TAM: Efficient Inference through Attention Mapping between
Different-scale LLMs

Anonymous ACL submission

Abstract

LLMs encounter significant challenges in re-
source consumption nowadays, especially with
long contexts. Despite extensive efforts dedi-
cate to enhancing inference efficiency, these
methods primarily exploit internal sparsity
within the models, without leveraging exter-
nal information for optimization. We iden-
tify the high similarity of attention matrices
across different-scale LLMs, which offers a
novel perspective for optimization. We first
conduct a comprehensive analysis of how to
measure similarity, how to select mapping Lay-
ers and whether mapping is consistency. Based
on these insights, we introduce the IAM frame-
work, which achieves dual benefits of accel-
erated attention computation and reduced KV
cache usage by performing attention mapping
between small and large LLMs. Our experi-
mental results demonstrate that IAM can ac-
celerate prefill by 15% and reduce KV cache
usage by 22.1% without appreciably sacrificing
performance. Experiments on different series
of models show the generalizability of IAM.
Importantly, it is also orthogonal to many ex-
isting KV cache optimization methods, making
it a versatile addition to the current toolkit for
enhancing LLM efficiency.

1 Introduction

Large language models (LLMs) like GPT4 (Ope-
nAl, 2024a) have emerged with remarkable natu-
ral language understanding capabilities and broad
prospects in application. Subsequent advancements
such as In-Context Learning (ICL) (Brown, 2020;
Dong et al., 2024), Chain-of-Thought (CoT) (Wei
et al., 2022; Yao et al., 2024) and Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020) have
significantly revitalized the landscape of applica-
tions based on LLMs. These technologies expand
the capabilities of LLMs by enabling the activa-
tion of domain-specific knowledge or strengthen-
ing memory capabilities. However, they also in-

troduce significant computation and memory con-
sumption due to exceedingly long contexts. Recent
developments in reasoning models, exemplified by
ChatGPT-o1 (OpenAl, 2024b) and DeepSeek-R1
(DeepSeek-Al, 2025), have exacerbated this issue
because of their extensive internal reasoning pro-
cesses.

17.3%

reduction 22.8%

reduction

33.9%
reduction

KV Cache Memory (
(=)}
o

default H>O IAM H>0 + IAM

Figure 1: IAM is orthogonal to the existing KV cache
eviction methods and can further reduce the KV cache
usage in long context scenarios.

To address the aforementioned challenges and
achieve efficient inference, various methodologies
have been proposed, including optimizing model
architectures (Sun et al., 2024; Gloeckle et al.,
2024), prompt compression (Jiang et al., 2023; Pan
et al., 2024), and KV cache optimization (Zhang
et al., 2023; Yang et al., 2024; Hooper et al., 2024),
among others. A specific approach within KV
cache optimization, known as KV cache eviction,
achieves efficiency improvements by exploiting
characteristics and sparsity within attention mecha-
nisms. Nevertheless, these methodologies predom-
inantly concentrate on leveraging intrinsic sparsity
of LLM itself, without considering external infor-
mation to facilitate better optimization.

Previous study (Chen et al., 2021) has indicated
a significant similarity in attention patterns between
small and large models within the BERT architec-

ture. In Appendix A, we further substantiate that
this similarity is also present in LLMs. Building
upon this characteristic, this paper introduces an
efficient inference technique through attention map-
ping between small language model (SLM) and the
larger one. It is important to note that our pro-
posed method achieves dual benefits of accelerated
attention computation and reduced KV cache com-
sumption, and is orthogonal to most existing KV
cache optimization method. As depicted in Figure
1, the utilization of H2O (Zhang et al., 2023) facili-
tates KV cache compression at token level, whereas
our method can achieve further compression at the
model’s layer level.

In this study, we investigate the methodology
for achieving attention mapping between SLM and
LLM while maintaining the performance of the
original LLM. Initially, we evaluate the impact of
various similarity metrics applied to attention ma-
trices on language modeling efficacy. Following
this, we explore how mapping at different layers
of the LLM influences its language-understanding
capabilities, thereby identifying the most appropri-
ate layers for mapping. Finally, we demonstrate
that the established mapping relation remains con-
sistent throughout the inference process, enabling
it to be constructed during the prefill stage and
subsequently utilized in subsequent decode stage.
This consistency facilitates dynamic adaptation to
evolving contexts.

