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2 Universidad Politécnica de Madrid, Spain
3 Biodonostia Health Research Institute, Spain

Marcos Rubio4 marcos.rubio@inycom.es
Esther Albert́ın 4 esther.albertin@inycom.es
David Chaparro 4 david.chaparro@inycom.es
4 Instrumentación y Componentes SA, Inycom, Spain

Maria Blanca Cimadevila5 Maria.Blanca.Cimadevila.Alvarez@sergas.es
Javier Garcia5 Javier.Garcia.Navas@sergas.es
5 Servicio Gallego de Salud, Spain

Maria J. Ledesma-Carbayo 2 mledesma@die.upm.es
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Abstract

The development of democratized, generalizable deep learning applications for health care
systems is challenging as potential biases could easily emerge. This paper provides an
overview of the potential biases that appear in image analysis datasets that affect the
development and performance of computer-aided algorithms. Furthermore, we summarize
some techniques to alleviate these biases. Particularly, we focus on possible biases on a
mammography dataset and we present a classification task to analyze the influence of biases
in the performance of the algorithm.
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1. INTRODUCTION

Recent advances in artificial intelligence (AI) in the medical field enable transforming large
sets of images together with their annotations into predictive models using deep learning
techniques. Such a model is expected to behave in an unbiased way to produce fair, objective
decisions, without basing them on spurious attributes. However, AI algorithms can be
biased towards certain input patterns, deriving unfair decisions dependent on the domain
and not on the task to be solved.

Biases may come from several origins, among which data-related biases frequently appear
(GP et al., 2009; Yu and Eng, 2020). This type of bias can be due to class-imbalance or
due to socio-technological factors. Thus, to prevent from a biased behavior and ensure a
good generalization of deep learning models in real-world environments, special care must
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be taken during the creation of training datasets and the design and development of the
models (Varoquaux and Cheplygina, 2021; Tong and Kagal, 2020). Applying techniques to
analyze and mitigate bias related to the data is an essential initial step in the development
of deep learning models.

There are recent studies in the literature that analyze bias in deep learning algorithms
applied to medical images. (Pot et al., 2021; Larrazabal et al., 2020b) perform an analysis
of the impact of bias related to sociological factors such as sex, age, race or type of health
insurance. (Park and Han, 2003) describe a methodology to clinically evaluate artificial
intelligence technology on medical images, and they analyze, among other things, spectrum
biases. (Zhao et al., 2020) explores how to fairly diagnose HIV from magnetic resonance
images. They found a source of bias in patient age, which they mitigated by automatically
extracting bias-free features from the image with adversarial training. Similarly, (Li et al.,
2021) apply a multi-task strategy together with an adversarial training scheme to simul-
taneously detect and mitigate bias (sex and skin tone) in a skin lesion detection scenario.
(Seyyed-Kalantari et al., 2021; Catala et al., 2021; Larrazabal et al., 2020a) analyze selec-
tion biases in chest X-ray datasets. (Yu and Eng, 2020; Varoquaux and Cheplygina, 2021;
Oakden-Rayner et al., 2019; Winkler et al., 2019) analyze potential biases and its impor-
tance on deep learning algorithms, where they focus on imaging-based problems and their
additional factors to consider in their distribution: spectrum of imaging manifestations of
disease and of normal appearances, imaging equipment, protocols used and medical inter-
vention biases. (Pooch et al., 2020; Zech et al., 2018; Larrazabal et al., 2020b) demonstrate
biases on chest X-ray datasets emphasizing how acquisition equipment-related biases and
domain shifts affect a pneumonia detection algorithm. Regarding mammography solutions,
(Yu and Eng, 2020) comments on a mammography dataset where the presence of an image
marker could interfere in the performance of the algorithm. Finally, (Yala et al., 2021)
develop a deep learning algorithm to predict breast cancer risk and they use adversarial
training to discriminate image origin.

