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Abstract

The existence of “lottery tickets” (Frankle &
Carbin, 2018) at or near initialization raises the
tantalizing question of whether large models are
necessary in deep learning, or whether sparse net-
works can be quickly identified and trained with-
out ever training the dense models that contain
them. However, efforts to find these sparse subnet-
works without training the dense model (“pruning
at initialization”) have been broadly unsuccessful
(Frankle et al., 2020b). We put forward a theo-
retical explanation for this, based on the model’s
effective parameter count, peff, given by the sum
of the number of non-zero weights in the final
network and the mutual information between the
sparsity mask and the data. We show the Law of
Robustness of (Bubeck & Sellke, 2023) extends
to sparse networks with the usual parameter count
replaced by peff, meaning a sparse neural network
which robustly interpolates noisy data requires a
heavily data-dependent mask. We posit that prun-
ing during and after training outputs masks with
higher mutual information than those produced by
pruning at initialization. Thus two networks may
have the same sparsities, but differ in effective
parameter count based on how they were trained.
This suggests that pruning near initialization may
be infeasible and explains why lottery tickets exist,
but cannot be found fast (i.e. without training the
full network). Experiments on neural networks
confirm that information gained during training
may indeed affect model capacity.

1. Introduction
Motivated by perennially growing model sizes and associ-
ated costs, neural network pruning is a technique used to
reduce the size and cost of neural networks during training
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or inference, while maintaining performance on a task.

Typically, pruning is done by masking away a certain frac-
tion of weights (setting them to zero), so that they can be
ignored for the purposes of training or inference, reducing
the number of operations and thus cost required to achieve
good performance on a task. There are three stages of the
machine learning pipeline at which networks can be pruned:

1. At initialization, before training weights on the data
(Lee et al., 2018; Tanaka et al., 2020; Wang et al.,
2020), often using the network’s connection structure
or the loss landscape around initialization.

2. During training, usually in an gradual manner, starting
with the dense network, training on the data, and prun-
ing some fraction of the smallest magnitude weights,
and repeating. Methods differ on what they do to
weights after each prune step. The contribution of
(Frankle & Carbin, 2018) was showing rewinding to
initial weights is important for good performance at
this stage of pruning. Other methods include (Zhu &
Gupta, 2018), which iteratively prunes the smallest
magnitude weights according to a predefined sparsity
schedule.

3. After training, before inference, usually using simple
but effective heuristics involving dropping the lowest
magntitude weights (Han et al., 2015)

(Frankle & Carbin, 2018) show empirically that sparse sub-
networks that can train to accuracy matching or exceeding
that of the full, dense model, do indeed exist at or near ini-
tialization (“matching” subnetworks). This work and the
follow-ups (Frankle et al., 2019; 2020a) present an algo-
rithm to find these subnetworks called iterative magnitude
pruning (IMP) with weight rewinding, dubbing such subnet-
works present at initialization “lottery tickets.” In principle,
this raises the enticing prospect of quickly finding these
networks at initialization and training only at high sparsity,
but IMP requires repeatedly training the whole model on
the dataset to find these lottery tickets, defeating the original
point of finding highly sparse yet trainable subnetworks.

Since then, research on “pruning at initialization” has sought
to find these lottery tickets fast (i.e., without training the
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full model). Methods in stage (3) of the machine learn-
ing pipeline serve as benchmarks for sparsity, where those
proposing pruning methods in stages (1) and (2) attempt
to produce models as small as those that can be found in
stage (3), where one can prune to reasonably high sparsi-
ties without compromising accuracy (Frankle et al., 2020b).
There remains to this day a large amount of effort to develop
algorithms to prune at stage (1) (Tanaka et al., 2020; Lee
et al., 2018; Wang et al., 2020; Pham et al., 2022; Wang
et al., 2020), but despite the diversity of techniques used,
these algorithms are typically unsuccessful in finding “lot-
tery tickets” in general settings without training. Note that
our focus throughout this paper is restricted to algorithms
producing matching subnetworks, as it is of course possible
to prune a network at initialization if one sacrifices accuracy.

An important observation that if such an algorithm to find a
matching subnetwork for a task at initialization did exist, it
would suggest that the modern deep learning paradigm of
training large models is misguided, as one could prune at
initialization and then train the sparse subnetwork cheaply
to achieve the same performance on a task. The existence of
such an algorithm is also in tension with a large theoretical
literature on the benefits and necessity of overparameteriza-
tion (Allen-Zhu et al., 2019; Du et al., 2018; Simon et al.,
2023; Neyshabur, 2017; Geiger et al., 2019; Bartlett et al.,
2020; Montanari et al., 2024). Any theory that seeks to for-
malize the intractability of pruning at initialization, however,
must also explain why lottery tickets can exist, but not be
found efficiently (i.e., without training the full network on
the data).

2. Related Work
Lottery tickets and sparsity. Pruning neural networks has
a long history, from classic techniques that prune weights
based on connectivity metrics involving the Jacobian and
Hessian (LeCun et al., 1990; Hassibi & Stork, 1992) to
simple but effective modern methods based on weight mag-
nitude (Han et al., 2015; Wen et al., 2016; Molchanov et al.,
2016) and more recently the Lottery Ticket Hypothesis
(Frankle & Carbin, 2018) and associated follow-up works
(Zhou et al., 2019; Chen et al., 2020; Frankle et al., 2020a;
Gale et al., 2019; Liu et al., 2018), see (Blalock et al., 2020)
for a general survey. (Paul et al., 2022) give a thorough loss
landscape perspective on the lottery ticket hypothesis, but
their work is empirical and not concerned with pruning at
initialization, rather intending to illuminate the mechanism
of IMP geometrically.

One important limitation of lottery tickets is that they are are
subnetworks with unstructured sparsity (pruning individual
weights), which is difficult to accelerate on modern hard-
ware, whereas structured sparsity (pruning entire neurons
or convolutional channels) (Han et al., 2016; He et al., 2018;

Zhang et al., 2020; Mao et al., 2017) is more exploitable by
hardware and so often leads to more drastic performance
gains despite lower levels of end-time sparsity. While we
present our results to address the difficulty of finding lot-
tery tickets, our theorems are based on notions of parameter
counts which are easily adaptable to structured pruning.

Pruning at initialization. The most extensive empirical
evaluation of pruning methods at initialization is (Frankle
et al., 2020b), which finds that the most popular methods
for the task, including SNIP (Lee et al., 2018), SynFlow
(Tanaka et al., 2020), and GraSP (Wang et al., 2020), barely
outperform random pruning, and are significantly beaten
by even naive methods to prune after training (Han et al.,
2015). Their most relevant findings are:

• Allowing methods designed to prune at initialization
to train the full network on more data or for longer
improves the performance of the subnetwork derived
from pruning in a smooth manner. Then, applying any
of these pruning at initialization methods to a full net-
work after training it allows aggressive pruning with-
out compromising accuracy. This suggests that some-
thing happens while training the full network which
makes it possible to prune aggressively without sacri-
ficing accuracy.

• Methods using various statistics of the data at initial-
ization like SNIP and GraSP (but not training) do no
better than data-agnostic pruning at initialization (Syn-
Flow), so that “pruning at initialization” can roughly
be seen as “pruning data-agnostically.”

• (Frankle et al., 2020b) explicitly comment on how strik-
ing it is that methods that use such different signals
(magnitudes; gradients; Hessian; data or lack thereof)
end up reaching similar accuracy, behave similarly
under ablations, and improve similarly when pruning
after initialization. We argue there may be fundamen-
tal information-theoretic barriers causing these diverse
methods to fail in very similar ways at high sparsities.

