n
.

• For f(x) = (x − 1)2 we obtain the chi-squared divergence and we have:
∫ 1

0
(
nun−1 − 1

)2
du =∫ 1

0 (n2u2(n−1) − 2nun−1 + 1)du = n2

2n−1u
2n−1 − 2un + u|10 = n2

2n−1 − 2 + 1 = n2−2n+1
2n−1 = (n−1)2

2n−1 .
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• For f(x) = 1
2 |x−1|, we obtain the total variation distance (TV ) and we have: 1

2
∫ 1

0
∣∣nun−1 − 1

∣∣ du =
1
2 (
∫ u∗

0
(
1 − nun−1) du+ (

∫ 1
u∗

(
nun−1 − 1

)
du) = (u∗ − (u∗)n),where n(u∗)(n−1) = 1, i.e u∗ = ( 1

n ) 1
n−1

. Hence the TV is ( 1
n ) 1

n−1 − ( 1
n ) n

n−1 .

• For f(x) = (1−
√
x)2 we have the hellinger distance:

∫ 1
0

(√
nu

n−1
2 − 1

)2
du =

∫ 1
0 (nun−1−2

√
nu

n−1
2 +

1)du = un − 2
√
nu

n+1
2

n+1
2

+ u
∣∣∣1
0

= 2(1 − 2
√
n

n+1 ) = 2 (1−
√
n)2

n+1

• For f(x) = − log(x), we obtain the forward KL and we have :
∫ 1

0 f(nun−1)du = n− 1 − log(n).

Guarantees with Rényi Divergence Turning now to the Rényi divergence for α ∈ (0, 1) ∪ (1,∞):

Dα(P ||Q) = 1
(α− 1) log

(∫
pα(x)q1−α(x)dx

)
the limit as α → 1 D1(P ||Q)) = KL(P ||Q) .

Theorem 6 Under Assumption 2 the best of n policy satisfies:

Dα(π(n)
r,ref ||πref) ≤ 1

(α− 1) log
(

nα

α(n− 1) + 1

)
(33)

Proof 4 (Proof of Theorem 6) Applying DPI that holds also for the Rényi divergence twice from Y, Y (n)

to R,R(n) and from R,R(n) to E,E(n) we obtain :

Dα(π(n)
r,ref ||πref|X) ≤ Dα(E(n)||E)

Dα(E(n)||E) = 1
(α− 1) log

(∫ ∞

0
nα(1 − e−x)α(n−1)e−αxe−x(1−α)dx

)
= 1

(α− 1) log
(∫ +∞

0
nα(1 − e−x)α(n−1)e−xdx

)
Let u = 1 − e−x we have du = e−xdx

Dα(E(n)||E) = 1
(α− 1) log

(∫ 1

0
nαuα(n−1)du

)
= 1

(α− 1)

(
lognα + log

∫ 1

0
uα(n−1)du

)
= 1

(α− 1)

(
lognα + log uα(n−1)+1

α(n− 1) + 1

∣∣∣1
0

)
= 1

(α− 1) log
(

nα

α(n− 1) + 1

)

From Renyi to KL guarantees Let s1(α) = (α − 1) , and s2(α) = log
(

nα

α(n−1)+1

)
, we have

Dα(E(n)||E) = s2(α)
s1(α) , we have KL(E(n)||E) = limα→1 Dα(E(n)||E) = limα→1

s2(α)
sα

= 0
0 , hence applying

L’Hôpital rule we have: limα→1
s2(α)
s1(α) = limα→1

s′
2(α)
s′

1(α) = limα→1
log(n)− n−1

α(n−1)+1
1 = log(n) − n−1

n . Hence we
recover the result for the KL divergence.
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B.3 Best of n Dominance

Proof 5 (Proof of Proposition 1 ) FE(n)(x) = (FE(x))n ≤ FE(x),∀x ≥ 0, which means also that
F−1
E(n)(t) ≥ F−1