Based on these experiments and observations,
we introduce the efficient inference through atten-
tion mapping (IAM) framework. This framework
effectively captures the similarities in attention
patterns between SLM and LLM to dynamically
establish mapping across varying contexts. Con-
sequently, LLM can perform efficient inference
without calculating portions of attention matrices,
thereby achieving dual benefits of reduced GPU
memory usage for KV cache and decreased compu-
tational requirements in attention mechanisms. We
first comprehensively evaluate performance preser-
vation of IAM across four kinds of scenarios. Ex-
perimental results indicate that with a 30% map-
ping ratio, the model maintains performance close
to lossless, while at a 50% mapping ratio, it also re-
tains high capability levels. Efficiency evaluations
across different inference scenarios demonstrate
that IAM achieves an average reduction of 22.1%
in KV cache usage and an average acceleration of
11% in inference speed. Our other experimental
results indicate that the IAM is generalizable on

other series of LLMs and compatible with existing
KV cache optimization methods.

2 Related Work

Due to the widespread adoption of technologies
such as RAG and the recent emergence of reason-
ing models like DeepSeek-R1, the demand for han-
dling long contexts has significantly increased. The
self-attention mechanism necessitates computing
attention between the current token and every pre-
ceding token, leading to the common practice of
storing previous tokens’ KV states (KV cache) to
avoid recomputation. However, this approach has
become a primary bottleneck for managing long
contexts.

One category of methods focuses on efficiently
storing and transmitting large amounts of KV cache
with constrained hardware. For instance, tensor
parallelism (Shoeybi et al., 2020) distributes atten-
tion heads and pipeline parallelism (Huang et al.,
2019) distributes attention layers across multiple
GPUs, enabling horizontal scaling of KV cache
storage capacity by adding more GPUs. When
GPU HBM is insufficient, some techniques (Sheng
et al., 2023) concentrate on efficiently offload-
ing the KV cache to CPU memory. Mooncake
(Qin et al., 2024) advances this concept further by
proposing a multi-level caching strategy centered
around the KV cache. At the CUDA optimization
level, FlashAttention (Dao, 2023) reduces the num-
ber of read/write operations between GPU HBM
and GPU cache, while PagedAttention (Kwon et al.,
2023) employs virtual memory management tech-
niques to minimize memory fragmentation in GPU
HBM. These approaches primarily aim to optimize
hardware capabilities and KV cache requirements
from a system perspective, without addressing KV
cache reduction from an algorithmic perspective.

Another category of methods focuses on leverag-
ing the inherent similarities and sparsity within
the attention mechanism. Techniques such as
KVQuant (Hooper et al., 2024) exploit redun-
dancies in numerical representations to propose
quantization of the KV cache, thereby reducing
storage requirements and enhancing load speeds.
Streamingl.LLM (Xiao et al., 2024) achieves closely
unlimited input by reserving both the initial and
the most recent KV cache of tokens. H,O (Zhang
et al., 2023) observed that the accumulated atten-
tion scores of all tokens follow a power-law distri-
bution, indicating that only a small subset of tokens

is highly significant in the generation. Scissorhands
(Liu et al., 2023) revealed the persistence of impor-
tance, indicating that tokens identified as impor-
tant in initial remain significant throughout sub-
sequent stages of inference. PyramidInfer (Yang
et al., 2024) further explores the distinct attention
characteristics across different layers within LLM,
and identified that deeper layers exhibit greater re-
dundancy. These findings help design effective KV
cache eviction approaches. Meanwhile, KVMerger
(Wang et al., 2024) leverages the high similarity
of KV states observed across different datasets to
design a Gaussian kernel weighted merging algo-
rithm for merging KV Cache, thereby minimizing
the loss introduced by dropping methods. However,
these approaches primarily exploit the inherent sim-
ilarities and sparsity within the model’s attention
mechanism and do not incorporate external infor-
mation to enhance KV cache optimization, as IAM
does. In addition, IAM is orthogonal to most of the
aforementioned methods, due to its innovative ap-
proach of utilizing entire attention matrices of SLM
and avoiding computations of attention mechanism
of mapped layers in LLM.

There are also some works about speculative de-
coding (Xia et al., 2023; Cai et al., 2024), which
employs a SLM as a draft model, followed by vali-
dation from a LLM to determine whether to adopt
its predictions. Similar to our method, this ap-
proach aims to accelerate inference through the
collaboration of small and large models. However,
the core mechanisms differ: speculative decoding
focuses on aligning the next-word prediction prob-
ability distributions between the SLM and LLM,
while IAM relies on the high similarity of attention
matrices between the SLM and LLM. Additionally,
the LLM in speculative decoding can also bene-
fit from the IAM method to enhance performance,
achieving a synergistic effect.

3 Methodology

In this section, we begin by conducting a series of
experiments aimed at providing valuable insights
into attention mapping. Building on these findings,
we then introduce the IAM framework.

