
RGNMR: A Gauss-Newton method for robust matrix
completion with theoretical guarantees

Eilon Vaknin Laufer
Weizmann Institute of Science

eilon.vaknin@weizmann.ac.il

Boaz Nadler
Weizmann Institute of Science

boaz.nadler@weizmann.ac.il

Abstract

Recovering a low rank matrix from a subset of its entries, some of which may be
corrupted, is known as the robust matrix completion (RMC) problem. Existing
RMC methods have several limitations: they require a relatively large number of
observed entries; they may fail under overparametrization, when their assumed
rank is higher than the correct one; and many of them fail to recover even mildly
ill-conditioned matrices. In this paper we propose a novel RMC method, denoted
RGNMR, which overcomes these limitations. RGNMR is a simple factorization-based
iterative algorithm, which combines a Gauss–Newton linearization with removal
of entries suspected to be outliers. On the theoretical front, we prove that under
suitable assumptions, RGNMR is guaranteed exact recovery of the underlying low
rank matrix. Our theoretical results improve upon the best currently known for
factorization-based methods. On the empirical front, we show via several simu-
lations the advantages of RGNMR over existing RMC methods, and in particular
its ability to handle a small number of observed entries, overparameterization of
the rank and ill-conditioned matrices. In addition, we propose a novel scheme for
estimating the number of corrupted entries. This scheme may be used by other
RMC methods that require as input the number of corrupted entries.

1 Introduction

Low-rank matrices play a fundamental role in multiple scientific disciplines. As reviewed in Dav-
enport and Romberg (2016), in various applications, there is a need to recover a low rank matrix
from only a subset of its entries. Examples include recommendation systems (Bennett et al., 2007),
various problems in computer vision (Kennedy et al., 2016; Tulyakov et al., 2016; Miao and Kou,
2021), in sensor networks (Wu et al., 2025) and in single-cell data analysis (Lejun et al., 2025). A
key challenge in these and other applications is that some of the observed entries may be arbitrarily
corrupted outliers.

In this work, we consider the robust matrix completion (RMC) problem, of recovering a low rank
matrix from a subset of its entries, out of which a few are outliers. Formally, let X ∈ Rn1×n2 be a
matrix with a decomposition X = L∗+S∗, where L∗ is a rank r matrix and S∗ is a sparse corruption
matrix whose few non-zero entries are arbitrary. The RMC problem is to recover L∗ from the subset
{Xi,j | (i, j) ∈ Ω}, where Ω ⊂ [n1]× [n2] denotes the subset of observed entries in X .

Related work. Over the past decade, the RMC problem was studied from both mathematical,
computational and statistical perspectives. On the computational front, several RMC algorithms have
been proposed. In general, to solve the RMC problem the following optimization issues need to be
addressed: (i) either promote a low rank solution or strictly enforce it; and (ii) suppress the potentially
detrimental effect of the outliers, whose locations are a-priori unknown.

Regarding the first issue, one approach is to incorporate into the optimization objective a low-rank
promoting penalty such as the nuclear norm (Candès et al., 2011; Nie et al., 2012; Klopp et al., 2017;
Wong and Lee, 2017; Chen et al., 2021). Under suitable assumptions on the matrices L∗, S∗ and

on the set Ω, these methods enjoy strong theoretical guarantees. However, these schemes are in
general computationally slow, and do not scale well to large matrices. A different approach is to
strictly enforce a rank r solution. This can be done by optimization over the manifold of rank r
matrices (Yan et al., 2013; Cambier and Absil, 2016), or by projecting matrices onto it. Several works
factorize the target matrix as L = UV ⊤, and optimize over the two factor matrices U ∈ Rn1×r and
V ∈ Rn2×r (Yi et al., 2016; Lin et al., 2017; Zeng and So, 2017; Huang et al., 2021; Wang et al.,
2023). The resulting problem involves only (n1 + n2)r variables instead of the n1 × n2 entries in L.
Factorization based methods are thus in general more scalable and able to handle larger matrices.

Regarding the second issue, some works attenuate the effect of the outliers either by estimating the
locations of the corrupted entries and removing them, or by estimating their values Sij for (i, j) ∈ Ω
(Yan et al., 2013; Cherapanamjeri et al., 2017; Huang et al., 2021; Chen et al., 2021; Wang and Wei,
2024). Other works mitigate the influence of outliers by using a robust norm on the difference X −L
in the objective function (Nie et al., 2012; Cambier and Absil, 2016; Lin et al., 2017; Zhao et al.,
2016; Zeng and So, 2017; Wang et al., 2023).

Limitations of existing RMC methods. Despite extensive research on the RMC problem, current
algorithms have various limitations: (i) Several RMC methods fail to recover the low rank matrix
unless the number of observed entries is quite large; (ii) Some methods require as input the (often
unknown) rank r of the target matrix and fail when overparameterized even by just a single additional
dimension (an input rank of r + 1); (iii) Various methods fail to recover a matrix with a moderate
condition number, as low as 5.

We illustrate these issues in Figures 1, 2 and 3. These figures show recovery results of various RMC
algorithms for a matrix L∗ of size 3200×400, rank r = 5, at a corruption rate of α = 5% (see Section
4 for further details). As in Zeng and So (2017); Tong et al. (2021) and Huang et al. (2021), the quality
of a recovered matrix L̂ is measured by the relative error rel-RMSE = ∥L̂−L∗∥F

∥L∗∥F
, and is considered a

failure if rel-RMSE > 10−3. For each simulation setting we ran 100 independent realizations. As
shown in these figures, RMC methods such as AOP (Yan et al., 2013), RMC (Cambier and Absil, 2016),
RPCA-GD (Yi et al., 2016), RRMC (Cherapanamjeri et al., 2017), HUB (Ruppel et al., 2020) and HOAT
(Wang et al., 2023) require a large number of observed entries and fail when overparameterized. In
addition, all of them (except HUB) fail at condition numbers greater than 5.

On the theoretical front, some RMC methods have no theoretical recovery guarantees. The currently
available guarantees for other methods are somewhat limited. As detailed in Table 1, the guarantees
for some methods only hold for fully observed matrices, or their allowed corruption level strongly
depends on the matrix rank and condition number.

These shortcomings raise the following challenges: (i) Develop a computationally efficient RMC
method able to handle ill-conditioned matrices, overparameterization, and a small number of
observed entries; (ii) derive for this method strong recovery guarantees that improve upon those of
existing methods.

Our contributions. In this work we make a step towards resolving this challenge. We propose a
novel RMC method, denoted RGNMR, which overcomes the above limitations. Our proposed method
is a simple iterative algorithm based on Gauss–Newton linearization and removal of entries suspected
to be outliers. As seen in Figures 1, 2 and 3, empirically RGNMR can successfully recover the
underlying matrices with significantly fewer observed entries than existing methods. Furthermore,
the performance of RGNMR is not affected by an overparameterized rank or by the condition number.
In Appendix B we show that RGNMR continues to outperform other methods under broader conditions,
including a combination of outliers and additive noise, non-uniform sampling, higher rank matrices,
a range of fractions of outliers, etc. Furthermore, we show that RGNMR performs well on a real data
set from computer vision, involving background extraction. In addition to its excellent empirical
performance, in Section 3 we derive theoretical recovery guarantees for RGNMR. Specifically, we
present two theorems. Theorem 3.1 states that given a suitable initialization, RGNMR recovers the target
matrix at a linear rate. This theorem holds under the weakest known assumptions for factorization

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

2

2 4 6 8 10 12 14

oversampling ratio

10
-15

10
-10

10
-5

10
0

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

2 4 6 8 10 12 14

oversampling ratio

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b
a
b
ili

ty

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

Figure 1: Performance of RMC methods as a function of the number of observed entries measured
by the oversampling ratio |Ω|

r·(n1+n2−r) where r · (n1 + n2 − r) is the number of degrees of freedom
of a rank r matrix. (left) Median rel-RMSE; (right) Failure probability (±1.96 SE). The underlying
matrix L∗ has a condition number κ = 2. The corruption fraction is α = 5%.

based RMC methods. Theorem 3.2 establishes that the initialization scheme we propose yields a
sufficiently accurate initial estimate for Theorem 3.1 to hold.

2 The RGNMR algorithm

To describe RGNMR, we first introduce some notation. For a subset Ω ⊆ [n1]× [n2], we denote by PΩ

the following projection operator

PΩ(A)i,j =

{
Ai,j (i, j) ∈ Ω,

0 (i, j) ̸∈ Ω.

For a matrix A and a set Ω, we denote ∥A∥2F (Ω) = ∥PΩ(A)∥2F =
∑

(i,j)∈Ω A2
i,j . Finally, we denote

the set of corrupted entries by Λ∗ = {(i, j) ∈ Ω |S∗
i,j ̸= 0} and the number of corrupted entries by

k∗ = |Λ∗|. Both Λ∗ and k∗ are unknown.

The optimization variables of RGNMR are two factor matrices U ∈ Rn1×r, V ∈ Rn2×r and a subset
Λ ⊂ Ω which estimates the locations of the corrupted entries. RGNMR receives as input the following
quantities; the subset of observed entries {Xi,j | (i, j) ∈ Ω}; the rank of the target matrix r; an upper
bound k on the number of corrupted entries; initial guess (U0, V0) for the factor matrices and Λ0 ⊂ Ω
for the set of corrupted entries.

At each iteration RGNMR performs the following two steps: (i) given the current set of suspected
outlier entries Λ, update U, V using the remaining entries PΩ\Λ(X); (ii) given the updated matrix L,
recompute the new set of suspected outliers Λ, by the k entries with largest magnitude in PΩ(X −L).

Let us provide some motivation for the above two steps. If the estimated set of non corrupted entries,
Ω \ Λ, is large enough and contains only non-corrupted entries, namely Λ∗ ⊂ Λ, then the matrix
L∗ could be recovered exactly from PΩ\Λ(X) = PΩ\Λ(L

∗) by solving a vanilla matrix completion
problem, with no outliers or noise. Regarding the second step, consider an ideal case where after step
(i) of some iteration RGNMR obtained L = L∗. Then at all the non-corrupted entries (i, j) ∈ Ω \ Λ∗,
the residual Xi,j − Li,j = 0 and L∗ is a fixed point of the algorithm. Therefore, given L it is
reasonable to estimate the corrupted entries by the entries with largest magnitude in PΩ(X − L).
Iterating this process we hope to identify a sufficiently large subset of Ω \ Λ∗ and consequently
recover L∗.

We now describe the two steps of RGNMR. The first step builds upon the matrix completion approach
of Zilber and Nadler (2022). Formally, given the estimate Λt of Λ∗ and the current factorization
(Ut, Vt), the updated matrices (Ut+1Vt+1) are the solution of the following least squares problem,

(Ut+1, Vt+1) = argmin
U,V

Lt
Ω\Λt

(U, V) = argmin
U,V

∥UtV
⊤ + UV ⊤

t − UtV
⊤
t −X∥F (Ω\Λt). (1)

3

0 1 2 3 4 5

overparametrized rank

10
-15

10
-10

10
-5

10
0

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

0 1 2 3 4 5

overparametrized rank

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b
a
b
ili

ty

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

Figure 2: Performance of RMC methods under overparameterization with input rank of 5 + i for
i ∈ [0, 5]. (left) Median rel-RMSE; (right) Failure probability (±1.96 SE). The matrix L∗ has a
condition number κ = 2 and the oversampling ratio is |Ω|

r·(n1+n2−r) = 12.The corruption fraction is
α = 5%

This problem is rank deficient with an infinite number of solutions. As in Zilber and Nadler (2022),
we choose the new estimate to be the solution with minimal norm ∥Ut+1∥2F + ∥Vt+1∥2F .

For the second step, we construct a new estimate of Λ∗ by the k largest residual entries in (1),

Λt+1 = arg min
Λ⊂Ω,|Λ|=k

∥UtV
⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t −X∥2F (Ω\Λ). (2)

RGNMR iterates these two steps until convergence or until a maximal number of iterations T is reached.
Algorithm 1 presents an outline of RGNMR.
Remark 2.1. In general, removing some of the observed entries, as in (2), may be detrimental. For
example, if after removal of entries suspected as outliers, only less than r entries remain at a specific
row or column, then the resulting matrix completion problem is ill-posed and exact recovery of L∗ is
not possible. As illustrated empirically in Zilber and Nadler (2022), GNMR is able to complete low
rank matrices even if the number of observed entries is near the information limit. Therefore, as long
as the number of remaining observed entries in each row and column is above r, our method is often
still able to recover the target matrix.
Remark 2.2. As shown in Zilber and Nadler (2022), in the absence of outliers, GNMR which iteratively
solves (1), can successfully recover ill-conditioned low rank matrices, from relatively few observed
entries. However, as illustrated in Figure 5 in the appendix, GNMR is not robust and fails completely
in the presence of even a small fraction of corrupted entries. Since in the first few iterations the set
Ω \ Λt typically includes outliers, employing GNMR would not result in a significantly better update
of (Ut, Vt) than that of a single optimization step. Therefore, in our scheme we do not run GNMR till
convergence. Instead we re-estimate Λ after each update of (Ut, Vt). This approach avoids redundant
iterations of GNMR and yields considerable savings in terms of runtime.

2.1 Estimating the number of corrupted entries

One of the input parameters to RGNMR is k. At each iteration RGNMR removes the k entries with
largest residual error, and performs low-rank matrix completion on the remaining entries. For RGNMR
to succeed, it is crucial for k to be a tight upper bound of the true number of corrupted entries k∗.
Indeed, if k ≫ k∗ then too many entries are removed and on the remaining entries the corresponding
matrix completion problem is ill posed. As the true number of corrupted entries k∗ is unknown, it is
important to develop a method to tightly upper bound it. Here we propose a scheme to do so.

Our approach is motivated by the empirical observation that the estimates Λt of RGNMR behave
differently if k ≤ k∗ or k > k∗. If k ≤ k∗ then the estimates Λt of the set of corrupted entries
converge after several iterations. However, if k > k∗, the sets Λt do not converge. This is illustrated
in Figure 4 in the appendix, and we provide some intuition for this behavior below. Building upon this
observation, we propose a binary search algorithm to estimate k∗, assuming it belongs to the range
[kmin, kmax]. In practice, we may take kmin = 0 and kmax = |Ω|/2 (namely at most 50% corrupted

4

1 3 5 7 9

condition number

10
-15

10
-10

10
-5

10
0

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

1 3 5 7 9

condition number

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b

a
b

ili
ty

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

Figure 3: Performance of RMC methods as a function of the condition number. (left) Median
rel-RMSE; (right) Failure probability (±1.96 SE). The oversampling ratio is |Ω|

r·(n1+n2−r) = 12. The
corruption fraction is α = 5%.

entries). At each step we run RGNMR with k = ⌊(kmin + kmax)/2⌋. If the sets Λt converged, then
we update kmin = k. Otherwise, we set kmax = k. After log2(kmax − kmin) steps we obtain a tight
upper bound on k∗.

To provide intuition to why RGNMR behaves differently with k ≤ k∗ or k > k∗, consider the following
scenario. Assume that k ≤ k∗ and that at some iteration, the set Λt of k entries with largest current
residuals, satisfies that Λt ⊆ Λ∗. The next estimate Lt+1 of L∗ minimizes ∥PΩ\Λt

(L − X)∥F ,
ignoring the entries in Λt, which by assumption are all outliers. Hence, Lt+1 tries to fit a low rank
matrix to the remaining entries, and thus we expect the entries in Λt to remain the k largest residual
entries. Therefore, Λt = Λt+1 and as the same argument holds for all subsequent iterations the
sets Λt converge. In contrast, if k > k∗ then at any iteration t, the set Λt contains at least k − k∗

non-corrupted entries. Assume that at some iteration t, the method successfully detected all outliers,
i.e. Λ∗ ⊂ Λt. Then, if k is not too large, the next estimate should be very close to the true low rank
matrix Lt+1 ≈ L∗. As the computations are done in finite precision, the residuals at both Ω \ Λt

as well as at Λt \ Λ∗ are not precisely zero but rather, due to rounding errors, appear as very small
random values. Therefore, even though Λ∗ ⊂ Λt+1 its remaining k − k∗ entries are not the same as
those of Λt \ Λ∗, but rather change at each iteration t. Hence, the sets Λt do not converge.