E (t),∀t ∈ [0, 1], which means that E(n) dominates E in the first stochastic order : E(n) ≽
FSD

E

, which means there exists a coupling between E(n) and E, π ∈ Π(E(n), E), such that E ≥ e, for all
(E, e) ∼ π. On the other hand By Rényi and Monge map representations we have: R(n) = F−1

R ◦ FE(E(n))
and R = F−1

R ◦ FE(E), given that T = F−1
R ◦ FE is non decreasing the same coupling π guarantees that

T (E) ≥ T (e), for all (E, e) ∼ π and Hence R(n) ≽
FSD

R.

Corollary 2 Best of n-polciy has higher expectation :

ER(n) ≥ ER,

and is a safer policy, let the Tail Value at Risk be:

TVARp(X) = 1
p

∫ p

0
QR(t)dt

We have
TVARp(Rn) ≥ TVARp(R),∀p ∈ [0, 1]

Proof 6 (Proof of Corollary 2) First order dominance implies second order dominance (i.e by integrating
quantiles). Expectation is obtained for p = 1.

C Best of n and RL Policy

Proof 7 (Proof of Proposition 2) We fix here γ = 1
λ∆

KL(π(n)
r,ref ||πγ,r) =

∫
π

(n)
r,ref(y|x) log

(
π

(n)
r,ref(y|x)
πγ,r(y|x)

)
=
∫
π

(n)
r,ref(y|x) log

(
π

(n)
r,ref(y|x)

πref(y|x) eγr(x,y)

Zγ (x)

)

= KL(π(n)
r,ref ||πref) + log (Eπrefe

γr) − γ

∫
rdπ

(n)
r,ref

On the other hand by optimality of πγ,r we have:

KL (πγ,r||πref) = γ

∫
rdπγ,r − log

(∫
eγrdπref

)
and hence we have:

KL(π(n)
r,ref ||πγ,r) = KL(π(n)

r,ref ||πref) − KL (πγ,r||πref) + γ

(∫
rdπγ,r −

∫
rdπ

(n)
r,ref

)
We choose n such that :

KL(π(n)
r,ref ||πref) ≤ log(n) − n− 1

n
≤ KL (πγ,r||πref) = ∆

and we conclude choosing n = e∆ therefore for that choice of n that:

KL(π(n)
r,ref ||πγ,r) ≤ γ

(∫
rdπγ,r −

∫
rdπ

(n)
r,ref

)
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On the other hand we have:∣∣∣∣∫ rdπγ,r −
∫
rdπ

(n)
r,ref

∣∣∣∣ =
∣∣∣∣∫ r exp(γr) 1

Zγ
dπref −

∫
max
i
r(xi)dπref(x1) . . . dπref(xn)

∣∣∣∣
=
∣∣∣∣∣
∫ ( 1

n

n∑
i=1

r(xi) exp(γr(xi))
Zγ

− max
i
r(xi)

)
dπref(x1) . . . dπref(xn)

∣∣∣∣∣
=
∣∣∣∣∣
∫ ( 1

n

n∑
i=1

r(xi) exp(γr(xi))∑n
i=1 exp(γr(xi))

∑n
i=1 exp(γr(xi))

Zγ
− max

i
r(xi)

)
dπref(x1) . . . dπref(xn)

∣∣∣∣∣
≤
∫ ∣∣∣∣max r(xi)

( 1
n

∑n
i=1 exp(γr(xi))

Zγ
− 1
)∣∣∣∣ dπref(x1) . . . dπref(xn)

≤ M

Zγ
E

∣∣∣∣∣ 1n
n∑
i=1

exp(γr(xi)) − Zγ

∣∣∣∣∣
where we used the following fact, followed by Jensen inequality :

n∑
i=1

r(xi) exp(γr(xi))∑n
i=1 exp(γr(xi))

≤ max
i
r(xi).