3.1 How to Measure Similarity

A proper metric of similarity is crucial in attention
mapping. It helps to capture the significant pattern
within the attention matrix, thus minimizing the
bias introduced by mapping in the forward process

of LLM. For vectors x and y, formed by flattening
the lower triangular part of attention matrices of
SLM and LLM, we consider the following similar-
ity measure:

Cosine Similarity. The cosine similarity is defined
as:

Xy
[l

Minkowski Distance. The Minkowski Distance is
defined as:

cos < X,y >= (D

d(x,y) = (Z 2 — y|) @)
i=1

where x; and y; is the element in vector x and y,
and p is the hyperparameter.
Pearson correlation. The Pearson correlation is
a common measure of linear correlation between
two variables. It is defined as:

_ 2 @-7)(yi—9)
V(@i — 1)y —)

where x; and y; is the element of vector x and y,
and Z and § represents mean of x and y.

We utilize Qwen2-72B as the target LLM and
consider two SLMs with different scales, Qwen2-
0.5B and Qwen2-7B, as sources of attention ma-
trices for mapping. We measure the log perplexity
of the LLM on WikiText-v2 (Merity et al., 2016)
after performing attention mapping using different
metrics of similarity. The experimental results are
presented in Table 1. It is noted that these results
are obtained by dynamically matching the max-
imum similarity matrix between SLM and LLM
during the mapping process without using a fixed
mapping.

From the experimental results, it can be ob-
served that cosine similarity achieves the best per-
formance for both mappings from Qwen2-0.5B
to Qwen2-72B and from Qwen2-7B to Qwen2-
72B. Minkowski Distance with p = 1 also performs
nearly as well as the best metric. Pearson corre-
lation is proven unsuitable as the similarity met-
ric due to its significantly higher perplexity. We
also explore compensating the differences of the
L2 norm after selecting the mapping matrix based
on cosine similarity, which is named "Cosine with
Norm" in Table 1. However, the experimental re-
sults indicate that this approach does not consis-
tently and significantly enhance the performance of

3

'xy

Mapping Metric Perplexity (log)
Cosine 2.577
Qwenti-O.SB Pearson 4.976
Minkowski (p=1) 2.589
Qwen2-72B \ finkowski (p = 2) 2.878
Cosine with Norm 2.562
Cosine 2.414
Qwetr:)2-7B Pearson 5.376
Minkowski (p = 1) 2.427
Qwen2-72B \ finkowski (p = 2) 2514
Cosine with Norm 2.421
Qwen2-72B (Original) 2.136

Table 1: The log perplexity values after conducting at-
tention mapping using different similarity metrics. The
original log perplexity is also provided in the bottom for
comparison.

cosine similarity. Moreover, introducing the vari-
able of L2 norm adds complexity to the mapping
in the inference process and is unfavorable for the
generalization across different contexts. Therefore,
we finally choose cosine similarity as the similarity
metric.

3.2 Which Layers to Map

In this section, we explore the methodology for
selecting suitable layers to map, with the objec-
tive of retaining model performance. For our pur-
poses, we utilize Qwen2-72B as the target LLM for
mapping which comprises 80 transformer layers.
We partitioned these layers into 10 sub-blocks (8
layers each) and make them mapped sequentially,
followed by an evaluation of its performance using
the MMLU benchmark.

The experimental results are shown in Figure 2.
The experimental results indicate the presence of
two optimal mapping regions within the Qwen2
model architecture: one situated in the final two
sub-blocks (layers 64 - 80) and another located in
No.2 to No.4 sub-blocks (layers 16 - 40). These
regions maintain performance levels comparable to
those of the original model after attention mapping.
Conversely, mapping from the beginning (layers 0
- 16) is entirely impractical due to the significant
performance degradation it induces.

Based on these observations, IAM adopts the
following mapping strategy for Qwen2-72B: ac-
cording to the user-specified mapping ratio, map-
pings are first performed sequentially from the last
layer of the model backward to layer 64. If the
specified mapping ratio is still not achieved, the

mapping continues from layer 16 onward, proceed-
ing backwards until the requirement is met. This
approach ensures a balance between maintaining
model performance and achieving the desired map-
ping efficiency, leveraging the identified optimal
regions for layer mapping.

1.0

Original

I o °
> o ®

MMLU Accuracy

e
N

0.0

0o 1 2 3 4 5 6 7 8 9
Sub-blocks ID

Figure 2: The performance on MMLU benchmark after
mapping different attention layers of Qwen2-72B.

