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Abstract

LLMs encounter significant challenges in re-001
source consumption nowadays, especially with002
long contexts. Despite extensive efforts dedi-003
cate to enhancing inference efficiency, these004
methods primarily exploit internal sparsity005
within the models, without leveraging exter-006
nal information for optimization. We iden-007
tify the high similarity of attention matrices008
across different-scale LLMs, which offers a009
novel perspective for optimization. We first010
conduct a comprehensive analysis of how to011
measure similarity, how to select mapping Lay-012
ers and whether mapping is consistency. Based013
on these insights, we introduce the IAM frame-014
work, which achieves dual benefits of accel-015
erated attention computation and reduced KV016
cache usage by performing attention mapping017
between small and large LLMs. Our experi-018
mental results demonstrate that IAM can ac-019
celerate prefill by 15% and reduce KV cache020
usage by 22.1% without appreciably sacrificing021
performance. Experiments on different series022
of models show the generalizability of IAM.023
Importantly, it is also orthogonal to many ex-024
isting KV cache optimization methods, making025
it a versatile addition to the current toolkit for026
enhancing LLM efficiency.027

1 Introduction028

Large language models (LLMs) like GPT4 (Ope-029

nAI, 2024a) have emerged with remarkable natu-030

ral language understanding capabilities and broad031

prospects in application. Subsequent advancements032

such as In-Context Learning (ICL) (Brown, 2020;033

Dong et al., 2024), Chain-of-Thought (CoT) (Wei034

et al., 2022; Yao et al., 2024) and Retrieval Aug-035

mented Generation (RAG) (Lewis et al., 2020) have036

significantly revitalized the landscape of applica-037

tions based on LLMs. These technologies expand038

the capabilities of LLMs by enabling the activa-039

tion of domain-specific knowledge or strengthen-040

ing memory capabilities. However, they also in-041

troduce significant computation and memory con- 042

sumption due to exceedingly long contexts. Recent 043

developments in reasoning models, exemplified by 044

ChatGPT-o1 (OpenAI, 2024b) and DeepSeek-R1 045

(DeepSeek-AI, 2025), have exacerbated this issue 046

because of their extensive internal reasoning pro- 047

cesses. 048

Figure 1: IAM is orthogonal to the existing KV cache
eviction methods and can further reduce the KV cache
usage in long context scenarios.

