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Abstract
Vision-language models (VLMs) have transformed tasks re-
quiring visual and reasoning abilities, such as image retrieval
and visual question answering (VQA). Despite their success,
VLMs face significant challenges with tasks involving geo-
metric reasoning, algebraic problem-solving, and counting.
These limitations stem from difficulties in effectively inte-
grating multiple modalities and accurately interpreting such
tasks. We propose an efficient, question-driven image cap-
tioning pipeline to enhance visual question answering abil-
ities in mathematical contexts. Our method extracts key-
words from the question, generates targeted captions for each
image-question pair using those keywords, and uses the cap-
tion as a prompt for QnA. We propose utilizing task-specific
guidance as an “approach” to enhance the VQA and cap-
tioning process. Additionally, we evaluate the robustness of
these models against adversarial prompts to ensure that our
captioning-based approach does not compromise much on ro-
bustness. Our pipeline is tested on diverse math-related and
visual reasoning tasks across multiple datasets and VLMs.

Introduction
VLMs have made substantial progress in advancing multi-
modal learning. Models such as CLIP (Radford et al. 2021),
BLIP (Li et al. 2022), and ImageBind (Girdhar et al. 2023)
offer powerful encoders with excellent representation ca-
pabilities, demonstrating high transferability in recognition
and understanding tasks. Additionally, VLMs like LLaMA
Adapter (Zhang et al. 2023), BLIP2 (Li et al. 2023a),
Flamingo (Alayrac et al. 2022), and LLaVA (Liu et al.
2024) combine visual encoders from discriminative VLMs
with Large Language Models (LLMs) like LLaMA (Tou-
vron et al. 2023) and GPT-3 (Brown 2020), capitalizing on
LLMs’ exceptional generative abilities. Recent models, in-
cluding GPT-4 Vision (Achiam et al. 2023), Claude 3.5 Son-
net (AI 2024), and Gemini (Team et al. 2024), have achieved
human-level performance across various benchmarks such
as, Mmmu (Yue et al. 2024), MathVista (Lu et al. 2023),
DocVQA (Mathew, Karatzas, and Jawahar 2021). While
these models perform well on standard benchmarks, stud-
ies indicate that they often struggle to fully comprehend the
visual aspects of mathematical tasks, particularly failing to
capture relational and spatial information (Chen et al. 2024)
within diagrams and relying heavily on textual cues instead
(Zhang et al. 2024b). Various works have further shown that

these models lack both spatial scene understanding (Tong
et al. 2024) and temporal awareness (Li et al. 2023b), with
some studies even revealing difficulties with basic visual
tasks that humans handle effortlessly. This underscores the
need to enhance not only the visual reasoning and under-
standing capabilities of VLMs but also their fundamental
ability to perceive and interpret images effectively (Rahman-
zadehgervi et al. 2024). In this work, we evaluate the visual
capabilities of these models on math-related tasks, specifi-
cally testing their ability to truly ‘see’ and interpret visual
information. We propose a zero-shot pipeline that uses task-
specific guidance to generate image captions to improve per-
formance on these tasks. Additionally, we test the model’s
robustness against adversarial prompts framed as incorrect
yet relevant problem-solving strategies. Given that VLMs
are largely pre-trained for caption generation (Yang et al.
2024a), (Ramos et al. 2023) and many downstream tasks
(Zhang et al. 2024a) require textual outputs, we hypothe-
size that guiding the model to create detailed captions en-
courages it to focus more on the visual content, reducing its
reliance on textual cues from the question alone. Caption-
ing, thus, enables the model to capture all essential image
attributes, which is especially critical for mathematical rea-
soning.