3.3 Consistency of Mapping

IAM establishes a mapping relationship between
the SLM and the LLM based on similarity during
the prefill stage, which is then utilized in the sub-
sequent decode stage. Therefore, an essential guar-
antee is that the mappings established during the
prefill stage remain consistent, which means map-
ping relationship should not significantly change
as the inference progresses. To evaluate the con-
sistency, we observe the proportion of times that
the mapping does not change as consistency rate
during the autoregressive generation. We also use
the WikiText-v2 datasets as the prompt and set the
max output tokens as 500.

The experimental results are shown in Figure 3,
where we averaged the consistency rate within lay-
ers. It can be seen that a high level of consistency
rate is maintained across layers. This indicates that
the mapping established during the prefill stage
remains stable and reliable throughout the decode
stage, ensuring relatively small imprecision of map-
ping during the dynamic generation.

3.4 TAM Framework

Based on the preceding experiments and observa-
tions, we present the framework of IAM in this
section, as shown in Figure 4. IAM initially estab-
lishes mappings during the prefill stage. Given
a LLM M and a SLM M, the prompt is first
passed through both models to obtain the atten-
tion matrices respectively. Specifically, the atten-
tion matrices of M are denoted as 4; € RV*N,

Mean value 91.12%

=
o

Consistency Rate
o o
") ©

o
9

o
o

16 32 48 64 80
Layer index

Figure 3: The average consistency rate from the 16th
layer onward. A higher consistency rate indicates that
the mapping established in prefill stage remains more
stable and undergoes fewer changes during decoding.

0 <7 < L - D, and those in M, are denoted as
Al e RV*N 0 < j < 1-d. L and [represent
the number of layers in the M and M. D and d
denote the number of attention heads per layer in
each model. IV represents the number of tokens in
the prompt. Due to differences in model architec-
tures, we have [- d < L - D. And then, pairwise
similarity between the attention matrices from M
and M is computed by:

S(As 4y = AL @)
U AR Al e
Tr(-) denotes the trace of the matrix and || - ||

denotes the Frobenius norm. Finally, the mapping
function is obtained by:

f(i) = argmax S(A;, A)) 5)
J

In the decode stage, IAM utilizes the established
mapping f(i) to perform the attention mapping,
which can be represented as:

Ai+ Ay 6)

Finally, the forward process of the model based
on IAM can be represented as:

Y = M(X;60M, A; Abiy) (7)

where X and Y denotes the input and output re-
spectively.

After establishing the IAM framework, we per-
form instruction tuning to mitigate the performance
degradation caused by differences in the atten-
tion matrices. Specifically, we utilized the Alpaca
dataset (Taori et al., 2023) for this purpose. During
the training process, the parameters of the large

Algorithm 1 IAM

Input: A target large language model M; A
small language model Mj; Prompt x; Establish-
ing threshold 7.; Truncation threshold 7;; Mapping
ratio R; Max output lenth L.

Calculate token lenth of prompt as len(x)
if len(x) > 7, then
Truncate lenth of prompt to 7;
else if len(x) < 7. then
Autoregressive generation y = {y;}*_, by
M until len(x) + k >=7,
6: end if
7: Forward process by M (x) and M(x) and get
attention matrices respectively
8: Calculate pairwise similarity via Eq.(4)
9: Select mapping layers according to R
10: Establish mapping via Eq.(5)
11: while y; # eos and L < L4, do
12: Replace attention matrix of M via Eq.(6)
13: Autoregressive generation y = {y; }, by
M(z,y)
14: end while
Output: Output token sequences y = {y; } 2,

ooR Wy

model are frozen, and only the small model need
to update parameters. The optimization objective
for the M, can be formulated as:

min E(x m)~p L(M(X;0M, A; Afp), T)

It is also noted that to prevent instability in the
mapping established during the prefill stage due to
overly short prompt, we employ a delayed estab-
lishment mechanism. This means that mapping is
only initiated and performed once the number of
preceding tokens IV exceeds a specified threshold.
Similarly, for scenarios involving long contexts,
based on observations of consistency in Section
3.3, we truncate the sequences when calculating
similarity to avoid inaccuracies that can arise from
high-dimensional data. The detailed procedure of
IAM can be referred to Algorithm 1.

4 Experiments

4.1 Experiments Setup

Datasets We comprehensively evaluate the utility
preservation of IAM from four kinds of scenarios:
1) Language modeling: we measure the perplex-
ity on WikiText-v2 (Merity et al., 2016). 2) Lan-
guage understanding: We evaluate performance on

Prompt: IAM is a technique that...