To address the aforementioned challenges and 049

achieve efficient inference, various methodologies 050

have been proposed, including optimizing model 051

architectures (Sun et al., 2024; Gloeckle et al., 052

2024), prompt compression (Jiang et al., 2023; Pan 053

et al., 2024), and KV cache optimization (Zhang 054

et al., 2023; Yang et al., 2024; Hooper et al., 2024), 055

among others. A specific approach within KV 056

cache optimization, known as KV cache eviction, 057

achieves efficiency improvements by exploiting 058

characteristics and sparsity within attention mecha- 059

nisms. Nevertheless, these methodologies predom- 060

inantly concentrate on leveraging intrinsic sparsity 061

of LLM itself, without considering external infor- 062

mation to facilitate better optimization. 063

Previous study (Chen et al., 2021) has indicated 064

a significant similarity in attention patterns between 065

small and large models within the BERT architec- 066

1



ture. In Appendix A, we further substantiate that067

this similarity is also present in LLMs. Building068

upon this characteristic, this paper introduces an069

efficient inference technique through attention map-070

ping between small language model (SLM) and the071

larger one. It is important to note that our pro-072

posed method achieves dual benefits of accelerated073

attention computation and reduced KV cache com-074

sumption, and is orthogonal to most existing KV075

cache optimization method. As depicted in Figure076

1, the utilization of H2O (Zhang et al., 2023) facili-077

tates KV cache compression at token level, whereas078

our method can achieve further compression at the079

model’s layer level.080

In this study, we investigate the methodology081

for achieving attention mapping between SLM and082

LLM while maintaining the performance of the083

original LLM. Initially, we evaluate the impact of084

various similarity metrics applied to attention ma-085

trices on language modeling efficacy. Following086

this, we explore how mapping at different layers087

of the LLM influences its language-understanding088

capabilities, thereby identifying the most appropri-089

ate layers for mapping. Finally, we demonstrate090

that the established mapping relation remains con-091

sistent throughout the inference process, enabling092

it to be constructed during the prefill stage and093

subsequently utilized in subsequent decode stage.094

This consistency facilitates dynamic adaptation to095

evolving contexts.096

Based on these experiments and observations,097

we introduce the efficient inference through atten-098

tion mapping (IAM) framework. This framework099

effectively captures the similarities in attention100

patterns between SLM and LLM to dynamically101

establish mapping across varying contexts. Con-102

sequently, LLM can perform efficient inference103

without calculating portions of attention matrices,104

thereby achieving dual benefits of reduced GPU105

memory usage for KV cache and decreased compu-106

tational requirements in attention mechanisms. We107

first comprehensively evaluate performance preser-108

vation of IAM across four kinds of scenarios. Ex-109

perimental results indicate that with a 30% map-110

ping ratio, the model maintains performance close111

to lossless, while at a 50% mapping ratio, it also re-112

tains high capability levels. Efficiency evaluations113

across different inference scenarios demonstrate114

that IAM achieves an average reduction of 22.1%115

in KV cache usage and an average acceleration of116

11% in inference speed. Our other experimental117

results indicate that the IAM is generalizable on118

other series of LLMs and compatible with existing 119

KV cache optimization methods. 120

2 Related Work 121

Due to the widespread adoption of technologies 122

such as RAG and the recent emergence of reason- 123

ing models like DeepSeek-R1, the demand for han- 124

dling long contexts has significantly increased. The 125

self-attention mechanism necessitates computing 126

attention between the current token and every pre- 127

ceding token, leading to the common practice of 128

storing previous tokens’ KV states (KV cache) to 129

avoid recomputation. However, this approach has 130

become a primary bottleneck for managing long 131

contexts. 132

One category of methods focuses on efficiently 133

storing and transmitting large amounts of KV cache 134

with constrained hardware. For instance, tensor 135

parallelism (Shoeybi et al., 2020) distributes atten- 136

tion heads and pipeline parallelism (Huang et al., 137

2019) distributes attention layers across multiple 138

GPUs, enabling horizontal scaling of KV cache 139

storage capacity by adding more GPUs. When 140

GPU HBM is insufficient, some techniques (Sheng 141

et al., 2023) concentrate on efficiently offload- 142

ing the KV cache to CPU memory. Mooncake 143

(Qin et al., 2024) advances this concept further by 144

proposing a multi-level caching strategy centered 145

around the KV cache. At the CUDA optimization 146

level, FlashAttention (Dao, 2023) reduces the num- 147

ber of read/write operations between GPU HBM 148

and GPU cache, while PagedAttention (Kwon et al., 149

2023) employs virtual memory management tech- 150

niques to minimize memory fragmentation in GPU 151

HBM. These approaches primarily aim to optimize 152

hardware capabilities and KV cache requirements 153

from a system perspective, without addressing KV 154

cache reduction from an algorithmic perspective. 155

Another category of methods focuses on leverag- 156

ing the inherent similarities and sparsity within 157

the attention mechanism. Techniques such as 158

KVQuant (Hooper et al., 2024) exploit redun- 159

dancies in numerical representations to propose 160

quantization of the KV cache, thereby reducing 161

storage requirements and enhancing load speeds. 162

StreamingLLM (Xiao et al., 2024) achieves closely 163

unlimited input by reserving both the initial and 164

the most recent KV cache of tokens. H2O (Zhang 165

et al., 2023) observed that the accumulated atten- 166

tion scores of all tokens follow a power-law distri- 167

bution, indicating that only a small subset of tokens 168
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is highly significant in the generation. Scissorhands169