Background and Related work
Various prior works have tried to improve the performance
of VLMs without requiring external fine-tuning, techniques
such as in-context learning(Sarch et al. 2024; Nulli et al.
2024; Doveh et al. 2024; Sun et al. 2024; Zhao et al.
2023),chain of thought prompting(Zhang et al. 2024c; Ge
et al. 2023), few-shot prompting (Brown et al. 2020; Chen
et al. 2023), have enhanced VLM performance, yet these
models continue to face challenges in mathematical tasks,
particularly in counting, leading some researchers to de-
scribe them as “blind” to visual information (Rahmanzade-
hgervi et al. 2024). While research suggests that much of the
reasoning displayed by Vision-Language Models (VLMs)
may rely more on the phrasing of questions than on the
images themselves (Zhang et al. 2024b). This limitation is
especially pronounced in tasks that depend heavily on vi-
sual details, such as counting nested shapes, identifying line
intersections, identifying the number of objects in an im-
age, and solving geometrical problems where VLMs con-



Approach : 
Counting is the process of     
determining the total number of
individual items or elements
within a image. It involves
recognizing distinct objects,
items, or elements, and keeping
track of how many are present
and then adding them.

Caption the image using
keywords : counting, objects

Adversarial : 
Counting is estimating the
number of prominent items while
ignoring smaller or overlapping
ones. Focus on the most
noticeable objects and group
similar items together for a rough
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accuracy. Count a group of
objects as one.
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are 8 dice.

Caption : There are 10 green
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different faces.

.

Caption : 7 dice in this picture
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Question : Count number of
objects.

Question : Count number of
objects.

Question : Count number of
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Figure 1: Example of our Captioning Approach

sistently fall short. To evaluate these visual abilities, spe-
cialized datasets such as Math Vision (Wang et al. 2024),
Count Bench (Paiss et al. 2023), Blind (Rahmanzadehgervi
et al. 2024), and Geo170k(Gao et al. 2023a) have been
introduced. In efforts to improve general visual question
answering (VQA) performance, various techniques have
been developed, including question-driven image captions
(Özdemir and Akagündüz 2024) that are processed by lan-
guage models. These methods have shown promise, partic-
ularly in enhancing direct visual question-answering tasks.
Further, some studies aim to improve the reasoning abilities
of VLMs by directly fine-tuning them for tasks such as ques-
tion answering (Deng et al. 2024; Roberts and Roberts 2024)
and mathematical problem-solving (Yang et al. 2024b). In
contrast, our research focuses on enhancing the visual per-
formance of VLMs through a pipeline that leverages simple
prompting techniques, eliminating the need for fine-tuning
and thereby reducing computational overhead.

Methodology
We evaluated Vision-Language Models (VLMs) on a range
of visual tasks to assess their visual abilities. To ensure ro-
bustness and generalizability, we selected tasks from four
datasets covering various question types, including geome-
try, counting, algebra, and mathematical reasoning. Our ex-
periments employed a diverse set of four VLMs to evaluate
the generalization of our approach. Each model was tested
across four distinct methods to comprehensively assess our
proposed approach:

1. Vanilla QnA: We used a classical zero-shot approach
where each model was directly queried with questions re-
lated to images from the datasets. This formed the base-
line of our experiments.

2. Approach-based QnA: We used Gemini-1.5 (Team
et al. 2024) to provide the approach to solve the de-
sired question by simply giving it the question and ask-
ing a comprehensive approach for the question. Then we
prompted the VLMs being tested to solve the question by

providing the approach with it.
3. Vanilla Keyword Captioning: We used the base model

to create captions for the image, guiding the caption-
ing process with specific keywords related to the ques-
tion. These keywords were obtained from the Llama 3.1-
Instruct model1 (Dubey et al. 2024) by prompting the
model to provide 3-5 concise keywords for each ques-
tion. After generating the captions with the VLM, us-
ing the keywords as context, we input them into an
LLM(Gemini) and asked the relevant questions for each
task.

4. Approach-based Captioning: We conducted additional
tests to evaluate the impact of providing more context
in prompts for generating captions. First, we fed the
question to Gemini, asking it to develop an approach
to solve the problem. Following this, we fed the pro-
posed approach, along with the image and relevant key-
words generated from Llama to the VLM. We asked the
VLM to caption the image using the keywords and ap-
proach as context. Finally, we input this caption into an
LLM(Gemini) and asked the model to answer the re-
quired question based on the caption.