Assume that the reward is bounded hence we have by Hoeffding inequality :

P

(∣∣∣∣∣ 1n
n∑
i=1

exp(γr(xi)) − Zγ

∣∣∣∣∣ ≥ t

)
≤ 2e− nt2

2(exp(γM)−exp(−γM))2

Hence we have:

E

∣∣∣∣∣ 1n
n∑
i=1

exp(γr(xi)) − Zγ

∣∣∣∣∣ ≤ 2
√
π

2
exp(γM) − exp(−γM)√

n

KL(π(exp(∆))
r,ref ||πλ∆,r) ≤ M

λ∆Z1/λ∆

√
2π(exp(γM) − exp(−γM))

√
exp(−∆).

D Transportation Inequalities and KL Divergence

D.1 Transportation Inequalities with KL

The following Lemma (Lemma 4.14 in (Boucheron et al., 2013)) uses the Donsker-Varadhan representation
of the KL divergence to obtain bounds on the change of measure , and using the tails of πref .

Lemma 4 (Lemma 4.14 in (Boucheron et al., 2013)) Let ψ be a convex and continuously differen-
tiable function ψ on a possibly unbounded interval [0, b), and assume ψ(0) = ψ′(0) = 0. Define for every
x ≥ 0, the convex conjugate ψ∗(x) = supλ∈[0,b) λx− ψ(λ) , and let ψ∗−1(t) = inf{x ≥ 0 : ψ∗(x) > t}. Then
the following statements are equivalent:
(i) For λ ∈ [0, b)

log
(∫

eλ(r−
∫
rdQ)dQ

)
≤ ψ(λ),

(ii) For any probability measure P that is absolutely continuous with respect to Q and such that KL(P ||Q) <
∞: ∫

rdP −
∫
rdQ ≤ ψ∗−1(KL(P ||Q)).

Lemma 5 ( Inverse of the conjugate (Boucheron et al., 2013)) 1. If Q ∈ SubGauss(σ2), we
have for t ≥ 0 ψ∗−1(t) =

√
2σ2t.
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2. If Q ∈ Subgamma(σ2, c), we have for t ≥ 0 ψ∗−1(t) =
√

2σ2t+ ct.

We give here a direct proof for the subgaussian case:

Proof 8 By the Donsker Varadhan representation of the KL we have:

KL(P ||Q) = sup
h

∫
hdP − log

(∫
ehdQ

)
Fix x and M > 0 and define for 0 < λ < M

hλ(y) = λ
(
r(x, y) − Eπref(y|x)r(x, y)

)
We omit in what follows x and y, but the reader can assume from here on that π and πref are conditioned
on x. Note that Rref |x = (r(x, .))♯πref(.|x) and we assume Rref |x subgaussian. Note that

Eπrefe
hλ = Eπref |xe

λ(r−Eπref |xr) = MRref |x(λ),

where MRref |x the moment generating function of the reward under the reference policy. Rref |x is subgaussian
we have for all λ ∈ R:

Eπref |xe
hλ ≤ e

λ2σ2
2 ≤ e

M2σ2
2 < ∞

Hence hλ ∈ H and we have for all π << πref and for all 0 < M < ∞ and 0 < λ < M :

λEπ|x(r − Eπref |xr) ≤ KL(π||πref |x) + log
(
Eπref |xe

λ(r−Eπref |xr)
)

or equivalently:
Eπ|xr − Eπref |xr ≤ 1

λ
KL(π||πref |x) + 1

λ
log
(
Eπref |xe

λ(r−Eπref |xr)
)

Finally we have for π << πref for all 0 < λ < M :

Eπ|xr − Eπref |xr ≤ 1
λ

KL(π||πref |x) + 1
λ

log
(
MRref |x(λ)

)
(34)

Being a subgaussian, the MGF of Rref |x is bounded as follows:

log
(
MRref |x(λ)

)
≤ λ2σ2

2 .

