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ABSTRACT

Long-tailed learning has attracted much attention recently, with the goal of im-
proving generalisation for tail classes. Most existing works use supervised learn-
ing without considering the prevailing noise in the training dataset. To move long-
tailed learning towards more realistic scenarios, this work investigates the label
noise problem under long-tailed label distribution. We first observe the nega-
tive impact of noisy labels on the performance of existing methods, revealing the
intrinsic challenges of this problem. As the most commonly used approach to
cope with noisy labels in previous literature, we then find that the small-loss trick
fails under long-tailed label distribution. The reason is that deep neural networks
cannot distinguish correctly-labeled and mislabeled examples on tail classes. To
overcome this limitation, we establish a new prototypical noise detection method
by designing a distance-based metric that is resistant to label noise. Based on
the above findings, we propose a robust framework, ROLT, that realizes noise de-
tection for long-tailed learning, followed by soft pseudo-labeling via both label
smoothing and diverse label guessing. Moreover, our framework can naturally
leverage semi-supervised learning algorithms to further improve the generalisa-
tion. Extensive experiments on both benchmark and real-world datasets demon-
strate substantial improvement over many existing methods. For example, ROLT
outperforms baselines by more than 5% in test accuracy.

1 INTRODUCTION

Classification problems in real-world typically exhibit a long-tailed label distribution, where most
classes are associated with only a few examples, e.g., visual recognition Horn et al. (2018); Liu et al.
(2019); Tan et al. (2020), instance segmentation Gupta et al. (2019), and text categorization Wei &
Li (2020). Due to the paucity of training examples, generalisation for tail classes is challenging;
moreover, naı̈ve learning on such data is susceptible to an undesirable bias towards head classes.
Recently, long-tailed learning (LTL) has gained renewed interest in the context of deep neural net-
works Wang et al. (2017); Cui et al. (2019); Kang et al. (2020); Wu et al. (2020); Yang & Xu (2020);
Wu et al. (2021); Wang et al. (2021). Two active strands of work involve normalisation of the classi-
fier’s weights, and modification of the underlying loss to account for different class penalties. Each
of these strands is intuitive, and has been empirically shown to be effective Menon et al. (2021).

The above-mentioned LTL methods with remarkable performance
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Figure 1: Problem setup.

are mostly trained on clean datasets with high-quality human anno-
tations. However, in real-world machine learning applications, an-
notating a large-scale dataset is costly and time-consuming. Some
recent works resort to the large amount of web data as a source
of supervision for training deep neural networks Li et al. (2017).
While the existing works have shown advantages in various ap-
plications Li et al. (2014); Ma et al. (2018), web data is naturally
class-imbalanced Li et al. (2020; 2021) and accompanied with la-
bel noise Xu et al. (2019); Li et al. (2020); Yao et al. (2020); Xia et al. (2021). As a result, it is
crucial that deep neural networks can harvest noisy and class-imbalanced training data.

Although the LTL and noisy label problems have been extensively studied in previous literature, it
is still poorly explored when the training dataset follows a long-tailed label distribution and contains

1



Under review as a conference paper at ICLR 2022

0 1 2 3 4 5
Training Loss

0

100

200

300

Ex
am

pl
e 

C
ou

nt clean_0
noisy_0

(a) Loss for head class

1 2 3 4
Training Loss

0

5

10

15

20

Ex
am

pl
e 

C
ou

nt clean_7
noisy_7

(b) Loss for tail class

0 1 2 3
Distance

0

250

500

750

1000

Ex
am

pl
e 

C
ou

nt clean_0
noisy_0

(c) Distance for head class

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0

10

20

30

40

Ex
am

pl
e 

C
ou

nt clean_7
noisy_7

(d) Distance for tail class

Figure 2: (a-b) Training losses for examples of head class and tail class, respectively. (c-d) Distance
distribution between examples and their class prototype for head class and tail class, respectively.

label noise. We provide a simple visualization of the studied problem in Figure 1. Without consid-
ering label noise, we show that LTL methods severely degrade their performance in experiments.
To address this problem, a direct approach is to apply methods for learning with noisy labels to
LTL. One of the most commonly used approaches for learning with noisy labels is DivideMix Li
et al. (2020), which uses the small-loss criterion to detect label noise. However, we note that using
such approach leads to unsatisfactory results in long-tailed label distribution, as shown in Figure 2a
and 2b. Therefore, it remains a challenge to obtain models that can cope with LTL under label noise.

To achieve performance improvement, it is a natural idea to detect noisy data while accommodating
class imbalance. It is known that a classifier trained on long-tailed data yields higher accuracy for
head classes but hurts tail classes Kang et al. (2020). Thus, to detect label noise, it is not trustworthy
to use predictions and training losses produced by the biased classifier. Another commonly used
classifier for LTL is the nearest class mean (NCM) classifier that computes class prototypes and per-
forms nearest neighbour search in embedding space Kang et al. (2020). As many previous literature,
it is reasonable to assume clean examples tend to be clustered around their prototypes even when
training with noisy labels. This inspires us to design a class-independent noise detector by treating
examples closed to their corresponding prototypes as clean, while others as noisy. As a comparison
with the small-loss trick, we demonstrate the distance distribution for both head and tail classes in
Figure 2c and 2d. Unlike learning from balanced datasets where noisy data can be removed from
training Pleiss et al. (2020), we claim that each example is significant, especially for tail classes.
To this end, we introduce a new soft pseudo-labeling mechanism that uses both label smoothing
and label guessing to guide the learning of networks. Thanks to the generality of our proposed
noise detection method, we can also interpret noisy examples as unlabeled data and incorporate
well-established semi-supervised learning techniques to further improve the generalisation.

Our main contributions are: (i) We study the problem of long-tailed learning under label noise,
which is less explored and is a significant step towards real-world applications; (ii) We find that the
commonly used small-loss trick fails in long-tailed learning. Thus, we establish a novel prototypical
noise detection method that overcomes the limitations of small-loss trick; (iii) We propose a robust
framework, ROLT. It realizes noise detection that is immune to label distribution, and compensates
the problem of data scarcity for tail classes. Our framework can be built on top of semi-supervised
learning methods without much extra overhead, leading to an improved approach ROLT+. The
proposed methods achieve strong empirical performance on benchmark and real-world datasets.

2 RELATED WORK

Our work is closely related to the following directions.

