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Abstract—Developing frameworks using high-dimensional
magnetic resonance imaging (MRI) data to characterize un-
derlying brain changes in neurological disorders is crucial and
challenging. While deep learning models offer a better prediction,
tracking automated higher-order explanations at the level of
brain networks is harder in learned models. We introduce a novel
constrained source-based salience (cSBS) framework to automat-
ically learn and visualize multiple independently salient brain
networks associated with clinical diagnostic assessments. This
is achieved by performing active subspace learning (ASL) and
spatially constrained independent component analysis (scICA)
in the saliency space of trained convolutional neural networks
(CNNs), such that the resultant components are interpretable in
terms of brain network components from existing templates. By
employing a robust analysis across repeated training scenarios
for an Alzheimer’s disease (AD) classification task, we visualize
c¢SBS components via full-brain back-reconstruction. We show
that the cSBS components and their corresponding loadings are
consistent and relevant in terms of AD-related brain areas. Qur
approach is able to synthesize multiple objectives of utilization
of high-dimensional MRI data for deep learning along with
automated detection of low-dimensional representations of the
consistently involved features in terms of intrinsically salient
brain networks. Our framework of automated identification of
consistent underlying brain subsystems associated with clinically
observed assessments is an important step toward biomarker
development for various clinically observed characteristics and
disorders.

Index Terms—Neuroimaging, structural MRI, Deep Learning,
Convolutional Neural Networks (CNNs), Saliency, Interpretabil-
ity, Independent Component Analysis, Spatially Constrained
ICA, Subspace Learning, Brain Networks, Neurological Disor-
ders, Alzheimer’s disease

I. INTRODUCTION

IGH-dimensional neuroimaging modalities like mag-

netic resonance imaging (MRI) offer a segway to an-
alyze measures from the whole brain but also often require
complex frameworks for successful analysis and interpretation.
This is even more important given the importance of neu-
roimaging in studying brain disorders from the perspective of
diagnostic predictions and identification of affected brain sub-
systems. In such cases, enhanced visualization is crucial to
understand the manner in which they affect multiple systems in
the brain. Many data-driven approaches have been developed
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for using MRI datasets to learn the changes involved in struc-
tural brain disorders and summarize them into biologically
meaningful representations [1]], [2].

Often, the MRI data patterns are summarized in the form
of lower-dimensional features [3] to be used for predictive
analysis in supervised standard machine learning (SML) and
statistical models [2]. This is achieved by either averaging the
voxel-level features from known brain areas using pre-mapped
brain atlases [4]], [S]], feature selection methods typically used
for SML models [6], or unsupervised decomposition methods
that reduce the feature dimensions in a data-driven manner [3]],
[7]. Decomposition methods based on principal component
analysis (PCA) and independent component analysis (ICA)
have been developed [8|] for a data-driven computation of
lower dimensional meaningful brain components to be used for
further disorder-related analysis. ICA-based approaches work
by optimizing a higher-order statistic of mutual independence
between inherent sources in the MRI signal, which are sep-
arated to get brain components [8]. Data-driven approaches
have also been extended so that the source separation is guided
by prior multi-dataset brain templates [9]], [[10] using spatial
constraints during the decomposition process [9], [[11] to yield
biologically meaningful features for subsequent analysis or
posthoc interpretation. [12].

Various approaches have been developed to take the di-
agnostic information into account while performing decom-
position to obtain salient brain components that characterize
the involved brain changes [13]-[15]. Such semi-supervised
approaches perform fusion of the decomposition step with
the feature importance analysis into a single computational
framework to directly obtain the active brain subspaces from
the saliency space of the trained model for the given disorder
[13], [16], [17]. These active subspaces are known to charac-
terize directions of the most vital collective structural changes
in the brain associated with the given diagnostic variable at
hand, thus enabling the identification of key brain structures or
sub-systems that drive the diagnostic discrimination between
controls and subjects with a particular diagnosis.

The onset of deep learning (DL) models has opened up
the possibility of utilizing full-brain features along with im-
proved prediction outcomes without having to go through any
feature reduction or prior decomposition steps, yet robustly
encoding the predictive information from the data in line with
pathophysiological changes [18]. However, when performing a
posthoc feature analysis after predictive training on MRI data,
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Fig. 1: Overview of the methodological pipeline for constrained source-based salience (cSBS) analysis. First, a convolutional

neural network (CNN)-based DL architecture is trained as a

diagnostic classifier with full-brain gray matter volume (GMV)

maps as input. In the second step, subject-specific saliency maps are computed using back-propagation followed by repeated
analysis on mutually exclusive test sets. These maps are then aggregated from across repetitions covering the whole dataset and

used for a semi-supervised active subspace computation in the

third step involving an eigendecomposition in the saliency space

to select the top salient directions that drive the classification. Lastly, a spatially constrained ICA (scICA) step is performed
to obtain meaningful salient brain components (called cSBS components) along with corresponding loadings signifying their
contributive strength in defining diagnosis-related structural changes in gray matter volume in the brain.