(Evci et al., 2019) is another empirical work exploring the
difficulty of training sparse networks, or, equivalently, prun-
ing at initialization. Other works on efficiently finding lot-
tery tickets include (Alizadeh et al., 2022; de Jorge et al.,
2021), with some new works such as (Ramanujan et al.,
2020; Sreenivasan et al., 2022) attempting to train a good
mask at initialization by maximizing network accuracy.

Overparameterization and effective parameter count.
One of the biggest surprises in modern deep learning mod-
els is that overparameterized models generalize well and
don’t overfit (Zhang et al., 2021). A great deal of work has
gone into quantitative analysis of this mystery. We build in
particular on (Bubeck & Sellke, 2023), where it is shown
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that overparameterization by a factor of the data dimension
is necessary for smooth interpolation. Other releveant work
includes (Allen-Zhu et al., 2019), which proves that SGD
can find global minima in polynomial time of number of
layers and parameters if sufficiently overparameterized, and
(Du et al., 2018) which proves gradient descent converges
in linear time to a global optimum for a two-layer ReLU
network if sufficiently overparameterized. (Simon et al.,
2023) prove that overparameterization is necessary for near-
optimal performance in random feature regression.

Mutual information and generalization bounds. Since
(Russo & Zou, 2019) studied “bad information usage” in the
setting of adaptive data analysis, much work has been done
on bounding the generalization gap using the informational
quantity I(W ;D) where W represents the chosen hypoth-
esis by the learning algorithm, and D the dataset sampled
from a data distribution (Xu & Raginsky, 2017; Bu et al.,
2020; Asadi et al., 2018). The main takeaway from these
works is that learning algorithms whose mutual information
with the data is low must generalize well. From a technical
viewpoint our work is closely related to these, although the
motivation is different.

3. Contributions
• We state and prove a modified version of the Law of

Robustness in (Bubeck & Sellke, 2023) where parame-
ter count is replaced with a data-dependent “effective
parameter count” that includes both the number of pa-
rameters and the mutual information of the sparsity
mask with the dataset, showing a new way in which
information and parameters can be traded off. In fact,
this general principle of trading off parameter count
for mutual information with the data extends beyond
the Law of Robustness, as we show in Appendix C.

• We examine the consequences of this result for the
tractability of pruning at initialization, the most im-
portant of which is the observation that subnetworks
derived from pruning algorithms that train on the data,
such as lottery tickets, are not really sparse in effective
parameter count, whereas those derived from pruning
at initialization are. We outline how this is may explain
why lottery tickets exist, but cannot be found fast (i.e.,
without training the full network).

• We perform experiments on neural networks where our
mutual information quantities of interest can approxi-
mated and track these quantities during training. We
find that at the same sparsity (parameter count), sub-
networks derived from pruning algorithms that train
the full network on the data have higher capacity and
expressivity than those that prune at initialization, re-
flecting their higher effective parameter count.

4. Informally Stated Results & Implications
Here we give an informal statement of our main theoretical
result, followed by a discussion of its interpretation and
consequences. Formal statements can be found in Section 5,
with full proofs deferred to the Appendix. We set the scene
with the original Law of Robustness.
Theorem 4.1 (Theorem 1, (Bubeck & Sellke, 2023), in-
formal). Let F be a class of functions from Rd → R and
let (xi, yi)i∈[n] be i.i.d. input-output pairs in Rd × [−1, 1].
Assume that:

(a) F admits a Lipschitz parametrization by p real param-
eters, each of size at most poly(n, d).

(b) The covariate distribution µ is a mixture of O(n/ log n)
“truly high-dimensional” components exhibiting certain
concentration behavior.

(c) The expected conditional variance of the output, σ2 ≡
Eµ[Var[y | x]] > 0, is strictly positive.

Then, with high probability over the sampling of the data,
one has simultaneously for all f ∈ F:

1

n

n∑
i=1

(f (xi)− yi)
2 ≤ σ2−ϵ ⇒ Lip(f) ≥ Ω̃

(
ϵ

σ

√
nd

p

)
.

Here Lip(f) denotes the Lipschitz constant of f .

In essence, this theorem states that with high probability,
any parameterized function f ∈ F that has training error
below the noise level σ2 has smoothness 1/Lip(f) increas-
ing in the number of parameters. Thus overparameterization
is, under these assumptions, necessary for smooth interpo-
lation, presumably a pre-requisite for robust generalization
(more in Section 5.1).

Our main result combines this with information theoretic re-
sults, giving in a modified version of the Law of Robustness
that suggest fundamental limits for pruning at initialization.
Theorem 4.2 (Informal, Modified Law of Robustness). As-
sume the same conditions as in Theorem 4.1 and that F has
the additional structure of masks, so that each hypothesis
f ∈ F has parameters (m,w) satisfying mi = 0 =⇒
wi = 0 for all i ∈ [p]. Then, with high probability over
sampling of the data, one has for any learning algorithm W
taking in data D and outputting function fW ∈ F:

1

n

n∑
i=1

(fW (xi)− yi)
2 ≤ σ2 − ϵ

=⇒ Lip(f) ≥ Ω̃

(
ϵ

√
nd

peff

)
, (1)

where peff = Θ̃
(
I(mW ;D) + E[∥m∥1]

)
.
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The above theorem replaces the parameter count p with an
effective parameter count peff. As one would expect, peff
can never be larger than p1. This effective parameter count
includes the number of unmasked parameters E[∥m∥1] as
well as the mutual information between the sparsity pattern
mW and the data. This latter term captures the intuition that
if the sparsity mask for a given network is learned from the
data, as it is in contexts such as IMP, it should be interpreted
as a set of binary parameters and hence contribute to the
overall parameter count of the network. The implications
of the above are that pruning algorithms that iteratively
use properties of the data to find a mask may not be truly
sparse in this effective parameter count, as we will see
verified in our experiments. They trade off the unmasked
parameter count of the network for mutual information, so
that the subnetwork produced has effective parameter count
much larger than a truly sparse network. Conversely, a
learning algorithm pruning at initialization with little to no
dependence on data will result in a subnetwork that has low
effective parameter count, and thus poor robustness, since it
is truly sparse.

We give an example which saturates the bound presented
above in Appendix C.1.1.

Overparameterization and Mutual Information. Follow-
ing (Bubeck & Sellke, 2023), we show that for the learned
function to fit below the noise level, it must correlate with
the noise in the data. The key difference in our proof is a
result from information theory (Lemma 5.2 below) which
bounds this correlation by the mutual information between
the learned function and the data. This bound has been used
in the literature to show generalization error is small with
high probability when the learned function has low mutual
information with the data. Instead, we show that since the
function fits below the noise level, this correlation must be
large, and thus the mutual information must be large with
high probability. Although classical generalization bounds
recommend a low parameter count, from the perspective of
the Law of Robustness (and much of modern deep learn-
ing practice), overparameterization is necessary to find a
hypothesis interpolating the data smoothly. As a result, the
chosen hypothesis must have high mutual information with
the data for this to be possible (though it is not sufficient).

On Fitting Below Noise Level. Our results are restricted to
the regime where the fitted function f fits below the noise
level σ2 of the data, but this is a weak assumption usually
satisfied in practice. For example, in computer vision, the
setting in which pruning was first investigated, it is com-
mon to see networks with near-perfect test accuracy (so they
have learned all the relevant signal) have end-time train loss
lower than end-time test loss (so they must have memorized
some noise). A typical example where such train-test loss

1Up to logarithmic factors incurred from discretization.

behavior can be seen in a practical setting is in the ResNet
paper (He et al., 2016), and other examples include (Huang
et al., 2017; Lin et al., 2013). Further, (Feldman, 2020)
suggests that this phenomenon of fitting below the noise
level may be necessary for achieving optimal generaliza-
tion error on real-world datasets. This is a consequence of
such data often being a mixture of subpopulations where
the distribution of subpopulation frequencies often follows
power laws and is thus long-tailed. One can also interpret
σ2 as the portion of a given task that is “hard to learn” for
the choice of model - that is, for a given model class, it can
be seen as the residual variance conditional on a “good” fea-
ture representation, which will be larger due to portions of
the target function falling outside this representation. This
behavior is by now well established in several theoretical
settings, see e.g. (Jacot et al., 2020; Canatar et al., 2021;
Ghorbani et al., 2021; Misiakiewicz & Montanari, 2023).
We defer to (Bubeck & Sellke, 2023) for further discussion.