Hence we have for :

Eπ|xr − Eπref |xr ≤ 1
λ

KL(π||πref |x) + λσ2

2
Integrating over x we obtain for all π << πref and all 0 < λ < M :

Eπr − Eπrefr ≤ 1
λ

KL(π||πref) + λσ2

2

Define :

δ(λ) = 1
λ

KL(π||πref) + λσ2

2

minimizing the upper bound δ(λ) for λ ∈ (0,M ], taking derivative δ′(λ) = − KL(π||πref)
λ2 + σ2

2 = 0 gives

λ∗ =
√

2KL(π||πref)
σ2 . Taking M = 2λ∗, λ∗ is the minimizer. Putting this in the bound we have finally for all

rewards r for all π:
Eπr − Eπrefr ≤

√
2σ2KL(π||πref). (35)
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Proof 9 (Proof of Corollary 1) (i) This follows from optimality of πλ∆ and applying the transportation
inequality for gaussian tail.

(ii) This follows from applying Corollary 2 (best of n policy has larger mean ) and Theorem 1 for bounding
the KL.

Proof 10 (Proof of Theorem 2) For the penalized RL we have by optimality:∫
rdπγ,r − 1

γ
KL(πγ,r||πref) = 1

γ
log
(∫

eγrdπref

)
= 1
γ

log
(∫

eγ(r−
∫
rdπref)dπref

)
+
∫
rdπref

It follows that :

1
γ

log
(∫

eγ(r−
∫
rdπref)dπref

)
=
∫
rdπγ,r −

∫
rdπref − 1

γ
KL(πγ,r||πref) (36)

On the other hand by the variational representation of the Rényi divergence we have:∫
rdπγ,r −

∫
rdπref ≤ Dγ(πγ,r||πref)

γ
− 1
γ − 1 log

(∫
e(γ−1)(r−

∫
rdπγ,r)dπγ,r

)
+ 1
γ

log
(∫

eγ(r−
∫
rdπref)dπref

)
(37)

Summing Equations (36) and (37) we obtain a bound on the moment generating function at γ of r♯πγ,r (this
is not a uniform bound , it holds only for γ):

1
γ − 1 log

(∫
e(γ−1)(r−

∫
rdπγ,r)dπγ,r

)
≤ Dγ(πγ,r||πref) − KL(πγ,r||πref)

γ
. (38)

Let us assume γ > 1 we have therefore the following bound on the logarithmic moment generation function
at γ − 1

ψr♯πγ,r
(γ − 1) ≤ γ − 1

γ
(Dγ(πγ,r||πref) − KL(πγ,r||πref))

Let Ri,γ = r♯πγ,r, i = 1 . . .m , the reward evaluation of m independent samples of πγ,r we have:

P
{ m∑
i=1

(Ri,γ −
∫
rdπγ,r) > mt

}
= P(e

∑m

i=1
(γ−1)(Ri,γ −

∫
rdπγ,r) > em(γ−1)t)

≤ e−(γ−1)mtemψRγ (γ−1)

≤ e−(γ−1)mtem
γ−1

γ (Dγ (πγ,r||πref)−KL(πγ,r||πref))

≤ e
−m(γ−1)

(
t− Dγ (πγ,r||πref )−KL(πγ,r||πref )

γ

)
(39)

Let t0 > 0, hence we have for γ > 1:

P
{ 1
m

m∑
i=1

Ri,γ >

∫
rdπγ,r + t0 + Dγ(πγ,r||πref) − KL(πγ,r||πref)

γ

}
≤ e−m(γ−1)t0

Now turning to Rref = r♯πref , since Rref ∈ SubGauss(σ2
ref) we have for every t0 > 0 :

P
{

− 1
m

m∑
i=1

Ri,ref > −
∫
rdπref + t0

}
≤ e

−
mt2

0
2σ2

ref
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Hence we have with probability at least 1 − e
−

mt2
0

2σ2
ref − e−m(γ−1)t0 :

1
m

m∑
i=1

Ri,γ − 1
m

m∑
i=1

Ri,ref ≤
∫
rdπγ,r −

∫
rdπref + 2t0 + Dγ(πγ,r||πref) − KL(πγ,r||πref)

γ

≤
√

2σ2
refKL(π||πref) + 2t0 + Dγ(πγ,r||πref) − KL(πγ,r||πref)

γ
.