DL models are either hard to interpret in terms of decoding
salient features at the level of brain areas or yield subject-
specific full-brain importance maps that need further manual
analysis [19], leaving intact the problem of reducing data
dimensions into meaningful brain components.

Our work presents a methodological framework constrained
source-based salience (cSBS) analysis for structural neu-
roimaging data to synthesize the three-fold objective of (a)
effective utilization of full-brain voxel-level structural features
using deep learning, (b) semi-supervised decomposition taking
target diagnostic information into account when performing
source separation into structural components, and (c) perform-
ing decomposition using spatial constraints to ensure inter-
pretability in terms of existing reference templates for brain

components. We achieve this by first training a convolutional
neural network (CNN)-based DL architecture for diagnostic
classification using full-brain gray matter volume (GMV)
maps from an Alzheimer’s disease (AD) dataset, followed by
computation of subject-specific salient representation maps.
These maps are aggregated from across subjects and used for
a semi-supervised active subspace learning and spatially con-
strained ICA (scICA) step to compute meaningful salient brain
components (termed as cSBS components) and corresponding
loadings representing their contributive strength towards defin-
ing AD-related structural changes in GMV. Through a robust
repeated posthoc analysis on an AD dataset, we show the cSBS
framework successfully identifies different sources from the
MRI signal with discriminatory saliency toward AD diagno-



sis that are biologically relevant in terms of interpretability
through reference templates as well as comprising of brain
areas and sub-domains with known involvement in AD.

II. METHODS
A. Dataset and Preprocessing

The dataset used for this study included ADNI (adni.loni.
usc.edu) which is an Alzheimer’s disease (AD) dataset. Struc-
tural MRI (sMRI) data from the first-visit baseline scans was
used for performing a diagnostic classification task between
Alzheimer’s disease (AD) and control (CN) subjects. The first-
visit data had a sample size of 800 (aged 55-91 yrs, M/F =
404/396) with 468 CN and 332 AD subjects.

Preprocessing of the sSMRI data was done using the standard
preprocessing pipeline in SPM12 software as in prior studies
[20]. For using as input features for the deep learning archi-
tecture, the structural gray matter volume (GMV) maps were
warped into the standard MNI space with dimensions 121 x
145 x 121 and a voxel size of 1.5mm x 1.5mm x 1.5mm. This
was followed by a Gaussian smoothing with FWHM = 12mm.

B. Deep CNN Classifier and Model Training

Deep learning architectures have been shown to successfully
outperform standard machine learning methods during classifi-
cation tasks using high dimensional voxel-level neuroimaging
data 18], [21]]. The 3-dimensional GMV maps obtained from
the pre-processing step were fed as input features to a 3D
adaptation of the AlexNet architecture, which is based on
convolutional neural networks (CNN) [18]], [22]. The archi-
tecture as described in takes GMV maps of size
121 x 145 x 121 as the input, followed by five blocks of 3D
CNN layers, with channel widths of 64, 128, 192, 192, and
128. Each block had batch normalization, rectifying linear unit
(ReLU) function, and max-pooling layers applied to it. In the
second part of the architecture, the features encoded by the
CNN blocks were fed into a set of fully connected layers as
shown in In the last fully connected layer, the number
of output nodes was set to be the same as the number of
classes (=2) for the classification task. The experiments were
conducted using the PyTorch library in Python on NVIDIA
Tesla V100 32GB GPUs, with an average training time of 2.5
hours per repetition.

We used the Adam optimizer with a batch size of 32 and
an initial learning rate of le-3 for up to 200 epochs, followed
by an early stopping condition with a patience level of 20
epochs to prevent overfitting. The aforementioned architecture
was trained on the ADNI data with a Bayesian hyperparameter
tuning on the batch size and learning rate. To get more
robust measures, we utilized a repeated stratified k-fold cross-
validation procedure (n,k=10) to obtain repeated results by
optimizing the model of training and validation sets and
recording the performance on non-overlapping held-out test
sets covering the whole dataset across the repetitions.