This paper aims at highlighting the relevance of performing an analysis of potential
data-related biases before deep learning model development. In Section 2, we provide an
overview on bias detection and mitigation techniques using a mammography dataset as an
example. Also, we show the influence of data related bias on simple classification exper-
iments, together with a possible solution to reduce the impact of the bias. In Section 3,
results from experiments are discussed. Finally, conclusions are provided in Section 4.

2. MATERIALS AND METHODS

This section describes the input mammography dataset and our approach to analyze biases.
We also present some techniques that can be used to mitigate these biases.

2.1. Mammography dataset

The dataset for our analysis is composed of 1727 mammography studies provided by the
Galician health care system. Since the goal was to provide democratized deep learning so-
lutions for the health area, the main criterion to gather the data from the picture archiving
and communication system was to contemplate all the available manufacturers. Mammo-
grams from Fujifilm Corporation, Hologic Inc, Philips Medical Systems, and Siemens were
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obtained and filtered so that only those containing two views, i.e bilateral craniocaudal
(CC) and mediolateral oblique (MLO), for each breast were considered. Finally, a selection
according to the following 4 clinical categories was performed:

• Control: mammograms where no abnormalities were detected by radiologists.

• Benign: mammograms where some benign lesion or cyst was detected by radiologists,
but women were not derived for further tests. It was checked that no abnormalities
were detected in two consecutive studies.

• Biopsy-benign: mammograms where a biopsy-proven benign lesion was found. The
mammogram corresponds to the last exam taken before the biopsy.

• Biopsy-malignant: mammograms where a biopsy-proven malignant lesion was found.
The mammogram corresponds to the last exam taken before the biopsy.

The distribution of exams in these categories, shown in Table 1, was balanced for most
equipment manufacturers. However, Philips scans were not used to acquire the last mam-
mography prior to biopsy in any case.

Table 1: Distribution of mammograms. Number of studies of the 4 clinical categories and
4 manufacturers

Fujifilm Hologic Philips Siemens Total
Control 139 132 137 134 542
Benign 138 131 134 136 539
Biopsy-benign 134 100 0 63 297
Biopsy-malignant 128 97 0 124 349
Total 539 460 271 457 1727

2.2. Bias analysis

An in-depth analysis of the dataset for AI model development is an important step to de-
tect potential biases and to ensure model performance in real world applications. Specially,
datasets containing medical images are ideally built gathering information from different
hospitals, different devices and several protocols to fulfill the needs of the whole health care
system. Socio-technological analysis are crucial in these cases to detect potential biases,
which can be discussed at the DICOM metadata level or at the content or pixel data level.

DICOM metadata analysis

Patient information and characteristics of the imaging studies can be directly acquired
from standard DICOM tags. Among them, we focus our attention at three relevant groups:
one relative to the device and general acquisition equipment, another group relative to the
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presentation of the images and VOI LUT, and one group relative to patient information.
We consider that these three groups are the most relevant to detect biases.

For the first group, the analyzed DICOM tags are Manufacturer, Manufacturer Model
Name, Institution Name and Detector ID. The distribution of these tags in our dataset
is summarized in Table 2. There are 4 manufacturers, 6 manufacturer models, 24 Insti-
tutions and 19 devices in total. We can see that manufacturers and models 1-3 (Fujifilm
Corporation, Hologic, Inc., and Siemens) are shared for the four study categories, while
manufacturer and model 4 (Philips Medical Systems) appears only for control and benign
groups. Models 5 and 6 are only employed to acquire images in groups biopsy-benign and
biopsy-malignant. On the other hand, the Institution and DeviceID are different between
control/benign studies and biopsy studies. This huge difference induces a very important
bias in the dataset, suggesting that control and benign studies may come from hospitals
where a breast cancer screening program is carried out, whereas biopsy-benign and biopsy-
malignant exams may come from diagnostic departments.