4.1. Interpretation of peff

We now discuss the intuition behind the parameter peff in
Theorem 4.2. In practice, one generally attempts to prune
a model to a specified sparsity level γ, so that (1 − γ)p
parameters remain, with 1 − γ taken to be small, often
around 5% or less. Thus E[∥mW ∥] = (1 − γ)p. We then
compare peff for the following two pruning schemes:

• Pruning at initialization in a data agnostic manner (e.g.
SynFlow (Tanaka et al., 2020)). The effective parame-
terization is Θ̃((1− γ)p), reflecting that one is simply
training a model of much smaller size, and hence does
not obtain any benefits from the overparameterization
of the initial dense model2.

• Pruning with IMP, which we argue has high mutual
information. For the purposes of illustration, suppose
that “high mutual information” means being on the
order of its upper bound H(mW ) ≤ log2

(
p
γp

)
. For

large p and fixed γ ∈ (0, 1),

I(mW ;D) ≃ log2

(
p

γp

)
(2)

=
(
p(1− γ) log2

1
1−γ + γ log2

1
γ

)
− o(p).

The last bound follows from (Csiszár & Shields, 2004)
Lemma 2.2, and the total effective parameter count is
this quantity combined with Θ̃((1−γ)p). We note that
the extreme case of (2) corresponds to Eq. (2.13) in
(Bubeck & Sellke, 2023), i.e. a worst-case bound on
the effective parameter count.

2Here Θ̃ hides logarithmic terms in weight size and dependence
on δ.
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The ratio in the effective parameter count between the sec-
ond setting and the first then scales as Θ̃

(
log2

1
1−γ

)
which

diverges as γ → 1, illustrating that the second setting has
increasingly more times as many effective parameters as
the first. This difference reflects a possible barrier between
IMP and methods which prune at initialization. While IMP
can indeed find sparse subnetworks at initialization, these
sparsity patterns are found after the model has been trained
on the entire dataset. Hence, we believe that such masks
have high mutual information with the data, and it is be-
cause of this that the subnetworks chosen by IMP perform
better, even at high sparsities. By contrast methods which
prune at initialization (either data agnostically or using the
loss landscape around initialization) ought to produce masks
which have no or very little mutual information with the
data. Our results suggest the trained networks produced in
the latter cases cannot generalize well at very high sparsity.

5. Theoretical results
5.1. Preliminaries

Isoperimetry Our results, which follow those of (Bubeck
& Sellke, 2023), assume that the distribution of the data
covariates xi are isoperimetric in the following sense:

Definition 5.1. A probability measure µ on Rd satisfies
c-isoperimetry if the following holds. For any bounded
L-Lipschitz f : Rd → R,

P (|f(x)− E[f ]| ≥ t) ≤ 2e−
dt2

2cL2 , ∀t ≥ 0. (3)

Isoperimetry asserts that Lipschitz functions concentrate
sharply around their mean, and is a ubiquitous property of
“truly high-dimensional” distributions such as Gaussians.

Information Theoretic Concentration Bounds

We make use of the following Lemma in our proofs.

Lemma 5.2 ((Xu & Raginsky, 2017)). Let {Xt}t∈T be a
random process and T an arbitrary set. Assume that Xt is
C-subgaussian3 and E[Xt] = 0 for every t ∈ T , and let W
be a random variable taking values on T . Then for some
absolute constant a1 > 0, with probability 1− δ,

|XW | < a1
√
(C/δ) · I({Xt}t∈T ;W ) + C log(2/δ). (4)

To understand this result, it is helpful to consider two ex-
tremes. First if W is independent from {Xt}t∈T , then stan-
dard concentration results show (4) holds with extremely
high probability without the mutual information term, so
the size of T is irrelevant. On the other hand, in the worst
case XW could be the largest of T subgaussian variables,

3We use the convention that an R-valued random variable X is
C-subgaussian when X satisfies P(|X| ≥ t) ≤ 2e−t2/C .

causing it to scale with
√
log |T |. The above result allows

us to interpolate between these two regimes. We note that
the overall strategy of our argument is technically very simi-
lar to that of (Xu & Raginsky, 2017) and related work such
as (Russo & Zou, 2019). The conceptual difference is that
we measure the information in the choice of function class
rather than on the level of individual functions.

5.2. Notation

The p-parameter function class F is indexed by a set T ,
such that F = {f t}t∈T . Each function f t ∈ F is parame-
terized by (mt,wt), where mt ∈ {0, 1}p is the mask and
wt ∈ Rp is the weightings on the unmasked parameters.
As such, one has mt

i = 0 =⇒ wt
i = 0. We assume that

each of the (mt,wt) pairs are unique - that is, we assume
the functions have unique parameters, though they need
not correspond to unique functions. We then represent the
learning algorithm as a random variable W taking values on
the index set T , which can depend on the data D. That is,
the function outputted by the learning algorithm is fW . For
all of our results, we require that the data D takes the form
{(xi, yi)}i∈[n], where the (xi, yi) are i.i.d input-output pairs
in Rd × [−1, 1] satisfying the following two assumptions:

A1. The distribution µ of the covariates xi can be writ-
ten as µ =

∑k
ℓ=1 αℓµℓ, where each µℓ satisfies c-

isoperimetry and αℓ ≥ 0, with
∑k

ℓ=1 αℓ = 1.

A2. The average conditional variance of the output is
strictly positive: σ2 ≡ Ex∼µ[Var[y | x]] > 0 .

Lastly, for each datapoint i ∈ [n], denote the mixture com-
ponent from which it is drawn as ℓi ∈ [k].

5.3. Finite Setting

As in (Bubeck & Sellke, 2023), we begin in setting where
T (and thus |F|) is finite. For each m ∈ {0, 1}p, define
Wm = {w | ∃f i = (mi,wi) ∈ F s.t. mi = m}, the
possible weightings of the network once a mask is fixed,
and additionally let Nm = |Wm|. In this section, we denote
g(x) = E[y | x] as the target function to learn and zi =
yi − g(xi) as the noise. We then obtain the following result:

Theorem 5.3. If all f ∈ F have Lipschitz constant bounded
above by L, then

P

(
1

n

n∑
i=1

(yi − fW (xi))
2 ≤ σ2 − ϵ

)
≤ (2k+2)e−

nϵ2

83k

+max

(
27a21C0I({Xt}t∈T ;W )

ϵ2
, 2e−ϵ2/(27a2

1C0)

)
,

where peff = I(mW ;D)+E [log2 NmW ] and C0 = 144cL2

nd .
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This first theorem illustrates that the quantity of interest that
dictates the size of the model class is now peff, which we
refer to as the effective parameter count. We sketch of the
proof Theorem 5.3 below. We begin with the following
lemma:

Lemma 5.4.