We computed whole-brain saliency maps for the full dataset
by using gradient back-propagation on test subjects from each
repetition. The saliency maps were aggregated together to be

subsequently used as input for the constrained source-based
salience (cSBS) analysis.

C. Active Subspace Learning

For a given point x € R™ in the space of input features with
m-dimensions, let f : R™ — R be a function mapping the
input space to the space of the target variable(s). In the context
of neuroimaging data, = could represent structural features
from the brain like GMV maps and the target variable y could
be a clinically observed cognitive or biological assessment.
In such a scenario, the function f can correspond to a
classifier trained on the data. Active subspace learning [23]],
[24]] for the given mapping f involves an eigendecomposition
of covariance of the gradients of f. The covariance matrix C
is defined as:

C = E[(V)(Val)"] 0
€ = - (VHx)) (V)T @

C can also be estimated as C using the data samples of
size n. In the current context, f is the underlying function
representing the trained 3D-CNN architecture in
Subsequently, the eigendecomposition step computes the
eigenvectors of C' with significantly large eigenvalues
to represent the set of active subspaces. The saliency
features G = V f(X) can be projected onto the active sub-
spaces to obtain transformed saliency features G .
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D. sclICA for constrained source-based salience (cSBS)

It can be noted that the computing of active subspaces
described in is equivalent to principal com-
ponent analysis (PCA) in the saliency space of the data. This
holds because the active subspaces are computed using the
eigendecomposition of covariance in the saliency space, thus
corresponding to mutually orthogonal directions in which the
saliency has the highest variance. In the context of structural
neuroimaging data, it amounts to an automated characteriza-
tion of multi-faceted structural brain changes that drive the
associations of brain structure with the clinically observed
diagnostic variable.

In the case of voxel-level neuroimaging features, indepen-
dent component analysis (ICA) applied to the PCA output
has been shown to be more stable for computing meaningful
sources from large neuroimaging data, because it also involves
higher order statistics than just non-correlation maximized by
PCA [8]. As a next step, we use ICA on the active subspace
projections defined as G in as follows:

(6)
(7
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A represents the ICA loading matrix and S corresponds
to the ICA source components defined as a weighted linear
combination of active subspaces in W a. Thereafter, full-
brain independent source-based salience maps are computed
via back-reconstruction which signify multiple
independent salient brain components that capture the most
discriminative structural brain changes for a given clinically
observed categorical variable (AD diagnosis).

To make the aforementioned ICA analysis more robust
and interpretable, we employed a spatially-constrained ICA
(scICA) approach available in the GIFT toolbox (https://
trendscenter.org/software/gift/) [8]. This approach performs
ICA on a given set of full-brain maps to estimate source-based
components and loadings, but with spatial constraints such
that the component estimation process is guided by available
brain network templates [9]], [[11]. We used the NeuroMark
template [9] available in the GIFT toolbox, for computing
the spatially constrained salient components. Essentially, the
scICA approach uses pre-existing spatial brain templates as
reference during the ICA procedure to produce components
that are meaningful and interpretable in terms of brain regions.

Thus, the overall process of constrained source-based
salience (cSBS) as shown in analysis yields cSBS
components and subject-specific ¢cSBS loadings, where the
components can be interpreted to signify the salient sources
for the diagnostic classification and the loadings encode the
extent of their salience towards the classification process.
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Fig. 2: Training learning curves with validation accuracy and
training loss (cross-entropy) are plotted for the CNN-based
deep learning architecture trained in the first step on
the AD-classification task. The training was done for up to 200
epochs with an early stopping criteria (patience = 20 epochs).
The plots are shown for each repetition of the analysis done
with a 10-fold mutually exclusive train-test split, each with a
10-fold internal validation.
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Fig. 3: Correlation of constrained source-based salience
(cSBS) components with the 53 NeuroMark components [9].
Neuromark was used as a template to guide the spatially
constrained ICA procedure (step 4 in for computing
53 ¢SBS components such that they correspond to meaningful
brain areas. It can be noticed that the cSBS components
computed with spatial constraints are very similar to the
corresponding Neuromark components (mean correlation =
0.81, std=0.06).

III. RESULTS

A. Model Training

With hyperparameter tuning for batch size (bs) and learning
rate (Ir), the model described in was trained
with hyperparameters (bs=8, Ir=2.35e-5) with external 10-fold
cross-validation for 10 train-test repetitions. Within each rep-
etition, 10% samples were used for internal validation during
training. shows the learning curves for validation
cross-entropy loss and accuracy scores for 10 repetitions of the
training procedure. The learning curves for the training loss
and validation accuracy during the training process stabilize
to an optimal range of values for different model configura-
tions that are encountered after about 50 epochs of training,
indicating that the model performance remains stable under
different parametric configurations during the training. The
final test accuracy (mean = 90.65%, std= 4.1%) was almost
the same as previous studies involving the use of CNN-based
architectures for AD classification from sMRI-based full-brain
features [20]]. It is worth mentioning that the focus of this study
is primarily to compute meaningful cSBS maps, given that the
model performance is comparable to existing baseline values.