(Liu et al., 2023) revealed the persistence of impor-170

tance, indicating that tokens identified as impor-171

tant in initial remain significant throughout sub-172

sequent stages of inference. PyramidInfer (Yang173

et al., 2024) further explores the distinct attention174

characteristics across different layers within LLM,175

and identified that deeper layers exhibit greater re-176

dundancy. These findings help design effective KV177

cache eviction approaches. Meanwhile, KVMerger178

(Wang et al., 2024) leverages the high similarity179

of KV states observed across different datasets to180

design a Gaussian kernel weighted merging algo-181

rithm for merging KV Cache, thereby minimizing182

the loss introduced by dropping methods. However,183

these approaches primarily exploit the inherent sim-184

ilarities and sparsity within the model’s attention185

mechanism and do not incorporate external infor-186

mation to enhance KV cache optimization, as IAM187

does. In addition, IAM is orthogonal to most of the188

aforementioned methods, due to its innovative ap-189

proach of utilizing entire attention matrices of SLM190

and avoiding computations of attention mechanism191

of mapped layers in LLM.192

There are also some works about speculative de-193

coding (Xia et al., 2023; Cai et al., 2024), which194

employs a SLM as a draft model, followed by vali-195

dation from a LLM to determine whether to adopt196

its predictions. Similar to our method, this ap-197

proach aims to accelerate inference through the198

collaboration of small and large models. However,199

the core mechanisms differ: speculative decoding200

focuses on aligning the next-word prediction prob-201

ability distributions between the SLM and LLM,202

while IAM relies on the high similarity of attention203

matrices between the SLM and LLM. Additionally,204

the LLM in speculative decoding can also bene-205

fit from the IAM method to enhance performance,206

achieving a synergistic effect.207

3 Methodology208

In this section, we begin by conducting a series of209

experiments aimed at providing valuable insights210

into attention mapping. Building on these findings,211

we then introduce the IAM framework.212

3.1 How to Measure Similarity213

A proper metric of similarity is crucial in attention214

mapping. It helps to capture the significant pattern215

within the attention matrix, thus minimizing the216

bias introduced by mapping in the forward process217

of LLM. For vectors x and y, formed by flattening 218

the lower triangular part of attention matrices of 219

SLM and LLM, we consider the following similar- 220

ity measure: 221

Cosine Similarity. The cosine similarity is defined 222

as: 223

cos < x,y >=
x · y
∥x∥∥y∥

(1) 224

Minkowski Distance. The Minkowski Distance is 225

defined as: 226

d(x,y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(2) 227

where xi and yi is the element in vector x and y, 228

and p is the hyperparameter. 229

Pearson correlation. The Pearson correlation is 230

a common measure of linear correlation between 231

two variables. It is defined as: 232

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(3) 233

where xi and yi is the element of vector x and y, 234

and x̄ and ȳ represents mean of x and y. 235

We utilize Qwen2-72B as the target LLM and 236

consider two SLMs with different scales, Qwen2- 237

0.5B and Qwen2-7B, as sources of attention ma- 238

trices for mapping. We measure the log perplexity 239

of the LLM on WikiText-v2 (Merity et al., 2016) 240

after performing attention mapping using different 241

metrics of similarity. The experimental results are 242

presented in Table 1. It is noted that these results 243

are obtained by dynamically matching the max- 244

imum similarity matrix between SLM and LLM 245

during the mapping process without using a fixed 246

mapping. 247

From the experimental results, it can be ob- 248

served that cosine similarity achieves the best per- 249

formance for both mappings from Qwen2-0.5B 250

to Qwen2-72B and from Qwen2-7B to Qwen2- 251

72B. Minkowski Distance with p = 1 also performs 252

nearly as well as the best metric. Pearson corre- 253

lation is proven unsuitable as the similarity met- 254

ric due to its significantly higher perplexity. We 255

also explore compensating the differences of the 256

L2 norm after selecting the mapping matrix based 257

on cosine similarity, which is named "Cosine with 258

Norm" in Table 1. However, the experimental re- 259

sults indicate that this approach does not consis- 260

tently and significantly enhance the performance of 261
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Mapping Metric Perplexity (log)

Qwen2-0.5B
to

Qwen2-72B

Cosine 2.577
Pearson 4.976
Minkowski (p = 1) 2.589
Minkowski (p = 2) 2.878
Cosine with Norm 2.562

Qwen2-7B
to

Qwen2-72B

Cosine 2.414
Pearson 5.376
Minkowski (p = 1) 2.427
Minkowski (p = 2) 2.514
Cosine with Norm 2.421

Qwen2-72B (Original) 2.136

Table 1: The log perplexity values after conducting at-
tention mapping using different similarity metrics. The
original log perplexity is also provided in the bottom for
comparison.