P

(
1

n

n∑
i=1

(yi − fW (xi))
2 ≤ σ2 − ϵ

)
≤ (2k + 2)e−

nϵ2

83k

+ P

(
1

n

n∑
i=1

(fW (xi)− Eµℓi [fW (xi)|W ])zi ≥
ϵ

8

)

In essence, for the chosen function fW to fit below the
noise level, it must have large correlation with the noise
zi. It then remains to bound the probability of correlating
with the noise. Define Xt =

1
n

∑n
i=1(f

t(xi)−Eµℓi [f t])zi.
That this quantity for a fixed function f t is subgaussian is
a consequence of isoperimetry - one observes from Defini-
tion 5.1 that an appropriate scaling of (f t(xi)− Eµℓi [f t])
must be O(1)-subgaussian. The new element of our proof
is to use Lemma 5.2 to control this term rather than using
standard tail bounds coupled with a union bound over all
of F . Explicitly, we apply the lemma taking Xt to be this
correlation term, which must be large for the function to
fit below the noise level, and hence its upper bound must
be large, rather than taking it to be a generalization error
(which one usually hopes to be small).

We then control I(W ; {Xt}t∈T ) as follows:

Lemma 5.5.

I(W ; {Xt}t∈T ) ≤ I(W ;D)

= I(fW ;D) ≤ I(mW ;D) + E [log2 NmW ] (5)

Note that the final expression is exactly our effective parame-
ter count peff. Combining these two lemmas and Lemma 5.2
obtains Theorem 5.3 (see Appendix A).

5.4. Main Result

We obtain the following analog of the Law of Robustness
for continuously parametrized function classes:

Theorem 5.6. Let F be a class of functions from Rd → R
and let (xi, yi)i∈[n] be input-output pairs in Rd × [−1, 1].
Fix (ϵ, δ) ∈ (0, 1). Assume that

• The function class can be written as F = {fm,w | m ∈
{0, 1}p,w ∈ Wm ⊂ W} with W ⊂ Rp, diam(W) ≤
W and (m,w) satisfying mi = 0 =⇒ wi = 0 for
all i ∈ [0, p]. Furthermore, for any w1,w2 ∈ W ,

∥fw1 − fw2∥∞ ≤ J∥w1 −w2∥. (6)

• Assumptions A1, A2 hold, with 83k log(8k/δ) ≤ nϵ2.

Then one has that for the learning algorithm fW taking
values in F , with probability at least 1−δ with respect
to the sampling of the data,

1

n

n∑
i=1

(fW (xi)− yi)
2 ≤ σ2 − ϵ

=⇒ Lip(f) ≥ ϵ

96a1
√
2c

√
ndδ

peff +
δ
2 log(4/δ)

where

peff = I(mW ;D) + E[∥m∥1] log2(1 + 60WJϵ−1).

The proof of the above follows from Theorem 5.3, coupled
with a discretization argument and some careful modifica-
tions of the learning algorithm W . One should regard δ and
ϵ as small, fixed constants independent of n and d, at which
point the theorem suggests that in order fW to be smooth,
one must have peff = Ω(nd), recovering a result analogous
to (Bubeck & Sellke, 2023). We remark that under stan-
dard training procedures, the above holds conditional on
the specific weight initialization of the network, i.e. with
I(mW ;D) replaced with I(mW ;D | init = init0), since
the initialization is sampled independently before training.

5.5. Discussion

Brute Force Search. Why cannot we brute force search
over exponentially many subnetworks, testing each on the
dataset, and claiming to have found the lottery ticket without
training a dense model by the end of this process? The
answer to this is that such a search creates high mutual
information between the mask and the data, since it involves
testing every masked network on the data and choosing the
best performing mask. Thus the mutual information based
bounds we present in this work hold, because the effective
parameter count of the mask derived from this brute force
search would be high. Of course, training the full model is
a faster way to find a lottery ticket than a brute force search,
since training neural networks takes subexponential time
(Livni et al., 2014). Algorithms attempting to learn the mask
at initialization (Sreenivasan et al., 2022; Ramanujan et al.,
2020), before learning weights, are interesting in that this
naturally increases I(mW ;D) early on in training, although
their results are not demonstrated at ImageNet scale, where
lots of lottery ticket type results are known to break down
(Gale et al., 2019; Frankle et al., 2019).

Necessary conditions. Our results present necessary but
not sufficient conditions for smooth interpolation with a
parameterized function class. (Bombari et al., 2023) exam-
ines whether the overparameterization condition p = Ω(nd)
is sufficient to guarantee smooth interpolation in various

6



No Free Prune: Information-Theoretic Barriers to Pruning at Initialization

neural network regimes, finding that it is not for a random
feature network, but is for a network in the NTK regime of
neural network training (Jacot et al., 2018).4

Subtleties Around Effective Parameters. While our
idea of effective parameters suggest that one can trade off
I(mW ;D) and parameter count, this does not imply that a
learning algorithm that artificially inflates this mutual infor-
mation, for instance by encoding a discretization of the data
within the mask, will do well as a pruning algorithm. Our
modified Law of Robustness presents a lower bound on Lip-
schitz constant, so that the actual Lipschitz constant could
easily be higher than the lower bound given. Additionally,
one can view the choice of a mask mW followed by a choice
of weights wW constrained by this mask as having access
to a collection of function classes {Ht}t∈T , where one first
makes a choice W (possibly depending on the data D) of
function class HW and then a choice of function within the
class. In such cases, this idea of effective parameterization
accounting for both the mutual information of the choice
of function class and the parameter count within the cho-
sen class extends beyond the Law of Robustness to other
settings (see Theorems C.1, C.2 in Appendix C), showing
that the principle we introduce of trading off parameters and
information is a general one.

Limitations. While pruning was historically grounded in
the computer vision setting, where large models make many
passes over the data during training and thus memorize
noise, recent large language models (LLMs) are trained
in the online regime, and such models do not interpolate
because each data point is only seen once during training.
While we suspect results analogous to ours hold for LLMs,
our condition of fitting below the noise does not apply to
such settings, so different theoretical approaches will be
needed, and this is an important avenue for future work.
Our results are non-constructive in that they show hard
bounds on the limits of pruning to find generalizing sub-
networks as a function of the information masks have with
the dataset, but since our proof applies to a broad range of
parameterized function classes (not just neural networks),
we do not construct an algorithm for optimal pruning (in
the information-theoretic sense) as we do not quantify the
optimal tradeoff between mutual information and parame-
ter count in terms of pruning. Doing so to yield specific
algorithms at the edge of optimality is left for future work.

6. Experiments
Motivating the Experimental Setup. The main message of
our theory is that pruning at initialization may be inherently

4(Bombari et al., 2023) do not include regularization in their
random feature model, whereas (Simon et al., 2023) assume opti-
mal regularization, explaining the seemingly different conclusions
about overparameterized RF regression models.

difficult because a mask derived through training a dense
network contributes to effective parameter count. How can
one test whether this occurs in neural networks in practice?
Ideally, one would track the mutual information of inter-
est, I(mW;D) throughout training, but because computing
mutual information requires estimating high dimensional
distributions, it is only exactly feasible in very small models
(Kraskov et al., 2004; Gao et al., 2018), which is precisely
the setting where pruning to high sparsities leads to layer
collapse (Tanaka et al., 2020), where all the weights in one
layer vanish. We perform such experiments for a tiny neu-
ral network in Appendix B.2. The question then becomes
how else one quantify the “effective parameter count” of
a network. We resort to tracking two proxies for mutual
information and effective parameter count: memorizing
capacity and correlation with noise. The first asserts that
“effective parameter count” can be measured by tracking
“memorization capacity” (Cover, 1965; Sur & Candès, 2019;
Montanari et al., 2024). And if one wants to understand
“ability to memorize,” using train accuracy noisy data is a
natural candidate. Our second proxy for mutual information
is more direct: the correlation of the network function with
the noise in labels over the course of training. By Lemma
5.2, we have that this correlation is a lower bound for the
quantity of interest I(fW ;D).