Table 2: Comparison of 4 different DICOM tags relative to the device for the 4 different
clinical categories

Manufacturer Model Institution Device ID
Control 1-4 1-4 1-14 1-15
Benign 1-4 1-4 1-14 1-15
Biopsy-Benign 1-3 1-3, 5-6 15-24 16-19
Biopsy-Malignant 1-3 1-3, 5-6 15-22 16-18

For the second group of metadata, we analyzed the DICOM tags summarized in Ta-
ble 3: Image Type, Window Center/Window Width, VOI LUT Function, Presentation LUT
Shape, Presentation Intent Type. In this case, differences in tags between study categories
are more subtle. However, there are relevant differences on Window Center and Window
Width values between control/benign and biopsy studies, which affect the appearance of
the image in terms of contrast and brightness. Furthermore, there are differences inside
each category as images are acquired with different scanners and acquisition parameters (as
described in the DICOM tags). Thus, when designing algorithms, the global performance
of the network could be unfairly biased towards some specific devices, which should be
detected and considered.

Histogram analysis

Understanding the distribution of image intensity values across different categories is
another approach to measure bias in the dataset and to decide appropriate preprocessing
methods for each image type. The mean and standard deviation of the histogram of each
subgroup is plotted in Figure 1, which shows differences between control/benign histograms
versus biopsy-benign/biopsy-malignant histograms (related to the differences in the image
aspects as shown in Table 3).
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Table 3: Comparison of 5 different DICOM tags relative to image aspects for the different
subgroups

Subgroup ImageType VOILUT LUTShape IntentType WW/WC
Control 1-5 1-2 1-2 1 1-4/1-5
Benign 1-5 1-2 1-2 1 1-3,5/1-4,6
Biopsy-Benign 1-9 1 1-2 1 1,6-16/1-2, 7-17
Biopsy-Malignant 1-10 1 1-2 1 1,6-7, 17-36/1-2, 18-37

Figure 1: Mean histograms for the different study categories in the dataset.

Age analysis

A demographic analysis based on the age of the patients was performed to complement
the two previous analysis. As shown in Figure 2, women from control and benign cases are
between 48 and 71 years old (mean:55.78, stdv:40.59), while women that underwent a biopsy
are between 31 and 93 years old (mean:31.19, stdv:30.36). This suggests, as also seen in
Section 2.2, that women from control and benign studies may be inside a screening program,

5



Zufiria Rebescher Rubio Cimadevila Garcia Maćıa

whereas women that underwent a biopsy come from the diagnostic departments. This factor
agrees with the ages of the women selected for the screening program at SERGAS.

Figure 2: Ages of the patients for the different clinical groups

2.3. Bias correction techniques

Based on the bias analysis previously described, we identified the following methods to
mitigate these biases: techniques that modify image appearance and techniques to modify
the training approach and the model architecture to guide the learning towards the desired
features.

Modification of image appearance

Images in the dataset can be preprocessed to modify their appearance by changing pixel
data to mitigate biases. Some examples of these preprocessing techniques are:

• Intensity windowing (IW): windowing with respect to the intensity histogram
could be applied to images to equalize intensities between different manufacturers.

• Histogram equalization (HE): distributes the intensities along the whole his-
togram to increase the contrast in the image.

• Background label deletion: some manufacturers introduce text marks in the image,
e.g. labels indicating the view (CC, MLO) or the breast (left, right), which could
introduce a bias when classifying studies.

Modification of model training

• Domain-Adversarial training: performs a domain transfer where final predictions
must be made based on features that cannot discriminate the domain from which the
images are obtained (Ganin et al., 2016). It could be a good solution to mitigate
domain biases, derived from the distribution of the different mammography units and
hospitals, found in the mammography dataset.
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• Data augmentation: data augmentation can be used to mitigate biases by gen-
erating images with different intensities inside groups and subgroups of the dataset.
This technique could be implemented by randomly applying different brightness and
contrast in the images, increasing the number of training samples and generalizing
their appearance (Appendix D-Equation (1)).