Long-Tailed Learning. Recently, many approaches have been proposed to cope with long-tailed
learning. Most extant approaches can be categorized into three types by modifying (i) the inputs to
a model by re-balancing the training data Shen et al. (2016); Liu et al. (2019); Zhou et al. (2020);
(ii) the outputs of a model, for example by post-hoc adjustment of the classifier Kang et al. (2020);
Tang et al. (2020); Menon et al. (2021); and (iii) the internals of a model by modifying the loss
function Cao et al. (2019); Shu et al. (2019); Jamal et al. (2020); Ren et al. (2020). Each of the
above methods are intuitive, and have shown strong empirical performance. However, these methods
assume the training examples are correctly-labeled, which is often difficult to obtain in many real-
world applications. Instead, we study a realistic problem to learn from long-tailed data under label
noise. Although the presence of label noise in class-imbalanced dataset has also been mentioned in
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HAR Cao et al. (2021), they only consider a specialized noise setup. In this work, we provide a more
general simulation of label noise, as well as systematic studies for long-tailed learning methods.
More importantly, many existing methods can be easily integrated into our framework, leading to
noticeable performance improvement.

Label Noise Detection. Plenty of methods have been proposed to detect noisy examples Jiang
et al. (2018); Han et al. (2018); Li et al. (2020); Nguyen et al. (2020). Many works adopt the
small-loss trick, which treats examples with small training losses as correctly-labeled. In particular,
MentorNet Jiang et al. (2018) reweights samples with small loss so that noisy samples contribute
less to the loss. Co-teaching Han et al. (2018) trains two networks where each network selects
small-loss samples in a mini-batch to train the other. DivideMix Li et al. (2020) fits a Gaussian
mixture model on per-sample loss distribution to divide the training data into clean set and noisy
set. In addition, AUM Pleiss et al. (2020) introduces a margin statistic to identify noisy samples
by measuring the average difference between the logit values for a sample’s assigned class and
its highest non-assigned class. The above methods only consider training datasets that are class-
balanced, thus is not applicable for long-tailed label distribution. Recent work Li et al. (2021)
observes the real-world dataset with label noise also has imbalanced number of samples per-class.
Nevertheless, they only inspect a particular setup, while we provide a systematic study of learning
with noisy labels under various long-tailed scenarios. In contrast to previous works, we propose a
class-independent prototypical noise detection method that works well in long-tailed learning.

3 ROBUST LONG-TAILED LEARNING UNDER LABEL NOISE

In this section, we first introduce the problem setting. Then, we present our method for long-tailed
learning under label noise.

3.1 PROBLEM FORMULATION

Given a training datasetD = {xi, yi}Ni=1, where xi is an instance feature vector and yi ∈ C = [K] =
{1, . . . ,K} is the class label assigned to it. We assume that training examples (xi, yi), 1 ≤ i ≤ N
consists of two types: i) a correctly-labeled example whose assigned label matches the ground-truth
label, i.e., yi = y∗i , where y∗i denotes the ground-truth label of xi, ii) a mislabeled example whose
assigned label does not match the ground-truth label, but the input matches one of the classes in C,
i.e., yi ̸= y∗i and y∗i ∈ C. The setting of long-tailed learning is where the class prior distribution P(y)
is highly skewed, so that many tail labels have a very low probability of occurrence. Specifically,
we define the imbalance ratio (IR) as ρ = maxy P(y)/miny P(y).

In practice, since the data distribution is not known, Empirical Risk Minimization (ERM) uses the
training data to achieve an empirical estimate of the data distribution. Typically, one minimizes the
softmax cross-entropy as

ℓ(y, f(x)) = log

[ ∑
y′∈[K]

efy′ (x)

]
− fy(x) = log

[
1 +

∑
y′ ̸=y

efy′ (x)−fy(x)

]
, (1)

where fy(x) denotes the predictive probability of model f on class y. This ubiquitous approach
neglects the issue of class imbalance, and makes the model biased toward head classes. Moreover,
it assumes training examples are correctly-labeled. In the following, we adapt the ERM to address
these problems without introducing much extra training efforts.

3.2 CLASS-INDEPENDENT PROTOTYPICAL NOISE DETECTION

In this work, we find that this commonly used method does not fit well with long-tailed learning. The
reason is that the training loss of an example can also be large because it belongs to the tail classes
and the small-loss trick is not able to distinguish mislabeled examples from tail classes examples.
In contrast, we show that the estimate of class prototypes is robust to label noise and can be used to
detect noisy labels.

Considering the discrepancy of data distribution of each class, we propose to inspect the distance
statistics in a class-independent manner. Formally, we model clean examples of class k ∈ [K] as if
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they were distributed around prototype ck ∈ RD, and the likelihood of an example x belonging to
class k decays exponentially with its distance from the prototype ck, i.e., P(x | ck) ∝ e−dist(ck,x),
which is a common assumption about the data distribution Goldberger et al. (2004); Samuel &
Chechik (2021). Here, dist is a distance measure in the embedding space and is typically set to
be the Euclidean distance. To justify the feasibility of using distance to select clean examples, we
compute the AUC based on the distance between examples and their class prototypes for each class
separately, and report the average value of Many, Medium, Few, and All classes in Table 1. The
experiment is done on CIFAR-100 with imbalance ratio ρ = 100, noise ratio γ = 0.2 and γ = 0.5.
It can be seen that the AUC is high even for tail classes, indicating the effectiveness of distance
measure at distinguishing clean and noisy examples.

γ = 0.2
Many Medium Few All

γ = 0.5
Many Medium Few All

95.16 93.38 82.81 90.64 92.00 87.43 73.60 85.20

Table 1: Average AUC for Many, Medium, Few, and All classes.

To separate clean examples from noisy data, we assume that, for training examples of class
k, the distance statistics follow a mixture of two Gaussians Permuter et al. (2006), i.e., d ∼∑2

j=1 ϕjN (µj , σ
2
j ), where d = dist(ck,x),∀x ∈ Dk and ϕj denotes weight of the j-th com-

ponent. Note that we have
∑2

j=1 ϕj = 1. Without loss of generality, we assume µ1 < µ2. Since
clean examples locate around the prototype while noisy examples spread out, we flag x as clean if
and only if P(d | µ1, σ1) > P(d | µ2, σ2). We thus perform class-independent noise detection by
estimating the Gaussians’ parameters from distance statistics. In particular, for each class k ∈ [K],
we compute its prototype as the normalized average of the embeddings for training examples by

ck ← Normalize

(
1

|Dk|
∑

xi∈Dk

fθ(xi)

)
,Dk = {xi | yi = k} , (2)

where fθ(x) denotes the extracted feature representation of x. Based on ck, the distances between
ck and examples of class k are obtained by

dist(ck,xi) =
∥∥ck − fθ(xi)

∥∥2
2
,∀xi ∈ Dk. (3)

We then fit a two-component Gaussian mixture model to maximize the log-likelihood value by
max

∑|Dk|
i=1 log(

∑2
j=1 ϕjP(di | µj , σj)), where di = dist(ck,xi) for xi ∈ Dk.