To reiterate: what our theory seeks to explain is the em-
pirical finding in (Frankle et al., 2020b) that shows that
methods that derive a data-dependent mask (lottery tickets)
outperform methods that do not in terms of end-time test
accuracy. So any quantity one argues causes this trend in
end-time test accuracy (in our case, mutual information and
thus effective parameter count) must exhibit the same trend.
Our theory predicts mutual information and thus effective
parameter count of the sparse network after pruning should
be highest for IMP and magnitude-after pruning, and lower
for methods that prune at initialization, like SNIP, GraSP,
and SynFlow. Our experiments are meant to illustrate that
information gained during training can affect model capac-
ity, rather than serve as exhaustive examinations of large
modern architectures.

6.1. Memorization capacity

We consider a two-hidden layer network with ReLU ac-
tivation, on a train set of points (Gaussian data in Figure
1(a) and FashionMNIST in Figure 1(b)) with noise (random
Boolean labels in Figure 1(a), and corrupted images with
true labels in Figure 1(b)), as well as a convNet on noisy
CIFAR-10 in 1(c), and compute the fraction of the training
set the sparse network can memorize at each sparsity level.

One sees that for all datasets here IMP is more expressive
and can memorize more points with the same number of un-
masked parameters as the other subnetworks derived from
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Figure 1. Top: memorization capacity (train accuracy on noisy data) against sparsity level for different pruning methods. Staying higher
on plots is better. Vertical gap between IMP/Magnitude-after pruning reflect additional memorization capacity on this dataset due to
mutual information between mask and data. 2-hidden layer MLP on Gaussian data (a) and noisy FashionMNIST (b), 4-layer convNet on
noisy CIFAR-10 (c). Bottom: Ability to correlate with dataset noise over training as a proxy for network capacity. 5-layer ReLU MLP in
a student-teacher task, with σ2 = 1 noisy labels; (c): correlation with noise during IMP; training increases correlation with noise (hence
peff), pruning then reduces this, before repeating; (d): Sweep over learning rates; (e): Sweep over amount of noise injected into gradients.
This illustrates that our quantity of interest, I(fW ;D), and thus peff, is increasing due to data contained in gradients.

different pruning algorithms. This gap in memorization ca-
pacity is due to mutual information with the data, providing
evidence that the effective parameter count our theorems
reason can indeed correspond to capacity of neural networks
in practice. We emphasize that the y-axis is not test accu-
racy, but memorization capacity (train accuracy on highly
noisy data): the fact that our plots give analogous behavior
to plots of noiseless test-accuracy against sparsity in, e.g.,
(Frankle et al., 2020b), is encouraging because the shape
of such plots is what we sought to explain. Experimental
details are in Appendix B.1.

6.2. Correlation with noise

We now track our second proxy for mutual informa-
tion/effective parameter count during training, correlation
with label noise. Overall, we see that as the network reaches
low train error, it necessarily fits some of the noise, and so
correlation with noise increases. We measure this quantity
over training in a student-teacher task. Figure 1(e) illustrates
how increasing learning rate increases the rate at which MI
is acquired, suggesting that gradients carry this informa-

tional quantity. To verify this, we can corrupt the gradients
with noise, finding in Figure 1(f) that this correlational proxy
for MI vanishes when we do so. Finally, Figure 1(d) tracks
this proxy for MI during IMP, finding that the MI increases
during iterations of pruning, decreases after pruning, and
breaks down at late time. In context of our theory where
I(mW;D) contributes to peff, this shows the role of itera-
tive, rather than one-shot pruning, may be to increase the
effective parameter count via gradient updates, so it can be
pruned back down again. Hence the iterative nature of prun-
ing allows the trade-off between parameters and information
to be made many times.

Takeaways. Our experiments illustrate how mutual informa-
tion can be traded off with parameters so that subnetworks
derived from pruning at initialization have a lower effective
parameter count than those derived from pruning after train-
ing. Our work explains why widespread empirical efforts
to prune at initialization have run into difficulties, and in-
troduces a new information-parameter trade-off in doing so
that may be of independent interest in understanding neural
networks trained by gradient descent.
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Impact Statement
Our theoretical results are suggestive about the difficulty of
pruning neural networks at initialization. We find that there
may be information-theoretic barriers to finding extremely
sparse, trainable subnetworks without training the full neu-
ral network on data so that research efforts to prune to high
sparsities may instead be better directed at pruning jointly
with training or before inference, where methods are known
to exist for pruning to high sparsities without compromis-
ing accuracy. This contributes to a wider literature on the
limitations of neural networks.
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A. Proof of Theorem 5.6
Without loss of generality, we will assume that all functions in F have range contained in [−1, 1]. This is possible because
clipping larger outputs to the closest point in [−1, 1] can only improve the Lipschitz constant and mean squared error.

A.1. Overview of Finite setting, Theorem 5.3

A.1.1. PROOF OF LEMMA 5.4

Lemma A.1. Denote the events

Af =

{
1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

}
B =

{
1

n

n∑
i=1

z2i ≥ σ2 − ϵ

6

}
C =

{
1

n

n∑
i=1

zig(xi) ≥ − ϵ

6

}

Df =

{
1

n

n∑
i=1

f(xi)zi ≥
ϵ

4

}
.

Then Af ∩B ∩ C =⇒ Df , and P(Bc ∪ Cc) ≤ 2 exp
(
−nϵ2

83

)
.

Proof. Follows from Lemma 2.1 of (Bubeck & Sellke, 2023).

Lemma A.2. Denote the events

Ef =

{
1

n

n∑
i=1

(f(xi)− Eµℓi [f ])zi ≥
ϵ

8

}
F =

{
1

n

k∑
ℓ=1

∣∣∣∣∣∑
i∈Sℓ

zi

∣∣∣∣∣ ≥ ϵ

8

}
.

Then Df =⇒ Ef ∪ F and P(F ) ≤ 2k exp
(
−nϵ2

83k

)
.

Proof. Follows from Theorem 2 of (Bubeck & Sellke, 2023).

From Af ∩B ∩ C =⇒ Df and Df =⇒ Ef ∪ F , it follows that

Af =⇒ (Bc ∪ Cc) ∪ Ef ∪ F. (7)

In particular AfW =⇒ (Bc ∪ Cc) ∪ EfW ∪ F , and using the bounds in Lemmas A.1 and A.2 now yields Lemma 5.4.

A.1.2. PROOF OF LEMMA 5.2

Lemma 5.2 follows from Theorem 3 of (Xu & Raginsky, 2017). After translating notation, we have that P(|Xw| > α) ≤ δ
whenever

n >
a21C

α2

(
I({Xt}t∈T ;W )

δ
+ log

2

δ

)
, (8)

upon which rearranging yields exactly Lemma 5.2.5

A.1.3. ISOPERIMETRY, SUBGAUSSIANITY, AND CRUDE BOUNDS

Having established Lemma 5.4, to show Theorem 5.3 it remains to upper bound P[EfW ]. We first show that Xt =
1
n

∑n
i=1(f

t(xi) − Eµℓi [f t])zi is subgaussian. As in (Bubeck & Sellke, 2023), the isoperimetry assumption implies that√
d
c
f(xi)−Eµℓi [f ]

L is 2-subgaussian. Since |zi| ≤ 2, it follows that
√

d
c
(f(xi)−Eµℓi [f ])zi

L is 8-subgaussian, by Proposition 1.2

of (Bubeck & Sellke, 2023). Hence each Xt is
(
18 · 8 cL2

dn

)
-subgaussian. For convenience we thus define C0 = 144cL2

dn .

5The explicit constant a1 here is not the same as in (Xu & Raginsky, 2017) as a result of different definitions of “subgaussian” - in (Xu
& Raginsky, 2017), the authors define σ-subgaussian to mean a random variable U satisfies logE[eλ(U−EU)] ≤ λ2σ2/2. The assumed
condition P(|X| ≥ t) ≤ 2e−t2/C , implies logE[eλX ] ≤ λ2(9C)/(2) (exercises 3.1 d and e of (van Handel, 2016)) so a2

1 = 72.