To demonstrate that our binary search scheme successfully bounds the number of corrupted entries
we compare two variants of RGNMR. The first, denoted simply RGNMR, is given the true number of
corrupted entries k∗ as input, k = k∗. The second variant, denoted RGNMR-BS, first upper bounds k∗

using our binary search scheme and then uses this upper bound k̂ as input, k = k̂. As illustrated in
Figures 1, 2 and 3, RGNMR-BS performance is similar to that of RGNMR, which implies that our method
obtains a sufficiently tight upper bound on k∗.

Remark 2.3. Several RMC methods aim to remove the corrupted entries and require an estimate of
k∗ (Yan et al., 2013; Yi et al., 2016). Since the intuition provided above holds also for these methods,
a similar scheme to estimate k∗ can be incorporated there as well. We note that in the simulations we
conducted these methods were provided with the exact number of outliers. Still, in various settings,
these methods failed to recover the underlying matrix, whereas RGNMR succeeded. This highlights
that our novel scheme for estimating the number of outliers is not the sole advantage of our proposed
method.

3 Recovery guarantees

In this section we present recovery guarantees for RGNMR. Recall that the goal is to recover a rank r
matrix L∗ ∈ Rn1×n2 from a subset Ω of the entries of X = L∗ + S∗. We start with some notations
and the assumptions made in our theoretical analysis.

5

Algorithm 1 RGNMR
Input:

• {Xi,j | (i, j) ∈ Ω} - observed entries
• r - rank of L∗

• k - upper bound on the number of corrupted entries

•
(
U0

V0

)
∈ R(n1+n2)×r - initialization

• Λ0 - initial estimate of the set of corrupted entries
• T - maximal number of iterations

Output: L̂ of rank r

for t = 0 . . . T − 1 do(
Ut+1

Vt+1

)
= argmin

U,V
∥UtV

⊤ + UV ⊤
t − UtV

⊤
t −X∥2F (Ω\Λt)

Λt+1 = arg min
Λ⊂Ω,|Λ|=k

∥UtV
⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t −X∥2F (Ω\Λ)

end for
return Pr(UT−1V

⊤
T + UTV

⊤
T−1 − UT−1V

⊤
T−1)

Notations. The i-th largest singular value of the matrix L∗ ∈ Rn1×n2 is denoted by σ∗
i , and its

condition number is denoted by κ = σ∗
1/σ

∗
r . We denote the operator norm of a matrix (a.k.a. spectral

norm) by ∥A∥op, its Frobenius norm by ∥A∥F , its i-th row by A(i,·), its j column by A(·,j) its
largest row norm by ∥A∥2,∞ ≡ maxi ∥A(i,·)∥ and its zero norm by ∥A∥0 = |{(i, j) ∈ [n1]× [n2] |
Ai,j ̸= 0}|. We define the matrix |A| by |A|(i,j) = |A(i,j)|. We denote by Pr(A) the best rank r
approximation of A in Frobenius norm, namely the projection to the subspace spanned by the r
singular vectors with largest singular values. We denote Ω(·,j) = {i | (i, j) ∈ Ω}, Ω(i,·) = {j |
(i, j) ∈ Ω} and cj = |Ω(·,j)|, ri = |Ω(i,·)|. The Procrustes distance between Z1, Z2 ∈ Rn×r is

dP (Z1, Z2) = min
{
∥Z1 − Z2P∥F | |P ∈ Rr×r is orthogonal

}
. (3)

For a vector v we denote by v(k) its k-th largest entry in absolute value.

Assumptions. For the RMC problem to be well-posed, we make three standard assumptions.

Assumption 1. The underlying matrix L∗ is incoherent with incoherence parameter µ. Formally, if
UΣV ⊤ is the SVD of L∗ then

∥U∥2,∞ ≤
√
µr/n1, ∥V ∥2,∞ ≤

√
µr/n2. (4)

For future use, we denote by M(n1, n2, r, µ, κ) the set of n1 × n2 matrices of rank r, incoherence
parameter µ and condition number κ.

Assumption 2. [Bernoulli Model] Each entry in X is independently observed with probability p.
Hence, the number of observed entries is not fixed, but rather |Ω| ∼ Bin(n1n2, p).

Assumption 3. In each row and column, the fraction of observed entries which are corrupted is
bounded. Formally, for a known 0 < α < 1, we assume that S∗ ∈ SΩ

α , where

SΩ
α =

{
S ∈ Rn1×n2

∣∣∀i : ∥PΩ(S)(i,·)∥0 ≤ αri ∧ ∀j : ∥PΩ(S)(·,j)∥0 ≤ αcj
}
. (5)

Assumption 1 was introduced by Candes and Recht (2012). Assumptions 2 and 3 or variants thereof
are common in theoretical analyses of matrix completion (see for example, Candès et al., 2011; Yi
et al., 2016; Cherapanamjeri et al., 2017; Wang and Wei, 2024).

Similar to other works on robust matrix completion, we derive guarantees for a slightly modified
variant of our proposed method. Specifically, we make the following two modifications.

6

Algorithm 2 RGNMR - modified
Input: All the inputs of RGNMR and the following additional parameters:

• µ - incoherence parameter of L∗

• α - a bound on the fraction of outliers in each row/column
• γ - over-removal factor
• δ - neighborhood parameter

Output: L∗ of rank r

for t = 0 . . . T − 1 do

Λt = support
(
Tγα

(
UtV

⊤
t −X,Ω

))(
Ut+1

Vt+1

)
= argmin

U,V

{
∥UtV

⊤ + UV ⊤
t − UtV

⊤
t −X∥2F (Ω\Λt)

∣∣∣(U, V) ∈ Bµ ∩ C
(
Ut, Vt,

δ
4t+1

)}
end for
return LT = UTV

⊤
T

First, the set of corrupted entries Λ∗ is estimated differently. In the original method Λ∗ is estimated
as the set of k largest residual entries. However, motivated by Assumption 3 that the fraction of
corrupted entries in each row and column is bounded, in the modified algorithm we remove only
a bounded number of entries from each row and column. To this end we introduce the following
thresholding operator Tθ(A,Ω). Given an input matrix A, a subset Ω, and a parameter θ ∈ (0, 1),
the operator Tθ(A,Ω) keeps only those entries (i, j) ∈ Ω which belong to the largest θ-fraction of
entries in both the respective row i and column j, and zeros out all the remaining entries. In case of
entries having identical magnitude, ties are broken arbitrarily. Formally,

Tθ(A,Ω) =

{
PΩ(A)i,j |Ai,j | >

[
|PΩ(A)|(i,·)

](⌈θri⌉) ∧ |Ai,j | >
[
|PΩ(A)|(·,j)

](⌈θcj⌉)
0, otherwise.

(6)

At each iteration t, given the current estimate Lt = UtV
⊤
t , the estimated set of corrupted entries is

Λt = support (Tθ (Lt −X,Ω)) . (7)

As in the original method, entries are still removed based on the magnitude of their residual but in
this way the number of removed entries from each row and column is bounded. For RGNMR to be able
to remove all outliers, a necessary condition is that θ ≥ α. In what follows, we choose θ = γα where
γ ≥ 1 is the over-removal factor.

The second modification to RGNMR is to constrain the update (Ut+1, Vt+1) to be in the vicinity of the
current pair of factor matrices (Ut, Vt) and to have bounded row norms. Formally, for a parameter
δt > 0 we define the δt neighborhood of the current estimate (Ut, Vt) as

C(Ut, Vt, δt) =

{(
Ũ
Ṽ

)
∈ R(n1+n2)×r

∣∣∣∣ ∥Ũ − Ut∥2F + ∥Ṽ − Vt∥2F ≤ δt

}
, (8)

and denote the subset of factor matrices with bounded row norms by

Bµ =

{(
U
V

)
∈ R(n1+n2)×r

∣∣∣∣∣ ∥U∥2,∞ ≤
√

3µrσ∗
1

n1
, ∥V ∥2,∞ ≤

√
3µrσ∗

1

n2

}
, (9)

where the constant 3 is arbitrary. Instead of Eq. (1), for a suitably chosen δ > 0, the modified RGNMR
updates the factor matrices as follows,

(Ut+1, Vt+1) = argmin

{
Lt
Ω\Λt

(U, V)

∣∣∣∣(U, V) ∈ Bµ ∩ C
(
Ut, Vt,

δ

4t+1

)}
. (10)

Similar constraints were employed by Zilber and Nadler (2022) and Keshavan et al. (2010), in deriving
theoretical guarantees for their (non-robust) matrix completion algorithms. As these constraints
are quadratic, the above problem may be written as a convex optimization problem with quadratic
regularization terms. Hence, it can be solved computationally efficiently. The modified RGNMR is
described in Algorithm 2.

7

Table 1: Recovery guarantees requirements of various RMC methods, up to multiplicative constant
factors. The weakest conditions for each category of methods are in bold.

Method

Category
Method

Sample Complexity

(pn2 ≥)

Corruption Rate

(α ≤)

Factorization
Based

Zheng and Lafferty (2016) max{µr logn1, µ
2r2κ2} α = 0, No Corruption

Tong et al. (2021) p = 1, Fully Observed 1

r
3
2 µκ

Cai et al. (2024) p = 1, Fully Observed 1

r
3
2 µκ

Yi et al. (2016) µ2r2κ4 log n1
1

rµκ2

Our Theorem 3.1 max{µr logn1, µ
2r2κ2} 1

rµκ

Full
Matrix

Cherapanamjeri et al. (2017) µ2r2 log2(µrσ∗
1) log

2 n1
1
rµ

Wang and Wei (2024) µ3r3κ4 log n1
1

r2µ2κ2

Main theorems. To state our recovery guarantees we introduce the following definitions. For a
rank r matrix L∗ with smallest singular value σ∗

r , we define the following sets, as in (Zilber and
Nadler, 2022). First, we denote all factorizations of rank-r matrices with a bounded error from L∗ by

Berr(ϵ) =
{
(U, V) ∈ R(n1+n2)×r

∣∣∣ ∥UV ⊤ − L∗∥F ≤ ϵσ∗
r

}
. (11)

In particular, we denote by B∗ = Berr(0) the set of all exact factorizations of L∗,

B∗ =
{
(U, V) ∈ R(n1+n2)×r

∣∣∣UV ⊤ = L∗
}
. (12)

We say that U, V are balanced if U⊤U = V ⊤V , and measure the imbalance by ∥U⊤U − V ⊤V ∥F .
We denote all the pairs of factor matrices which are approximately balanced by

Bbln(δ) =
{
(U, V) ∈ R(n1+n2)×r

∣∣∣ ∥U⊤U − V ⊤V ∥F ≤ δσ∗
r

}
. (13)

Our first theorem states that starting from a sufficiently accurate balanced initialization with bounded
row norms, the modified RGNMR of Algorithm 2 recovers L∗ with high probability and with a linear
convergence rate.
Theorem 3.1. Let X = L∗ + S∗, where L∗ ∈ M(n1, n2, r, µ, κ), and without loss of generality
n1 ≥ n2. Let the set of observed entries Ω follow Assumption 2, and the corruption matrix S∗ satisfy
Assumption 3 for some known α ∈ (0, 1). For large enough absolute constants C, cl, ce, cα, cγ the
following holds: If the fraction of corrupted entries is small enough, α < 1

cαrµκ and the probability to

observe an entry is high enough, p ≥ Cµr
n2

max{log n1, µrκ
2}, then w.p. at least 1− 6

n1
, Algorithm

2 with parameter 25σ∗
r

c2eκ
≤ δ ≤ σ∗

r

ceκ
, over removal factor cγ ≤ γ ≤ √

cα and an initialization
(U0, V0) ∈ Berr(

1
ce

√
κ
) ∩ Bbln(

1
2cl

) ∩ Bµ converges linearly to L∗. That is, after t iterations the

estimate Lt = UtV
⊤
t satisfies

∥Lt − L∗∥F ≤ 1

2t
σ∗
r

ce
√
κ
. (14)

Our second theorem states that under suitable conditions it is possible to construct an accurate
initialization that satisfies the requirements of Theorem 3.1. To do so we employ the spectral based
initialization scheme proposed by Yi et al. (2016), followed by a normalization procedure on the
rows of the factor matrices. Similar normalization procedures were employed by Zheng and Lafferty
(2016) and Zilber and Nadler (2022) for their analysis of matrix completion without outliers. Our
initialization scheme, outlined in Algorithm 3, is described in detail in Appendix A.

8

Theorem 3.2. Let X = L∗ + S∗, L∗ ∈ M(n1, n2, r, µ, κ) , S∗ ∈ SΩ
α and without loss of generality,

n1 ≥ n2. Then for any cl, ce for large enough constants cα, C the following holds: If α ≤ 1

cακ2r
3
2 µ

and p ≥ C µr2κ4 logn1

n2
then w.p. at least 1− 6

n1
Algorithm 3 outputs a pair (U0, V0) that satisfies

(U0, V0) ∈ Berr

(
1

ce
√
κ

)
∩ Bbln

(
1

2cl

)
∩ Bµ. (15)

Remark 3.1. Theorem 3.1 holds for 25σ∗
r

c2eκ
≤ δ ≤ σ∗

r

ceκ
. In principle, to provide a valid value of δ in this

interval requires knowledge of σ∗
1 and σ∗

r . We note that several other works also required knowledge
of σ∗

1 or σ∗
r or both for their methods (see Yi et al., 2016; Sun and Luo, 2016; Cherapanamjeri

et al., 2017). In fact, for our approach it suffices to estimate these two singular values up to constant
multiplicative factors. Moreover, within the proof of Theorem 3.2, we show that under its assumptions,
it is indeed possible to estimate σ∗

1 and σ∗
r up to constant factors.

Remark 3.2. Theorems 3.1 and 3.2 require that the parameters µ and α are known. Similar
assumptions were made in previous works (e.g. Yi et al., 2016; Cherapanamjeri et al., 2017; Sun and
Luo, 2016; Zilber and Nadler, 2022).

Comparison to other recovery guarantees. We compare our theoretical results to those derived
for both factorization based methods as well as methods that operate on the full matrix.

For the vanilla matrix completion problem, where the observed entries are not corrupted, the smallest
sample complexity requirement for factorization based methods was derived by Zheng and Lafferty
(2016). Remarkably, Theorem 3.1 matches this result for RGNMR even in the presence of corrupted
entries. The number of samples required by Theorem 3.1 is smaller than those required for other
RMC methods (Yi et al., 2016; Wang and Wei, 2024) and if κ < C log(µrσ∗

1) log n1, for a suitable
constant C, it is also smaller than the requirements in Cherapanamjeri et al. (2017).

In terms of the fraction α of corrupted entries, the recovery guarantee with the highest α for
factorization based methods was derived by Tong et al. (2021) and by Cai et al. (2024), under the
assumption that the matrix is fully observed. Theorem 3.1 improves upon this result by a factor
of O(

√
r), even though the matrix is only partially observed. Hence our recovery guarantee holds

under the weakest known conditions for factorization based methods. For general RMC methods the
recovery guarantee with the highest α was derived by Cherapanamjeri et al. (2017). Theorem 3.1
requires a smaller α than in Cherapanamjeri et al. (2017) by a factor of O(κ). Table 1 summarizes
the sample complexity and corruption rate requirements of different methods.