For simplicity, we denote the clean (noisy) data of class k as Xk (Sk). Note that we have Dk =

Xk

⋃
Sk. Therefore, we obtain a subset of clean examples by X =

⋃K
k=1 Xk and noisy examples

by S =
⋃K

k=1 Sk. It is also verified that Gaussian mixture model can be used to distinguish clean
and noisy data because of its flexibility in the sharpness of distribution in previous literature Li et al.
(2020). Recall that Dk may contain noisy labels, the estimate of ck in equation 2 is inaccurate and
the split of Dk = Xk

⋃
Sk is problematic. To remedy this, we refine class prototypes using Xk

rather thanDk, and acquire a new split ofDk. By doing this, we believe that the obtained Xk retains
most of correctly-labeled examples of class k as well as less mislabeled examples.

3.3 SOFT PSEUDO-LABELING VIA LABEL SMOOTHING AND LABEL GUESSING

For each noisy example, we aims to refine its training label by generating a soft pseudo-label. A
direct approach is to leverage the prediction of ERM model. However, the ERM is known to be
biased toward head classes Zhong et al. (2021). Hence, refining noisy labels using the predictions
of ERM may be sub-optimal for examples of tail classes. In contrast, the NCM classifier can yield
balanced classification boundary Kang et al. (2020). Specifically, we find that the NCM classifier
produces much higher recall on tail classes than the ERM in experiments. By aggregating the pre-
dictive information from the ERM and NCM classifiers, we construct diverse soft pseudo-labels for
detected noisy examples. To amend the misflag of noisy detector, we also take account of the orig-
inal labels as a source of soft pseudo-labels. Moreover, since it is not impossible that both ERM
and NCM classifiers produce incorrect predictions, we further remedy this by the label smoothing
technique Zhong et al. (2021).
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Algorithm 1: Robust Long-Tailed Learning under Label Noise (ROLT)

1 Input: training dataset {(xi, yi)
N
i=1}, initial learning rate η0, number of warm-up iterations T0

// Warm-up Stage: run SGD for T0 iterations
2 for t = 1, . . . , T0 do
3 Sample m0 examples {(xi, yi)}m0

i=1 from D
4 wt+1 = wt − η0g̃t, where g̃t =

1
m0

∑m0

i=1∇ℓ(wt;xi)

5 end
// Robust Learning Stage: run SGD for T iterations

6 for t = 1, . . . , T do
7 X = ∅,S = ∅
8 for k = 1, . . . ,K do
9 Compute class prototype ck as in equation 2

10 Compute distance between the prototype ck and each of xi ∈ Dk as in equation 3
11 Fit GMM and divide Dk into clean set Xk and noisy set Sk
12 X = X

⋃
Xk,S = S

⋃
Sk // collect clean and noisy examples of class k

13 Refine class prototype ck ← Normalize
(

1
|Xk|

∑
i∈Xk

fθ(xi)
)

// In practice, class

prototype computed from Xk is more accurate than that from Dk

14 end
15 Compute soft pseudo-labels ỹ for x ∈ S as in equation 4

16 Compute stochastic gradient gt as gt =
∑|X|

i=1 ∇H(yi,f(xi))+
∑|S|

j=1 ∇H(ỹj ,f(xj))

|X |+|S|
17 Update model parameters using gt and learning rate η : wt+1 = wt − ηgt

18 end

Put together, given the predictions ŷerm = argmaxk f(x), ŷncm = argmink ∥ck − fθ(x)∥2, and
original label y, we form the guessing label set G = {ŷerm, ŷncm, y} and generate soft pseudo-label
ỹ ∈ RK of x ∈ S as follows. For class k ∈ [K], we compute

ỹk =

{
1
4

∑
ŷ∈G I(ŷ = k) + 1

4K if k ∈ G
1

4K otherwise.
(4)

Here, I(·) is an indicator which returns 1 if the condition is true, otherwise 0. The targets ŷerm and
ŷncm can be set equal to the model output, but using a running average is more effective which is
known as temporal ensembling Laine & Aila (2017) in semi-supervised learning. For ERM or NCM
classifier, let zi(t) ∈ RK be the output logits vector (pre-softmax output) for example xi at iteration
t of training, we update the momentum logits by

qi(t) = αqi(t− 1) + (1− α)zi(t), (5)

where 0 ≤ α < 1 is the combination weight. For each iteration t, we then obtain ŷerm and ŷncm

using softmax of qi(t). Having acquired X , S, and soft pseudo-labels, we first compute the cross-
entropy loss for clean examples using original training labels by

LX =
1

|X |
∑
i∈X

H(yi, f(xi)), (6)

where yi is the one-hot label vector for xi. For noisy examples, the loss function is computed by

LS =
1

|S|
∑
i∈S

H(ỹi, f(xi)), (7)

where H(q,p) = −
∑K

k=1 qk log
(

exp pk∑K
j=1 exp pj

)
is the cross-entropy between distributions q and p.

Overall, the training objective is L = LX +LS . Details of the method are presented in Algorithm 1.
Moreover, X and S can be viewed as labeled and unlabeled data respectively, and semi-supervised
learning Berthelot et al. (2019); Li et al. (2020) can be leveraged to train networks, which is further
validated in experiments.
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4 EXPERIMENTS

We now present experiments that confirm our main claims: (i) on benchmark datasets, we demon-
strate the efficacy of our method by comparing with both methods for long-tailed learning and learn-
ing with noisy labels; (ii) on a real-world dataset with natural label noise, we compare with existing
methods by controlling the imbalance ratio; (iii) we provide detailed studies for each proposed com-
ponent in our framework and analyze their effectiveness.