12
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Note that the right hand side of (4) is a strictly monotone decreasing and hence invertible function of δ, for δ ∈ (0, 1). Thus
define

sC0
(δ) = a1

√
C0

(
I({Xt}t∈T ;W )

δ
+ log

2

δ

)
,

where we highlight the explicit dependence on C0. Thus Lemma 5.4 yields

P(|XW | > sC0
(δ)) < δ.

Recall that we seek an upper bound on6

P(EfW ) = P

(
1

n

n∑
i=1

(fW (xi)− Eµℓi [fW ])zi ≥
ϵ

8

)
≤ P(|XW | > ϵ/8).

Because sC0
is invertible, one has the implicit bound P(|XW | > ϵ/8) < s−1

C0
(ϵ/8). More explicitly, we also have the

following crude bound. Setting δ = max
(

27a2
1C0I({Xt}t∈T ;W )

ϵ2 , 2e−ϵ2/(27a2
1C0)

)
, we have

a1

√
C0

(
I({Xt}t∈T ;W )

δ
+ log

2

delta

)
≥ ϵ

8

yielding

P(|XW | > ϵ/8) < s−1
C0

(ϵ/8) ≤ max

(
27a21C0I({Xt}t∈T ;W )

ϵ2
, 2e−ϵ2/(27a2

1C0)

)
. (9)

Putting together equations (7) and (9) and using that k ≥ 1, we obtain the following lemma:

Lemma A.3.

P(AfW ) ≤ 2 exp

(
−nϵ2

83

)
+ 2k exp

(
−nϵ2

83k

)
+ s−1

C0
(ϵ/8) ≤ (2k + 2) exp

(
−nϵ2

83k

)
+ s−1

C0
(ϵ/8).

A.1.4. CONTROLLING MUTUAL INFORMATION

We next show Lemma 5.5, which gives a upper bound for I({Xt}t∈T ;W ).

Proof of Lemma 5.5. First since the chain [W − D − {Xt}t∈T ] is Markovian and fW = (mW ,wW ) is a one-to-one
function of W ,

I(W ; {Xt}t∈T ) ≤ I(W ;D) = I(fW ;D).

Next, by the mutual information chain rule, one has

I(fW ;D) = I
(
(mW ,wW );D

)
= I(mW ;D) + I(wW ;D | mW )

We control the second term via I(wW ;D | mW ) ≤ H(wW | mW ) ≤ E [log2 NmW ]. This is because, conditional on the
mask mW , the weights can take on at most NmW values (recall the definition Nm = |Wm|.)

Combining Lemma A.3 with equation (9), followed by applying Lemma 5.5 then yields the desired Theorem 5.3.

6Here in evaluating Eµℓi [fW ] we consider W to be fixed, even though W is otherwise random. More precisely, we really mean η(W )
where η(t) = Eµℓi [f t] for each fixed f t ∈ F .
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A.2. The continuous setting

Our goal will be to show that for our choice of L:

P

({
1

n

n∑
i=1

(fW (xi)− yi)
2 ≤ σ2 − ϵ/2

}
∩
{
Lip(fW ) ≤ L

})
≤ δ. (10)

First, define WL, a modification of W , as follows: whenever Lip(fW ) > L, fWL is instead some prescribed fL ∈ F ,
where Lip(fL) ≤ L. Note that if no such fL exists, then the probability above is zero regardless and there is nothing to
prove. Then the probability in (10) is at most

P

({
1

n

n∑
i=1

(fWL(xi)− yi)
2 ≤ σ2 − ϵ/2

})
. (11)

where Lip(fWL) ≤ L always.

Now we proceed with the discretization. For each possible mask m, define

Wm,L = {w ∈ Wm | Lip(fm,w) ≤ L}.

Define Wm,L,ϵ to be an ϵ
8J -net of Wm,L. Note that since diam(W) ≤ W and dimWm,L ≤ ∥m∥1, that Nm,L,ϵ =

|Wm,L,ϵ| ≤ (1 + 60WJϵ−1)∥m∥1 (Corollary 4.2.13 of (Vershynin, 2018)). We then apply Lemma A.3 to

FL,ϵ ≡ {fm,w | Lip(fm,w) ≤ L,m ∈ {0, 1}p,w ∈ Wm,L,ϵ}.

Define W ′
L such that fW ′

L uses the same mask as fWL but the weights of fWL are rounded to the closest element of
Wm,L,ϵ. Then note for two functions f and g, one has that if ∥f − g∥∞ ≤ ϵ/8 and ∥y∥∞, ∥f∥∞, ∥g∥∞ ≤ 1. Since
∥wWL −wW ′

L∥ ≤ ϵ
8J , ∥fWL − fW ′

L∥∞ ≤ ϵ/8 by (6), and thus∣∣∣∣∣ 1n
n∑

i=1

(yi − fW ′
L(xi))

2 − 1

n

n∑
i=1

(yi − fWL(xi))
2

∣∣∣∣∣ ≤ ϵ/2,

meaning (11) is again bounded above by the following:

P

({
1

n

n∑
i=1

(yi − fW ′
(xi))

2 ≤ σ2 − ϵ

})
.

We are now in a position to apply Lemma A.3, obtaining

P

({
1

n

n∑
i=1

(yi − fW ′
(xi))

2 ≤ σ2 − ϵ

})
≤ (2k + 2) exp

(
−nϵ2

83k

)
+ s−1

C0
(ϵ/8)

By our assumption on k, the first term is at most δ/2:

(2k + 2) exp

(
−nϵ2

83k

)
≤ (2k + 2)

δ

8k
≤ δ

2

For the second term, note that s−1
C0

is monotone increasing, and thus s−1
C0

(ϵ/8) ≤ δ/2 ⇐⇒ ϵ/8 ≥ sC0
(δ/2). Recalling the

expression for sC0 and for C0, this condition is simply

a1

√(
144

cL2

nd

)(
2I({Xt}t∈T ;W ′

L)

δ
+ log

4

δ

)
≤ ϵ

8

which is guaranteed when

L =
ϵ

96a1
√
2c

√
ndδ

I({Xt}t∈T ;W ′
L) +

δ
2 log(4/δ)

.

14
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Hence this value of L ensures that

P

({
1

n

n∑
i=1

(fW (xi)− yi)
2 ≤ σ2 − ϵ/2

}
∩
{
Lip(fW ) ≤ L

})
≤ δ.

Then with probability 1− δ over the data, fW must have Lipschitz constant Lip(f) ≥ L. Finally, by Lemma 5.5, we have

I({Xt}t∈T ;W
′
L) ≤ I(mW ′

L ;D) + E[log2 NmW ,L,ϵ] ≤ I(mW ;D) + E[∥m∥1] log2(1 + 60WJϵ−1) =: peff,

and hence we conclude that

Lip(f) ≥ ϵ

96a1
√
2c

√
ndδ

peff +
δ
2 log(4/δ)

with probability 1− δ, concluding the proof of Theorem 5.6.

B. Experimental Details
B.1. Experimental Details

B.1.1. FIGURES 1(A) AND 1(B)

For Gaussian data, we used n = 30 data points, each a d = 30 Gaussian random vector. The same plots persist across n, d,
these were chosen due to computational resource constraints. The labels are random Boolean in {±1}. The network is a
two-hidden layer MLP with ReLU activation, trained with Cross Entropy Loss and η = 1e− 2 learning rate. We define a
train point as “memorized” if the predictions are within (log 2)/10, chosen because predictions being within log 2 reflects
50/50 uncertainty, so that a train point is only memorized if the network is highly confidence in its prediction. Our theory is
technically for mean-squared error, so we repeated the same experiments with MSE instead and got very similar results, with
the same expected patterns holding. Because n, d and the network size are fairly small, we averaged the plots over k = 250
different networks and datasets with differing random seeds and plotted the average as well as standard error (standard
deviation of the mean) over these different trials, finding not much variation so that we may have confidence in our results.