E Proofs for Transportation Inequalities and Rényi Divergence

Proposition 6 (Fenchel Conjugate Propreties) Let F and G be convex functions on a space E and F ∗,
G∗ be their convex conjugates defined on E∗. We have:

1. Let Fγ(x) = γF (x) we have:

F ∗
γ (p) = γF ∗

(
p

γ

)
(40)

2. Duality:
min
x∈E

F (x) +G(x) = max
p∈E∗

−F ∗(−p) −G∗(p) (41)

3. Toland Duality:
min
x∈E

F (x) −G(x) = min
p
G∗(p) − F ∗(p) (42)

Proof 11 (Proof of Theorem 3) Let γ > 0 , let FP,γ(R) = γKL(R||P ), the Fenchel conjugate of FP,1(.) is
defined for h bounded and measurable function as follows F ∗

P,1(h) = logEP eh. It follows by 1) in Proposition
6 that : F ∗

P,γ(h) = γF ∗
P,1(hγ ) = γ logEP e

h
γ .

For 0 < α < 1: The objective function in (15) is the sum of convex functions: FP,α(R) + FQ,1−α(R), by (2)
in Proposition 6, we have by duality:

(1 − α)Dα(P ||Q) = inf
R
FP,α(R) + FQ,1−α(R)

= sup
h∈H

−F ∗
P,α(−h) − F ∗

Q,1−α(h)

= sup
h∈H

−α logEP e− h
α − (1 − α) logEQe

h
1−α

Replacing h by (1 − α)(α)h does not change the value of the sup and hence we obtain:

(1 − α)Dα(P ||Q) = sup
h∈H

−α logEP e− (1−α)(α)h
α − (1 − α) logEQe

(1−α)(α)h
1−α

= sup
h∈H

−α logEP e−(1−α)h − (1 − α) logEQeαh.

dividing by 1
α(1−α) both sides we obtain for 0 < α < 1:

1
α
Dα(P ||Q) = sup

h∈H
− 1

1 − α
logEP e−(1−α)h − 1

α
logEQeαh

For α > 1: The objective function in (15) is the difference of convex functions: FP,α(R) − FQ,α−1(R), by
Toland Duality (3) in Proposition 6 we have:

(1 − α)Dα(P ||Q) = inf
R
FP,α(R) − FQ,α−1(R)

= inf
h∈H

F ∗
Q,α−1(h) − F ∗

P,α(h)

= inf
h∈H

(α− 1) logEQe
h

(α−1) − α logEP e
h
α
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The inf does not change when we replace h by α(α− 1)h, hence we have:

(α− 1)Dα(P ||Q) = − inf
h∈H

(α− 1) logEQe
α(α−1)h

(α−1) − α logEP e
α(α−1)h

α

= sup
h∈H

α logEP e(α−1)h − (α− 1) logEQeαh

dividing both sides by 1
α(α−1) we obtain for α > 1:

1
α
Dα(P ||Q) = sup

h∈H

1
α− 1 logEP e(α−1)h − 1

α
logEQeαh.

Proof 12 (Proof of Lemma 2 ) Adding and subtracting in the exponential
∫
hdP and

∫
hdQ resp we

obtain the result: 1
α−1 log

(∫
e(α−1)hdP

)
− 1

α log
(∫
eαhdQ

)
= 1

α−1 log
(∫

e(α−1)(h−
∫
hdP+

∫
hdP )dP

)
−

1
α log

(∫
eα(h−

∫
hdQ+

∫
hdQ)dQ

)
=

∫
hdP −

∫
hdQ + 1

α−1 log
(∫

e(α−1)(h−
∫
hdP )dP

)
−

1
α log

(∫
eα(h−

∫
hdQ)dQ

)
Proof 13 ( Proof of Lemma 3) Note that we have for 0 < α < 1, 1

αDα(P ||Q) = 1
1−αD1−α(Q||P ) (See

Proposition 2 in van Erven & Harremos (2014)). Taking limits we obtain limα→0
1
αDα(P ||Q) = D1(Q||P ) =

KL(Q||P ).