4.1 SIMULATING NOISY AND LONG-TAILED DATASETS ON CIFAR

Setting. We test ROLT on CIFAR-10 and CIFAR-100 under various imbalanced ratio ρ and noise
level γ. For each dataset, we first simulate the long-tailed dataset following the same setting as
LDAM Cao et al. (2019). The long-tailed imbalance follows an exponential decay in sample sizes
across different classes. We then inject label noise according to the noise transition matrix equation 8
to the long-tailed dataset to form the training set. In particular, we consider imbalance ratio to be
ρ ∈ {10, 50, 100} and noise level to be γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. Due to space constraints, we
defer the results for γ = 0 and ρ = 50 to the supplementary material.

Label Noise Generation. We propose a new label noise generation method. To generate noisy
labels, the most basic idea is to utilize the noise transition matrix Liu & Tao (2016), denoting the
probabilities that clean labels flip into noisy labels. Let Y denote the variable for the clean label, Ȳ
the noisy label, and X the instance/feature, the transition matrix T (X = x) is defined as Tij(X) =
P(Ȳ = j | Y = i,X = x). In this work, we present a new noise generation approach by setting
T (X = x) according to the estimated class priors P(y), e.g., the empirical class frequencies in the
training dataset. Formally, given the noise proportion γ ∈ [0, 1], we define

Tij(X) = P(Ȳ = j | Y = i,X = x) =

{
1− γ i = j

Nj

N−Ni
γ otherwise. (8)

Here, N denotes the total number of training examples and Nj is frequency of class j. In contrast
to commonly used uniform label noise, we believe that examples are more likely to be mislabeled
as frequent ones in real-world situations.

Result. Table 2 and Table 3 summarize the results for CIFAR-10 and CIFAR-100. We compare
our methods with several commonly used baselines for long-tailed learning and learning with noisy
labels. As shown in the results, previous methods dreadfully degrade their performance as the noise
level and imbalance ratio increase, while our methods retain robust performance. In particular, com-
pared with ERM, ROLT improves the test accuracy by 8% on average. It can be observed that the im-
provement becomes more significant at high noise levels, benefiting from proposed noise detection
and soft pseudo-labeling. Further application of Deferred Re-Weighting (DRW) Cao et al. (2019)
enhances the performance by favoring the tail classes. Note that, ERM-DRW achieves even lower
accuracy than LDAM Cao et al. (2019) in many cases, while ROLT-DRW outperforms LDAM-
DRW by 5% on average. This clearly demonstrates the importance of correcting noisy labels in the
training data. Intriguingly, our experiments reveal that NCM Kang et al. (2020), which is mostly
overlooked in previous literature on long-tailed learning, performs better than cRT Kang et al. (2020)
in most cases, especially in scenarios with high noise levels. This also provides evidence for us to
develop geometry-based noise detection method.

We further compare ROLT+ with DivideMix Li et al. (2020), one of the most popular methods for
learning with noisy labels. We use the same experimental setups for these two methods. The results
are given in Table 3. It can be observed that DivideMix performs worse as the training dataset
becomes more class-imbalanced. In contrast, our method ROLT+ achieves an improvement in test
accuracy by 2.57% on average. This validates the superiority of our prototypical noise detector
over the small-loss trick. In the supplementary material, we further show that DivideMix flags most
example of tail classes as noisy, which is the main reason accounting for its failure.

4.2 EVALUATION ON REAL-WORLD CLASS-IMBALANCED AND NOISY DATASET

We test the performance of our method on a real-world dataset. WebVision Li et al. (2017) con-
tains 2.4 million images collected from Flickr and Google with real noisy and class-imbalanced
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CIFAR-10

Imbalance Ratio 10 100

Noise Level 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

ERM 80.41 75.61 71.94 70.13 63.25 64.41 62.17 52.94 48.11 38.71
ERM-DRW 81.72 77.61 71.94 70.13 63.25 66.74 62.17 52.94 48.11 38.71
LDAM 84.59 82.37 77.48 71.41 60.30 71.46 66.26 58.34 46.64 36.66
LDAM-DRW 85.94 83.73 80.20 74.87 67.93 76.58 72.28 66.68 57.51 43.23
BBN 83.59 80.35 72.94 70.04 63.63 70.05 64.51 56.86 44.30 36.72
cRT 80.22 76.15 74.17 70.05 64.15 61.54 59.92 54.05 50.12 36.73
NCM 82.33 74.73 74.76 68.43 64.82 68.09 66.25 60.91 55.47 42.61
HAR-DRW 84.09 82.43 80.41 77.43 67.39 70.81 67.88 48.59 54.23 42.80

ROLT 86.18 85.03 83.53 81.53 76.72 72.38 71.83 68.15 59.80 49.62
ROLT-DRW 86.27 85.04 83.58 81.40 77.11 75.33 73.84 70.21 64.99 55.32

CIFAR-100

Imbalance Ratio 10 100

Noise Level 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

ERM 48.65 43.27 37.43 32.94 26.92 31.81 26.21 21.79 17.91 14.23
ERM-DRW 50.38 45.24 39.02 34.78 28.50 34.49 28.67 23.84 19.47 14.76
LDAM 51.77 48.14 43.27 36.66 29.62 34.77 29.70 25.04 19.72 14.19
LDAM-DRW 54.01 50.44 45.11 39.35 32.24 37.24 32.27 27.55 21.22 15.21
BBN 53.50 47.91 42.81 35.17 28.60 34.39 27.84 23.38 18.20 15.47
cRT 49.13 42.56 37.80 32.18 25.55 32.25 26.31 21.48 20.62 16.01
NCM 50.76 45.15 41.31 35.41 29.34 34.89 29.45 24.74 21.84 16.77
HAR-DRW 51.04 46.24 41.23 37.35 31.30 33.21 26.29 22.57 18.98 14.78

ROLT 54.61 51.83 47.43 42.46 37.58 35.30 31.10 27.72 24.80 19.56
ROLT-DRW 55.68 53.41 48.77 44.18 39.22 37.70 33.36 30.02 26.46 20.61

Table 2: Test accuracy (%) on CIFAR datasets with different imbalanced ratio and noise level.