cosine similarity. Moreover, introducing the vari-262

able of L2 norm adds complexity to the mapping263

in the inference process and is unfavorable for the264

generalization across different contexts. Therefore,265

we finally choose cosine similarity as the similarity266

metric.267

3.2 Which Layers to Map268

In this section, we explore the methodology for269

selecting suitable layers to map, with the objec-270

tive of retaining model performance. For our pur-271

poses, we utilize Qwen2-72B as the target LLM for272

mapping which comprises 80 transformer layers.273

We partitioned these layers into 10 sub-blocks (8274

layers each) and make them mapped sequentially,275

followed by an evaluation of its performance using276

the MMLU benchmark.277

The experimental results are shown in Figure 2.278

The experimental results indicate the presence of279

two optimal mapping regions within the Qwen2280

model architecture: one situated in the final two281

sub-blocks (layers 64 - 80) and another located in282

No.2 to No.4 sub-blocks (layers 16 - 40). These283

regions maintain performance levels comparable to284

those of the original model after attention mapping.285

Conversely, mapping from the beginning (layers 0286

- 16) is entirely impractical due to the significant287

performance degradation it induces.288

Based on these observations, IAM adopts the289

following mapping strategy for Qwen2-72B: ac-290

cording to the user-specified mapping ratio, map-291

pings are first performed sequentially from the last292

layer of the model backward to layer 64. If the293

specified mapping ratio is still not achieved, the294

mapping continues from layer 16 onward, proceed- 295

ing backwards until the requirement is met. This 296

approach ensures a balance between maintaining 297

model performance and achieving the desired map- 298

ping efficiency, leveraging the identified optimal 299

regions for layer mapping. 300
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Figure 2: The performance on MMLU benchmark after
mapping different attention layers of Qwen2-72B.

3.3 Consistency of Mapping 301

IAM establishes a mapping relationship between 302

the SLM and the LLM based on similarity during 303

the prefill stage, which is then utilized in the sub- 304

sequent decode stage. Therefore, an essential guar- 305

antee is that the mappings established during the 306

prefill stage remain consistent, which means map- 307

ping relationship should not significantly change 308

as the inference progresses. To evaluate the con- 309

sistency, we observe the proportion of times that 310

the mapping does not change as consistency rate 311

during the autoregressive generation. We also use 312

the WikiText-v2 datasets as the prompt and set the 313

max output tokens as 500. 314

The experimental results are shown in Figure 3, 315

where we averaged the consistency rate within lay- 316

ers. It can be seen that a high level of consistency 317

rate is maintained across layers. This indicates that 318

the mapping established during the prefill stage 319

remains stable and reliable throughout the decode 320

stage, ensuring relatively small imprecision of map- 321

ping during the dynamic generation. 322

3.4 IAM Framework 323

Based on the preceding experiments and observa- 324

tions, we present the framework of IAM in this 325

section, as shown in Figure 4. IAM initially estab- 326

lishes mappings during the prefill stage. Given 327

a LLM M and a SLM Ms, the prompt is first 328

passed through both models to obtain the atten- 329

tion matrices respectively. Specifically, the atten- 330

tion matrices of M are denoted as Ai ∈ RN×N , 331
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Figure 3: The average consistency rate from the 16th
layer onward. A higher consistency rate indicates that
the mapping established in prefill stage remains more
stable and undergoes fewer changes during decoding.

0 < i < L · D, and those in Ms are denoted as332

A′
j ∈ RN×N , 0 < j < l · d. L and l represent333

the number of layers in the M and Ms. D and d334

denote the number of attention heads per layer in335

each model. N represents the number of tokens in336

the prompt. Due to differences in model architec-337

tures, we have l · d < L ·D. And then, pairwise338

similarity between the attention matrices from M339

and Ms is computed by:340

S(Ai, A
′
j) =

Tr(AT
i A

′
j)

∥Ai∥F ∥A′
j∥F

(4)341

Tr(·) denotes the trace of the matrix and ∥ · ∥F342

denotes the Frobenius norm. Finally, the mapping343

function is obtained by:344

f(i) = argmax
j

S(Ai, A
′
j) (5)345

In the decode stage, IAM utilizes the established346

mapping f(i) to perform the attention mapping,347

which can be represented as:348

Ai ← A′
f(i) (6)349

Finally, the forward process of the model based350

on IAM can be represented as:351

Y = M(X; θM , Ai ← A′
f(i)) (7)352

where X and Y denotes the input and output re-353

spectively.354

After establishing the IAM framework, we per-355

form instruction tuning to mitigate the performance356

degradation caused by differences in the atten-357

tion matrices. Specifically, we utilized the Alpaca358

dataset (Taori et al., 2023) for this purpose. During359

the training process, the parameters of the large360

Algorithm 1 IAM
Input: A target large language model M ; A
small language model Ms; Prompt x; Establish-
ing threshold τe; Truncation threshold τt; Mapping
ratio R; Max output lenth Lmax.