For FashionMNIST, we added σ2 = 3 Gaussian noise to each input image, preserving its original label, allowing us to
see if our predictions hold in general settings beyond label corruption and finding, as expected, indeed they do. We train
till convergence in loss to within 0.01 (or until accuracy doesn’t change for three consecutive epochs), with η = 1e − 3
on Adam. We use a batch size of 64 with a two-hidden layer ReLU architecture with a hidden width of 200. We plotted
the mean and standard error (standard deviation of the mean) over k = 10 different seeds on this dataset. This amount of
repetitions with standard datasets like MNIST is common in the literature; (Frankle et al., 2020b) use 5 repetitions on similar
datasets like CIFAR10, and less for larger datasets like ImageNet.

We used the pruning code of (Tanaka et al., 2020) to guarantee consistency in implementation of pruning methods with the
rest of the literature. This includes their implementation of all pruning algorithms, though we made modifications to, for
instance, add magnitude pruning after training, which they do not include. For the Gaussian case, since the infrastructure
for it was not in (Tanaka et al., 2020), we wrote our own implementations of the pruning algorithms based on the papers
where they were introduced, and checked our implementations’ outputs against those of (Tanaka et al., 2020) where possible,
finding agreement. There is further discussion around implementation details of pruning algorithms in (Frankle et al.,
2020b), where they note that their plots mostly agree with those of (Tanaka et al., 2020), with some small differences.

B.1.2. FIGURES 1(D), 1(E), 1(F)

The correlation quantity we track for a fixed dataset is

1

n

n∑
i=1

(f (xi)− Eµ[f ]) zi

for n the dataset size and z the (fixed) dataset noise, and the data xi, yi drawn from our data distribution µ, in our case the
output of random Gaussian, with labels arising from the teacher MLP made noisy, with the values of the noise zi fixed after
random generation and used to calculate the correlation. This highlights an important fact, though obvious, that correlation
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Figure 2. Correlation with data noise over training epochs, IMP. Expanded version of 1(d) pruned to almost complete sparsity.

is between the interpolator and the fixed dataset. Training on one dataset will not help you correlate with noise in another, so
training is increasing “expressivity for this dataset,” in some sense. This quantity lower bounds I(fW ;D), the quantity we
wished to track because of its role in peff, as discussed in the main text.

In the case of figures 1(d), we track this quantity over the course of IMP on a student-teacher task with noise scale σ2 = 1.
Changing the noise scale simply rescales the y-axis without affecting trend we see. We use a 5-layer ReLU MLP student
with hidden width 100 and a 3-layer teacher with hidden width 50. This mismatch reflects the fact that our architecture
rarely reflects the data-generating process perfectly. We train with Adam with η = 1e − 3, pruning the lowest 20% of
weights out at every iteration of IMP, as is standard (Frankle & Carbin, 2018; Frankle et al., 2019). We use n = 1000 data
points of dimension d = 50, where both the student and teacher produce scalar outputs. We average and plot the mean and
standard error over different random seeds generating k = 25 networks (student and teacher) and datasets. The standard
error is so small in the plot it is barely visibly. Then for Figure 1(e), 1(f), we use the same setup as above except do not
prune, and sweep over learning rates and gradient noise instead, tracking the same quantities. These are also averaged over
k = 25 random seeds.

B.1.3. TAIL END OF FIGURE 1(D)

We see that Figure 1(d) gives the expected trend of capacity increasing and decreasing as we train, then prune iteratively
during the IMP algorithm to find lottery tickets. Of course, one cannot keep pruning every 100 epochs forever; eventually
one reaches an empty network, so an important sanity check is that such ability to correlate decays at late-time as the
network is pruned completely and all weights vanish. We can see below that effective parameter count goes becomes low
at extreme sparsities when the network has almost no actual parameters remaining, as one might expect. Again, this is
averaged over k = 25 networks. The critical sparsity level at which this correlation ability begins to decay is the lottery
ticket sparsity. For us this occurs after ≈ 9 pruning iterations where we drop 20% of the weights each time, at which point
only ∼ 10% of the weights remain.

B.2. Toy model: Computing MI exactly

We train very small 1 hidden layer MLPs on small amounts of data. Our toy datasets contain 6 datapoints sampled from
{±1}3 and outputs sampled independently from {±1}. We train using population gradient descent on MSE . The MLPs
have hidden width 4 and ReLU activations, with a total of 21 parameters. We measure the mutual information of the mask
produced by each pruning method over a range of sparsity levels. SynFlow is omitted here since it is data agnostic and
hence its mutual information is identically zero. Following the remarks in the paper, we estimate I(mW ;D | init = init0);
noting that the masking methods are deterministic, this tells us H(mW | D, init) = 0, and hence it suffices to estimate
H(mW | init). We do this by directly estimating the probability mass function through sampling. The curves for SNIP and
GraSP are jagged due to ReLU causing many of the gradients to be zero, and thus a large portion of the scores are zero
to begin. Overall, we see that IMP and magnitude pruning after training have higher mutual information than the other
methods. However, these models are so small that at high sparsities, which are the regime of interest, all methods have
undergone layer collapse, and thus we are not confident in the representativeness of this experiment. While the maximum
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size of the sample space is
(
21
10

)
, we only sample 32000 times. We note that the graph does not change when moving from

1000 to 32000, and thus we believe that the true distribution is supported on far fewer points, and thus our estimates for the
mutual information are accurate. We repeat the same experiments for Cross Entropy loss, with hidden layer size 3 (for a
total of 21 parameters).
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Figure 3. Exact mutual information over on small toy model. Left is regression, right is classification.

C. Generalization Bounds
C.1. Understanding the Information-Parameter Tradeoff

Here, we elaborate on the general principle at the heart of our main result: that for the sake of many theoretical generalization
guarantees, parameter count of the model and the model’s mutual information with the data are interchangeable. We illustrate
this in a toy model.

C.1.1. A SATURATING EXAMPLE

First, we present a toy example which saturates our bound Theorem 5.6.

We take n = dC for some constant C. For the sake of illustration, consider a dataset of n covariates x1, . . . , xn
IID∼

N(0, Id/d) in dimension d, with uniformly random labels y1, . . . , yn ∈ {±1}. We now consider the following masked
function class. First, we sample a single, large matrix with i.i.d. standard Gaussian entries W ∈ Rp×d. Next, we construct
the following function class:

F = {f(x) = (a ·m)⊤ReLU(Wx+ b) | m ∈ {0, 1}p}. (12)

We will take b ∈ Rp to have all coordinates −0.8. First let us point out that F is a one-hidden layer neural network with
ReLU activations, and width p. The only learnable parameters of this model are in the choice of mask m - the weights
are randomly drawn at the start and fixed. Hence this model has p parameters. The mask entries determines whether a
certain hidden layer node is left nonzero, or is forcibly masked away to zero.

We now consider p = exp(O(nd)). The idea is now that for this toy model, each xi, of which there are n, can be memorized
by a neuron. Since there are exponentially many hidden nodes, each observing the one dimensional projection w⊤

j x, there
exists, with high probability, one that aligns very closely with xi in the sense that ∥wj − x∥ ≤ ∥x∥/100. Call this one
wmem(i), for the memorizer of i. Since n = dC , a standard union bound shows that with high probability, for all i, j:

∥xi∥ ∈ [0.99, 1.01],

|⟨xi, xj⟩| ≤ d−1/3.