Further, to assess the robustness of our proposed ap-
proach, we tested the models across the following 2 tasks
as well:

1. Adverserial-based QnA: We appended an adversarial
prompt, generated using Gemini, to the question. This
contained misleading information about the approach to
be followed to solve the question. We then queried each
VLM on images in the dataset, using the question ap-
pended with the incorrect adversarial approach.

2. Adverserial-based Captioning: Similar to approach-
based captioning, we generated adversarial approaches
using Gemini by asking it to generate a “wrong” ap-
proach to solve the given question. Then, we generated
the image caption from the VLMs with the adversarial

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instructg
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Figure 3: Comparison of different Methods

approach along with the image as inputs. Finally, we used
an LLM (Gemini-1.5) and asked it to answer the required
question based on the caption.

Experiments
We chose diverse models and techniques to prove and test
our hypothesis. We chose four datasets, Geo170k (Gao et al.
2023b), CountBench (Sindagi, Yasarla, and Patel 2020),
Blind (Rahmanzadehgervi et al. 2024), and MathVision
(Wang et al. 2024), containing various tasks related to ge-
ometry, reasoning, algebra, and counting. Also, we split
the MathVision dataset into three subparts: mainly vision-
based, geometry-based, and mathematics-based. To cover a
range of model sizes, we selected a diverse set of open-
source models, namely Gemini-1.5-Flash (Team et al. 2024),
LLaVa (Liu et al. 2024), Florence-2 (Xiao et al. 2024), and
Phi 3.5 Vision Instruct (Abdin et al. 2024). This selection en-
sures a variety of model sizes, from smaller ones with fewer
parameters to larger, more complex models.
• LLaVa: For LLaVa, we used the GroqAPI 2 to access

the model.
• Gemini-1.5-Flash: For Gemini, we used Google AI stu-

dio3 to access the model.
2https://console.groq.com/
3https://aistudio.google.com/

• Florence-2:45 For Florence-2, we used the open-sourced
model available on huggingface .

• Phi 3.5 Vision Instruct:6 we used the open-sourced
model available on huggingface.

Note: For Florence-2 captions were generated using the
token <DETAILED CAPTION>, and the approach was
passed onto the detailed caption. For other models, the ap-
proach was passed during the caption generation stage. Ad-
ditionally, the Florence-2 direct checkpoint was unable to
perform QnA-related tasks, so we used Florence-2 DocVQA
for QnA-related tasks.

Results
Vanilla captioning leads to overall performance improve-
ments, though its effectiveness varies with model size—it
tends to benefit smaller models more than larger ones.
In fact, Gemini registers a small performance drop using
vanilla captioning. Approach-based QnA demonstrates re-
sults above the baseline, supporting adding additional infor-
mation and context as prompts. Using task-based prompts
for generating captions consistently leads to significant im-
provements across all models and datasets. This approach

4https://huggingface.co/microsoft/Florence-2-large
5https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA
6https://huggingface.co/microsoft/Phi-3.5-vision-instruct



Model Base Approach Adv. Caption Caption Caption
Approach Adv.

Gemini-1.5-Flash 42.73 44.32 43.86 42.18 45.53 37.70
LLaVa 09.70 12.54 9.61 24.06 25.54 23.15
Florence-2 07.12 07.49 02.89 14.03 16.86 14.56
Phi-3.5-Vision 28.09 32.49 28.92 31.44 34.76 29.27

Table 1: Model-wise comparison of the accuracy of our different approaches

Dataset Base Approach Adv. Caption Caption Caption
Approach Adv.

Math-vision 10.13 14.06 12.31 19.28 22.31 21.43
CountBench 32.58 33.33 34.50 27.16 34.16 28.00
Geo 16.22 20.46 14.67 24.00 28.56 26.00
Blind 31.52 32.12 25.98 31.94 32.81 28.60

Table 2: Dataset-wise comparison of accuracy of the different approaches

demonstrates the greatest improvement in performance,
making it a promising method. We also observe a perfor-
mance drop with adversarial prompting, though this drop
is less, thus showing that captioning does not compromise
on robustness. Performance differences across datasets are
notable, too (Table 4). While average model performance
remains relatively unchanged on the CountBench dataset,
which focuses on counting tasks, captioning yields larger ac-
curacy improvements on the Geo and MathVision datasets,
which consist of geometry and visual mathematics tasks.
This aligns with our hypothesis that captioning allows the
model to focus more on visual cues necessary for answering
diagram-related questions (Zhang et al. 2024b).