B. Computing cSBS Components

The saliency maps computed via gradient back-propagation
on the trained models were used as input for the constrained
source-based salience (cSBS) analysis described in
[tion TI-D). We used the spatially constrained ICA (scICA)
decomposition function available in GIFT toolbox (https://
trendscenter.org/software/gift/) [8] which is implemented in
such a manner that it incorporates both the PCA step for

active subspaces (subsection II-C)) and the subsequent scICA
step for cSBS analysis (subsection II-DJ), returning the back-
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Fig. 4: Functional Network Connectivity (FNC) matrix for the
¢SBS loadings, computed as the pair-wise Pearson correlation
between the loadings corresponding to each pair of cSBS com-
ponents. The components are marked (eg. Insual-33-CC) with
the corresponding brain area, serial number, and functional
sub-domain in the Neuromark template (refer [9] for a detailed
table). The functional sub-domains that the components are
divided into are the default mode network (DMN), visual areas
(VIS), auditory areas (AUD), cerebellar areas (CB), cognitive
control (CC), sensorimotor (SM) and sub-cortical (SC) areas.

reconstructed cSBS brain components S |i and the
corresponding subject-specific cSBS loadings A (Equation 6)).

The Neuromark template was used as the guidance for
the spatial constraints in the scICA step with 53 intrinsically
connected networks (ICNs), corresponding to different brain
areas, further divided into 7 sub-domains based on their
functions: the default mode network (DMN), visual areas
(VIS), auditory areas (AUD), cerebellar areas (CB), cognitive
control (CC), sensorimotor (SM) and sub-cortical (SC) areas.
More details about the Neuromark template can be found in
[9]. While alternate templates could have been utilized in the
context of such frameworks, we chose to use the Neuromark
template because it is also based on a robust group-ICA based
decomposition framework to compute the brain components
[9l. Moreover, the 53 components have been manually verified
in the case of Neuromark template by clinical experts to
correspond to meaningful brain regions. While the effect of
various available templates can be explored in detail as a
separate study, previous studies involving the use of subspace
decomposition without deep learning [13] or even DL-based
saliency analysis without decomposition [25] have used ROI-
based atlases and found similar results in terms of the involved
brain areas.

PCA and scICA steps using Neuromark as the reference
template for spatial constraints were performed with a model
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X=11.5 Y=-59.5 Z=-53.5

(b) AD > CN

Fig. 5: Top 5 ¢SBS components with most significant group
differences (CN vs AD) in discriminative saliency towards AD
diagnosis. The final back-reconstructed components computed
using the scICA step in the cSBD analysis are visu-
alized in the standard MNI voxel space after standardization
and thresholding the z-values (|z| > 3). These components
represent the brain areas in which structural brain changes are
the most distinctive toward (a) CN more than AD group, and
(b) AD more than CN group.
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Fig. 6: Group comparison of cSBS loadings. The plot shows
—sign(t) log(p) from a two-sample t-test performed between
CN and AD groups. The cSBS procedure can extract com-
ponents such that most of them show significant group
differences in their corresponding loadings (p < 0.01, i.e.

| — sign(t)log(p)| > 2).

order of 100 and 53 respectively, resulting in 53 cSBS com-
ponents (S) and corresponding subject-specific cSBS loadings
(A). The model order of 53 was selected to match the number
of components in the Neuromark reference template consisting
of robust brain components that have also been manually
verified to correspond to biologically meaningful brain areas.
The resultant components were similar to the corresponding
Neuromark ICNs, each with a high correlation (mean=0.81,

std=0.06), as shown in
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Fig. 7: (a) Local linear embedding (LLE) to create a 2-
D visualization of cSBS loadings from the most discrim-
inative components based on significant group differences
| — sign(t)log(p)| > 20. (b) Prediction weights for CN vs
AD classification using logistic regression on 53-dimensional
subject-specific cSBS loadings.