CIFAR-10 CIFAR-100

Noise Level 0.2 0.5 0.2 0.5

Imbalance Ratio 10 50 100 10 50 100 10 50 100 10 50 100

DivideMix Best 88.79 75.34 66.90 87.54 67.92 61.81 63.79 49.64 43.91 49.35 36.52 31.82
Last 88.10 73.48 63.76 86.88 65.22 59.65 63.17 48.37 42.59 48.87 35.72 31.05

ROLT+ Best 87.95 77.26 72.31 88.17 75.11 64.42 64.22 51.01 45.35 53.31 39.78 35.29
Last 87.54 75.90 69.12 87.45 73.92 61.15 63.31 49.40 43.16 52.44 39.27 34.43

Table 3: Test accuracy (%) on CIFAR datasets with different imbalanced ratio and noise level.

data. Following previous literature, we train on a subset, mini WebVision, which contains the first
50 classes. In Table 4, we report results comparing against state-of-the-art approaches, including
D2L Ma et al. (2018), MentorNet Jiang et al. (2018), Co-teaching Han et al. (2018), Iterative-
CV Chen et al. (2019), HAR Cao et al. (2021), and DivideMix Li et al. (2020).

To further uncover the advantages of our method, we run experiments by controlling the imbalance
ratio of Webvision dataset. The test accuracy is reported in the Table 5. From the results, we can see
that the superiority of our method is more significant as the imbalance ratio increases.

4.3 FURTHER ANALYSIS AND ABLATION STUDIES

We study the effectiveness of the two main modules of our method.

Efficacy of the noise detector. To further support our motivation, we compare the performance of
the ERM and NCM classifiers in Figure 3. It can be seen that NCM produces more balanced recall
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D2L MentorNet Co-teaching Iterative-CV HAR DivideMix ROLT+

Webvision top1 62.68 63.00 63.58 65.24 75.5 77.32 77.64
top5 84.00 81.40 85.20 85.34 90.7 91.64 92.44

ImageNet top1 57.80 57.80 61.48 61.60 70.3 75.20 74.64
top5 81.36 79.92 84.70 84.98 90.0 90.84 92.48

Table 4: Accuracy (%) on mini WebVision and ImageNet validation sets.

Imbalance ratio Method Webvision ImageNet

ρ = 50 DivideMix 64.56 (83.56) 62.68 (85.24)
w/ DRW 68.16 (84.92) 66.12 (85.40)

RoLT+ 66.28 (88.68) 64.76 (89.96)
w/ DRW 70.08 (88.52) 67.28 (90.12)

ρ = 100 DivideMix 55.76 (73.48) 53.92 (74.00)
w/ DRW 60.28 (74.60) 59.04 (75.68)

RoLT+ 60.68 (87.84) 59.68 (88.52)
w/ DRW 65.48 (87.32) 64.80 (87.08)

Table 5: Top-1 (Top-5) test accuracy on mini Webvision and ImageNet.

across classes, while ERM tends to predict examples as head classes, resulting in low recall for tail
classes. Figure 4 shows the precision and recall of selected clean examples by our method. To better
understand ROLT, we construct three groups of classes for CIFAR-100 by: many (more than 100
images), medium (20∼100 images), and few (less than 20 images) shots; and CIFAR-10 by: many
({0, 1}), medium({2, . . . , 6}), and few ({7, 8, 9}) shots according to class indices. ROLT maintains
high precision and recall, which validates the effectiveness of our method. This experiment is con-
ducted under imbalance ratio ρ = 100 and noise level γ = 0.3.

Efficacy of the soft pseudo-labeling. We investigate the effectiveness of soft pseudo-labeling by
comparing it with three other methods: (i) keep the noisy labels, (ii) rectify it via the ERM predic-
tions, (iii) use the soft label without label smoothing (w/o LS) as follow:

ỹk =

{
1
3

∑
ŷ∈G I(ŷ = k) if k ∈ G

0 otherwise.
(9)

We report the results in Table 6 with respect to noise level γ ∈ {0.2, 0.5} and imbalance ratio
ρ = 100. We observe that ERM and soft pseudo-labeling significantly improve the performance by
over 4% in test accuracy, and the improvement is more significant under high noise levels. Moreover,
the soft pseudo-labeling outperforms its ERM and ‘w/o LS’ counterpart in most cases, demonstrat-
ing that label smoothing and label guessing can provide diverse and informative supervision under
imperfect training labels. We also investigate the effectiveness of learned representations with NCM
for classification. It can be observed that NCM with soft labels outperforms the one using original
noisy labels, which confirms that our soft pseudo-labeling facilitates representation learning.

4.4 DISCUSSION AND LIMITATIONS

One may be interested in combining the proposed method ROLT with other loss functions. In
particular, we attempt to optimize LDAM loss Cao et al. (2019) during training and the results are
reported in the supplementary material. Indeed, LDAM encourages the model to yield balanced
classification boundaries. However, it slightly distort these boundaries when applied together with
soft pseudo-labeling because too much focus has been put on tail classes. Our experimental finding
suggests using the ERM predictions as pseudo-labels leading to more significant improvements.

Additionally, we admit that it is challenging to train networks that consistently performs well under
various noise levels in long-tailed learning. Although ROLT can take both label noise and class
imbalance into account, its improvement is less obvious when training on a clean dataset. We report

8
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Figure 3: Per-class recall of ERM and NCM classifiers on CIFAR-10 and CIFAR-100 datasets. It
can be clearly seen that NCM produces more balanced predictions than ERM across classes.
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Figure 4: Precision and Recall of selected clean examples by our method.

DRW Classifier Pseudo-Label γ = 0.2 γ = 0.5
Many Med. Few All Many Med. Few All

✗ Linear Noisy 49.38 21.42 4.57 26.21 32.06 7.89 0.04 14.23
✗ Linear ERM 58.79 26.50 4.21 31.24 38.83 12.05 0.89 18.41
✗ Linear Soft (w/o LS) 54.59 26.47 7.25 30.65 36.03 15.11 2.19 18.94
✗ Linear Soft (w/ LS) 56.59 26.95 5.79 31.10 37.20 15.97 1.74 19.56
✗ NCM Noisy 44.09 32.03 12.00 30.52 26.86 17.89 5.59 17.71
✗ NCM ERM 49.06 34.92 13.07 33.61 31.11 21.05 5.63 20.41
✗ NCM Soft (w/o LS) 45.32 31.05 14.14 31.17 29.14 21.13 5.41 19.69
✗ NCM Soft (w/ LS) 47.65 32.16 13.93 32.32 29.80 20.74 5.85 19.89
✓ Linear Noisy 45.82 26.50 10.79 28.67 23.77 14.53 3.41 14.76
✓ Linear ERM 50.62 31.55 11.64 32.46 32.80 17.05 2.30 18.58
✓ Linear Soft (w/o LS) 44.21 31.76 15.39 31.41 30.31 18.92 4.93 19.13
✓ Linear Soft (w/ LS) 47.85 32.68 16.68 33.36 30.94 21.32 6.22 20.61
✓ NCM Noisy 43.21 31.95 12.61 30.36 26.86 17.89 5.59 17.71
✓ NCM ERM 43.53 33.21 11.07 30.52 26.83 19.45 5.52 18.27
✓ NCM Soft (w/o LS) 45.09 30.26 12.25 30.26 26.80 20.50 5.56 18.67
✓ NCM Soft (w/ LS) 45.41 32.34 14.39 31.76 29.37 21.29 5.74 19.92