2.4. Experimental setup

To show the influence of data-related bias, we carry out some experiments to classify two
different groups of exams.

We employ a network architecture based on (Nan Wu et al., 2020), where the four
instances (right CC, right MLO, left CC, left MLO) of the study are used to decide whether
it is a negative or positive screening exam. Specially, we trained CC and MLO networks
(Densenet121) and then combined the features between breast views. We train our model
for 30 epochs to minimize a binary cross-entropy loss, with a learning rate of 1-5, batch size
of 2 and Adam optimizer.

The dataset is divided into training (70%), validation (20%) and test (10%) for each
class to train the network (manufacturers and clinical categories are balanced between sub-
sets). First, images are rescaled between 0 and 1 and normalized dividing each image by
the mean and the standard deviation of the intensities, calculated beforehand for the whole
rescaled dataset. Data augmentation according to Appendix D-Equation (1) is applied and
images are resized to 1024x512. Instances corresponding to the left breast are flipped to
the right side to help the network focus on one side of the image, facilitating the learning
task. Finally, the training dataset is balanced during training to avoid a bias towards the
majority class.

• Screening classification: in this experiment, we aim at building a model to differen-
tiate between normal mammograms and mammograms from patients with a derived
biopsy, i.e, separate control and benign (negative) exams from biopsy-benign and
biopsy-malignant (positive) exams.

• Malignancy classification: similar as the screening classification but the dataset is
separated into benign cases (Control, Benign and Biopsy-benign) and malign cases
(Biopsy-malign).

• Screening domain-adversarial classification: an adversarial training approach
to obtain device-independent features could be interesting to mitigate the image type
bias and focus more on the clinical classification task. First we aim at classifying
images according to the mammography device, separating the data according to the
“DeviceID” DICOM tag. The classification network successfully learned to identify
studies according to the acquisition device. Based on the fact that the model learned to
differentiate between devices, a domain-adversarial training that extracts intermediate
features independent on the device is developed. The training procedure minimizes
the loss of the label classifier (differentiating between negative and positive samples)
while maximizing the loss of the domain classifier (according to the DeviceID). The
results obtained showed that the discriminator was not able to differentiate between
mammography devices.
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3. RESULTS AND DISCUSSION

To visualize the explanations of the learning, we applied the Grad-cam approach (Selvaraju
et al., 2017) that propagates the gradients of a predicted class backwards into the final
convolutional layer. It produces a coarse localization map that highlights the important
regions in the image used to predict a specific class. Grad-cam results suggest that the
screening and malignant models are not classifying studies according to the desired clinical
task. As shown in Appendix - Figure 4 and Figure 5, the model focuses more on the type
of image (such as the background labels specific of the device) than on breast tissues to find
abnormalities. Finally, a prospective test set was extracted form the screening department
of the healthcare system (Appendix - Table 5) to evaluate the classification models. Results
confirmed that the algorithm is biased towards the acquisition department origin (Appendix
- Figure 6).

Table 4: Evaluation metrics on the test dataset for the different classification experiments.

EXPERIMENT ROC AUC Error Rate Sensitivity Specificity
Screening 0.996 0.0279 0.985 0.964
Malignancy 0.762 0.212 0.411 0.901
Screening domain-adversarial 0.937 0.062 0.995 0.901

Based on the Grad-cam visualizations and the validation tests, we confirmed that the
classification clinical tasks are biased by the data distribution. Futhermore, a feature ex-
tractor independent on the acquisition device was built and could be used to mitigate this
specific device bias during the learning. However, further techniques should be implemented
to mitigate other existing biases in the mammography dataset such as the age or the ac-
quisition techniques present in the two different screening and diagnostic departments.