Next, for constructing a suitable initialization the requirements on α and p in Theorem 3.2 are more
stringent than those for the recovery guarantee of Theorem 3.1. This separation is common in other
works on matrix completion (Zheng and Lafferty, 2016; Yi et al., 2016; Zilber and Nadler, 2022).
In terms of sample complexity Theorem 3.2 still improves upon the results in Yi et al. (2016) and
Wang and Wei (2024) and in some parameter regimes also upon the result in Cherapanamjeri et al.
(2017). In terms of the fraction of outliers the condition in Theorem 3.2 is more stringent than in Yi
et al. (2016) and Cherapanamjeri et al. (2017). Since empirically RGNMR succeeds even with random
initialization we believe the condition imposed by Theorem 3.1 can be relaxed. This would allow for
less stringent conditions in Theorem 3.2. We leave this for future work.

4 Numerical results

This section details the simulations conducted to compare the various RMC methods. The results are
illustrated in Figures 1, 2, 3 and in Appendix B. Each instance consisted of generating a random matrix
L∗ ∈ Rn1×n2 of a given rank r, condition number κ, subset of observed entries Ω ⊆ [n1] × [n2]
and a corruption matrix S∗. We generate L∗ following Tong et al. (2021). Specifically, we construct
U ∈ Rn1×r, V ∈ Rn2×r with entries i.i.d. from the standard normal distribution and orthonormalize
their columns. We then construct Σ ∈ Rr×r as a diagonal matrix with r evenly spaced values between
1 and 1

κ on the diagonal. We set L∗ = UΣV ⊤. Next, to generate Ω we follow Zilber and Nadler
(2022). Given an oversampling ratio ρ we sample Ω of size ⌊ρr(n1 + n2 − r)⌋ randomly without
replacement and verify that it contains at least r entries in each column and row. To construct the
corruption matrix S∗ we first sample its support Λ∗ ⊆ Ω as follows. Given a fraction α of corrupted
entries we sample ⌊α · |Ω|⌋ entries out of Ω randomly without replacement. We then verify that the

9

set Ω \ Λ∗ contains at least r entries in each column and row. Similar to Cai et al. (2024) and Wang
and Wei (2024), we sample the value of each corruption entry uniformly between −maxi,j |L∗

i,j |
and maxi,j |L∗

i,j |. Each method is then provided with the matrix PΩ(L
∗ + S∗), the set of entries Ω

and the matrix rank r.

We compare RGNMR to AOP (Yan et al., 2013), RMC (Cambier and Absil, 2016), RPCA-GD (Yi et al.,
2016), RRMC (Cherapanamjeri et al., 2017), HUB (Ruppel et al., 2020) and HOAT (Wang et al., 2023).
In addition, as described in Section 2.1, we compare RGNMR to RGNMR-BS. Implementations of all
methods except RRMC are publicly available. An implementation of RRMC was kindly provided to
us by Wang and Wei (2024). MATLAB and Python implementations of RGNMR are available at
github.com/eilon96/RGNMR. All simulations were run on a 2.1GHz Intel Core i7 CPU with 32GB
of memory.

Each algorithm was executed with its default parameters, with the following exceptions: (i) To
improve RPCA-GD and HUB performance we increased their number of iterations by using stricter
convergence threshold than their default; (ii) In RPCA-GD we employed an over removal factor γ of
4 as it significantly improved its performance in our simulations; (iii) We tuned the parameter ξ in
HOAT to 30; (iv) We provided AOP the exact number of corrupted entries; (v) For RRMC we use the
same parameters used in Wang and Wei (2024).

In Appendix B we illustrate the performance of RGNMR under a broad set of additional scenarios.
Specifically, Figure 6 shows that RGNMR can handle a large fraction of corrupted entries. Figures
7 and 8 show that RGNMR outperforms other methods also under non-uniform sampling. Figures
9, 10 and 11 illustrate its performance under a combination of additive noise and outliers. Figure
12 demonstrates that RGNMR can recover matrices with a high rank even if the number of observed
entries is relatively small. Figure 13 illustrates that RGNMR performs well on a real dataset involving
background extraction in a video. This is a standard benchmark for RMC methods (Yi et al., 2016;
Cherapanamjeri et al., 2017; Huang et al., 2021; Cai et al., 2024). Finally, Figure 14 shows the
runtime of RGNMR and illustrates its performance on large matrices.

5 Limitations and future research

In this section we discuss the theoretical and empirical limitations of RGNMR. These suggest several
promising directions for future research.

On the theoretical front, though our analysis improves upon existing results, it does not fully account
for the remarkable empirical performance of RGNMR. For example, the conditions in Theorem 3.1 on
both α and p depend on the condition number κ while empirically the performance of RGNMR is not
affected by κ. In addition, our analysis did not consider the case of overparameterization. These are
open directions for future theoretical analysis of RGNMR.

On the empirical front, although RGNMR performs well in cases where most RMC methods fail, it
is more computationally demanding than some of them. This is because each optimization step of
RGNMR requires to solve a large system of linear equations (1), whereas some other methods require
only a gradient descent step. As we illustrate in Figure 14, the runtime of RGNMR grows quadratically
with n. Improving the runtime of RGNMR is therefore an interesting direction for future research.

Another possible line of research is to employ RGNMR to the problem of robust matrix recovery (Li
et al., 2020b; Ding et al., 2021; Ma and Fattahi, 2023). As discussed in Remark 2.2, RGNMR is closely
related to the GNMR method (Zilber and Nadler, 2022). Since GNMR was proven to successfully handle
the problem of vanilla matrix recovery, where no data is corrupted, we believe the same can be
achieved for RGNMR in the presence of corrupted data.

Acknowledgments B.N. is the incumbent of the William Petschek Professorial Chair of Mathemat-
ics. The research of B.N. was supported in part by grant 2362/22 from the Israel Science Foundation.
We thank Tianming Wang and Ke Wei for sharing the code of their work (Wang and Wei, 2024).
We also thank the anonymous reviewers for their valuable feedback that improved the quality of our
manuscript.

10

https://github.com/eilon96/RGNMR

References
Bauch, J., Nadler, B., and Zilber, P. (2021). Rank 2r iterative least squares: efficient recovery of

ill-conditioned low rank matrices from few entries. SIAM Journal on Mathematics of Data Science,
3(1):439–465.

Bennett, J., Lanning, S., et al. (2007). The Netflix Prize. In Proceedings of KDD Cup and Workshop,
volume 2007, page 35. New York.

Boumal, N. and Absil, P.-a. (2011). RTRMC: A Riemannian trust-region method for low-rank matrix
completion. Advances in Neural Information Processing Systems, 24.

Boumal, N. and Absil, P.-A. (2015). Low-rank matrix completion via preconditioned optimization on
the grassmann manifold. Linear Algebra Appl., 475:200–239.

Cai, H., Cai, J.-F., and Wei, K. (2019). Accelerated alternating projections for robust principal
component analysis. Journal of Machine Learning Research, 20(20):1–33.

Cai, H., Kundu, C., Liu, J., and Yin, W. (2024). Deeply learned robust matrix completion for
large-scale low-rank data recovery. arXiv preprint arXiv:2501.00677.

Cai, J.-F., Candès, E. J., and Shen, Z. (2010). A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982.

Cambier, L. and Absil, P.-A. (2016). Robust low-rank matrix completion by Riemannian optimization.
SIAM Journal on Scientific Computing, 38(5):S440–S460.

Candes, E. and Recht, B. (2012). Exact matrix completion via convex optimization. Communications
of the ACM, 55(6):111–119.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis? Journal
of the ACM (JACM), 58(3):1–37.

Chen, Y., Fan, J., Ma, C., and Yan, Y. (2021). Bridging convex and nonconvex optimization in robust
pca: Noise, outliers, and missing data. Annals of Statistics, 49(5):2948.

Chen, Y., Xu, H., Caramanis, C., and Sanghavi, S. (2015). Matrix completion with column manipula-
tion: Near-optimal sample-robustness-rank tradeoffs. IEEE Transactions on Information Theory,
62:1–1.

Cheng, C. and Zhao, Z. (2024). Accelerating gradient descent for over-parameterized asymmetric
low-rank matrix sensing via preconditioning. In ICASSP 2024-2024 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 7705–7709. IEEE.

Cherapanamjeri, Y., Gupta, K., and Jain, P. (2017). Nearly optimal robust matrix completion. In
International Conference on Machine Learning, pages 797–805. PMLR.

Davenport, M. A. and Romberg, J. (2016). An overview of low-rank matrix recovery from incomplete
observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622.

Ding, L., Jiang, L., Chen, Y., Qu, Q., and Zhu, Z. (2021). Rank overspecified robust matrix recovery:
Subgradient method and exact recovery. arXiv preprint arXiv:2109.11154.

Drineas, P., Javed, A., Magdon-Ismail, M., Pandurangan, G., Virrankoski, R., and Savvides, A. (2006).
Distance matrix reconstruction from incomplete distance information for sensor network localiza-
tion. In 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications
and Networks, volume 2, pages 536–544. IEEE.

Eriksson, A. and Van Den Hengel, A. (2010). Efficient computation of robust low-rank matrix
approximations in the presence of missing data using the L-1 norm. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 771–778. IEEE.

He, Y., Wang, F., Li, Y., Qin, J., and Chen, B. (2019). Robust matrix completion via maximum
correntropy criterion and half-quadratic optimization. IEEE Transactions on Signal Processing,
68:181–195.

11

Hsu, D., Kakade, S. M., and Zhang, T. (2011). Robust matrix decomposition with sparse corruptions.
IEEE Transactions on Information Theory, 57(11):7221–7234.

Huang, M., Ma, S., and Lai, L. (2021). Robust low-rank matrix completion via an alternating manifold
proximal gradient continuation method. IEEE Transactions on Signal Processing, 69:2639–2652.

Jain, P., Meka, R., and Dhillon, I. (2010). Guaranteed rank minimization via singular value projection.
Advances in Neural Information Processing Systems, 23.

Jain, P., Netrapalli, P., and Sanghavi, S. (2013). Low-rank matrix completion using alternating
minimization. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pages 665–674.

Jiang, X., Zhong, Z., Liu, X., and So, H. C. (2017). Robust matrix completion via alternating
projection. IEEE Signal Processing Letters, 24(5):579–583.

Ke, Q. and Kanade, T. (2005). Robust L1 norm factorization in the presence of outliers and missing
data by alternative convex programming. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 739–746. IEEE.

Kennedy, R., Balzano, L., Wright, S. J., and Taylor, C. J. (2016). Online algorithms for factorization-
based structure from motion. Computer Vision and Image Understanding, 150:139–152.

Keshavan, R. H., Montanari, A., and Oh, S. (2010). Matrix completion from a few entries. IEEE
Transactions on Information Theory, 56(6):2980–2998.

Klopp, O., Lounici, K., and Tsybakov, A. B. (2017). Robust matrix completion. Probability Theory
and Related Fields, 169:523–564.

Kümmerle, C. and Verdun, C. M. (2021). A scalable second order method for ill-conditioned
matrix completion from few samples. In International Conference on Machine Learning, pages
5872–5883. PMLR.

Lejun, G., Like, Y., Xinyi, W., Shehai, Z., and Shuhua, X. (2025). Seqbmc: Single-cell data
processing using iterative block matrix completion algorithm based on matrix factorisation. IET
Systems Biology, 19(1):e70003.

Li, J., Cai, J.-F., and Zhao, H. (2020a). Robust inexact alternating optimization for matrix completion
with outliers. Journal of Computational Mathematics, 38(2):337–354.

Li, L., Huang, W., Gu, I. Y.-H., and Tian, Q. (2004). Statistical modeling of complex backgrounds
for foreground object detection. IEEE Transactions on Image Processing, 13(11):1459–1472.

Li, X., Zhu, Z., Man-Cho So, A., and Vidal, R. (2020b). Nonconvex robust low-rank matrix recovery.
SIAM Journal on Optimization, 30(1):660–686.

Lin, Z., Chen, M., and Ma, Y. (2010). The augmented lagrange multiplier method for exact recovery
of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.

Lin, Z., Xu, C., and Zha, H. (2017). Robust matrix factorization by majorization minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(1):208–220.

Liu, Z., Han, Z., Tang, Y., Zhang, H., Tang, S., and Wang, Y. (2025). Efficient over-parameterized
matrix sensing from noisy measurements via alternating preconditioned gradient descent. arXiv
preprint arXiv:2502.00463.

Ma, J. and Fattahi, S. (2023). Global convergence of sub-gradient method for robust matrix recovery:
Small initialization, noisy measurements, and over-parameterization. Journal of Machine Learning
Research, 24(96):1–84.

Ma, S., Goldfarb, D., and Chen, L. (2011). Fixed point and bregman iterative methods for matrix
rank minimization. Mathematical Programming, 128(1):321–353.

Meka, R., Jain, P., and Dhillon, I. (2009). Matrix completion from power-law distributed samples.
Advances in Neural Information Processing Systems, 22.

12

Meng, D., Xu, Z., Zhang, L., and Zhao, J. (2013). A cyclic weighted median method for l1 low-rank
matrix factorization with missing entries. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 27, pages 704–710.

Miao, J. and Kou, K. I. (2021). Color image recovery using low-rank quaternion matrix completion
algorithm. IEEE Transactions on Image Processing, 31:190–201.

Muma, M., Zeng, W.-J., and Zoubir, A. M. (2019). Robust m-estimation based matrix completion. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5476–5480. IEEE.

Netrapalli, P., UN, N., Sanghavi, S., Anandkumar, A., and Jain, P. (2014). Non-convex robust pca.
Advances in Neural Information Processing Systems, 27.

Nie, F., Wang, H., Cai, X., Huang, H., and Ding, C. (2012). Robust matrix completion via joint
Schatten p-norm and lp-norm minimization. In 2012 IEEE 12th International Conference on Data
Mining, pages 566–574. IEEE.

Okatani, T., Yoshida, T., and Deguchi, K. (2011). Efficient algorithm for low-rank matrix factorization
with missing components and performance comparison of latest algorithms. In 2011 International
Conference on Computer Vision, pages 842–849. IEEE.

Recht, B. and Ré, C. (2011). Parallel stochastic gradient algorithms for large-scale matrix completion.
Mathematical Programming Computation, 5.

Ruppel, F., Muma, M., and Zoubir, A. M. (2020). Globally optimal robust matrix completion based
on M-estimation. In 2020 IEEE 30th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE.

Shen, Y. and Sanghavi, S. (2019). Learning with bad training data via iterative trimmed loss
minimization. In International Conference on Machine Learning, pages 5739–5748. PMLR.

Shen, Y., Wen, Z., and Zhang, Y. (2014). Augmented lagrangian alternating direction method for
matrix separation based on low-rank factorization. Optimization Methods and Software, 29(2):239–
263.

Sun, R. and Luo, Z.-Q. (2016). Guaranteed matrix completion via non-convex factorization. IEEE
Transactions on Information Theory, 62(11):6535–6579.

Tong, T., Ma, C., and Chi, Y. (2021). Accelerating ill-conditioned low-rank matrix estimation via
scaled gradient descent. Journal of Machine Learning Research, 22(150):1–63.

Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J. F., and Sebe, N. (2016). Self-
adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Wang, B. and Fan, J. (2024). Robust matrix completion with heavy-tailed noise. Journal of the
American Statistical Association, pages 1–13.

Wang, T. and Wei, K. (2024). Leave-one-out analysis for nonconvex robust matrix completion with
general thresholding functions. arXiv preprint arXiv:2407.19446.

Wang, Z.-Y., Li, X. P., and So, H. C. (2023). Robust matrix completion based on factorization
and truncated-quadratic loss function. IEEE Transactions on Circuits and Systems for Video
Technology, 33(4):1521–1534.

Waters, A., Sankaranarayanan, A., and Baraniuk, R. (2011). SpaRCS: Recovering low-rank and
sparse matrices from compressive measurements. Advances in Neural Information Processing
Systems, 24.

Wong, R. K. and Lee, T. C. (2017). Matrix completion with noisy entries and outliers. Journal of
Machine Learning Research, 18(147):1–25.

13

Wu, D., Li, Z., Yu, Z., He, Y., and Luo, X. (2025). Robust low-rank latent feature analysis for
spatiotemporal signal recovery. IEEE Transactions on Neural Networks and Learning Systems,
36(2):2829–2842.