1: Calculate token lenth of prompt as len(x)
2: if len(x) > τt then
3: Truncate lenth of prompt to τt
4: else if len(x) < τe then
5: Autoregressive generation y = {yi}ki=1 by

M until len(x) + k >=τe
6: end if
7: Forward process by M(x) and Ms(x) and get

attention matrices respectively
8: Calculate pairwise similarity via Eq.(4)
9: Select mapping layers according to R

10: Establish mapping via Eq.(5)
11: while yi ̸= eos and L < Lmax do
12: Replace attention matrix of M via Eq.(6)
13: Autoregressive generation y = {yi}Li=k by

M(x,y)
14: end while
Output: Output token sequences y = {yi}Li=1

model are frozen, and only the small model need 361

to update parameters. The optimization objective 362

for the Ms can be formulated as: 363

min
θMs

E(X,T)∼D

[
L(M(X; θMs , Ai ← A′

f(i)),T)
]

It is also noted that to prevent instability in the 364

mapping established during the prefill stage due to 365

overly short prompt, we employ a delayed estab- 366

lishment mechanism. This means that mapping is 367

only initiated and performed once the number of 368

preceding tokens N exceeds a specified threshold. 369

Similarly, for scenarios involving long contexts, 370

based on observations of consistency in Section 371

3.3, we truncate the sequences when calculating 372

similarity to avoid inaccuracies that can arise from 373

high-dimensional data. The detailed procedure of 374

IAM can be referred to Algorithm 1. 375

4 Experiments 376

4.1 Experiments Setup 377

Datasets We comprehensively evaluate the utility 378

preservation of IAM from four kinds of scenarios: 379

1) Language modeling: we measure the perplex- 380

ity on WikiText-v2 (Merity et al., 2016). 2) Lan- 381

guage understanding: We evaluate performance on 382

5



Prompt：IAM is a technique that…

Transformer Layer 0

……

Transformer Layer N

……

Transformer Layer n

IAM Similarity Measure Layer  Selection Consistent Mapping

L
L

M

S
L

M ……

Transformer Layer 0 Transformer Layer M

F
F

N

Head 0 

Attention

  Matrix

… …

Head 0 

Head N 

Attention

  Matrix

… …

Attention

  Matrix

… …

Attention

  Matrix

… …

Attention

  Matrix

… …

Output: enables 

attention mapping

between SLM and 

LLM while…

M << N

Figure 4: Framework of IAM.