Table 6: Ablation studies on pseudo-labeling. Test accuracy on CIFAR-100 is reported.

the results in the supplementary material due to limited space. This is because that the noise detector
inevitably fits a two-component GMM and flags some examples as noisy, leading to loss of accurate
supervision. We believe this concern can be alleviated by estimating the noise proportion in training
data, which is another interesting research problem, and leave this for future work.

5 CONCLUSION

We study the long-tailed learning under label noise and a robust framework is proposed to tackle this
challenging problem. We reveal the failure of small-loss trick in long-tailed learning, and establish
a prototypical noise detection method that is immune to label distribution. We provide systematic
studies on benchmark and real-world datasets to verify the superiority of our methods by comparing
to state-of-the-art methods in the strands of long-tailed learning and learning with noisy labels.
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ETHICS STATEMENT

This paper introduces a method to learning from noisy and long-tailed data. It can benefit the
widespread use of “weakly-labeled” data Li et al. (2017; 2020; 2021), which are often cheap to
acquire but have suffered from data quality issues. The proposed method is simple yet effective,
which we believe will broadly benefit practitioners dealing with heavily imbalanced data in realistic
applications.

In this work, we only extensively test our strategies on benchmark datasets. In many real-world
applications such as autonomous driving, medical diagnosis, and healthcare, beyond being naturally
noisy and imbalanced, the data may impose additional constraints on learning process and final
models, e.g., being fair or private. We focus on standard accuracy as our measure and largely ignore
other ethical issues in imbalanced data, especially in minor classes. As such, the risk of producing
unfair or biased outputs reminds us to carry rigorous validations in critical, high-stakes applications.

REPRODUCIBILITY STATEMENT

We elaborate the implementation details in Section A. Our anonymous source code can be found in
supplementary materials.
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A IMPLEMENTATION DETAILS

We develop our core algorithm in PyTorch.

Implementation details for CIFAR. We follow the simple data augmentation used in He et al.
(2016) with only random crop and horizontal flip. For experiments of ROLT, we use ResNet-32
as the backbone network and train it using standard SGD with a momentum of 0.9, a weight decay
of 2 × 10−4, a batch size of 128, and an initial learning rate of 0.1. The model is trained for 200
epochs. We perform noise detection and soft pseudo-labeling after a warm up period of 80 epochs,
and anneal the learning rate by a factor of 100 at 160 and 180 epochs. For experiments of ROLT+,
we use the same settings as Li et al. (2020), which trains two 18-layer PreAct Resnet. The model is
trained for 300 epochs, and the warm up period has 50 epochs. We train each model with 1 NVIDIA
GeForce RTX 2070.

Implementation details for mini WebVision. Following previous work Li et al. (2020), we use two
Inception-Resnet V2 for ROLT+. The model is trained for 100 epochs. We set the initial learning
rate as 0.01, and reduce it by a factor of 10 after 50 epochs. The warm up period is 40 epochs. We
train each model with 2 NVIDIA Tesla V100 GPUs.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 COMPARISON WITH DIVIDEMIX WITH RESPECT TO NOISE DETECTION

To further demonstrate our proposed noise detection that is tailored for long-tailed learning, we
compare it with DivideMix and the results are shown in Figure 5∼8. This experiment is conducted
under imbalance ratio ρ = 100 and noise level γ = 0.2. We partition classes into three splits, i.e.,
Many, Medium, and Few-shots, and report the recall and precision of examples that are flagged
as clean for each split. It can be observed that the detection recall of DivideMix is smaller than
ROLT+ on Medium and Few shot. This also explains that, DivideMix trains networks that are biased
towards head classes, thus leading to poor overall performance. Moreover, the detection precision
of ROLT+ is larger than DivideMix in all cases, except the CIFAR-100 Few shot. However, in this
case, DivideMix has a low detection recall, so the high precision is meaningless. This experiment
demonstrates the superiority of our prototypical noise detection method.
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Figure 5: Comparison of detection recall between ROLT+ and DivideMix on CIFAR-10.
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Figure 6: Comparison of detection precision between ROLT+ and DivideMix on CIFAR-10.
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Figure 7: Comparison of detection recall between ROLT+ and DivideMix on CIFAR-100.
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Figure 8: Comparison of detection precision between ROLT+ and DivideMix on CIFAR-100.

B.2 COMPARISON WITH DIVIDEMIX ON BALANCED DATASETS

We compare the performance of our method with DivideMix on balanced datasets with noise level
ρ ∈ {0.2, 0.5}. The results are reported in Table 7 and our method is comparable with DivideMix.
This shows that the proposed prototypical noise detector also works well on balanced datasets.
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CIFAR-10 CIFAR-100

Noise Level 0.2 0.5 0.2 0.5

DivideMix Best 92.79 95.03 77.25 73.84
Last 92.41 94.63 77.03 73.42

ROLT+ Best 92.46 94.59 78.60 74.11
Last 92.01 94.41 78.14 73.35

Table 7: Test accuracy (%) on class-balanced CIFAR datasets with different noise level.