)

Transformer Layer N

(
§

Transformer Layer 0 Transformer Layer n

Attention Attention

Matrix

Attention
Matrix

LLM

Matrix
5\

»
‘.

[Similarity Measure]

[Layer Selection]

[Consistent Mapping]

Attention
Matrix

N

SLM

N
\

Transformer Layer 0

Attention
Matrix

Output: enables
attention mapping
between SLM and
LLM while...

»

Y

Transformer Layer M

Figure 4: Framework of IAM.

the MMLU (Hendrycks et al., 2021). 3) QA task:
we assess QA performance using the HotpotQA
dataset (Yang et al., 2018) and adopt F1 score as
evaluation metric. 4) Long context: we utilize Gov-
Report benchmark (Huang et al., 2021) to test the
long text summarization capacity.

Implementation Details Our experiments are
conducted on two types of LLMs. The main re-
sults are obtained using the models of the Qwen2
series!. Specifically, we use Qwen2-72B as target
LLM and two SLMs with different scales: Qwen2-
0.5B and Qwen2-7B. We also test the LLaMA3
series models” to study the IAM’s adaptation to
different series LLMs in section 4.4. For these
experiments, the SLM is LLaMA 3.2-1B, and the
LLM is LLaMA 3.1-70B.

All experiments are performed on 8§ NVIDIA
A100 GPUs with . We use greedy decoding to
ensure the stability of experimental results. For
generative tasks, we limit the maximum output to-
kens to 512 and set the repetition penalty as 1.2.
We also set the establishing threshold 7. and the
truncation threshold 7¢ in IAM algorithm as 20
and 100 respectively. The other experimental en-
vironment includes the following configurations:
CUDA version 12.0, PyTorch version 2.4.0, and

'https://github.com/QwenLM/Qwen
Zhttps://github.com/meta-llama/llama3

HuggingFace’s Transformers® with version 4.45.1.

4.2 Benchmark Results

In Figure 5, we evaluate the performance of IAM in
four kinds of scenarios with mapping ratio varying
from 0 to 50%. It can be seen that IAM main-
tains high language understanding and generation
quality with much less GPU memory consump-
tion. Specifically, at a mapping ratio of 30%, IAM
achieves almost the same performance as the orig-
inal model. At a mapping ratio of 50%, it still
retains high capability levels.

It is also important to note that using Qwen2-7B
as the SLM yields better performance. We conjec-
ture that this is because using the bigger model with
more source attention matrices can improve max-
imum similarity between mapping layers, which
will reduce the loss of mapping. This implies that
there is a trade-off between efficiency and model
performance.

4.3 Efficiency Analysis

To evaluate the efficiency of IAM, we consider two
common scenarios: 1) Multi-user Concurrency: In
this scenario, the context length is set to a prefill
length of 512 tokens and a maximum generation
length of 512 tokens, with a batch size of 64. 2)
Long Context: In this scenario, the context length

3https://github.com/huggingface/transformers

=
(=2}
@
o

I

o
=
N

) I
—————— Default — 8 qu!

14 Qwen2-0.58 as SLM 280) 10 S0
> Qwen2-7B as SLM g o -
375 g .
=12 < S S
=
g S0 208 208
a] < =

o
10 % 65 g oy
06 206
o o
8 T
8% 2 30 40 5 0% 50 6 10 2 @ 4 2 ° 0 20 3 40 50

10 10 20 30 40
Mapping Ratio (%) Mapping Ratio (%)

10
Mapping Ratio (%) Mapping Ratio (%)

Figure 5: Benchmark results of TAM with mapping ratio varying from 0 to 50%. Default represents using the

original LLM without mapping.

is set to a prefill length of 8192 tokens and a maxi-
mum generation length of 512 tokens, with a batch
size of 8. In each scenario, we analyze both mem-
ory efficiency and compute efficiency, and thus
derive a detailed view of the impact of IAM on end-
to-end performance. The LLM used in this part of
the experiment is Qwen2-72B while the SLM is
Qwen2-0.5B, and the mapping ratio is set to 0.5.

Memory Efficiency With IAM, the mapped lay-
ers in the LLM do not need to store the K cache
because they do not compute attention matrices.
This results in a reduction of memory usage. Al-
though the introduction of SLM with its parameters
and kv cache also incurs additional overhead. It
is acceptable since the SLM’s memory is signifi-
cantly smaller than that of the LLM. Referring to
Table 2, even when accounting for the KV cache of
the SLM, IAM achieves a 21.7% reduction in KV
cache usage in the multi-user concurrency scenario
and a 22.5% reduction in the long context scenario,
which indicates the memory efficiency of IAM.