Xu, X., Shen, Y., Chi, Y., and Ma, C. (2023). The power of preconditioning in overparameterized
low-rank matrix sensing. In International Conference on Machine Learning, pages 38611–38654.
PMLR.

Yan, M., Yang, Y., and Osher, S. (2013). Exact low-rank matrix completion from sparsely corrupted
entries via adaptive outlier pursuit. Journal of Scientific Computing, 56:433–449.

Yi, X., Park, D., Chen, Y., and Caramanis, C. (2016). Fast algorithms for robust pca via gradient
descent. Advances in Neural Information Processing Systems, 29.

Zeng, W.-J. and So, H. C. (2017). Outlier-robust matrix completion via lp-minimization. IEEE
Transactions on Signal Processing, 66(5):1125–1140.

Zhang, J., Fattahi, S., and Zhang, R. Y. (2021). Preconditioned gradient descent for over-parameterized
nonconvex matrix factorization. Advances in Neural Information Processing Systems, 34:5985–
5996.

Zhao, L., Babu, P., and Palomar, D. P. (2016). Efficient algorithms on robust low-rank matrix
completion against outliers. IEEE Transactions on Signal Processing, 64(18):4767–4780.

Zheng, Q. and Lafferty, J. (2016). Convergence analysis for rectangular matrix completion using
Burer-Monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051.

Zheng, Y., Liu, G., Sugimoto, S., Yan, S., and Okutomi, M. (2012). Practical low-rank matrix
approximation under robust l 1-norm. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1410–1417. IEEE.

Zhu, Z., Li, Q., Tang, G., and Wakin, M. B. (2018). Global optimality in low-rank matrix optimization.
IEEE Transactions on Signal Processing, 66(13):3614–3628.

Zilber, P. and Nadler, B. (2022). GNMR: A provable one-line algorithm for low rank matrix recovery.
SIAM Journal on Mathematics of Data Science, 4(2):909–934.

14

3 5 7 9 11 13 15

Iteration t

0

50

100

150

Figure 4: Empirical convergence or non-convergence of Λt as a function of the iteration t of RGNMR
for k < k∗ (red), k = k∗ (black) or k > k∗ (blue). The assumed number of corrupted entries was in
the range k ∈ [0.95, 1.05] · k∗. As shown, if k > k∗ Λt does not converge.

A Initialization procedure

Theorem 3.1 shows that starting from a sufficiently accurate balanced initialization with bounded row
norms RGNMR recovers L∗. Therefore, the goal of our initialization procedure is to construct such
initialization. Our proposed scheme starts by constructing an initial estimator of S∗, which we denote
by Sinit. To this end, the function Tα (defined in eq. (6)) is applied to PΩ(X). Formally,

Sinit = Tα (PΩ(X),Ω) . (16)

If the initial estimate of S∗ is accurate enough, Sinit ≈ S∗, then 1
p (PΩ(X) − Sinit) ≈

E[PΩ(L
∗)], should be a sufficiently accurate estimation of L∗. Denote by Ũ Σ̃Ṽ ⊤ the SVD of

Pr

(
1
p (PΩ(X)− Sinit)

)
. To obtain a balanced factorization of 1

p (PΩ(X) − Sinit) we use the
following operator,

b-SVDr(
1

p
(PΩ(X)− Sinit)) =

(
Ũ Σ̃

1
2

Ṽ Σ̃
1
2

)
=

(
U
V

)
. (17)

Note that the output of this operator is a perfectly balanced factorization which satisfies U⊤U = V ⊤V .
To bound the row norms of the factor matrices we apply a clipping operator Rη with a suitably chosen
η. The operator is applied to a vector x and it is defined as

Rη(x) =

{
x ∥x∥ ≤ η,

η x
∥x∥ ∥x∥ > η.

(18)

For a matrix A, we define Rη(A) as the matrix obtained by applying Rη to each of its rows. For
every row i, Rη(A)(i,·) = Rη(A(i,·)). Algorithm 3 outlines this initialization scheme.

B Additional simulations

We present here results of additional simulations under various settings beyond those described in the
main text.

Fraction of outliers. Figure 6 shows the performance of various RMC methods as a function of the
fraction of corrupted entries α. We only compare methods that performed well at an oversampling
ratio of |Ω|

r(n1+n2−r) = 8 with α = 5%, see Figure 1, excluding RPCA-GD, HOAT and RRMC. As shown
in the left figure if the number of observed entries is relatively small, at oversampling ratio of 8, then
RGNMR can handle a larger fraction of corrupted entries than other methods. In the right figure we
show that if the number of observed entries is relatively large, oversampling ratio of 12, then methods
such as RMC and AOP can handle a larger number of corrupted entries than RGNMR. We note that if the
condition number is high then RGNMR still outperforms these methods.

15

Algorithm 3 Initialization procedure for Robust Matrix Completion
Input:

• {Xi,j | (i, j) ∈ Ω} - observed entries
• µ incoherence parameter of L∗

• r - rank of L∗

• p - probability of observing an entry
• α - the maximal fraction of outliers in each row/column

Output: (U0, V0)

Sinit = Tα(PΩ(X),Ω) // An estimate of S∗

set Z =

(
U
V

)
= b-SVDr

[
1
p (PΩ(X)− Sinit)

]
set η1 =

√
µr
n1

∥Z∥op and η2 =
√

µr
n2

∥Z∥op

set Z0 =

(
Rη1(U0)
Rη2(V0)

)
return (U0, V0)

Non-uniform sampling. In many applications, the entries of the matrix are not sampled uniformly
(Meka et al., 2009; Okatani et al., 2011). Hence we made simulations where the observed entries
followed a power law sampling scheme similar to Meka et al. (2009) and a diagonal-band pattern as
in Okatani et al. (2011).

For the power law scheme, given an oversampling ratio ρ we define w = ρ · r · (n1 + n2 − r).
We construct two sequences (p̃1 . . . p̃n1

) and (q̃1 . . . q̃n2
) such that p̃i = i−

2
3 , q̃i = i−

2
3 . We then

normalize them to construct two new sequences

pi = w · p̃i∑
j p̃j

, qi = w · q̃i∑
j q̃j

.

Note that
∑

i pi =
∑

j qj = w. We sample each entry (i, j) with probability piqj
w . The expected

number of observed entries is then E[Ω] = w. In Figure 7 we illustrate that RGNMR performs better
than most methods when the entries are sampled under this scheme.

For the diagonal-band pattern, we generated n× n matrices of rank r with a diagonal bandwidth of
length pr across different values of p. This results in approximately (n+ n) · pr observed entries and
therefore p is approximately the oversampling ratio. As illustrated in Figure 8, though RGNMR requires
a larger oversampling ratio than in the uniform pattern to succeed in this task, it stills outperforms
other RMC methods.

Outliers and additive noise. In Figures 9, 10 and 11 we illustrate that RGNMR still outperform most
RMC methods even under additive noise. In these simulation, all observed entries are corrupted
by additive white Gaussian noise with known standard deviation σ, in addition to the few outliers
entries. In this scenario inliers entries are corrupted with random noise. Note that our method for
upper bounding k∗ is based on the assumption that the error in those entries is the result of rounding
errors, see 2.1. To overcome this problem, when searching for an upper bound on k∗ we terminated
RGNMR once ∥Lt−X∥F (Ω\Λt)

∥X∥F (Ω\Λt)
≤

√
σ.

High rank matrices. In Figure 12 we compare the performance of various RMC method as a
function of the rank of the target matrix L∗. Following (Huang et al., 2021; Wang and Wei, 2024)
we fix the corruption rate α = 0.1 and vary the rank and the fraction of observed entries |Ω|

n1n2
. As

shown, RGNMR successfully recovers L∗ from a small fraction of the observed entries even if the rank
of L∗ is relatively high.

Real data: Background extraction from video. In Figure 13 we illustrate RGNMR performance for
video background extraction. We use the data from (Li et al., 2004), kindly provided to us by the

16

0 0.02 0.04 0.06 0.08 0.1
fraction	of	corrupted	entries	,	(%)

10-15

10-10

10-5

100

m
ed
ia
n	
er
ro
r

RGNMR GNMR

fraction	of	corrupted	entries	,	(%)
0 0.02 0.04 0.06 0.08 0.1

fa
ilu
re
	p
ro
ba
bi
lit
y

0

0.2

0.4

0.6

0.8

1
RGNMR GNMR

Figure 5: RGNMR performance compared to that of GNMR (Zilber and Nadler, 2022) under a small
fraction of corrupted entries. (left) Median rel-RMSE ; (right) Failure probability defined as
P(rel-RMSE > 10−3). The underlying matrix L∗ is of size 500× 500 has rank r = 5 and condition
number κ = 2. The oversampling ratio is |Ω|

r(n1+n2−r) = 12 and the fraction of corrupted entries α
varies. Each point corresponds to 50 independent realizations.

authors of (Huang et al., 2021). The data contains a sequence of grayscale frames. By stacking the
columns of each frame of the video into a long vector, we obtain a matrix whose columns correspond
to the frames. This matrix can be decomposed to a low rank matrix corresponding to the static
background plus a sparse matrix corresponding to the moving foreground. Following (Yi et al., 2016;
Cherapanamjeri et al., 2017; Huang et al., 2021; Cai et al., 2024) we sample uniformly at random 5%
of the matrix entries. All method are then given the sampled entries and an input rank of r = 1. As
shown RGNMR performs well on real data and successfully extracts the background.

Runtime. Finally, In Figure 14 we illustrate that RGNMR scales well with the matrix size. We show
that for a matrix of size n× n the runtime of RGNMR and RGNMR-BS increases quadratically with n.
In addition, we illustrate that even on large matrices RGNMR still requires a relatively small number of
observed entries to succeed.

C Proofs of Theorems 3.1 and 3.2

To prove Theorems 3.1 and 3.2, we make use of several auxiliary lemmas. These are outlined in
subsections C.1 and C.3. The proofs of the two theorems appear in subsections C.2 and C.4.

C.1 Auxiliary Lemmas For Theorem 3.1

The first three lemmas are results from (Zilber and Nadler, 2022). The first one is a combination of
Lemmas SM5.3 and SM5.5 from (Zilber and Nadler, 2022).

Lemma C.1. Let L∗ ∈ M(n1, n2, r, µ, κ) and let Ω follow Assumption 2 with probability p. Let ϵ ∈
(0, 1). There exist constants C, cl, ce such that the following holds: If p ≥ Cmax{ logn1

n2
, µ2r2κ2

n2ϵ4
}.

Then w.p. at least 1− 2
n5
1

, for any (U, V) ∈ Berr(ϵ/ce)∩Bbln(1/cl)∩Bµ with L = UV ⊤ there exists
(U∗, V ∗) ∈ B∗ ∩ Bµ such that

∥U − U∗∥2F + ∥V − V ∗∥2F ≤ 25

4σ∗
r

∥UV ⊤ − L∗∥2F , (19a)

1
√
p
∥(U − U∗)(V − V ∗)⊤∥F (Ω) ≤

ϵ

6
∥L− L∗∥F . (19b)

The second lemma is Lemma SM5.4 in (Zilber and Nadler, 2022).

Lemma C.2 (uniform RIP for matrix completion). Let L∗ ∈ M(n1, n2, r, µ, κ) and let Ω follow
Assumption 2 with probability p. Let ϵ ∈ (0, 1). There exist constants C, cl, ce such that the

17

0 3 6 9 12 15

fraction of corrupted entries (%)

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b

a
b

ili
ty

RMC AOP HUB

RGNMR-BS RGNMR

0 6 12 18 24 30

fraction of corrupted entries (%)

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b

a
b

ili
ty

RMC AOP HUB

RGNMR-BS RGNMR

Figure 6: Failure probability (±1.96SE) of RMC methods as a function of the fraction of corrupted
entries α. (left) Oversampling ratio of |Ω|

r(n1+n2−r) = 8; (right) Oversampling ratio of |Ω|
r(n1+n2−r) =

12. The underlying matrix L∗ if of size 3200× 400 has a rank r = 5 and a condition number κ = 2.
Each point corresponds to 100 independent realizations.

following holds: If p ≥ C logn1µr
n2ϵ2

. Then w.p. at least 1 − 3
n3
1

, for all matrices L = UV ⊤ where
(U, V) ∈ Berr(ϵ/ce) ∩ Bbln(1/cl) ∩ Bµ, the following holds,

(1− ϵ)∥L− L∗∥F ≤ 1√
p∥PΩ(L− L∗)∥ ≤ (1 + ϵ)∥L− L∗∥F . (20)

The third lemma is Lemma SM5.6 in (Zilber and Nadler, 2022), which in turn is a direct consequence
of Lemma 7.1 in (Keshavan et al., 2010). In (Zilber and Nadler, 2022) the result is stated with an
unspecified constant c. Tracking its proof it can be shown that it holds with c = 2, which is how the
lemma is stated below.
Lemma C.3. Let Ω follow Assumption 2 with probability p. There exist a constant C such that the
following holds for any µ, t, ϵ > 0: If p ≥ Cmax{ logn1

n2
, µ2r2

n2ϵ4
}. Then w.p. at least 1− 2

n5
1

, for any

(U, V) ∈ R(n1+n2)×r such that

∥U∥2,∞ ≤ 4
√
µrt/n1, ∥V ∥2,∞ ≤ 4

√
µrt/n2, (21)

we have
1

p
∥UV ⊤∥2F (Ω) ≤

∥U∥2F + ∥V ∥2F
2

(
2
(
∥U∥2F + ∥V ∥2F

)
+ tϵ2

)
. (22)

The following two lemmas provide bounds on the estimates constructed by RGNMR at each iteration.
The first lemma states that starting from an approximately balanced and sufficiently accurate estimate
of L∗, if each new pair of factor matrices is sufficiently close to the previous one, then all factor
matrices continue to be approximately balanced, and remain not too far from L∗. Its proof appears in
Appendix D.1.
Lemma C.4. Let L∗ ∈ M(n1, n2, r, µ, κ) with r-th singular value σ∗

r . For large enough constants
cl, ce the following holds: If (U0, V0) ∈ Berr(

1
ce

√
κ
) ∩ Bbln(

1
2cl

) ∩ Bµ and for every 1 ≤ s ≤ t+ 1 ,

(Us, Vs) ∈ C(Us−1, Vs−1,
σ∗
r

4sceκ
) , then (Ut+1, Vt+1) ∈ Berr(

13√
ce
) ∩ Bbln(

1
cl
).

The second lemma bounds the distance between L∗ and the updated estimate Lt+1, as a function of
various quantities of the current estimate Lt. Its proof appears in Appendix D.2.
Lemma C.5. Let Lt = UtV

⊤
t be the estimate of L∗ at iteration t. Let Lt+1 = Ut+1V

⊤
t+1 be

the updated estimate, where (Ut+1, Vt+1) are computed by (10) with some δ > 0. Assume that
Lt is sufficiently close to L∗, so that the set At = B∗ ∩ Bµ ∩ C

(
Ut, Vt,

δ
4t+1

)
is non empty. Let

(U∗, V ∗) ∈ At and denote ∆U∗
t = Ut − U∗, ∆Ut+1 = Ut+1 − Ut with similar definitions for ∆V ∗

t
and ∆Vt+1. Then, the error on the non removed entries Ωt = Ω \Λt of the updated estimate satisfies

∥Lt+1 − L∗∥F (Ωt) ≤
√
2∥∆U∗

t ∆V ∗⊤
t ∥F (Ωt) +

√
2∥∆Ut+1∆V ⊤

t+1∥F (Ωt)

+ (1 +
√
2)∥S∗∥F (Ωt∩Λ∗).