Proof 14 (Proof of Theorem 4 ) For 0 < α < 1, we have for all h ∈ H :

∫
hdP −

∫
hdQ ≤ 1

α
Dα(P ||Q) + 1

1 − α
log
(∫

e(α−1)(h−
∫
hdP )dP

)
+ 1
α

log
(∫

eα(h−
∫
hdQ)dQ

)
(43)

Assuming r is bounded 0 < r < b then we have (r)♯P−EP r and (r)♯Q−EQr are sub-Gaussian with parameter
σ2 = b2

4 . Hence we have for λ ∈ R:

EP eλ(r−
∫
rdP ) ≤ exp

(
λ2σ2

P

2

)
and EQeλ(r−

∫
rdQ) ≤ exp

(
λ2σ2

Q

2

)
,

Fix a finite M > 0. For 0 < λ < M and P = π|x and Q = πref |x, consider hλ = λr, thanks to subgaussianity
and boundedness of λ, hλ ∈ H for all λ ∈ (0,M). Hence we have by Equation (43) for all λ ∈ (0,M):

λ

(∫
rdP −

∫
rdQ

)
≤ 1
α
Dα(P ||Q) + 1

1 − α
log
(∫

eλ(α−1)(r−
∫
rdP )dP

)
+ 1
α

log
(∫

eλα(r−
∫
rdQ)dQ

)
we have by sub-Gaussianity:

1
1 − α

log
(∫

eλ(α−1)(r−
∫
rdP )dP

)
≤ 1

1 − α

λ2(1 − α)2σ2
P

2 = λ2(1 − α)σ2
P

2
1
α

log
(∫

eλα(r−
∫
rdQ)dQ

)
≤ 1
α

λ2α2σ2
Q

2 =
λ2ασ2

Q

2

It follows that for all λ ∈ (0,M)

λ

(∫
rdπ|x−

∫
rdπref |x

)
≤ 1
α
Dα(π|x||πref |x) + λ2(1 − α)σ2

P

2 +
λ2ασ2

Q

2

= 1
α
Dα(π|x||πref |x) +

λ2((1 − α)σ2
P + ασ2

Q)
2
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Integrating over x we obtain:

λ

(∫
rdπ −

∫
rdπref

)
≤ 1
α
Dα(π||πref) +

λ2((1 − α)σ2
P + ασ2

Q)
2

Finally we have: ∫
rdπ −

∫
rdπref ≤ 1

λα
Dα(π||πref) +

λ((1 − α)σ2
P + ασ2

Q)
2

minimizing over λ ∈ (0,M): we obtain λ∗ =
√

2Dα(π||πref)
((1−α)σ2

P
+ασ2

Q
)α , M is free of choice, choosing M = 2λ∗,

gives that λ∗ is the minimizer and hence we have for all α ∈ (0, 1):

∫
rdπ −

∫
rdπref ≤

√
2((1 − α)σ2

P + ασ2
Q)Dα(π||πref)

α
.