Compute Efficiency Similarly, in IAM, the
mapped layers of LLM do not need to perform Q
projection, K projection, and the multiplication of
the QK matrix with softmax. These computations
are particularly intensive during the prefill stage
and often become a performance bottleneck. By
using IAM, we can significantly reduce this com-
putational load. Although introducing the SLM
adds some computational overhead, this additional
workload is significantly lower compared to the
computations avoided in the LLM. As a result, the
overall system still sees substantial benefits: In
the multi-user concurrency scenario, the reduction
in computational load leads to a 12% decrease in
TTFT. In the long context scenario, where the com-
putational complexity of the QK matrix multiplica-
tion increases quadratically with sequence length,
IAM provides even greater computational savings,

resulting in a more significant 17% reduction in
TTFT.

End-to-end Efficiency The resulting memory
and compute savings contribute to improved over-
all system efficiency. Benefit from the substantial
reduction in K cache usage, the LLM experiences
notable improvements in TPOT during the decode
stage, with decreases of 11% and 10% in the multi-
user concurrency and long context scenarios, re-
spectively. Additionally, the significant reduction
in computational load leads to improved TTFT dur-
ing the prefill stage, with decreases of 12% and
17% in the same scenarios. These enhancements
translate into improved end-to-end throughput per-
formance. Compared to the default method, IAM
achieves throughput improvements of 11% and
10% in the multi-user concurrency and long context
scenarios, making it both practical and beneficial
for various deployment scenarios.

4.4 Different Series Models

1.0

Original

o
©

o
o

MMLU Accuracy
o
IS

o
N

0.0 o 1 2 3 4 5 6 7 8 9

Sub-blocks ID

Figure 6: The performance on MMLU benchmark after
mapping different attention layers of LLaMA 3.1-70B.

To evaluate the generalizability of the IAM, we
conduct experiments on different series of models.
In this experiment, the LLM is LLaMA 3.1-70B
and the SLM is LLaMA 3.2-1B. The procedure of
IAM for different series of models is largely fol-
lowed the procedures detailed in the methodology

Table 2: Evaluation on efficiency of IAM. Bsz: batch size. Lenth: prefill length + decode lenth. KV Mem.: GPU
memory usage (GB) of the KV cache. TPOT: average time (s) per output token in decode stage. TTFT: time (s) to

first token. Thr.: End-to-end throughput (token/s)

Method | Bsz Lenth | KV Mem. TPOT TTFT Thr.
Default |\ <15 <15 | 1587(100%) 0196 (L0x) 2.67(1.0x) 636 (1.0x)
IAM 1242 (783%) 0.176 (1.11x) 2.39 (1.12x) 708 (L.11x)
Default |, o105 51y | 1874(100%) 0216 (L0X) 6.72(1.0x) 297 (1.0x)
IAM 143.1 (77.5%) 0.197 (1.10x) 5.74 (1.17x) 326 (1.10x)

section, with the primary modification being the re-
identification of suitable layers within LLaMA 3.1-
70B for mapping. Following the same approach
described in Section 3.2, we test the suitable layers
within LLaMA 3.1-70B and show results in Figure
8. An interesting observation is that, unlike the
Qwen?2 series models which exhibit two optimal
mapping regions, the LLaMA series models only
have a single optimal mapping region located at the
end of the model. Consequently, we adjusted our
mapping strategy for the LLaMA series models:
as the mapping ratio increases, mappings are se-
quentially established from the last layer backward
toward earlier layers.

After selecting the appropriate layers for map-
ping in the LLLaMA series models, we also evalu-
ated their performance on the MMLU benchmark
under various mapping ratios. The experimental
results are shown in Figure 7. Even better than the
performance with the Qwen?2 series, IJAM demon-
strates excellent language comprehension capabili-
ties on the LLaMA series models.

85

o]
o

~
a1

~
o

Default
LLaMA 3.2-1B as SLM

MMLU (Accuracy)

(o]
al

(2]
o

0 10 20 30 40 50
Mapping Ratio (%)

Figure 7: The MMLU benchmark results of IAM on
LLaMA series models.

4.5 Compatible with KV cache compression

IAM is orthogonal to most existing KV cache com-
pression methods due to its innovative approach
of utilizing entire attention matrices of SLM for

mapping, whereas existing methods mainly focus
on token-level attention importance. To illustrate
this, we take HoO (Zhang et al., 2023) as an ex-
ample. In Figure 1, we demonstrate that, after the
KV cache optimization of H5O, IAM can further
reduce KV cache consumption. We also evaluate
the impact of using HoO on IAM’s performance
in terms of perplexity on the WikiText-v2 dataset,
as shown in Figure 3. The KV cache budget of
H50 is set to 80%. Experimental results indicate
that IAM is compatible with KV cache compres-
sion methods like H20 without compromising the
model’s ability of language modeling.