the MMLU (Hendrycks et al., 2021). 3) QA task:383

we assess QA performance using the HotpotQA384

dataset (Yang et al., 2018) and adopt F1 score as385

evaluation metric. 4) Long context: we utilize Gov-386

Report benchmark (Huang et al., 2021) to test the387

long text summarization capacity.388

Implementation Details Our experiments are389

conducted on two types of LLMs. The main re-390

sults are obtained using the models of the Qwen2391

series1. Specifically, we use Qwen2-72B as target392

LLM and two SLMs with different scales: Qwen2-393

0.5B and Qwen2-7B. We also test the LLaMA3394

series models2 to study the IAM’s adaptation to395

different series LLMs in section 4.4. For these396

experiments, the SLM is LLaMA 3.2-1B, and the397

LLM is LLaMA 3.1-70B.398

All experiments are performed on 8 NVIDIA399

A100 GPUs with . We use greedy decoding to400

ensure the stability of experimental results. For401

generative tasks, we limit the maximum output to-402

kens to 512 and set the repetition penalty as 1.2.403

We also set the establishing threshold τe and the404

truncation threshold τt in IAM algorithm as 20405

and 100 respectively. The other experimental en-406

vironment includes the following configurations:407

CUDA version 12.0, PyTorch version 2.4.0, and408

1https://github.com/QwenLM/Qwen
2https://github.com/meta-llama/llama3

HuggingFace’s Transformers3 with version 4.45.1. 409

4.2 Benchmark Results 410

In Figure 5, we evaluate the performance of IAM in 411

four kinds of scenarios with mapping ratio varying 412

from 0 to 50%. It can be seen that IAM main- 413

tains high language understanding and generation 414

quality with much less GPU memory consump- 415

tion. Specifically, at a mapping ratio of 30%, IAM 416

achieves almost the same performance as the orig- 417

inal model. At a mapping ratio of 50%, it still 418

retains high capability levels. 419

It is also important to note that using Qwen2-7B 420

as the SLM yields better performance. We conjec- 421

ture that this is because using the bigger model with 422

more source attention matrices can improve max- 423

imum similarity between mapping layers, which 424

will reduce the loss of mapping. This implies that 425

there is a trade-off between efficiency and model 426

performance. 427

4.3 Efficiency Analysis 428

To evaluate the efficiency of IAM, we consider two 429

common scenarios: 1) Multi-user Concurrency: In 430

this scenario, the context length is set to a prefill 431

length of 512 tokens and a maximum generation 432

length of 512 tokens, with a batch size of 64. 2) 433

Long Context: In this scenario, the context length 434

3https://github.com/huggingface/transformers

6



0 10 20 30 40 50
Mapping Ratio (%)

8

10

12

14

16
P

er
pl

ex
ity

Default
Qwen2-0.5B as SLM
Qwen2-7B as SLM

0 10 20 30 40 50
Mapping Ratio (%)

60

65

70

75

80

85

M
M

LU
 (

A
cc

ur
ac

y)

0 10 20 30 40 50
Mapping Ratio (%)

0.6

0.8

1.0

1.2

H
ot

po
tQ

A
 (

N
or

m
. F

1 
S

co
re

)

0 10 20 30 40 50
Mapping Ratio (%)

0.6

0.8

1.0

1.2

G
ov

R
ep

or
t (

N
or

m
. R

ou
ge

-L
)

Figure 5: Benchmark results of IAM with mapping ratio varying from 0 to 50%. Default represents using the
original LLM without mapping.

is set to a prefill length of 8192 tokens and a maxi-435

mum generation length of 512 tokens, with a batch436

size of 8. In each scenario, we analyze both mem-437

ory efficiency and compute efficiency, and thus438

derive a detailed view of the impact of IAM on end-439

to-end performance. The LLM used in this part of440

the experiment is Qwen2-72B while the SLM is441

Qwen2-0.5B, and the mapping ratio is set to 0.5.442

Memory Efficiency With IAM, the mapped lay-443

ers in the LLM do not need to store the K cache444

because they do not compute attention matrices.445

This results in a reduction of memory usage. Al-446

though the introduction of SLM with its parameters447

and kv cache also incurs additional overhead. It448

is acceptable since the SLM’s memory is signifi-449

cantly smaller than that of the LLM. Referring to450

Table 2, even when accounting for the KV cache of451

the SLM, IAM achieves a 21.7% reduction in KV452

cache usage in the multi-user concurrency scenario453

and a 22.5% reduction in the long context scenario,454

which indicates the memory efficiency of IAM.455

Compute Efficiency Similarly, in IAM, the456

mapped layers of LLM do not need to perform Q457

projection, K projection, and the multiplication of458

the QK matrix with softmax. These computations459

are particularly intensive during the prefill stage460

and often become a performance bottleneck. By461

using IAM, we can significantly reduce this com-462

putational load. Although introducing the SLM463

adds some computational overhead, this additional464

workload is significantly lower compared to the465

computations avoided in the LLM. As a result, the466

overall system still sees substantial benefits: In467

the multi-user concurrency scenario, the reduction468

in computational load leads to a 12% decrease in469

TTFT. In the long context scenario, where the com-470

putational complexity of the QK matrix multiplica-471

tion increases quadratically with sequence length,472

IAM provides even greater computational savings,473

resulting in a more significant 17% reduction in 474

TTFT. 475

End-to-end Efficiency The resulting memory 476

and compute savings contribute to improved over- 477

all system efficiency. Benefit from the substantial 478

reduction in K cache usage, the LLM experiences 479

notable improvements in TPOT during the decode 480

stage, with decreases of 11% and 10% in the multi- 481

user concurrency and long context scenarios, re- 482

spectively. Additionally, the significant reduction 483

in computational load leads to improved TTFT dur- 484

ing the prefill stage, with decreases of 12% and 485

17% in the same scenarios. These enhancements 486

translate into improved end-to-end throughput per- 487

formance. Compared to the default method, IAM 488

achieves throughput improvements of 11% and 489

10% in the multi-user concurrency and long context 490

scenarios, making it both practical and beneficial 491

for various deployment scenarios. 492

4.4 Different Series Models 493
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Figure 6: The performance on MMLU benchmark after
mapping different attention layers of LLaMA 3.1-70B.