4. CONCLUSIONS

Hereby, we presented a bias analysis approach for deep learning applications that focuses
on the inspection of DICOM metadata, pixel data and age distribution, using a mammog-
raphy dataset as use case. Significant differences are observed from this analysis between
images acquired with different acquisition parameters and scanners, that could lead to un-
fair performances on deep learning methods. Bias correction techniques were proposed for
mammography datasets based on the modification of the pixel data or the model training.
Finally, some experiments were performed where we proved that for a specific clinical task,
the results are biased toward the scanners and type of images and that a feature extrac-
tor invariant of the device could be trained to help mitigate this specific bias. Hence, the
proposed approach could help future researchers on the implementation of fair deep learn-
ing algorithms and methodology for dataset extraction and generation for medical imaging
applications.

8



Analysis of potential biases on mammography datasets for deep learning model development

Acknowledgments

This work has been partially funded by FEDER “Una manera de hacer Europa”. This
research has been done within the project CADIA - Sistema de Detecciónn de Diversas Pa-
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Appendix A. DICOM metadata definitions

DICOM metadata is used to analyze the distributions of the mammographies in the dataset
to explore posible biases. The definitions of theese different tags are the following:

• Manufacturer: manufacturer of the equipment that produced the images.

• Manufacturer Model Name: model of the equipment that is used.

• Institution Name: institution or organization where the study was performed.

• Detector ID: the ID or serial number of the detector used to acquire the image.

• Image Type: identifies important image identification characteristics regarding the
pixel data, patient examination, modality and the implementation specific identifiers.
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• Window Center/Window Width: window center and width specify a linear con-
version (unless otherwise specified by the value of VOI LUT Function) from the output
of the (conceptual) Modality LUT values to the input (conceptual) Presentation LUT.

• VOI LUT Function: the VOI LUT Function specifies a potentially non-linear con-
version to apply to the values of the image based on the window center and window
width.

• Presentation LUT Shape: when present, specifies an identity transformation for
the Presentation LUT such that the output of all grayscale transformations, if any,
are defined to be in P-Values.

• Presentation Intent Type: identifies the intent for the purposes of display or other
presentation of all images within the series.

Appendix B. Images

Figure 3: Loss function, accuracy, precision and recall curves during the training of the
classification experiment network.
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Figure 4: Grad-cam computed for the test set with the trained screeening classification
experiment. Visualization of left and right breasts and different views (CC and
MLO) for the different clinical categories and manufacturers is shown

Figure 5: Grad-cam computed on the test for the device classification experiment. Left and
Right breasts and different views (CC and MLO) for the different subgroups and
different manufacturers are displayed. The algorithm focusses on characteristics
of the image types specific of each acquisition device. Specially, the background
labels indicating the breast and view (CC/MLO) information is one of the prin-
cipal characteristics to classify images according to the device.
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Figure 6: Confusion matrices and ROC curves for the different classification experiments
on the test with the prospective set. Negative screening (Control and Benign) and
positive screening (Biopsy-benign and Biopsy-malignant) studies extracted from
the screening PACS were tested. In general, negative studies that were missclas-
sified came from different devices than the ones contemplated during the training
or from Philips studies with no background labels. Thus, the data bias present in
the classification model is confirmed

.

Figure 7: Confusion matrices of the device classifier (left) and the domain classifier during
the domain adversarial training (right).
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Appendix C. Tables

Table 5: Distribution of mammograms in the prospective test set. Number of studies of the
4 clinical categories and 4 manufacturers

Fujifilm Hologic Philips Siemens Total
Control/Benign 3 4 5 4 16
Biopsy-benign 1 0 3 4 8
Biopsy-malignant 4 0 2 2 8
Total 8 4 10 10 32

Appendix D. Equations

Data augmentation equation applied on the fly during the classification experiments train-
ing.

image ≡ min{brightness× image+ contrast, 1} (1)

being

brightness ≡ 1 + e (2)

and “e” is randomly taken from a normal distribution with a standard deviation of 0.1.
The contrast is randomly taken from a gamma distribution with alpha=1 and beta=10.
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