16
IAM
IAM + H,0
14
2
&
=12
@
[a
10
8

0 10 20 30 40 50
Mapping Ratio (%)

Figure 8: The perplexity of using IAM in combination
with KV cache compression method H>O.

5 Conclusion

We address the challenges faced by LLMs in serv-
ing long context scenarios by introducing IAM.
This approach effectively reduces attention compu-
tation and KV cache usage by performing attention
mapping between different-sized models with same
series, with minimal impact on model performance.
We also demonstrate that IAM is effective across
different series of models. Furthermore, it is com-
patible with many existing KV cache optimization
methods, making it a highly promising solution for
deploying LLMs in resource-constrained environ-
ments.

Limitations

There are also some limitations in our approach:
the current analysis and implementation of IAM
are conducted at the granularity of model layers.
If the granularity is further refined to the attention
head, it could potentially yield additional improve-
ments in model performance and resource savings.
Additionally, IAM is not compatible with high-
efficiency attention methods (e.g., Flash Attention)
as it requires calculating attention scores. Besides
that, IAM can not achieve total lossless for model
performance.

References

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, Jason D. Lee, Deming Chen, and Tri Dao.
2024. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. Preprint,
arXiv:2401.10774.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. 2021. bert2bert: To-
wards reusable pretrained language models. Preprint,
arXiv:2110.07143.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. Preprint,
arXiv:2307.08691.

DeepSeek-Al 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, et al. 2024. A survey on in-context
learning. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 1107-1128.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere,
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet-
ter faster large language models via multi-token pre-
diction. Preprint, arXiv:2404.19737.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant: To-
wards 10 million context length 1lm inference with
kv cache quantization. Preprint, arXiv:2401.18079.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419—1436, Online.
Association for Computational Linguistics.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: efficient training of giant neural
networks using pipeline parallelism. Curran Asso-
ciates Inc., Red Hook, NY, USA.

Huiqgiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13358-13376, Singapore. Association for
Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for 1lm kv cache compression at test time.
In Advances in Neural Information Processing Sys-
tems, volume 36, pages 52342-52364. Curran Asso-
ciates, Inc.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

OpenAl. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAl. 2024b. Introducing openai ol-
preview. https://openai.com/index/

introducing-openai-ol-preview/.

Zhuoshi Pan, Qianhui Wu, Huigiang Jiang, Menglin Xia,
Xufang Luo, Jue Zhang, Qingwei Lin, Victor Riihle,
Yuging Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,
and Dongmei Zhang. 2024. LLMLingua-2: Data dis-
tillation for efficient and faithful task-agnostic prompt
compression. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 963-981,
Bangkok, Thailand. Association for Computational
Linguistics.

https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2110.07143
https://arxiv.org/abs/2110.07143
https://arxiv.org/abs/2110.07143
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2303.08774
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,
Yongwei Wu, Weimin Zheng, and Xinran Xu. 2024.
Mooncake: A kvcache-centric disaggregated archi-
tecture for llm serving. Preprint, arXiv:2407.00079.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Daniel Y. Fu, Zhiqgiang Xie,
Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. Flexgen: High-throughput generative infer-
ence of large language models with a single gpu.
Preprint, arXiv:2303.06865.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
Preprint, arXiv:1909.08053.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. arXiv
preprint arXiv:2405.05254.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia
Zhang. 2024. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks.
Preprint, arXiv:2407.08454.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerating
seq2seq generation. Preprint, arXiv:2203.16487.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks. Preprint,
arXiv:2309.17453.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. PyramidInfer: Pyramid
KV cache compression for high-throughput LLM
inference. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 3258-3270,
Bangkok, Thailand. Association for Computational
Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. Preprint, arXiv:1809.09600.

10

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett,
Zhangyang "Atlas" Wang, and Beidi Chen. 2023.
H2o: Heavy-hitter oracle for efficient generative in-
ference of large language models. In Advances in
Neural Information Processing Systems, volume 36,
pages 34661-34710. Curran Associates, Inc.

https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf

A Attention Similarity between Small and
Large Language Models

A fundamental premise of this paper is the high
similarity of attention matrices across different-
sized models within same series. We first demon-
strate the visualization of average attention matri-
ces across all layers and all heads under a given
context in WikiText-v2 using four different-size
models from the Qwen?2 series, as shown in Figure
11. It can be observed that these matrices exhibit
strong similarities in their attention patterns.