Conclusion
The results of our study support our initial hypothesis:
Vision-Language Models (VLMs) exhibit significant limi-
tations in mathematical and visual tasks, especially those in-
volving numbers and counting—tasks that test the models’
ability to “see” rather than merely reason. While caption-
ing with task-specific keywords can improve performance
in certain cases by directing the models’ focus toward vi-
sual details, our findings reveal that its effectiveness depends
on factors such as dataset type, task complexity, and model
size. Larger models, particularly those pre-trained on similar
tasks, tend to perform better, underscoring the role of pre-
training, as seen in Gemini, a trend less evident in smaller
models. Our experiments demonstrate that we can improve
the mathematical and visual capabilities of Vision-Language
Models (VLMs), resulting in enhanced performance. When
using adversarial prompting, we observed a consistent per-
formance drop across all models. However, this drop was
moderate and, on average, similar to the decline seen in
adversarial QnA tasks, indicating that captioning maintains
a satisfactory level of robustness. In summary, approach-
based captioning boosts the reasoning abilities of VLMs and
increases their focus on visual cues, thereby reducing their
reliance on textual input. This approach offers a promising

direction for addressing VLMs’ limitations in perceiving nu-
merical information and handling visually complex mathe-
matical tasks. By using structured prompts derived directly
from the question and incorporating reasoning-guided meth-
ods, we can mitigate some of these weaknesses and improve
VLM performance in such problem-solving scenarios.

Limitations and Future Work
Testing the reasoning capabilities of multimodal models is a
broad research area, and we propose ways to enhance model
generalizability in our study. Due to resource constraints,
we couldn’t experiment with large-scale models like GPT-
4 (Achiam et al. 2023) or use full-size datasets, limiting our
ability to explore scalability fully. Future work with greater
resources could expand on robustness and scalability across
diverse model architectures, including models like Claude
Sonnet 3.5 (cla 2024) and GPT-4 (Achiam et al. 2023).

Our current approach involves using an LLM to process
captions from the VLM for answer extraction. Simpler pars-
ing techniques might be sufficient, given the quality of gen-
erated captions. Additionally, advanced methods, such as so-
phisticated prompt engineering as those used with LLMs
(Agrawal et al. 2024; Zhou et al. 2022; Wang and Zhou
2024; Yao et al. 2024), or incorporating domain-specific
knowledge (Liu et al. 2025) followed by fine-tuning for
more precise, contextually relevant captions could lead to
a higher performance increase. Our study also doesn’t prior-
itize interpretability, which could be addressed by examin-
ing how captioning influences the interaction between visual
and textual inputs in Vision-Language Models (VLMs) and
impacts performance. Exploring interpretable alternatives,
like graph networks, could further improve transparency and
deepen understanding of the models’ reasoning processes.
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Model Base Random Caption Caption
Random

Gemini-1.5-Flash 42.73 43.86 42.18 38.62
LLaVa 09.70 10.61 24.06 25.07
Florence-2 07.12 02.89 14.02 16.35
Phi-3.5-Vision 28.09 28.91 31.44 28.71

Table 3: Model-wise comparison of the accuracy of random approach

Dataset Base Random Caption Caption
Approach Random

Math-vision 10.13 13.31 19.27 19.61
CountBench 32.58 34.5 27.16 31
Geo 16.22 14.66 24.00 23.00
Blind 31.52 25.98 31.94 31.90

Table 4: Dataset-wise comparison of the accuracy of our different approaches

Datasets
The following datasets were used for our experiments:
• Math Vision:7 The Math Vision dataset is a curated

collection of 3,040 high-quality mathematical problems
with visual contexts from real math competitions. For our
experiments, we broadly divided the dataset into three
categories:
– Visual Based: This was originally split into Area, An-

gles, and Length-related tasks.
– Geometry Based: This was originally split into cat-

egories: Analytical Geometry, Combinatorial Geome-
try, Transformation Geometry, Descriptive Geometry
and Solid Geometry.