CIFAR-10 CIFAR-100

Noise Level 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

ERM 69.33 63.60 58.69 55.85 43.38 35.10 30.27 25.11 19.49 16.97
ERM-DRW 71.99 65.76 58.69 55.85 43.38 37.74 32.63 27.19 21.43 17.52
LDAM 75.06 71.34 64.71 54.42 42.95 39.94 33.43 30.01 23.30 17.51
LDAM-DRW 79.01 76.41 71.83 62.22 48.88 42.88 36.60 33.12 25.91 19.48
BBN 72.86 68.01 60.49 52.89 46.22 39.40 36.48 26.89 21.08 16.77
cRT 69.22 65.02 60.64 51.90 43.26 35.70 30.23 24.37 19.90 17.47
NCM 72.37 69.60 65.26 56.78 49.68 38.91 33.49 28.85 23.91 19.01
HAR-DRW 72.12 67.44 60.73 63.04 52.35 38.46 28.86 29.33 22.06 16.75

ROLT 77.51 75.80 71.74 63.07 55.38 40.52 36.28 31.58 28.54 24.25
ROLT-DRW 80.16 77.86 74.47 67.83 60.15 42.62 38.94 33.57 30.78 25.51

Table 8: Test accuracy (%) on CIFAR datasets with imbalance ratio ρ = 50 and different noise level.

B.3 ADDITIONAL RESULTS ON CIFAR DATASETS

We report the results on CIFAR-10 and CIFAR-100 with simulated imbalance ratio ρ = 50 with
noise level γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in Table 8. The performance of comparison methods is in
line with that of ρ = 10 and ρ = 100 which are reported in the main text. This further justifies that
our method can adapt to various class-imbalanced and noisy datasets.

B.4 RESULTS ON CLEAN CIFAR DATASETS

Although our method is particularly designed for long-tailed learning with noisy labels, it is in-
teresting to study its performance on clean datasets. We report the results in Table 9. Intrigu-
ingly, ROLT consistently outperforms vanilla ERM in all cases, showing the benefit of the proposed
soft pseudo-labeling approach. Additionally, our method achieves comparable performance with the
popular baseline LDAM-DRW. In comparison with the HAR-DRW, which is also proposed to cope
with class imbalance and label noise problems, our method improves the performance by over 2%
on average. This validates the robustness of our method, which does not hurt the performance in the
corner case.

B.5 RESULTS FOR OPTIMIZING LDAM LOSS

In the main text, we optimize the cross-entropy loss and report its performance for comparison.
One may interested in if other loss functions can be integrated into our framework. To this end,
we leverage the LDAM loss, which is particularly designed for long-tailed learning, and report the
results in Table 10. This indeed produces different results with the cross-entropy. It is known
that LDAM can prevent the networks from being biased toward tail classes and yield balanced
predictions. Therefore, it is reasonable to use predictions of the ERM for pseudo-labeling. By
further applying the soft pseudo-labels, it puts much focus on tail classes and results in performance
deterioration.
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CIFAR-10 CIFAR-100

Imbalance Ratio 10 50 100 10 50 100

ERM 86.75 77.38 71.83 56.31 44.15 38.88
ERM-DRW 87.71 80.58 76.33 57.68 46.71 41.90
LDAM 86.38 77.62 74.31 55.66 43.61 39.25
LDAM-DRW 87.29 81.25 78.78 57.21 47.30 42.93
BBN 87.83 81.19 78.87 58.08 45.62 40.09
cRT 86.78 77.30 71.18 56.62 43.01 39.44
NCM 88.14 82.75 79.59 56.05 45.13 41.73
HAR-DRW 87.81 79.82 75.99 56.89 43.34 40.78

ROLT 87.99 80.50 77.70 57.47 45.38 39.35
ROLT-DRW 87.75 83.02 80.57 57.48 47.21 41.70

Table 9: Test accuracy (%) on clean CIFAR datasets with different imbalanced ratio.

DRW Classifier Pseudo-Label γ = 0.2 γ = 0.5
Many Med. Few All Many Med. Few All

✗ Linear Noisy 54.06 26.53 4.43 29.70 31.03 8.42 0.48 14.19
✗ Linear ERM 61.47 29.32 4.96 33.43 46.60 14.18 1.11 22.00
✗ Linear Soft (w/o LS) 59.94 32.39 9.71 35.41 38.06 16.05 1.70 19.88
✗ Linear Soft (w/ LS) 60.03 30.74 8.89 34.58 34.03 14.66 1.48 17.88

✗ NCM Noisy 49.82 27.82 11.14 30.63 25.60 16.37 6.59 16.96
✗ NCM ERM 58.53 30.11 12.46 34.83 42.57 16.50 4.41 22.36
✗ NCM Soft (w/o LS) 54.06 31.26 14.86 34.42 31.23 16.13 4.37 18.24
✗ NCM Soft (w/ LS) 52.71 27.89 12.57 32.04 24.46 13.34 3.26 14.51

✓ Linear Noisy 49.53 30.34 13.93 32.27 24.83 13.53 5.11 15.21
✓ Linear ERM 54.41 34.00 19.61 36.91 39.34 20.08 7.04 23.30
✓ Linear Soft (w/o LS) 52.26 36.00 18.57 36.65 30.31 19.92 8.74 20.54
✓ Linear Soft (w/ LS) 52.76 34.84 18.93 36.48 28.14 19.32 6.78 19.02

✓ NCM Noisy 49.50 29.45 12.00 31.38 25.60 16.37 6.59 16.96
✓ NCM ERM 56.09 32.39 13.75 35.23 41.00 17.89 4.74 22.43
✓ NCM Soft (w/o LS) 53.06 32.37 14.43 34.38 29.97 16.71 4.22 17.98
✓ NCM Soft (w/ LS) 50.76 28.29 13.18 31.70 24.06 13.76 3.33 14.55

Table 10: Ablation studies on pseudo-labeling based on models that optimize LDAM loss. Test
accuracy on CIFAR-100 dataset with imbalance ratio ρ = 100 is reported.

B.6 THE IMPACT OF LABEL NOISE ON REPRESENTATION AND CLASSIFIER LEARNING

In Table 11∼14, we study the impact of label noise for two-stage long-tailed learning methods,
i.e., Classifier Re-Training (cRT) and Nearest Classifier Mean (NCM), which disentangle the rep-
resentation and classifier learning. In this setup, γr and γc are the noise level when performing
representation and classifier learning, respectively.