(23)

18

2 4 6 8 10 12 14

oversampling ratio

10
-15

10
-10

10
-5

10
0

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

2 4 6 8 10 12 14

oversampling ratio

0

0.2

0.4

0.6

0.8

1

fa
ilu

re
 p

ro
b

a
b

ili
ty

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

Figure 7: Results of RMC methods as a function of the oversampling ratio under power law sampling.
(left) Median rel-RMSE ; (right) Failure probability defined as P(rel-RMSE > 10−3). The underly-
ing matrix L∗ is of size 1000× 1000 has rank r = 5 and condition number κ = 2. The fraction of
corrupted entries is α = 5%. Each point corresponds to 50 independent realizations.

Before we present the last two lemmas, whose proofs appears in Appendix D.3, recall that at each
iteration t, RGNMR removes from Ω the entries in Λt = support(Tγα (Lt −X,Ω)). If RGNMR was
unable to identify all the corrupted entries, then the set (Ω \ Λt) ∩ Λ∗, where Λ∗ = support(S∗), is
not empty. The following lemma bounds the magnitude of the entries of S∗ in (Ω \ Λt) ∩ Λ∗, for
matrices Lt that satisfy a suitable condition.

Lemma C.6. Let X = L∗+S∗ where L∗ ∈ M(n1, n2, r, µ, κ) and the corruption matrix S∗ satisfies
Assumption 3 for some known 0 < α < 1. Let the set of observed entries Ω follow Assumption 2
with p ≥ C logn1

n2
for some constant C. Let L = UV ⊤ be an estimate of L∗ such that (U, V) ∈ Bµ.

Suppose that the set of corrupted entries is estimated by Λ = support (Tγα (L−X,Ω)) with an over
removal factor of 1 < γ ≤ 1

α . If there exists a factorization (U∗, V ∗) ∈ B∗ ∩ Bµ of L∗ such that

∥U − U∗∥2F + ∥V − V ∗∥2F ≤ 25

4σ∗
r

∥L− L∗∥2F , (24)

then the magnitude of the remaining corrupted entries in (Ω \ Λ) ∩ Λ∗, is bounded as follows,

∥S∗∥F ((Ω\Λ)∩Λ∗) ≤ 18
√
pαµrκ∥L− L∗∥F +

√
2

γ − 1
∥L− L∗∥F (Ω). (25)

The last lemma bounds the error term ∥L−L∗∥F (Λt) for a matrix L that satisfies a suitable condition.

Lemma C.7. Let L∗ ∈ M(n1, n2, r, µ, κ) and let the set of observed entries Ω follow Assumption 2
with p ≥ C logn1

n2
for some constant C. Let L = UV ⊤ be an estimate of L∗ such that (U, V) ∈ Bµ

and assume there exists a factorization (U∗, V ∗) ∈ B∗ ∩ Bµ of L∗. If Λ = support (Tγα (A,Ω)), for
some matrix A, then

∥L− L∗∥F (Λ) ≤ 27
√
3γαpµrσ∗

1(∥U − U∗∥2F + ∥V − V ∗∥2F). (26)

C.2 Proof of Theorem 3.1

The proof relies on lemmas C.1-C.7 above. We first note that since Ω follows Assumption 2 with
p ≥ Cµr

n2
max{log n1, µrκ

2}, we may apply these lemmas. Specifically, for a large enough C the
conditions required by C.1 and C.2 with ϵ ≥ 1

20 hold and the condition of Lemma C.3 holds with
ϵ ≥ 1

8
√
ceκ

.

Proof of Theorem 3.1. We prove by induction on the iteration step t that

(Ut, Vt) ∈ Berr

(
1

2tce
√
κ

)
∩ Bbln

(
1

cl

)
∩ Bµ. (27)

19

10 12 14 16 18 20

oversampling ratio

10
-15

10
-10

10
-5

10
0

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT
HUB RRMC RGNMR-BS RGNMR

oversampling ratio
10 12 14 16 18 20

fa
ilu

re
 p

ro
b

a
b

ili
ty

0

0.2

0.4

0.6

0.8

1

RMC AOP RPCA-GD HOAT
HUB RRMC RGNMR-BS RGNMR

Figure 8: Results of RMC methods as a function of the oversampling ratio under diagonal-band pattern
sampling. (left) Median rel-RMSE ; (right) Failure probability defined as P(rel-RMSE > 10−3).
The underlying matrix L∗ is of size 500 × 500 has rank r = 5 and condition number κ = 2. The
fraction of corrupted entries is α = 5%. Each point corresponds to 50 independent realizations.

Eq. eq. (14) then follows immediately by the definition of Berr, see eq. (11).

Eq.(27) for t = 0 follows from the assumption that the initialization is sufficiently accurate, balanced
and has bounded row norms (U0, V0) ∈ Berr(

1
ce

√
κ
)∩Bbln(

1
2cl

)∩Bµ. Next we assume (Ut, Vt) satisfies
eq. (27) and prove that the updated matrices also satisfy this equation. Since at all intermediate steps
1 ≤ s ≤ t+ 1, (Us, Vs) are updated by eq. (10) , (Us, Vs) ∈ C(Us−1, Vs−1,

σ∗
r

4sceκ
) ∩ Bµ. Hence by

Lemma C.4, (Ut+1, Vt+1) ∈ Bbln(
1
cl
) ∩ Bµ.

It remains to prove that (Ut+1, Vt+1) ∈ Berr(
1

2t+1ce
√
κ
), namely that ∥Lt+1 − L∗∥F ≤ σ∗

r

2t+1ce
√
κ

.
The proof consist of two parts. First we bound the error restricted to the set Ωt = Ω \ Λt, i.e.
∥Lt+1 − L∗∥F (Ωt). In the second part we use this result to bound the error on the entire matrix.

For the first part, to bound ∥Lt+1 − L∗∥F (Ωt) we apply Lemma C.5. To this end we first prove its
conditions hold. In particular that the set At = B∗ ∩ Bµ ∩ C

(
Ut, Vt,

δ
4t+1

)
is non empty. Indeed

this follows by applying Lemma C.1. Specifically, since (Ut, Vt) ∈ Berr

(
1

2tce
√
κ

)
∩ Bbln

(
1
cl

)
∩ Bµ,

for a large enough ce, (Ut, Vt) satisfy the conditions of Lemma C.1 with ϵ = 1
20 . Consequently,

w.p. at least 1− 2
n5
1

, there exists a pair (U∗, V ∗) ∈ B∗ ∩ Bµ that satisfy eqs. (19a) and (19b) with

U = Ut, V = Vt. Combining eq. (19a) with the assumptions 25σ∗
r

c2eκ
≤ δ and ∥Lt − L∗∥ ≤ σ∗

r

2tce
√
κ

yields

∥Ut − U∗∥2F + ∥Vt − V ∗∥2F ≤ 25

4σ∗
r

∥Lt − L∗∥2F ≤ 25

4σ∗
r

σ∗2
r

4tc2eκ
≤ δ

4t+1
.

Therefore (U∗, V ∗) ∈ B∗ ∩ Bµ ∩ C
(
Ut, Vt,

δ
4t+1

)
.

We can now apply Lemma C.5 which gives

∥Lt+1 − L∗∥F (Ωt) ≤
√
2

∥∆U∗
t ∆V ∗

t ∥F (Ωt)︸ ︷︷ ︸
T1

+ ∥∆Ut+1∆V ⊤
t+1∥F (Ωt)︸ ︷︷ ︸

T2


+ (1 +

√
2) ∥S∗∥F (Ωt∩Λ∗)︸ ︷︷ ︸

T3

.

(28)

We upper bound the term T1, T2 and T3. The first term T1 is bounded by eq. (19b) of Lemma C.1
with ϵ = 1

20 .

T1 = ∥∆U∗
t ∆V ∗

t ∥F (Ωt) ≤ ∥∆U∗
t ∆V ∗

t ∥F (Ω) ≤
√
p

120
∥Lt − L∥F ≤

√
pσ∗

r

2t+6ce
√
κ
. (29)

20

1
e
-1

0

1
e
-0

8

1
e
-0

6

1
e
-0

4

1
e
-0

2

standard deviation

1e-06

1e-04

1e-02

1e+00

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

Figure 9: Performance of RMC methods in the presence of additive noise. The y-axis is the median
rel-RMSE. The x-axis is the noise standard deviation. The underlying matrix L∗ is of size 3200×400
has rank r = 5 and condition number κ = 2. The fraction of corrupted entries is α = 5%. Each point
corresponds to 50 independent realizations.

To bound T2 we note that(
1
√
p
T2

)2

=
1

p
∥∆Ut+1∆V ⊤

t+1∥2F (Ωt)
≤ 1

p
∥∆Ut+1∆V ⊤

t+1∥2F (Ω)

To bound the above term we apply Lemma C.3. We first show that (∆Ut+1,∆Vt+1) satisfies eq. (21).
Since (Ut+1, Vt+1) and (Ut, Vt) are in Bµ then

∥∆Ut+1∥2,∞ ≤ ∥Ut+1∥2,∞ + ∥Ut∥2,∞ ≤ 2

√
3µrσ∗

r

n1
≤ 4

√
µrσ∗

r

n1
,

and a similar inequality holds for ∆Vt+1. Hence eq. (21) holds with t = σ∗
r . Consequently by eq. (22)

of C.3 with ϵ = 1
8
√
ceκ

, w.p. at least 1− 2
n5
1

1

p
∥∆Ut+1∆V ⊤

t+1∥2F (Ω) ≤
∥∆Ut+1∥2F + ∥∆Vt+1∥2F

2

[
2
(
∥∆Ut+1∥2F + ∥∆Vt+1∥2F

)
+

σ∗
r

64ceκ

]
.

Next we explicitly bound ∥∆Ut+1∥2F + ∥∆Vt+1∥2F . Since (Ut+1, Vt+1) ∈ C
(
Ut, Vt,

δ
4t+1

)
,

∥∆Ut+1∥2F + ∥∆Vt+1∥2F ≤ δ
4t+1 . Hence

T2 ≤ √
p

√
δ

2 · 4t+1

[
2

δ

4t+1
+

σ∗
r

64ceκ

]
≤ √

p

√
δ2

2 · 42t+2
+

δσ∗
r

128ce · 4t+1κ

Since δ ≤ σ∗
r

ceκ

T2 ≤ √
p

√
σ∗2
r

c2eκ
2 · 24t+4

+
σ∗2
r

c2eκ
2 · 22t+9

≤ √
p

√
σ∗2
r

c2eκ
2 · 22t+3.8

≤
√
pσ∗

r

ce
√
κ · 2t+1.9

. (30)

In order to bound T3 we invoke Lemma C.6. The condition of this Lemma, eq. (24), holds since we
proved that (Ut, Vt) satisfy eq. (19a) of Lemma C.1. Since Λt = support (Tθ (Lt −X,Ω)) we can
employ Lemma C.6 which gives

T3 ≤ 18
√
pαµrκ∥Lt − L∗∥F +

√
2

γ − 1
∥Lt − L∗∥F (Ω). (31)

Since (Ut, Vt) ∈ Berr(
1

2tce
√
κ
), for a large enough ce, (Ut, Vt) satisfy the conditions of Lemma C.2

with ϵ = 1
20 . Therefore by eq. (20) w.p. at least 1− 3

n3
1

,√
2

γ − 1
∥Lt − L∗∥F (Ω) ≤ (1 +

1

20
)

√
2p

γ − 1
∥Lt − L∗∥F ≤

√
3p

γ − 1
∥Lt − L∗∥F . (32)

21

1 3 5 7 9
condition	number	5

10-4

10-3

10-2

10-1

100

m
ed
ia
n	
er
ro
r

RMC AOP RPCA-GD HOAT
HUB RRMC RGNMR-BS RGNMR

condition	number	5
1 3 5 7 9

fa
ilu
re
	p
ro
ba
bi
lit
y

0

0.2

0.4

0.6

0.8

1

RMC AOP RPCA-GD HOAT
HUB RRMC RGNMR-BS RGNMR

Figure 10: Performance of RMC methods as a function of the condition number under both outliers
and additive noise. (left) Median rel-RMSE; (right) Failure probability (±1.96 SE). The underlying
matrix L∗ is of size 3200 × 400 has rank r = 5, the fraction of corrupted entries is α = 5%,
the standard deviation of the white Gaussian noise is σ = 10−6 and the oversampling ratio is

|Ω|
r·(n1+n2−r) = 12. Each point corresponds to 100 independent realizations.

Combining eq. (31) and eq. (32) gives,

T3 ≤ √
p

(
18

√
αµrκ+

√
3

γ − 1

)
∥Lt − L∗∥F .

Since α < 1
cαµrκ , cγ ≤ γ and by the induction hypothesis ∥Lt − L∗∥F ≤ σ∗

r

2tce
√
κ

, then

T3 ≤ √
p

(
18
√
αµrκ+

√
3

γ − 1

)
σ∗
r

2tce
√
κ
≤ √

p

(
18
√
cα

+

√
3

cγ − 1

)
σ∗
r

2tce
√
κ
.

For large enough cα and cγ , this yields

T3 ≤
√
pσ∗

r

2t+5ce
√
κ(1 +

√
2)

. (33)

Inserting the bounds on T1, T2 and T3 from equations (29), (30) and (33) into eq. (28) gives

∥Lt+1 − L∗∥F (Ωt) ≤
√
pσ∗

r

2t+1ce
√
κ

(
1

24.5
+

1

20.4
+

1

24

)
≤ 9

10

√
pσ∗

r

2t+1ce
√
κ
. (34)

Eq. (34) provides a bound on Lt+1 −L∗, but only on the set Ωt. In what follows we show that this is
sufficient for bounding the overall error on all entries, ∥Lt+1 − L∥F . Since Ωt = Ω \ Λt, then

∥Lt+1 − L∗∥2F (Ωt)
= ∥Lt+1 − L∗∥2F (Ω) − ∥Lt+1 − L∗∥2F (Λt)

. (35)

To upper bound ∥Lt+1 − L∗∥2F (Λt)
we apply Lemma C.7, with (Ut+1, Vt+1) which indeed by

their definition in eq. (10), belong to Bµ, and with a specific factorization (U∗, V ∗) specified below.
Specifically, we show that there exists a pair (U∗, V ∗) ∈ B∗∩Bµ that is in the vicinity of (Ut+1, Vt+1).
By Lemma C.4 (Ut+1, Vt+1) ∈ Berr(

13√
ce
) ∩ Bbln(

1
cl
) ∩ Bµ. Therefore, for a large enough ce Lemma

C.1 guarantees the existence of a factorization (U∗, V ∗) ∈ B∗ ∩ Bµ that also satisfy eq. (19a) with
L = Lt+1 = Ut+1V

⊤
t+1. Hence, by eq. (26) of Lemma C.7

∥Lt+1 − L∗∥2F (Λt)
≤ 27

√
3γαpµrσ∗

1(∥Ut+1 − U∗∥2F + ∥Vt+1 − V ∗∥2F). (36)

Combining eq. (19a) and the assumptions α ≤ 1
cαrµκ , γ ≤ √

cα gives

∥Lt+1 − L∗∥2F (Λt)
≤
(
27
√
3γpµr

) 1

cαµrκ

25

4

σ∗
1

σ∗
r

∥Lt+1 − L∗∥2F

=
(
27
√
3p
) 25

4
√
cα

∥Lt+1 − L∗∥2F . (37)

22

2 4 6 8 10 12 14 16

oversampling	ratio

10-4

10-3

10-2

10-1

100

m
ed
ia
n	
er
ro
r

RMC AOP RPCA-GD HOAT
HUB RRMC RGNMR-BS RGNMR

oversampling	ratio
2 4 6 8 10 12 14 16

fa
ilu

re
	p

ro
ba

bi
lit

y

0

0.2

0.4

0.6

0.8

1

RMC AOP RPCA-GD HOAT
HUB RRMC RGNMR-BS RGNMR

Figure 11: Performance of RMC methods as a function of the oversampling ratio under both outliers
and additive noise. (left) Median rel-RMSE; (right) Failure probability (±1.96 SE). The underlying
matrix L∗ is of size 3200 × 400 has rank r = 5, the fraction of corrupted entries is α = 5% the
standard deviation of the white Gaussian noise is σ = 10−6 and the condition number is κ = 2. Each
point corresponds to 100 independent realizations.