To evaluate the generalizability of the IAM, we 494

conduct experiments on different series of models. 495

In this experiment, the LLM is LLaMA 3.1-70B 496

and the SLM is LLaMA 3.2-1B. The procedure of 497

IAM for different series of models is largely fol- 498

lowed the procedures detailed in the methodology 499
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Table 2: Evaluation on efficiency of IAM. Bsz: batch size. Lenth: prefill length + decode lenth. KV Mem.: GPU
memory usage (GB) of the KV cache. TPOT: average time (s) per output token in decode stage. TTFT: time (s) to
first token. Thr.: End-to-end throughput (token/s)

Method Bsz Lenth KV Mem. TPOT TTFT Thr.

Default
64 512+512

158.7 (100%) 0.196 (1.0x) 2.67 (1.0x) 636 (1.0x)
IAM 124.2 (78.3%) 0.176 (1.11x) 2.39 (1.12x) 708 (1.11x)

Default
4 8192+512

187.4 (100%) 0.216 (1.0x) 6.72 (1.0x) 297 (1.0x)
IAM 143.1 (77.5%) 0.197 (1.10x) 5.74 (1.17x) 326 (1.10x)

section, with the primary modification being the re-500

identification of suitable layers within LLaMA 3.1-501

70B for mapping. Following the same approach502

described in Section 3.2, we test the suitable layers503

within LLaMA 3.1-70B and show results in Figure504

8. An interesting observation is that, unlike the505

Qwen2 series models which exhibit two optimal506

mapping regions, the LLaMA series models only507

have a single optimal mapping region located at the508

end of the model. Consequently, we adjusted our509

mapping strategy for the LLaMA series models:510

as the mapping ratio increases, mappings are se-511

quentially established from the last layer backward512

toward earlier layers.513

After selecting the appropriate layers for map-514

ping in the LLaMA series models, we also evalu-515

ated their performance on the MMLU benchmark516

under various mapping ratios. The experimental517

results are shown in Figure 7. Even better than the518

performance with the Qwen2 series, IAM demon-519

strates excellent language comprehension capabili-520

ties on the LLaMA series models.521

0 10 20 30 40 50
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Default
LLaMA 3.2-1B as SLM

Figure 7: The MMLU benchmark results of IAM on
LLaMA series models.

4.5 Compatible with KV cache compression522

IAM is orthogonal to most existing KV cache com-523

pression methods due to its innovative approach524

of utilizing entire attention matrices of SLM for525

mapping, whereas existing methods mainly focus 526

on token-level attention importance. To illustrate 527

this, we take H2O (Zhang et al., 2023) as an ex- 528

ample. In Figure 1, we demonstrate that, after the 529

KV cache optimization of H2O, IAM can further 530

reduce KV cache consumption. We also evaluate 531

the impact of using H2O on IAM’s performance 532

in terms of perplexity on the WikiText-v2 dataset, 533

as shown in Figure 3. The KV cache budget of 534

H2O is set to 80%. Experimental results indicate 535

that IAM is compatible with KV cache compres- 536

sion methods like H2O without compromising the 537

model’s ability of language modeling. 538
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Mapping Ratio (%)
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Figure 8: The perplexity of using IAM in combination
with KV cache compression method H2O.