We also provide a quantitative analysis of this
similarity. Considering the WikiText-v2 dataset,
we use the SLM of Qwen2-7B and the LLM of
Qwen2-72B to compute the average cosine simi-
larity of all pairwise most similar matrices. The
result yield a average cosine similarity of 0.954.
For comparison, we also test the case where the
SLM is llama3.2-1B. Due to the difference of tok-
enizers, we employ the pairwise longest common
subsequence method to align tokens between the
two models. In this situation, the average cosine
similarity is 0.568.

B Detailed Analysis of Mapping Strategy

In Section 3.2, we present a mapping strategy from
a practical perspective, specifically by using bench-
mark scores to determine which layers are most
suitable for mapping. In this section, we provide
additional analysis of the mapping strategy. There
is a natural consideration of mapping the layers
with the highest average cosine similarity, aiming
to minimize the loss introduced by mapping. To
this end, we first calculate the average cosine sim-
ilarity for each layer of Qwen2-72B, as shown in
Figure 9. It is evident that the layers in the first half
of the model, excluding the first two layers, exhibit
more strong similarity.

We consider three mapping strategies: From the
Front-End (mapping only the initial layers), From
the Back-End (mapping only the latter layers), and
the Most Similar (mapping the layers with the high-
est mean cosine similarity). Using the same eval-
uation methodology as described in section 3.1,
the experimental results are illustrated in Figure 10,
where the x-axis represents the percentage of layers
mapped relative to the total number of layers. From
experimental results, it is evident that the From the
Front-End strategy is entirely unviable. The From
the Back-End strategy yields the best results, even
outperforming the Most Similar approach. We con-

11

jecture that this can be attributed to the cumulative
error introduced by front-end mapping, which pro-
gressively accumulates through each subsequent
layer. Consequently, introducing mappings at the
back-end leads to fewer alterations from the origi-
nal model, thereby maintaining a relatively greater
capability of the LLM. This also explains why map-
ping the latter layers consistently yields better per-
formance, both in the Qwen?2 series models and the
LLaMA3 series models.

g
o
<

o

o
©

o
o

I
»

o
N

Average Cosine Similarity

o
S

30 40 50 60 70 80

Layer Index

0 10 20

Figure 9: The average cosine similarity for each layer of
Qwen2-72B by calculating the most simular attention
matrix between Qwen2-7B and Qwen2-72B.

6
—~ T
g
=4
2>
<
3 .
%2 ———""From the Front-End
o From the Back-End
0 —— Most Similar
10% 20% 30% 40% 50%

Percentage of Mapping Layers

Figure 10: The log perplexity of LLM according to
different mapping layer selecting strategies.

C Statistical Analysis of Mapping
Relations

We also conduct a statistical analysis of the most
frequent mapping relations on the WikiText-v2
dataset. Specifically, we record the mapping re-
lations for each context. For each attention head of
the LLM, we identify the mode of its mapping in-
dex. In this experiment, we used a SLM of Qwen2-
0.5B and a LLM of Qwen2-72B, resulting in a
mapping from 5120 to 360. The experimental re-
sults are shown in Figure 12.

Firstly, it can be observed that most matrices
from the SLM are utilized in the mapping process,

b . " N

-I:l- -1_ -d
“, h Py,

& (§ .

(a) Qwen2-0.5B (b) Qwen2-1.5B (b) Qwen2-7B (b) Qwen2-72B

Figure 11: The average attention matrices across all layers and all heads from four different-size models of Qwen2
series

with the exception of the first forty matrices, which
are rarely used. Additionally, the mapping relations
exhibit a strong imbalance across different matri-
ces. The most frequently used matrix is utilized
over 1200 times, significantly more than any other
matrix. This finding suggests that the attention
matrices within the LLM might have substantial
sparsity.

1200

1000

Count of Mapping Matrix in LLM

0 _‘J .I||I.Jlulx;;l L gl
0 50 100 150 200 250 300 350

Attention Matrix Index in SLM

Figure 12: The statistical analysis of the most frequent
mapping relations between Qwen2-0.5B and Qwen2-
72B.

12

	Introduction
	Related Work
	Methodology
	How to Measure Similarity
	Which Layers to Map
	Consistency of Mapping
	IAM Framework

	Experiments
	Experiments Setup
	Benchmark Results
	Efficiency Analysis
	Different Series Models
	Compatible with KV cache compression

	Conclusion
	Attention Similarity between Small and Large Language Models
	Detailed Analysis of Mapping Strategy
	Statistical Analysis of Mapping Relations