Next we lower bound ∥Lt+1 − L∗∥2F (Ω) we apply Lemma C.2. Recall that by Lemma C.4,
(Ut+1, Vt+1) ∈ Berr(

13√
ce
) ∩ Bbln(

1
cl
) ∩ Bµ. Hence, for a large enough ce, (Ut+1, Vt+1) satisfies

the condition of Lemma C.2, with ϵ = 1
20 . By Lemma C.2, w.p. at least 1− 3

n3
1

∥Lt+1 − L∗∥2F (Ω) ≥ (1− 1
20)

2p∥Lt+1 − L∗∥2F (38)

Inserting eq. (37) and eq. (38) into eq. (35) yields

∥Lt+1 − L∗∥2F (Ωt)
≥ p

((
95
100

)2 − 27
√
3·25

4
√
cα

)
∥Lt+1 − L∗∥2F ≥ p

(
9
10

)2 ∥Lt+1 − L∗∥2F
where the last inequality follows for a large enough cα. We conclude that

∥Lt+1 − L∗∥F ≤ 10

9
√
p

√
p∥Lt+1 − L∗∥F (Ω\Λt).

By eq. (34) the right hand size is upper bounded by σ∗
r

2t+1ce
√
κ

, which implies that (Ut+1, Vt+1) ∈

Berr

(
1

2t+1ce
√
κ

)
. Since (Ut+1, Vt+1) ∈ Bbln(

1
cl
) ∩ Bµ was proved at the beginning, (Ut+1, Vt+1)

satisfy eq. (27), which concludes the proof.

C.3 Auxiliary Lemmas for Theorem 3.2

The first result is Lemma SM2.7 in (Zilber and Nadler, 2022).
Lemma C.8. Let Z = (U

V), Z ′ =
(
U ′

V ′

)
∈ R(n1+n2)×r. Denote

a =
(√

2max{σ1(U), σ1(V)}dP (Z ′, Z) + 1
2dP (Z

′, Z)
)
dP (Z

′, Z). (39)

Then

∥U ′⊤U ′ − V ′⊤V ′∥F ≤ ∥U⊤U − V ⊤V ∥F + 2a, (40)

∥U ′V ′⊤ − UV ⊤∥F ≤ a. (41)

The second lemma is proven by Yi et al. (2016) as part of their proof of Theorem 3. It bounds the
spectral distance of an initial estimate of L∗ obtained by removing the largest-magnitude entries and
projecting to rank-r matrices.
Lemma C.9. Let X = L∗ + S∗ where L∗ ∈ M(n1, n2, r, µ) with singular values σ∗

1 ≥ · · · ≥ σ∗
r ,

and S∗ satisfies Assumption 3 for some known 0 < α < 1. Let L = UV ⊤ be an estimate of L∗

constructed according to the following equation,

(U, V) = b-SVDr

[
1
p (PΩ(X)− Tα (PΩ(X),Ω))

]
. (42)

23

5 7 9 11 13 15 17 19 21 23 25

fraction of observed entries (%)

2

4

6

8

10

12

14

16

18

ra
n

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) RGNMR

5 7 9 11 13 15 17 19 21 23 25

fraction of observed entries (%)

2

4

6

8

10

12

14

16

18

ra
n
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) HUB

5 7 9 11 13 15 17 19 21 23 25

fraction of observed entries (%)

2

4

6

8

10

12

14

16

18

ra
n
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) RMC

5 7 9 11 13 15 17 19 21 23 25

fraction of observed entries (%)

2

4

6

8

10

12

14

16

18

ra
n
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) AOP

5 7 9 11 13 15 17 19 21 23 25

fraction of observed entries (%)

2

4

6

8

10

12

14

16

18

ra
n
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) RRMC

5 7 9 11 13 15 17 19 21 23 25

fraction of observed entries (%)

2

4

6

8

10

12

14

16

18

ra
n
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) HOAT

Figure 12: Performance of RMC methods as a function of the rank and the fraction of observed
entries |Ω|

n1n2
. Deep blue corresponds to 0% failure, white corresponds to 100% failure. The matrix is

of size 1000× 1000, the fraction of corrupted entries is α = 10% and the condition number is κ = 2.
Each point corresponds to 20 independent realizations.

24

(a) Original Image (b) Sampled Image (c) RMC (d) AOP

(e) RGNMR (f) RPCA-GD (g) HOAT

Figure 13: Background extraction for “Hall” video data. The frames are recovered from 5% of the
original entries with an input rank of r = 1.

There exist a constant c such that if p ≥ 4µr2 logn1

ϵ2n2
, then w.p. at least 1− 6

n1
the spectral distance

between L and L∗ is bounded as follows,

∥L− L∗∥op ≤ 16αµrσ∗
1 +

2cϵσ∗
1√

r
. (43)

The third lemma is a direct consequence of Lemma SM2.4 in (Zilber and Nadler, 2022).

Lemma C.10. Let L∗ be a matrix of rank r and let Z∗ = b-SVDr[L
∗]. For any Z =

(
U
V

)
that is

perfectly balanced, namely ∥U⊤U − V ⊤V ∥F = 0, it holds that

dP (Z,Z
∗) ≤

√
2r√

(
√
2− 1)σ∗

r

∥UV ⊤ − L∗∥op. (44)

Recall the definition of Sinit, eq. (16). The following lemma bounds the operator norm of Z =
b-SVDr

[
1
p (PΩ(X)− Sinit)

]
. Its proof appears in Appendix D.4.

Lemma C.11. Let L∗ ∈ M(n1, n2, r, µ) with largest singular value σ∗
1 . Let Z∗ =

(
U∗

V ∗

)
=

b-SVDr[L
∗] and Z =

(
U
V

)
where U, V are perfectly balanced. If ∥UV ⊤ − L∗∥op ≤ σ∗

1

4 then

∥Z∥op =
√

2σ1(UV ⊤) ≤
√

5

2
σ∗
1 (45)

In the last step of the algorithm we apply the clipping operator Rη, see eq. (18). The following
lemma , whose proof appears in Appendix D.5, state that under some conditions applying the clipping
operator with the right η reduces the Procrustes distance.

Lemma C.12. Let L∗ ∈ M(n1, n2, r, µ), Z∗ =

(
U∗

V ∗

)
= b-SVDr[L

∗] and Z =

(
U
V

)
=

b-SVDr[A] for some matrix A ∈ Rn1×n2 . If ∥UV ⊤ − L∗∥op ≤ σ∗
1

4 then for η1 =
√

µr
n1

∥Z∥op,

η2 =
√

µr
n2

∥Z∥op and Z ′ =

(
Rη1

(U)
Rη2

(V)

)
it follows that

dP (Z
′, Z∗) ≤ dP (Z,Z

∗). (46)

25

500 1000 2000 4000 8000 16000

dimension n

10
0

10
1

10
2

10
3

10
4

m
e

d
ia

n
 t

im
e

 (
s
)

RGNMR-BS RGNMR

500 1000 2000 4000 8000 16000

dimension n

10
-15

10
-14

10
-13

10
-12

m
e

d
ia

n
 e

rr
o

r

RGNMR-BS RGNMR

Figure 14: Effect of the matrix size on RGNMR performance. Both x and y axes are on a log scale.
(left) Median run time of RGNMR and RGNMR -BS for a matrix of size n× n as a function of n. The
dashed lines have a slope of 2. (right) Median Error as a function of the matrix size. The matrix
has rank r = 5 and a condition number κ = 2. The oversampling ratio is ρ = |Ω|

r(2n−r) = 6 and the
fraction of corruption is α = 5%. Each point corresponds to 20 independent realizations.

C.4 Proof of Theorem 3.2

Proof. First we would prove that L0 = U0V
⊤
0 is a sufficiently accurate estimate of L∗ and that it

is balanced. Formally we would like to bound the terms ∥U⊤
0 U0 − V ⊤

0 V0∥F and ∥L0 − L∗∥F . We

denote Z∗ =

(
U∗

V ∗

)
= b-SVDr[L

∗] and recall that Z0 =

(
U0

V0

)
. We denote

a =
(√

2σ∗
1 +

1

2
dP (Z0, Z

∗)
)
dP (Z0, Z

∗).

Since ∥U∗⊤U∗ − V ∗⊤V ∗∥ = 0 and U∗V ∗⊤ = L∗ by eq. (40) and eq. (41) of Lemma C.8

∥U⊤
0 U0 − V ⊤

0 V0∥F ≤ 2a,

∥L0 − L∗∥F ≤ a.
(47)

To bound a we need to bound dP (Z0, Z
∗). We do so by showing that by Lemma C.12

dP (Z0, Z
∗) ≤ dP (Z,Z

∗). To apply the lemma we first prove its conditions hold. Specif-
ically we prove that ∥UV ⊤ − L∗∥op ≤ σ∗

1

4 . Recall that Sinit = Tα(PΩ(X),Ω) and that

Z =

(
U
V

)
= b-SVDr

[
1
p (PΩ(X)− Sinit)

]
. Since Ω follows Assumption 2 with p ≥ C µr2κ4 logn1

n2
,

for a large enough C, we can apply Lemma C.9 with ϵ = 1
16c . By Lemma C.9 w.p. at least 1− 6

n1

∥UV ⊤ − L∗∥op ≤ 16αµrσ∗
1 +

2cϵσ∗
1√

r
≤ 16αµrσ∗

1 +
σ∗
1

8
√
r
.

Since we assumed α ≤ 1

cακ2r
3
2 µ

, for a large enough cα

∥UV ⊤ − L∗∥op ≤ 16σ∗
1

cακ2
√
r
+

σ∗
1

8
√
r
≤ σ∗

1

4
.

Since η1 =
√

µr
n1

∥Z∥op, η2 =
√

µr
n2

∥Z∥op and Z0 =

(
Rη1(U)
Rη2(V)

)
by Lemma C.12

dP (Z0, Z
∗) ≤ dP (Z,Z

∗).

Hence,

a ≤
(√

2σ∗
1 +

1

2
dP (Z,Z

∗)
)
dP (Z,Z

∗). (48)

26

2 4 6 8 10 12 14

oversampling ratio

10
-15

10
-10

10
-5

10
0

m
e

d
ia

n
 e

rr
o

r

RMC AOP RPCA-GD HOAT

HUB RRMC RGNMR-BS RGNMR

Figure 15: Caption

Next we explicitly bound dP (Z,Z
∗). Since Z is obtained using b-SVDr, ∥U⊤U − V ⊤V ∥F = 0.

Therefore by Lemma C.10

dP (Z,Z
∗) ≤

√
2r√

(
√
2− 1)σ∗

r

∥UV ⊤ − L∗∥op. (49)

To bound ∥UV ⊤ − L∗∥op we apply Lemma C.9. Since Ω follows Assumption 2 with p ≥
C µr2κ4 logn1

n2
we can apply Lemma C.9 with ϵ = 2√

Ck2
. This gives that w.p. at least 1− 6

n2
1

dP (Z,Z
∗) ≤

√
2r√

(
√
2− 1)σ∗

r

(
16αµrσ∗

1 +
2cϵσ∗

1√
r

)
= 3
√
σ∗
r

(
16αµκr

3
2 +

4c√
Cκ

)
.

Since we assumed α ≤ 1

cακ2r
3
2 µ

dP (Z,Z
∗) ≤ 3

√
σ∗
r

(
16

cακ
+

4c√
Cκ

)
≤ 3

√
σ∗
r

κ

(
16

cα
+

4c√
C

)
. (50)

Denote ξ =
(

16
cα

+ 4c√
C

)
. Inserting eq. (50) into eq. (48) gives

a ≤
(√

2σ∗
1 + 3

√
σ∗
r

κ
ξ

)
3

√
σ∗
r

κ
ξ =

σ∗
r√
κ

(
3
√
2 +

9

κ1.5
ξ

)
ξ.

Note that for any ε > 0 for large enough C, cα it follows that ξ < ε. Therefore for large enough
constants cα and C

a ≤ min

{
σ∗
r

ce
√
κ
,
σ∗
r

4cl

}
.

Inserting the above bound into eq. (47) gives

(U0, V0) ∈ Berr(
1

ce
√
κ
) ∩ Bbln(

1

2cl
).

Next we prove that (U0, V0) ∈ Bµ, which requires to bound ∥U0∥2,∞ and ∥V0∥2,∞. Since
(
U0

V0

)
=(

Rη1(U)
Rη2

(V)

)
by the definition, eq. (18), of the clipping operator Rη

∥U0∥2,∞ ≤ η1 =

√
µr

n
∥Z∥op, ∥V0∥2,∞ ≤ η2 =

√
µr

n2
∥Z∥op.

27

Since we proved that ∥UV ⊤ − L∗∥ ≤ σ∗
1

4 we can apply Lemma C.11. Specifically inserting eq. (45)
into the above inequality completes the proof as it gives

∥U0∥2,∞ ≤
√

µr

n1
∥Z∥op =

√
2µrσ1(UV ⊤)

n1
≤
√

5σ∗
1

2

µr

n1
≤
√

3µrσ∗
1

n1
,

∥V0∥2,∞ ≤
√

µr

n2
∥Z∥op =

√
2µrσ1(UV ⊤)

n2
≤
√

5σ∗
1

2

µr

n2
≤
√

3µrσ∗
1

n2
.

D Proofs of Lemmas C.4, C.5, C.6, C.11 and C.12.

D.1 Proof of Lemma C.4

To prove the lemma we use the following auxiliary result, whose proof appears in Appendix E.1.
Lemma D.1. Let Zt be the estimated factorization after t steps as defined in Algorithm 2, and let
Zt+1 be the factorization at iteration t+ 1. Denote

at =
√
2max{σ1(Ut), σ1(Vt)}dP (Zt+1, Zt) +

1
2d

2
P (Zt+1, Zt).

For large enough constants ce, cl the following holds. If (U0, V0) ∈ Berr(1/ce
√
κ)∩Bbln(1/2cl)∩Bµ

and (Us, Vs) ∈ C(Us−1, Vs−1,
σ∗
r

4sceκ
) for every 1 ≤ s ≤ t+ 1 then

at ≤
4
√
2σ∗

r

2t+1
√
ce

+
σ∗
r

2 · 4t+1ceκ
. (51)

Proof of Lemma C.4. We start by proving that (Ut+1, Vt+1) ∈ Bbln(
1
cl
). By eq. (40) of Lemma C.8,

∥U⊤
t+1Ut+1 − V ⊤

t+1Vt+1∥ ≤ ∥U⊤
t Ut − V ⊤

t Vt∥+ 2at.

Therefore, by induction

∥U⊤
t+1Ut+1 − V ⊤

t+1Vt+1∥ ≤ ∥U⊤
0 U0 − V ⊤

0 V0∥+ 2

t∑
k=0

ak. (52)

By eq. (51) of Lemma D.1, for large enough ce, for each iteration step 0 ≤ k ≤ t

ak ≤ σ∗
r

2k+3cl
. (53)

Inserting eq. (53) into eq. (52) gives,

∥U⊤
t+1Ut+1 − V ⊤

t+1Vt+1∥ ≤ ∥U⊤
0 U0 − V ⊤

0 V0∥+
σ∗
r

cl

t∑
k=0

1

2k+2

≤ ∥U⊤
0 U0 − V ⊤

0 V0∥+
σ∗
r

2cl
.

Since (U0, V0) ∈ Bbln(1/2cl) the above inequality implies that (Ut+1, Vt+1) ∈ Bbln(1/cl).

Next, we prove (Ut+1, Vt+1) ∈ Berr(
13√
ce
). By the triangle inequality

∥Ut+1V
⊤
t+1 − L∗∥F ≤ ∥Ut+1V

⊤
t+1 − UtV

⊤
t ∥F + ∥UtV

⊤
t − L∗∥F .

By Lemma C.8 ∥Ut+1V
⊤
t+1 − UtV

⊤
t ∥F ≤ at and therefore,

∥Ut+1V
⊤
t+1 − L∗∥F ≤ at + ∥UtV

⊤
t − L∗∥F .