F Goodhart Laws

Proof 15 (Proof of Proposition 4) We have by duality:

1
γ

log
(∫

eγr
∗
dπref

)
= sup

ν

∫
r∗dν − 1

γ
KL(ν||πref)

hence for ν = πγ,r we have:

1
γ

log
(∫

eγr
∗
dπref

)
≥
∫
r∗dπγ,r − 1

γ
KL(πγ,r||πref)

Hence: ∫
r∗dπγ,r ≤ 1

γ
log
(∫

eγr
∗
dπref

)
+ 1
γ

KL(πγ,r||πref)

On the other hand by optimality of πγ,r we have:

KL (πγ,r||πref) = γ

∫
rdπγ,r − log

(∫
eγrdπref

)
Hence we have:∫

r∗dπγ,r ≤ 1
γ

log
(∫

eγr
∗
dπref

)
+
∫
rdπγ,r − 1

γ
log
(∫

eγrdπref

)
≤
∫
rdπγ,r + 1

γ
log
(∫

eγr
∗
dπref∫

eγrdπref

)

It follows that:∫
r∗dπγ,r −

∫
r∗dπref ≤

∫
rdπγ,r −

∫
rdπref + 1

γ
log
(∫

eγ(r∗−
∫
r∗dπref)dπref∫

eγ(r−
∫
rdπref)dπref

)

∫
eγ(r∗−

∫
r∗dπref)dπref∫

eγ(r−
∫
rdπref)dπref

=
∫
e
γ(r∗−r−

(∫
r∗dπref−

∫
rdπref

)
eγrdπref∫
eγrdπref

=
∫
e
γ(r∗−r−

(∫
r∗dπref−

∫
rdπref

)
dπγ,r
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Hence we have finally:∫
r∗dπγ,r −

∫
r∗dπref ≤

∫
rdπγ,r −

∫
rdπref + 1

γ
log
(∫

e
γ(r∗−r−

(∫
r∗dπref−

∫
rdπref

)
dπγ,r

)
∫
r∗dπγ,r −

∫
r∗dπref ≤

∫
rdπγ,r −

∫
rdπref − 1

γ
log
(∫

e
γ(r−r∗−

(∫
rdπref−

∫
r∗dπref

)
dπγ,r∗

)
The proof follows from using the subgaussianity of r♯πref and the assumption on the soft max.

Proof 16 (Proof of Proposition 5)

Eπ(r∗ − r) − Eπref (r∗ − r) ≤ 2||r − r∗||∞TV(π, πref)

For π(n)
r,ref , we have:

E
π

(n)
r,ref

(r∗) − Eπref (r∗) ≤ E
π

(n)
r,ref

(r) − Eπref (r) + 2||r − r∗||∞TV(π(n)
r,ref , πref)

and
E
π

(n)
r,ref

(r∗) − Eπref (r∗) ≥ E
π

(n)
r,ref

(r) − Eπref (r) − 2||r − r∗||∞TV(π(n)
r,ref , πref)

By the data processing inequality we have: TV(π(n)
r,ref , πref) ≤ TV(R(n)

r,ref , R) = ( 1
n ) 1

n−1 − ( 1
n ) n

n−1 If r has
subguassian tails under πref than we have:

E
π

(n)
r,ref

(r∗) − Eπref (r∗) ≤

√
2σ2

(
log(n) − n− 1

n

)
+ 2||r − r∗||∞

(
( 1
n

) 1
n−1 − ( 1

n
) n

n−1

)

E
π

(n)
r,ref

(r∗) − Eπref (r∗) ≤

√
2σ2

(
log(n) − n− 1

n

)
+ 2 inf

r∈H
||r − r∗||∞

(
( 1
n

) 1
n−1 − ( 1

n
) n

n−1

)
.
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G Supplementary Figures and Experiments

G.1 Tails of Reward model FsfairX-LLaMA3-RM-v0.1 evaluated on Popular LLMs

Figure 10: Reward evaluated on LLama2-7B. We see that the reward follows more a Gaussian or a gamma
random variable and it is not heavy tailed. The Moment generating function (MGF) follows a quadratic
The Hill index is not meaningful in this case.