C. ¢SBS Loadings and their Biological Relevance

shows side-by-side boxplots for the 53-dimensional
cSBS loadings for CN and AD groups, along with
—sign(t) log(p) values for two-sample t-test on CN vs AD
loadings for each of 53 ¢SBS components. It can be noted
that the cSBS procedure is able to extract meaningful brain
components and loadings with significant group differences
(p < 0.01, ie. | — sign(¢)log(p)| > 2) for most of the com-
ponents. This indicates the capability of the cSBS framework
to automatically uncover discriminative brain areas underlying
salient structural differences in CN vs AD subjects.

shows the functional network connectivity com-
puted as pair-wise Pearson correlation between ¢SBS loadings
from each of the 53 components. It can be noted that the
loadings, that capture the strength of the salient contribution
of cSBS brain components, are inherently organized into
multiple functional brain networks based on the connectivity
patterns. This is indicated by the high intra-network correlation
among the components within subcortical (SC), visual (VIS),
cognitive control (CC), sensorimotor (SM), and Cerebellar
(CB). All of these functional sub-domains of the brain are
known to be affected in AD [26]. Components corresponding

to brain areas from these domains also feature among the
set of components with stronger group differences in ¢cSBS
loadings (| — sign(t)log(p)| > 10 in [Figure 6). Another
notable observation is the presence of strong inter-subdomain
connectivity between CC-VIS, CC-SM, VIS-SM components
(Figure 4). FNC interactions between these sub-domains have
also been reported in AD-related functional MRI studies [27],
[28]]. Thus, our model is also able to capture the salient inter-
subdomain structural patterns of collective change which are
similar to known functional network connectivity changes in
AD.

shows brain maps for the top 5 c¢SBS com-
ponents with the strongest group differences based on the
—sign(t)log(p) values. It is interesting to note that the top
¢SBS brain components with stronger loadings in AD group
than CN group (AD > CN) are mainly from CB, VIS, and
SC sub-domains, while the ones with stronger loadings in
CN group than AD group (CN > AD) are from SM and CC
domains. This could be due to a known mix of atrophy and
inflammation in various brain areas in Alzheimer’s disease,
which leads to an increase and decrease in the GMV in these
areas, respectively [29]], [30].

Additionally, we also studied the predictive power of the
¢SBS loadings by using them for CN vs AD classification.
We used logistic regression for this purpose, with a 10-fold
external as well as internal cross-validation procedure with
grid search. The resultant mean test accuracy was 82.25%
(with std = 2.6%), indicating the retainment of the predictive
power of cSBS loadings. shows the locally linear
embeddings (LLE) visualization of the top discriminative
features among the sSBS loadings along with the component-
wise weights of the learned classifier. It can be noted that the
components with higher weights also correspond to the ones
with the most significant group differences in

IV. CONCLUSION

By introducing spatially constrained source separation in the
saliency space, our work presents a methodological framework
to summarize saliency information from deep learning models
into interpretable brain component maps and their contributive
strength towards driving the diagnostic discrimination. Upon
training the CNN-based architecture for AD classification to
achieve desirable performance, we show that the subsequent
active subspace learning (ASL) and the spatially constrained
ICA (scICA) steps yield meaningful brain components and
corresponding loadings that represent the AD-related changes
in structural gray matter volume features of the brain. Addi-
tionally, despite being computed from structural saliency maps,
the cSBS loadings encode important AD-related connectivity
patterns between and within functional sub-domains of the
brain. Thus, the cSBS procedure utilizes ASL and scICA
methods to explain trained deep models on MRI data in terms
of decompositions that can be visualized in terms of existing
brain templates, and encode important collective brain network
changes into source-based salience maps while retaining pre-
dictive performance. Toward biomarker detection for neurolog-



ical disorders like AD, it is of utmost importance to develop
such frameworks that can employ deep learning models for
neuroimaging data toward a more robust understanding and
visualization of the salient structural brain changes associated
with the disorder. Such frameworks should be well-nuanced to
summarize the multi-faceted changes involved in distinguish-
ing neurological disorders but should also be robust enough
to retain predictive association between neuroimaging features
and diagnostic variables. Our framework is a step in the same
direction.

In the near future, we plan to apply this framework to
datasets from more neurological disorders and extend it to in-
corporate longitudinal datasets. This can potentially enable the
tracking of multiple brain subsystems associated with longi-
tudinal changes involved in the manifestation and progression
of brain disorders. While the scope of this work was limited
to the use of CNN-based deep learning architectures followed
by a spatially-constrained ICA step in the saliency space, the
use of other predictive deep learning architectures, saliency
computation methods as well as decomposition techniques
can also be explored as part of a larger comparative study
in the future. It is also possible to develop extended versions
of this framework for multimodal data to include functional
neuroimaging features and genetic data.
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