By induction it follows that

∥Ut+1V
⊤
t+1 − L∗∥F ≤ ∥U0V

⊤
0 − L∗∥F +

t∑
k=0

ak. (54)

28

Next we use D.1 to bound ak. Note that for ce ≥ 1 since κ ≥ 1,

ak ≤ 4
√
2σ∗

r

2k+1
√
ce

+
σ∗
r

2 · 4k+1
√
ce

≤ 4
√
2σ∗

r

2k+1
√
ce

+
4
√
2σ∗

r

2k+1
√
ce

≤ 4
√
2σ∗

r

2k
√
ce

.

As a result of the above inequality
t∑

k=0

ak ≤ 4
√
2σ∗

r√
ce

t∑
k=0

1

2k
≤ 8

√
2σ∗

r√
ce

. (55)

By the assumption (U0, V0) ∈ Berr

(
1

ce
√
κ

)
it follows that ∥U0V

⊤
0 − L∗∥ ≤ σ∗

r

ce
√
κ

. Inserting this
inequality and eq. (55) into eq. (54) gives

∥Ut+1V
⊤
t+1 − L∗∥F ≤ σ∗

r

ce
√
κ
+

(8
√
2)σ∗

r√
ce

≤ 13σ∗
r√

ce
.

We conclude that (Ut+1, Vt+1) ∈ Berr(
13√
ce
) ∩ Bbln(

1
cl
).

D.2 Proof of Lemma C.5

To prove the Lemma C.5 we use the following four auxiliary lemmas, whose proofs are in Appendix
E.2. All of them consider the following setting. Let Lt = UtV

⊤
t and Λt be the estimates of L∗ and

Λ∗ at iteration t, respectively. Let Lt+1 = Ut+1V
⊤
t+1 be the updated estimate, where (Ut+1, Vt+1)

are computed by (10) with some δ > 0. Denote ∆U∗
t = Ut − U∗, ∆Ut+1 = Ut+1 − Ut with

similar definitions for ∆V ∗
t and ∆Vt+1. Denote by Ωt = Ω \ Λt the set of non removed entries, by

I in
t = Ωt ∩ Λc

∗ the set of non-removed entries which are true inliers and by Iout
t = Ωt ∩ Λ∗ the set of

non-removed entries which are outliers. Finally, recall that for factor matrices (U, V) and a subset of
entries Λ the objective function value is

Lt
Λ(U, V) = argmin

U,V
∥UtV

⊤ + UV ⊤
t − UtV

⊤
t −X∥F (Λ).

Lemma D.2. The error restricted to the set I in
t is bounded as follows,

∥Lt+1 − L∗∥F (I in
t)

≤ Lt
I in
t
(Ut+1, Vt+1) + ∥∆Ut+1∆V ⊤

t+1∥F (I in
t)
. (56)

To upper bound the first term on the RHS of eq. (56) we use the following lemma.
Lemma D.3. Assume that Lt is sufficiently close to L∗ in the sense that the set At = B∗ ∩ Bµ ∩
C
(
Ut, Vt,

δ
4t+1

)
is non empty. Then

Lt
I in
t
(Ut+1, Vt+1) ≤

√
2Lt

Ωt
(U∗, V ∗)− Lt

Iout
t
(Ut+1, Vt+1), (57)

for any (U∗, V ∗) ∈ At, an exact factorization of L∗.

To upper bound the RHS of eq. (57) we employ the following two lemmas. The first lemma upper
bounds the first term and the second lemma lower bounds the second term.
Lemma D.4. For any (U∗, V ∗) ∈ B∗

Lt
Ωt
(U∗, V ∗) ≤ ∥∆U∗

t ∆V ∗⊤
t ∥F (Ωt) + ∥S∗∥F (Ωt). (58)

Lemma D.5. Under the above assumptions,

Lt
Iout
t
(Ut+1, Vt+1) ≥∥Lt+1 − L∗ − S∗∥F (Iout

t) − ∥∆Ut+1∆V ⊤
t+1∥F (Iout

t). (59)

Proof of Lemma C.5. Our goal is to bound ∥Lt+1 − L∗∥F (Ωt). Since Ωt = I in
t ∪ Iout

t ,

∥Lt+1 − L∗∥F (Ωt) ≤ ∥Lt+1 − L∗∥F (I in
t)

+ ∥Lt+1 − L∗∥F (Iout
t).

Lemma D.2 bounds ∥Lt+1 − L∗∥F (I in
t)

,

∥Lt+1 − L∗∥F (Ωt) ≤Lt
I in
t
(Ut+1, Vt+1) + ∥∆Ut+1∆V ⊤

t+1∥F (I in
t)

+ ∥Lt+1 − L∗∥F (Iout
t). (60)

29

To upper bound Lt
I in
t
(Ut+1, Vt+1) we insert eq. (59) and eq. (58) into eq. (57) which yields,

Lt
I in
t
(Ut+1, Vt+1) ≤

√
2∥∆U∗

t ∆V ∗⊤
t ∥F (Ωt) +

√
2∥S∗∥F (Ωt)

+ ∥∆Ut+1∆V ⊤
t+1∥F (Iout

t) − ∥Lt+1 − L∗ − S∗∥F (Iout
t).

(61)

Inserting eq. (61) into eq. (60) and using the fact that ∥S∥F (Ωt) = ∥S∗∥F (Iout
t) gives,

∥Lt+1 − L∗∥F (Ωt) ≤
√
2∥∆U∗

t ∆V ∗⊤
t ∥F (Ωt) +

√
2∥S∗∥F (Iout

t)

+ ∥∆Ut+1∆V ⊤
t+1∥F (Iout

t) + ∥∆Ut+1∆V ⊤
t+1∥F (I in

t)︸ ︷︷ ︸
∆

+ ∥Lt+1 − L∗∥F (Iout
t) − ∥Lt+1 − L∗ − S∗∥F (Iout

t).

(62)

To bound the term ∆ above we note that,

∥∆Ut+1∆V ⊤
t+1∥2F (Iout

t) + ∥∆Ut+1∆V ⊤
t+1∥2F (I in

t)
= ∥∆Ut+1∆V ⊤

t+1∥2F (Ωt)
.

Using the inequality a+ b ≤
√
2
√
a2 + b2 yields

∆ ≤
√
2∥∆Ut+1∆V ⊤

t+1∥F (Ωt). (63)

By the triangle inequality

∥Lt+1 − L∗∥F (Iout
t) − ∥Lt+1 − L∗ − S∗∥F (Iout

t) ≤ ∥S∗∥F (Iout
t). (64)

Inserting eq. (63) and eq. (64) into eq. (62) gives,

∥Lt+1 − L∗∥F (Ωt) ≤
√
2
[
∥∆U∗

t ∆V ∗⊤
t ∥F (Ωt) + ∥∆Ut+1∆V ⊤

t+1∥F (Ωt)

]
+ (1 +

√
2)∥S∗∥F (Iout

t).

D.3 Proofs of Lemmas C.6 and C.7

Before we prove the lemmas we present three auxiliary lemmas. The first is Lemma 10 in (Yi et al.,
2016). It establishes that if the sampling probability p is sufficiently high, then the number of sampled
entries in all rows and columns of Ω concentrates around their expected value.
Lemma D.6. Let Ω ⊂ [n1]× [n2] with n1 ≥ n2 satisfy Assumption 1, namely its entries are sampled
independently with probability p. There exist a constant C such that if p ≥ C logn1

n2
then w.p. at least

1− 6
n1

uniformally over all i ∈ [n1] and j,∈ [n2]

|ri − pn2| ≤
1

2
pn2, |cj − pn1| ≤

1

2
pn1. (65)

The second result is Lemma 14 in (Yi et al., 2016) . It provides an upper bound on the error
∥UV ⊤ − U∗V ∗⊤∥F (Λ) for a sufficiently well spread out subset Λ of the entries.

Lemma D.7. Let L∗ have rank r, largest singular value σ∗
1 and decomposition (U∗, V ∗) ∈ B∗ ∩Bµ.

Let U ∈ Rn1×r, V ∈ Rn2×r be a pair of matrices, such that (U, V) ∈ Bµ, and let θ ∈ (0, 1). Assume
that Λ ⊆ [n1]× [n2] satisfies |Λ(i,·)| ≤ θn2 for all i ∈ [n1] and |Λ(·,j)| ≤ θn1 for all j ∈ [n2] then

∥UV ⊤ − U∗V ∗⊤∥2F (Λ) ≤ 18
√
3θrµσ∗

1(∥U − U∗∥2F + ∥V − V ∗∥2F). (66)

The third lemma bounds the impact of the entries in (Ω \ Λt) ∩ Λ∗ on the error term ∥Lt −X∥F (Ω).
The lemma is based on a work presented in (Yi et al., 2016) (as part of their proof of Lemma 2), its
proof appears in Appendix E.3.
Lemma D.8. Let X = L∗ + S∗, and Ω ⊂ [n1] × [n2], where the corruption matrix S∗ satisfies
Assumption 3 for some known 0 < α < 1. Suppose that for a given estimate L of L∗, the set
of corrupted entries is estimated by Λ = support (Tγα (L−X,Ω)) with an over remvoal factor
1 < γ ≤ 1

α . Then the error on the remaining corrupted entries (Ω\Λ)∩Λ∗, where Λ∗ = support(S∗),
is bounded as follows,

∥L−X∥F ((Ω\Λ)∩Λ∗) ≤
√

2

γ − 1
∥L− L∗∥F (Ω). (67)

30

Proof of Lemma C.6. By the triangle inequality
∥S∗∥F ((Ω\Λ)∩Λ∗) = ∥L− (L∗ + S∗)− (L− L∗)∥F ((Ω\Λ)∩Λ∗)

≤ ∥L− L∗∥F ((Ω\Λ)∩Λ∗)︸ ︷︷ ︸
W1

+ ∥(L− L∗)− S∗∥F ((Ω\Λ)∩Λ∗)︸ ︷︷ ︸
W2

. (68)

First we bound W1. To this end we note that since Ω follows Assumption 2 with p ≥ C logn1

n2
by

Lemma D.6 w.p. at least 1− 6
n1

for every i ∈ [n1] and j ∈ [n2]

|ri − pn2| ≤
1

2
pn2, |cj − pn1| ≤

1

2
pn1.

By Assumption 3, S∗ ∈ SΩ
α and therefore

|(Λ∗)(i,·)| ≤ αri, |(Λ∗)(·,j)| ≤ αcj ,

Since (Ω \ Λt) ∩ Λ∗ ⊂ Λ∗

|((Ω \ Λt) ∩ Λ∗)(i,·)| ≤ |(Λ∗)(i,·)| ≤ αri ≤
3

2
αpn2

and similarly |(Λ∗)(·,j)| ≤ 3
2αpn1. Therefore we can invoke Lemma D.7 with θ = 3

2αp to obtain the
following bound on W1,

W 2
1 = ∥UV ⊤ − U∗V ∗⊤∥2F ((Ω\Λ)∩Λ∗)

≤ 27
√
3αprµσ∗

1(∥U − U∗∥2F + ∥V − V ∗∥2F).
Since (U∗, V ∗) satisfy eq. (24) it follows that

W1 ≤

√
27
√
3αprµσ∗

1

25

4σ∗
r

∥L− L∥2F ≤ 18
√
αpµrκ∥L− L∗∥F .

Next we bound W2 in eq. (68). To this end we invoke Lemma D.8 which gives,

W2 = ∥Lt − L∗ − S∗∥F ((Ω\Λt)∩Λ∗) ≤
√

2

γ − 1
∥Lt − L∗∥F (Ω).

Inserting the bounds on W1 and W2 into eq. (68) yields eq. (25).

Proof of Lemma C.7. Since Ω follows Assumption 2 with p ≥ C logn1

n2
by Lemma D.6 w.p. at least

1− 6
n1

for every i ∈ [n1] and j ∈ [n2]

|ri − pn2| ≤
1

2
pn2, |cj − pn1| ≤

1

2
pn1.

By the definition of Tγα, eq. (6), for any matrix A, it follows that if Λ = support (Tγα (A,Ω)) then

|(Λ)(i,·)| ≤ γαri ≤
3

2
γαpn2, |(Λ)(·,j)| ≤ γαcj ≤

3

2
γαpn1.

Using Lemma D.7 with Λ and θ = 3
2γαp we obtain eq. (26).

D.4 Proof of Lemma C.11

Proof. First we bound σ1(UV ⊤). By the assumption ∥UV ⊤ − L∗∥op ≤ σ∗
1

4 and the triangle
inequality,

σ1(UV ⊤) ≤ 5

4
σ∗
1 .

Next we bound ∥Z∥op. Since U, V are perfectly balanced, there exists Ũ ∈ Rn1×r, Ṽ ∈ Rn2×r

unitary matrices and Σ̃ ∈ Rr×r a diagonal matrix such that

U = Ũ Σ̃
1
2 , and V = Ṽ Σ̃

1
2 .

Note that UV ⊤ = Ũ Σ̃Ṽ , and thus σ1(UV ⊤) = λ1(Σ̃). In addition, Z⊤Z = U⊤U + V ⊤V = 2Σ̃.
Hence,

∥Z∥op =
√
λ1(Z⊤Z) =

√
λ1(2Σ̃) =

√
2σ1(UV ⊤) ≤

√
5σ∗

1

2
.

31

D.5 Proof of Lemma C.12

To prove the lemma we use the following auxiliary lemma which is Lemma 11 in (Zheng and Lafferty,
2016).

Lemma D.9. Let y ∈ Rr be a vector such that ∥y∥ ≤ η. Then for any x ∈ Rr

∥Rη(x)− y∥2 ≤ ∥x− y∥2. (69)

proof of Lemma C.12. Recall that

dp(Z
′, Z∗) = min

P
∥Z ′ − Z∗P∥F , dp(Z,Z

∗) = min
P

∥Z − Z∗P∥F .

where P is orthogonal. In what follows we prove that for any orthogonal matrix ∥Z ′ − Z∗P∥F ≤
∥Z − Z∗P∥F . Let P be an orthogonal matrix,

∥Z ′ − Z∗P∥2F =

n1∑
i=1

∥Rη1(U(i,·))− (U∗P)(i,·)∥2 +
n1+n2∑
i=n1+1

∥Rη2(V(i,·))− (V ∗P)(i,·)∥2, (70)

In order to bound ∥Rη1(U(i,·))− (U∗P)(i,·)∥2 and ∥Rη2(V(i,·))− (V ∗P)(i,·)∥2 using Lemma D.9
we first need to prove that ∥(U∗P)(i,·)∥ ≤ η1, ∥(V ∗P)(i,·)∥ ≤ η2. Since L∗ has an incoherence
parameter of µ

∥U∗∥2,∞ ≤
√

rµσ∗
1

n1
, ∥V ∗∥2,∞ ≤

√
rµσ∗

1

n2
.

Since we assumed ∥UV ⊤ − L∗∥op ≤ σ∗
1

4 , by the triangle inequality σ∗
1 ≤ 2σ1(UV ⊤). Therefore

∥U∗∥2,∞ ≤
√

rµσ∗
1

n1
≤

√
2rµσ1(UV ⊤)

n1
,

∥V ∗∥2,∞ ≤
√

rµσ∗
1

n2
≤

√
2rµσ1(UV ⊤)

n2
.

By Lemma C.11
√
2σ1(UV ⊤) = ∥Z∥op, hence

∥U∗∥2,∞ ≤
√

rµ

n1
∥Z∥op = η1,

∥V ∗∥2,∞ ≤
√

rµ

n2
∥Z∥op = η2.

Let P be an orthogonal matrix then

∥U∗P∥2,∞ ≤ ∥U∗∥2,∞∥P⊤∥op = ∥U∗∥2,∞,

∥V ∗P∥2,∞ ≤ ∥V ∗∥2,∞∥P⊤∥op = ∥V ∗∥2,∞.