5 Conclusion 539

We address the challenges faced by LLMs in serv- 540

ing long context scenarios by introducing IAM. 541

This approach effectively reduces attention compu- 542

tation and KV cache usage by performing attention 543

mapping between different-sized models with same 544

series, with minimal impact on model performance. 545

We also demonstrate that IAM is effective across 546

different series of models. Furthermore, it is com- 547

patible with many existing KV cache optimization 548

methods, making it a highly promising solution for 549

deploying LLMs in resource-constrained environ- 550

ments. 551
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Limitations552

There are also some limitations in our approach:553

the current analysis and implementation of IAM554

are conducted at the granularity of model layers.555

If the granularity is further refined to the attention556

head, it could potentially yield additional improve-557

ments in model performance and resource savings.558

Additionally, IAM is not compatible with high-559

efficiency attention methods (e.g., Flash Attention)560

as it requires calculating attention scores. Besides561

that, IAM can not achieve total lossless for model562

performance.563
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A Attention Similarity between Small and727

Large Language Models728

A fundamental premise of this paper is the high729

similarity of attention matrices across different-730

sized models within same series. We first demon-731

strate the visualization of average attention matri-732

ces across all layers and all heads under a given733

context in WikiText-v2 using four different-size734

models from the Qwen2 series, as shown in Figure735

11. It can be observed that these matrices exhibit736

strong similarities in their attention patterns.737

We also provide a quantitative analysis of this738

similarity. Considering the WikiText-v2 dataset,739

we use the SLM of Qwen2-7B and the LLM of740

Qwen2-72B to compute the average cosine simi-741

larity of all pairwise most similar matrices. The742

result yield a average cosine similarity of 0.954.743

For comparison, we also test the case where the744

SLM is llama3.2-1B. Due to the difference of tok-745

enizers, we employ the pairwise longest common746

subsequence method to align tokens between the747

two models. In this situation, the average cosine748

similarity is 0.568.749

B Detailed Analysis of Mapping Strategy750

In Section 3.2, we present a mapping strategy from751

a practical perspective, specifically by using bench-752

mark scores to determine which layers are most753

suitable for mapping. In this section, we provide754

additional analysis of the mapping strategy. There755

is a natural consideration of mapping the layers756

with the highest average cosine similarity, aiming757

to minimize the loss introduced by mapping. To758

this end, we first calculate the average cosine sim-759

ilarity for each layer of Qwen2-72B, as shown in760

Figure 9. It is evident that the layers in the first half761

of the model, excluding the first two layers, exhibit762

more strong similarity.763

We consider three mapping strategies: From the764

Front-End (mapping only the initial layers), From765

the Back-End (mapping only the latter layers), and766

the Most Similar (mapping the layers with the high-767

est mean cosine similarity). Using the same eval-768

uation methodology as described in section 3.1,769

the experimental results are illustrated in Figure 10,770

where the x-axis represents the percentage of layers771

mapped relative to the total number of layers. From772

experimental results, it is evident that the From the773

Front-End strategy is entirely unviable. The From774

the Back-End strategy yields the best results, even775

outperforming the Most Similar approach. We con-776

jecture that this can be attributed to the cumulative 777

error introduced by front-end mapping, which pro- 778

gressively accumulates through each subsequent 779

layer. Consequently, introducing mappings at the 780

back-end leads to fewer alterations from the origi- 781

nal model, thereby maintaining a relatively greater 782

capability of the LLM. This also explains why map- 783

ping the latter layers consistently yields better per- 784

formance, both in the Qwen2 series models and the 785

LLaMA3 series models. 786

Figure 9: The average cosine similarity for each layer of
Qwen2-72B by calculating the most simular attention
matrix between Qwen2-7B and Qwen2-72B.
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Figure 10: The log perplexity of LLM according to
different mapping layer selecting strategies.

C Statistical Analysis of Mapping 787

Relations 788

We also conduct a statistical analysis of the most 789

frequent mapping relations on the WikiText-v2 790

dataset. Specifically, we record the mapping re- 791

lations for each context. For each attention head of 792

the LLM, we identify the mode of its mapping in- 793

dex. In this experiment, we used a SLM of Qwen2- 794

0.5B and a LLM of Qwen2-72B, resulting in a 795

mapping from 5120 to 360. The experimental re- 796

sults are shown in Figure 12. 797

Firstly, it can be observed that most matrices 798

from the SLM are utilized in the mapping process, 799
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Figure 11: The average attention matrices across all layers and all heads from four different-size models of Qwen2
series

with the exception of the first forty matrices, which800

are rarely used. Additionally, the mapping relations801

exhibit a strong imbalance across different matri-802

ces. The most frequently used matrix is utilized803

over 1200 times, significantly more than any other804

matrix. This finding suggests that the attention805

matrices within the LLM might have substantial806

sparsity.807

Figure 12: The statistical analysis of the most frequent
mapping relations between Qwen2-0.5B and Qwen2-
72B.
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