G.2 Reward versus KL on other LLMs with best of n policies
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Figure 11: Reward evaluated on Merlinite 7B. The reward follows a gamma distribution as it is almostly
perfectly matching it in the q-q plots (quantile plots).
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Figure 12: Reward evaluated on Mixtral8x7b. The reward follows a gaussian or a gamma distribution and
is not heavy tailed.
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Figure 13: Centered Reward (FsfairX-LLaMA3-RM-v0.1) versus KL of best of n policy for various LLM

0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(n) - (n-1)/n

1

2

3

4

5

6

M
ea

n 
N 

be
st

 - 
M

ea
n 

Re
f

merlinite-7b_p_0.9_temp_1.0
merlinite-7b_p_0.9_temp_1.0_best_fit_line
merlinite-7b_p_0.9_temp_1.0
mixtral-8x7b-instruct-v01_p_0.9_temp_0.95_best_fit_line
llama-2-13b-chat_p_0.9_temp_0.95
llama-2-13b-chat_p_0.9_temp_0.95_best_fit_line

Figure 14: Best fit for y = a∗
√
x for centered best of n reward versus KL. We see that this fit is not as good

as y = a ∗
√
x+ b ∗ x, hinting to a subgamma tail rather than subgaussian.
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H Experiments with OAS Reward Model
OpenAssistant/reward-model-deberta-v3-large-v2

Figure 15: Histograms of OAS Reward for reference and best of n policies.

Model and n Mean Std Max
Mixtral all -3.25 2.11 7.8
Mixtral n =10 -0.34 1.5 6.23
Mixtral n =50 1.1 1.57 7.8
Mixtral n =100 1.76 1.64 7.8
Llama2_70b_chat all -1.47 2.17 6.48
Llama2_70b n =10 0.95 1.15 5.29
Llama2_70b n =50 2.12 1.09 6.48
Llama2_70b n =100 2.63 1.01 6.48
Merlinite all -3.47 1.6 6.46
Merlinite n =10 -1.23 1.19 5.07
Merlinite n =50 -0.14 1.08 6.46
Merlinite n =100 0.31 1.2 6.46

Table 4: Statistics of OpenAssistant/reward-model-deberta-v3-large-v2 reward evaluated for ref-
erence and best of n policies for different n values.
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Figure 16: Centered Reward (OAS) versus KL best of n policies, with best fit y = a
√
x+ bx. The fit hints

to subgamma tails.
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Figure 17: Centered Reward (OAS) versus KL best of n policies, with best fit y = a
√
x. This subgaussian

fit provides an upper bound that is not as tight as above.
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Model a b
Merlinite-7B 1.74119974 0.12555422
Mixtral-8x7B 2.06674977 0.28401807
Llama2-70B chat 1.83327634 0.15764552

Table 5: OAS Reward model: y = a
√
x + bx best fitted coefficients for centered reward versus KL. a is

slightly larger than std.

Model a
Merlinite-7B 1.9550695
Mixtral-8x7B 2.55054775
Llama-70B-Chat 2.10181062

Table 6: OAS Reward model: y = a
√
x best fitted coefficients for centered reward versus KL.
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Figure 18: OAS Reward: Centered Rewards versus KL best of n policies for various models.

I Reward Versus Rényi In Best of N
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Figure 19: subgamma tails of the OAS reward for Merlinite 7B as seen in the q-q plots.
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Figure 20: subgaussian/subgamma tails of the OAS reward for LLama2-70B-chat.
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Figure 21: Subgamma tails of the OAS reward of Mixtral-8x7b-instruct.
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Figure 22: Centered Reward for Best of N versus Renyi divergence for α ∈ (0, 1) - Merlinite
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Figure 23: Centered Reward for Best of N versus Renyi divergence for α ∈ (0, 1) -Mixtral
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Figure 24: Centered Reward for Best of N versus Renyi divergence for α ∈ (0, 1) -LLama
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Figure 25: Centered Reward for Best of N versus Renyi divergence for α > 1 - Merlinite
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Figure 26: Centered Reward for Best of N versus Renyi divergence for α > 1 -Mixtral
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Figure 27: Centered Reward for Best of N versus Renyi divergence for α > 1 -LLama
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