Therefore, ∥(U∗P)(i,·)∥ ≤ η1, ∥(V ∗P)(i,·)∥ ≤ η2. By Lemma D.9

∥Rη1(U(i,·))− (U∗P)(i,·)∥2 ≤ ∥U(i,·) − (U∗P)(i,·)∥2,

and a similar result follows for V ∗ with η2. Inserting these bounds into eq. (70) gives

∥Z ′ − Z∗P∥2F ≤
n1∑
i=1

∥U(i,·) − (U∗P)(i,·)∥2 +
n1+n2∑
i=n1+1

∥V(i,·) − (V ∗P)(i,·)∥2 = ∥Z − Z∗P∥2F .

Since this is true for any orthogonal matrix it follows that

dP (Z
′, Z∗) ≤ dP (Z,Z

∗).

32

E Proofs of Lemmas D.1, D.2, D.3 D.5, D.4 and D.8.

E.1 Proof of Lemma D.1.

As part of the proof we use the following lemma, whose proof appears in Appendix F.

Lemma E.1. There exist constants ce, cl such that the following holds. If (U0, V0) ∈ Berr

(
1

ce
√
κ

)
∩

Bbln

(
1
2cl

)
∩ Bµ then

max{σ1(U0), σ1(V0)} ≤ 2
√

σ∗
1 . (71)

Additionally if for every 1 ≤ s ≤ t+ 1, (Us, Vs) ∈ C(Us−1, Vs−1,
σ∗
r

4sce
√
κ
) then

max{σ1(Ut+1), σ1(Vt+1)} ≤ 4
√

σ∗
1 . (72)

Proof of Lemma D.1. Recall that

at =
√
2max{σ1(Ut), σ1(Vt)}dP (Zt+1, Zt) +

1
2d

2
P (Zt+1, Zt).

Since for every 1 ≤ s ≤ t, (Us, Vs) ∈ C(Us−1, Vs−1,
σ∗
r

4sce
√
κ
) by Lemma E.1 it follows that

max{σ1(Ut), σ1(Vt)} ≤ 4
√
σ∗
1 . Therefore

at ≤
(√

32
√

σ∗
1 + 1

2dP (Zt, Zt+1)
)
dP (Zt, Zt+1).

Since dP (Zt, Zt+1) ≤ ∥Zt − Zt+1∥F =
√
∥Ut+1 − Ut∥2F + ∥Vt+1 − Vt∥2F we can bound at as

follows,

at ≤
(√

32 (∥Ut+1 − Ut∥2F + ∥Vt+1 − Vt∥2F)
√

σ∗
1 + 1

2∥Ut+1 − Ut∥2F + ∥Vt+1 − Vt∥2F
)
.

Since (Ut+1, Vt+1) ∈ C
(
Ut, Vt,

σ∗
r

4t+1ceκ

)
, see eq. (8), ∥Ut+1 − Ut∥2F + ∥Vt+1 − Vt∥2F ≤ σ∗

r

4t+1ceκ
.

Hence,

at ≤
√

32σ∗
rσ

∗
1

2t+1
√
κce

+
σ∗
r

2 · 4t+1ceκ
=

4
√
2σ∗

r

2t+1
√
ce

+
σ∗
r

2 · 4t+1ceκ
.

E.2 Proofs of Lemmas D.2, D.3 D.5 and D.4

Proof of Lemma D.2. We first lower bound Lt
I in
t
(Ut+1, Vt+1), the analogue of the objective function

in eq. (1) on the set I in
t . By definition S∗

i,j = 0 for every (i, j) ∈ Λc
∗. Since I in

t ⊆ Λc
∗

Lt
I in
t
(Ut+1, Vt+1) = ∥UtV

⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t − L∗ − S∗∥F (I in

t)

= ∥UtV
⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t − L∗∥F (I in

t)
. (73)

Note that

UtV
⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t − L∗ =

(
UtV

⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t − Ut+1V

⊤
t+1

)
+
(
Ut+1V

⊤
t+1 − L∗)

=(Lt+1 − L∗)− (Ut+1 − Ut)(Vt+1 − Vt)
⊤.

Inserting this into eq. (73), by the triangle inequality

Lt
I in
t
(Ut+1, Vt+1) ≥ ∥Lt+1 − L∗∥F (I in

t)
− ∥∆Ut+1∆V ⊤

t+1∥F (I in
t)
.

Rearranging the terms yields,

∥Lt+1 − L∗∥F (Ωt) ≤ Lt
I in
t
(Ut+1, Vt+1) + ∥∆Ut+1∆V ⊤

t+1∥F (I in
t)
.

33

Proof of Lemma D.3. Our goal is to upper bound Lt
I in
t
(Ut+1, Vt+1). Since Ω \ Λt = I in

t ∪ Iout
t[

Lt
Ωt
(Ut+1, Vt+1)

]2
=
[
Lt
I in
t
(Ut+1, Vt+1)

]2
+
[
Lt
Iout
t
(Ut+1, Vt+1)

]2
.

Since
√
a2 + b2 ≥ 1√

2
(a+ b)

Lt
Ωt
(Ut+1, Vt+1) ≥

1√
2
[Lt

I in
t
(Ut+1, Vt+1) + Lt

Iout
t
(Ut+1, Vt+1)].

Rearranging the terms yields,

Lt
I in
t
(Ut+1, Vt+1) ≤

√
2Lt

Ωt
(Ut+1, Vt+1)− Lt

Iout
t
(Ut+1, Vt+1). (74)

Note that (Ut+1, Vt+1) = argmin{Lt
Ωt
(U, V) | (U, V) ∈ Bµ ∩ C

(
Ut, Vt,

δ
4t+1

)
}. By definition

At ⊂ Bµ ∩ C
(
Ut, Vt,

δ
4t+1

)
. Therefore for any (U∗, V ∗) ∈ At,

Lt
Ωt
(Ut+1, Vt+1) ≤ Lt

Ωt
(U∗, V ∗). (75)

Inserting eq. (75) into eq. (74) yields eq. (57) of the lemma.

Proof of Lemma D.4. By the definition of Lt
Ωt

, see eq. (1), since X = L∗ + S∗

Lt
Ωt
(U∗, V ∗) = ∥UtV

∗⊤ + U∗V ⊤
t − UtV

⊤
t − L∗ − S∗∥F (Ωt).

Combining the triangle inequality with the fact that L∗ = U∗V ∗⊤ gives

Lt
Ωt
(U∗, V ∗) ≤ ∥UtV

∗⊤ + U∗V ⊤
t − UtV

⊤
t − U∗V ∗⊤∥F (Ωt) + ∥S∗∥F (Ωt)

= ∥Ut(V
∗⊤ − V ⊤

t)− U∗(V ∗⊤ − V ⊤
t)∥F (Ωt) + ∥S∗∥F (Ωt)

= ∥∆U∗
t ∆V ∗⊤

t ∥F (Ωt) + ∥S∗∥F (Ωt).

Proof of Lemma D.5. The analogue of the objective function in eq. (1) on the set Iout
t can be written

as

Lt
Iout
t
(Ut+1, Vt+1) = ∥UtV

⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t − L∗ − S∗∥F (Iout

t)

= ∥
(
UtV

⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t −Ut+1V

⊤
t+1

)
+
(
Ut+1V

⊤
t+1 − L∗ − S∗) ∥F (Iout

t)

= ∥ (Lt+1 − L∗ − S∗)− (Ut+1 − Ut)(Vt+1 − Vt)
⊤∥F (Iout

t).

Note that the second term is ∆Ut∆V ⊤
t . Hence eq. (59) follows by the triangle inequality.

E.3 Proof of Lemma D.8

Proof. We denote by ui and vj the i-th row and the j-th column of PΩ(L− L∗), respectively. We
denote by u

(k)
i the element of ui with the k-th largest magnitude, and a similar definition for v(k)j . As

Λ = support (Tγα (L−X,Ω)), for any (i, j) ∈ Ω \ Λ

|(L−X)i,j | ≤ max
{∣∣∣(L−X)

(⌈γαri⌉)
(i,·)

∣∣∣ , ∣∣∣(L−X)
(⌈γαcj)⌉
(·,j)

∣∣∣} . (76)

By assumption 3 S∗ ∈ SΩ
α there are at most αri corrupted entries in the ith row. Since γ > 1,

the set of ⌈γαri⌉ largest entries in the ith row of PΩ(L − X) contains at least ⌈(γ − 1)αri⌉ non
corrupted entries. Therefore, the ⌈γαri⌉ largest entry in the ith row of PΩ(L−X) is smaller than
the ⌈(γ − 1)αri⌉ largest entry in the ith row of PΩ(L− L∗). Formally

|(L−X)
(⌈γαri⌉)
(i,·) | ≤

∣∣∣u⌈(γ−1)α|Ω(i.·)|⌉
i

∣∣∣ . (77)

The same argument can be applied to each column j. Inserting eq. (77) and the analogous inequality
for the jth column into eq. (76) yields,

|(L−X)i,j | ≤ max
{∣∣∣u⌈(γ−1)α·ri⌉

i

∣∣∣ , ∣∣∣v⌈(γ−1)α·cj⌉
j

∣∣∣} . (78)

34

Next we upper bound
∣∣∣u⌈(γ−1)α·ri⌉

i

∣∣∣. To this end note that,

∥ui∥2 =

ri∑
k=1

(u
(k)
i)2 ≥

⌈(γ−1)α·ri⌉∑
k=1

(u
(k)
i)2 ≥

⌈(γ−1)α·ri⌉∑
k=1

∣∣∣u⌈(γ−1)α·ri⌉
i

∣∣∣2 ≥ (γ − 1)α · ri
∣∣∣u⌈(γ−1)α·ri⌉

i

∣∣∣2 .
Therefore, ∣∣∣u⌈(γ−1)α·ri⌉

i

∣∣∣2 ≤ ∥ui∥2

(γ − 1)αri
. (79)

The same argument can be applied to
∣∣∣v⌈(γ−1)α·cj⌉

j

∣∣∣. Inserting eq. (79) into eq. (78) gives

|(L−X)i,j |2 ≤ ∥ui∥2

(γ − 1)αri
+

∥vj∥2

(γ − 1)αcj
.

Summing over the entries in (Ω \ Λ) ∩ Λ∗ yields,

∥L−X∥2F ((Ω\Λ)∩Λ∗)
≤ 1

(γ − 1)α

∑
(i,j)∈(Ω\Λ)∩Λ∗

∥ui∥2

ri
+

∥vj∥2

cj
.

Since (Ω \ Λ) ∩ Λ∗ ⊆ Λ∗,

∥L−X∥2F ((Ω\Λ)∩Λ∗)
≤ 1

(γ − 1)α

∑
(i,j)∈Λ∗

∥ui∥2

ri
+

∥vj∥2

cj

≤ 1

(γ − 1)α

 ∑
i∈[n1]

∑
j∈Λ∗(i,·)

∥ui∥2

ri
+
∑

j∈[n2]

∑
i∈Λ∗(·,j)

∥vj∥2

cj

 .

By the assumption S∗ ∈ SΩ
α , it follows that |Λ∗(i,·)| ≤ αri and |Λ∗(·,j)| ≤ αcj . Therefore,

∥L−X∥2F ((Ω\Λ)∩Λ∗)
≤ 1

(γ − 1)α

α ∑
i∈[n1]

∥ui∥2 + α
∑

j∈[n2]

∥vj∥2


=
2

γ − 1
∥PΩ(L− L∗)∥2F =

2

γ − 1
∥L− L∗∥2F (Ω).

Taking the square root on both sides completes the proof.

F Proof of Lemma E.1

In our proof we would use the following lemma from Zilber and Nadler (2022) [Lemma SM2.4].

Lemma F.1. Let L∗ ∈ Rn1×n2 be a matrix of rank r, and denote Z∗ = b-SVDr(L
∗). Then for any

Z = (U
V) ∈ R(n1+n2)×r,

d2P (Z,Z
∗) ≤ 1

(
√
2− 1)σ∗

r

(
∥UV ⊤ − L∗∥2F +

1

4
∥U⊤U − V ⊤V ∥2F

)
. (80)

Proof of Lemma E.1. We prove for Ut and U0. A similar proof follows for Vt and V0. By the triangle
inequality

σ1(Ut+1) ≤ σ1(Ut) + ∥Ut+1 − Ut∥op.
Hence by induction

σ1(Ut+1) ≤ σ1(U0) +

t∑
k=0

∥Uk+1 − Uk∥op ≤ σ1(U0) +

t∑
k=0

∥Uk+1 − Uk∥F . (81)

35

Since (Uk+1, Vk+1) ∈ C(Uk, Vk,
σ∗
r

4k+1ce
√
κ
), see eq. (8),

∥Uk+1 − Uk∥F ≤

√
σ∗
r

4k+1ce
√
κ
=

√
σ∗
r

ce
√
κ

1

2k+1
.

Therefore for ce ≥ 1,

t∑
k=0

∥Uk+1 − Uk∥F ≤

√
σ∗
r

ce
√
κ

t∑
k=0

1

2k+1
≤

√
σ∗
r

ce
√
κ
≤

√
σ∗
r

4
√
κ

≤
√
σ∗
1 . (82)

Next we bound σ1(U0). Denote Z∗ =
(
U∗

V ∗

)
= b-SVDr(L

∗). By our assumption (U0, V0) ∈
Berr

(
1

ce
√
κ

)
∩ Bbln

(
1
2cl

)
. Therefore by Lemma F.1

d2P (Z0, Z
∗) ≤ 1

(
√
2− 1)

(
1

c2eκ
+

1

16c2l

)
σ∗
r ≤ σ∗

1 . (83)

Let P be the minimizer of the Procrustes distance between U0 and U∗. Note that |σ1(U0)−σ1(U
∗)| =

|σ1(U0)− σ1(U
∗P)|. By Weyl’s inequality

|σ1(U0)− σ1(U
∗P)| ≤ ∥U0 − U∗P∥op ≤ ∥U0 − U∗P∥F = dP (U0, U

∗) ≤ dP (Z0, Z
∗).

Hence |σ1(U0)− σ1(U
∗)| ≤ dP (Z0, Z

∗). By the triangle inequality and eq. (83)

σ1(U0) ≤ σ1(U
∗) + dP (Z0, Z

∗) ≤ 2
√

σ∗
1 . (84)

Inserting eq. (82) and eq. (84) into eq. (81) completes the proof.

36

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction summarize the theoretical and empirical contri-
butions that are proven and illustrated in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper clearly states the assumptions made for our theoretical results, and
the parameter regimes at which our empirical results were generated. In the end of Section
3 we pointed out the limitations of our theoretical analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

37

Answer: [Yes]
Justification: In section 3 we provide the full set of assumptions. The proofs for all of our
theoretical results appear in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In section 4 we provide a detailed explanation of the experiments conducted in
this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to all code used to generate the experimental results
that appear in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In section 4 we provide a detailed explanation of the experiments conducted in
this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are illustrated as part of our figures. A detailed explanation of the
the results is given.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the hardware and memory requirements needed in Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research adhered to the Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of code used in the paper are all properly credited and
cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

41

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All code is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

42

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	The RGNMR algorithm
	Estimating the number of corrupted entries

	Recovery guarantees
	Numerical results
	Limitations and future research
	Initialization procedure
	Additional simulations
	Proofs of Theorems 3.1 and 3.2
	Auxiliary Lemmas For Theorem 3.1
	Proof of Theorem 3.1
	Auxiliary Lemmas for Theorem 3.2
	Proof of Theorem 3.2

	Proofs of Lemmas C.4, C.5, C.6, C.11 and C.12.
	Proof of Lemma C.4
	Proof of Lemma C.5
	Proofs of Lemmas C.6 and C.7
	Proof of Lemma C.11
	Proof of Lemma C.12

	Proofs of Lemmas D.1, D.2, D.3 D.5, D.4 and D.8.
	Proof of Lemma D.1.
	Proofs of Lemmas D.2, D.3 D.5 and D.4
	Proof of Lemma D.8

	Proof of Lemma E.1