The triangle inequality then implies (assuming the preceding estimates hold) that ⟨wmem(i), xi⟩ ∈ [0.9, 1.1] and

|⟨wmem(i), xj⟩| ≤ 1/10, ∀j ̸= i.
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Thus, we can set the value of b to be −0.8 in all entries, so that w⊤
mem(i)xi + bmem(i) is positive only for the i-th covariate,

and negative for all the others. After applying ReLU, it is only nonzero for the i-th sample – hence, the (mem(i))-th hidden
node indeed memorizes the i-th sample.

Now consider the pruning algorithm which looks at the data and sets the mask to only be nonzero on the nodes {mem(i) |
i ∈ [n]}. This function is O(1)-Lipschitz on {x ∈ Rd : ∥x∥ ≤ 1.1}. This is because such any such x satisfies
⟨x,wmem(i)⟩ ≥ 0.8 for at most 1 value of i. This follows easily from the fact that different wmem(i) ≈ xi are approximately
orthogonal, and 0.82 + 0.82 = 1.28 is significantly larger than 1.12.

Moreover this function has only s = n ≪ nd nonzero parameters. However it clearly has Θ(nd) mutual information with
the data (Θ(d) bits per sample); hence it has Θ(nd) effective parameters. Thus, this presents a scenario saturating our bound
(Theorem 5.6). In some sense, these are “lottery tickets” - if we trained this network, we expect a weight wk with high
alignment to a given input to have high learned coefficient ak; our mask simply selectively chooses a single node with high
alignment for each sample.

More generally, Theorem 5.6 implies that if one wants O(nd) effective parameters with O(1) Lipschitz constant, while
maintaining s ≪ O(nd) nonzero parameters, then Ω(nd) mutual information with the data is required. This means that,
including the mask, one actually needs exp(Ω(nd/s)) total parameters in the model (c.f. (Bubeck et al., 2021), Theorem 4).

C.2. Information Theoretic Generalization Bounds

By applying Lemma 5.2, one can find analogs of effective parameter count in classical generalization bounds. Namely,
a low mutual information choice of function class with good generalization will also have good generalization, even if
the number of such function classes is very large. To begin, define the generalization error for a function h on a dataset
D = {(xi, yi)}ni=1 of i.i.d input-output pairs in X × Y with respect to a loss ℓ as

genD(h) =

∣∣∣∣∣E[ℓ(h(x), y)]− 1

n

n∑
i=1

ℓ(h(xi), yi)

∣∣∣∣∣ .
Theorem C.1 (VC Dimension Generalization Bound). Take Y = {0, 1} and ℓ to be 0-1 error. Let {Ht}t∈T be a collection
of binary function classes, where each class Ht has VC dimension at most d. Let W be a random variable taking values on
T , with I(W ;D) = I . Then assuming n > d+ 1, with probability 1− δ over the sampling of the data,

sup
h∈HW

genD(h) ≤
4 +

√
d log 2em

d +

√
4a2

1

δ (I + δ log 2
δ )√

2m
(13)

Recall that n-sample VC dimension generalization bounds for a function class of VC dimension d scale roughly as Õ
(√

d
n

)
.

The bound above instead scales as Õ
(√

d+δ−1I
2m

)
. Although we now have worse dependence on δ (from Lemma 5.2), if

one views δ as a small constant, we recover the same asymptotics with d+ I in place of d. This is an analog of our main
result if one interprets d+ I as an “effective VC dimension”.

Similar results also hold for Rademacher complexity. We define the data-dependent Rademacher complexity of a function
class H as

RadD(H) =
1

m
Eσ∼{±1}m

[
sup
h∈H

m∑
i=1

σih(xi)

]
(14)

Theorem C.2. Let ℓ take values in [−b, b] and be 1-Lipschitz in its first argument. Let {Ht}t∈T be a collection of functions
and W be a random variable taking values on T , with I(W ;D) = I . Then with probability 1− δ over the data sampling,

sup
h∈HW

genD(h) ≤ 2RadD(HW ) +
6√
m

√
a21b

δ

(
I +

δ

2
log

4

δ

)

The above bound again illustrates that incorporating mutual information into the choice of function class yields generalization
bounds which decay gracefully with the value of I . In the case that each function class has at most N functions, applying
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Massart’s lemma (Shalev-Shwartz & Ben-David, 2014) yields

RadD(HW ) ≤ b
√
2 logN√
m

. (15)

Taking p = logN as the associated parameter count then recovers a generalization bound of the form Õ

(√
p+δ−1I

m

)
.

C.3. Proof of Theorem C.1 (VC Dimension)

We begin with a standard generalization bound for a fixed function class H of VC dimension at most d:

ES∼Dm

[
sup
h∈H

genD(h)

]
≤

4 +
√
log(τH(2m))√

2m
≤

4 +
√

d log(2em/d)√
2m

.

Here the first inequality is Theorem 6.11 from (Shalev-Shwartz & Ben-David, 2014) while the second is Sauer’s lemma. Our
strategy will be to argue that the bound above holds with high probability for fixed H by the bounded differences inequality
and conclude using Lemma 5.2.

Proof of Theorem C.1. We define Yt = suph∈Ht
genD(h) and Xt = Yt − E[Yt]. Note that Xt changes by at most 1/m if a

single data-point is modified. Therefore McDiarmid’s bounded differences inequality implies

P(|Xt| ≥ ε) = P(|Yt − E[Yt]| ≥ ε) ≤ 2e−2ϵ2m, (16)

i.e. Xt is (1/2m)-subgaussian. Applying Lemma 5.2 now implies that with probability 1− δ, one has

XW ≤

√
a21
2m

(
I

δ
+ log

2

δ

)
.

Noting XW = YW − E[YW | W ] yields that with probability 1− δ,

YW ≤
4 +

√
log(τH(2m)) +

√
2a2

1

δ (I + δ log 2
δ )√

2m
.

Applying Sauer’s lemma and recalling the definition of YW concludes the proof.

C.4. Proof of Theorem C.2 (Rademacher Complexity)

We again begin with a standard Rademacher Complexity based generalization bound for a fixed function class H:

E
[
sup
h∈H

genD(h)

]
≤ 2ED[RadD(ℓ ◦ H)]

This is Lemma 26.2 of (Shalev-Shwartz & Ben-David, 2014). Our strategy is equivalent to the above.

Proof. We once more define Yt = suph∈Ht
genD(h) and Xt = Yt − E[Yt]. Note that Xt changes by at most 2b/m when

a given datapoint is changed, and thus McDiarmid’s bounded differences inequality again implies that Xt is (2b2/m)-
subgaussian. Then applying Lemma 5.2 yields that with probability 1− δ,

YW ≤ 1√
m

√
2a21b

2

δ

(
I + δ log

2

δ

)
+ E[YW | W ].

Applying Lemma 26.2 (Shalev-Shwartz & Ben-David, 2014) above, we obtain the following almost sure inequality:

E[YW | W ] ≤ 2ED[RadD(ℓ ◦ H)]
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We again note that RadD(ℓ ◦ HW ) changes by at most 2b/m when changing an individual datapoint. Hence, once centered,
it is again (2b2/m)-subgaussian. Applying Lemma 5.2 again produces that with probability 1− δ,

|RadD(ℓ ◦ HW )− ED[RadD(ℓ ◦ HW ) | W ]| ≤

√
2a21b

2

m

(
I

δ
+ log

2

δ

)
.

Thus with probability 1− 2δ,

sup
h∈HW

genD(h) ≤ YW ≤ 2RadD(ℓ ◦ HW ◦ S) + 1√
m

√
18a21b

2

δ

(
I + δ log

2

δ

)
.

Noting that ℓ is Lipschitz in its first argument, we apply Talagrand’s contraction lemma (see e.g. (Ledoux & Talagrand,
2013; Shalev-Shwartz & Ben-David, 2014)) to conclude the proof of Theorem C.2.
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