We have the following observations from the results. In particular, when γc = 0, the performance
of both cRT and NCM drop significantly as γr increases, revealing the negative impact of label
noise on representation learning. With respect to classifier learning, it can be seen that cRT further
suffers from inaccurate supervision. In contrast, NCM classifier retains high performance as γc
grows. The results validate our finding that NCM is more robust to label noise, which motivates
us to investigate distance-based method for noise detection. Moreover, in order to improve the
representation learning, one may remove noisy data or rectify noisy labels during training. In this
work, we provide two ways of achieving this, by pseudo-labeling using either ERM predictions or
soft pseudo-labels. Recall that, NCM computes the classification vectors for each class by taking
the mean of all vectors belonging to that class. Thus, the classification accuracy is directly related to
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the feature representation quality. By observing considerable performance gains for NCM, it shows
the effectiveness of our pseudo-labeling method for representation learning.

ρ = 1 ρ = 10 ρ = 100

γc γc γc

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

γ
r

0 93.15 92.85 92.76 92.55 92.56 92.40

γ
r

0 86.78 85.90 85.43 85.21 83.13 81.49

γ
r

0 71.18 68.59 66.31 65.92 61.83 57.58

0.1 91.43 91.37 91.36 91.31 91.33 91.41 0.1 81.13 80.22 78.84 77.60 77.05 75.13 0.1 62.48 61.54 59.91 58.70 55.57 53.17

0.2 90.40 90.42 90.31 90.33 90.35 90.24 0.2 76.91 76.48 76.15 75.09 75.20 73.66 0.2 61.33 60.18 59.92 57.98 56.34 52.82

0.3 88.74 88.80 88.77 88.58 88.73 88.54 0.3 75.64 74.60 74.36 74.17 72.76 71.17 0.3 55.26 55.05 53.79 54.05 50.45 47.74

0.4 87.00 86.91 86.82 86.89 86.85 86.75 0.4 72.26 71.61 70.95 69.96 70.05 67.83 0.4 51.98 51.22 51.05 50.36 50.12 46.28

0.5 84.57 84.53 84.46 84.38 84.29 83.95 0.5 67.01 67.04 66.83 64.68 64.16 64.15 0.5 41.70 40.90 40.75 40.07 38.61 36.73

Table 11: Accuracy (%) of cRT on CIFAR-10 with different imbalanced ratio ρ and noise level γ.

ρ = 1 ρ = 10 ρ = 100

γc γc γc

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

γ
r

0 92.77 92.75 92.69 92.67 92.55 92.54

γ
r

0 88.14 88.08 87.97 87.89 87.72 87.45

γ
r

0 79.59 79.64 79.67 79.64 79.57 78.63

0.1 91.29 91.29 91.28 91.31 91.25 91.24 0.1 82.23 82.33 82.09 82.05 81.91 81.91 0.1 68.21 68.09 67.06 66.19 65.35 64.53

0.2 90.20 90.24 90.23 90.26 90.31 90.24 0.2 75.27 75.02 74.73 74.37 73.82 73.25 0.2 66.80 66.59 66.25 65.98 64.95 63.70

0.3 88.51 88.51 88.48 88.55 88.53 88.53 0.3 74.99 75.01 74.98 74.76 74.52 74.09 0.3 61.68 61.22 61.06 60.91 60.04 59.19

0.4 86.77 86.80 86.78 86.80 86.79 86.76 0.4 70.45 69.75 69.40 69.07 68.43 67.97 0.4 56.57 56.46 56.21 55.92 55.47 54.60

0.5 83.78 83.78 83.78 83.77 83.79 83.77 0.5 66.16 65.82 65.62 65.40 65.07 64.82 0.5 44.66 44.08 43.98 43.18 43.10 42.61

Table 12: Accuracy (%) of NCM on CIFAR-10 with different imbalanced ratio ρ and noise level γ.

ρ = 1 ρ = 10 ρ = 100

γc γc γc

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

γ
r

0 69.73 68.90 68.09 67.49 66.61 65.70

γ
r

0 56.62 53.55 52.21 50.52 49.09 47.34

γ
r

0 39.44 35.43 33.93 32.34 31.32 29.68

0.1 68.55 68.03 67.38 66.58 66.48 65.87 0.1 50.55 49.13 47.89 46.23 44.55 43.36 0.1 33.19 32.25 30.69 28.76 27.61 25.97

0.2 65.51 65.21 64.86 64.45 64.46 63.96 0.2 45.31 44.22 42.56 41.73 40.27 38.61 0.2 27.77 27.02 26.31 24.57 23.79 22.82

0.3 63.01 62.74 62.32 62.02 61.65 60.96 0.3 41.72 40.82 39.77 37.80 37.84 36.38 0.3 24.91 23.83 23.61 21.48 21.28 19.61

0.4 60.78 60.42 60.30 59.73 59.19 58.93 0.4 37.33 36.76 35.31 34.46 32.18 32.68 0.4 23.02 22.38 22.04 21.49 20.62 19.48

0.5 57.88 57.51 56.98 56.83 55.97 55.14 0.5 32.07 31.09 30.29 29.90 28.58 25.55 0.5 19.05 18.60 17.93 17.67 16.89 16.01

Table 13: Accuracy (%) of cRT on CIFAR-100 with different imbalanced ratio ρ and noise level γ.

ρ = 1 ρ = 10 ρ = 100

γc γc γc

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

γ
r

0 66.94 66.71 66.37 65.79 64.84 64.07

γ
r

0 56.05 55.63 55.22 54.14 53.18 51.78

γ
r

0 41.73 41.18 40.59 39.81 38.56 37.95

0.1 65.72 65.84 65.66 65.27 64.83 64.16 0.1 50.49 50.76 50.14 49.53 49.51 48.16 0.1 35.43 34.89 34.49 33.77 32.93 32.11

0.2 63.08 62.92 63.26 62.61 62.67 62.15 0.2 45.22 45.05 45.15 44.83 44.21 43.22 0.2 30.47 29.95 29.45 28.74 28.56 28.13

0.3 60.82 60.64 60.62 60.81 60.29 60.16 0.3 41.82 41.66 41.23 41.31 40.27 39.68 0.3 25.97 25.50 25.17 24.74 23.96 22.59

0.4 57.87 58.00 57.81 57.82 57.91 57.55 0.4 36.13 36.32 36.19 35.81 35.41 34.84 0.4 23.89 23.47 22.80 22.29 21.84 20.50

0.5 55.24 55.25 55.05 55.01 54.64 54.95 0.5 30.85 30.63 30.50 30.07 29.84 29.34 0.5 19.16 18.63 18.47 18.15 16.89 16.77

Table 14: Accuracy (%) of NCM on CIFAR-100 with different imbalanced ratio ρ and noise level γ.
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