– General Mathematics: This was originally split into
categories: Graph Theory, Logic, Algebra, Combina-
torics, Statistics, and Arithmetic.

• Blind:8The Blind dataset consisted of images and
question-answer pairs about visual tasks. We used a sub-
set of 150 images per task. The tasks include counting
the number of intersections of 2 circles or lines, checking
if 2 lines are intersecting, counting the number of rows
and columns in a grid, finding the number of overlapping
circles in an image, and finding the number of paths be-
tween 2 points in a subway connection image.

• Countbench:9The CountBench dataset contained a total
of 540 images containing between two and ten instances
of a particular object, where their corresponding captions
reflect this number. This dataset is a benchmark dataset
for counting related tasks.

• Geo170k:10The Geo dataset contained more than 170K
geometric image-caption and question-answer pairs. We
used a subset of 500 images to conduct our experiments.
7https://huggingface.co/datasets/MathLLMs/MathVision
8https://huggingface.co/datasets/XAI/vlmsareblind
9https://huggingface.co/datasets/nielsr/countbench

10https://huggingface.co/datasets/Luckyjhg/Geo170K

Shortcomings
One notable limitation of our pipeline is that the model’s
strategy for addressing the question is derived directly from
the question itself. Specifically, we generate the approach
using an LLM (Gemini), which means that the effective-
ness of the pipeline is influenced by both the quality of
the questions in the dataset and the nature of the task be-
ing tackled. This was evident in our main paper, where we
observed a modest improvement on tasks like count-bench
and blind tasks but saw a significant boost in performance
on the Math-vision and Geo datasets. Additionally, using an
LLM to generate the task approach inherently contributes to
the performance gains of our pipeline compared to the base-
line. We hypothesize that utilizing more advanced LLMs,
such as GPT-4 or Claude, would further enhance these im-
provements. However, we were unable to evaluate this due
to computational and financial constraints. Future research
could focus on developing a standard benchmark dataset or
exploring how much the complexity of the LLM influences
the performance of such a pipeline used to generate the task
approach.

Random Approach
In our experiment, we also explored random-approach-
based captioning. This method involved providing the VLM
with the image, an LLM-generated random phrase, and rel-
evant keywords to create a detailed caption. However, the
results were highly inconsistent, showing significant vari-
ability in performance(Table4). In several instances, this ap-
proach outperformed the baseline, but we could not deter-
mine the underlying cause of this improvement, although
we hypothesize that the model tends to disregard random
information and in doing so becomes more cautious and ro-
bust. Given these unpredictable outcomes, further investi-
gation into this approach could be a potential direction for
future research.



GEO-170K

Math-Vision

Countbench


Logic Based


Geometry Based

Blind

General Maths

Figure 4: Example of images in the datasets

Dataset name Task in dataset Keywords for task

MathVision

Analytic Geometry analytic geometry
Algebra algebra, mathematics, logic
Transformation Geo transformation, geometry
Statistics statistics, graph
Angle metric geometry, angles, mathematics, logic
Combinatorics combinatorics, logic
Descriptive Geo descriptive geometry, mathematics
Logic logics, reasonings
Length lengths, geometry
Arithmetic arithmetic, logics, mathematics
Area area, geometry
Combinatorial Geo combinatorial, geometry
Solid Geometry solids, geometry
Graph Theory logics, connections, graphs

Countbench Counting objects counting, objects

GEO170K Geometry problems geometry, mathematics

BLIND

Line intersection count number, intersections
Two line intersection lines, intersecting
Interior pentagon count, number, pentagons
Subway subway lines, count, paths
Rows/columns count, rows, columns
Two circles circles, touching

Table 5: Dataset Information and Keywords



Question Approach
Are the two circles overlapping? Measure the distance between their centers and compare it to the sum of their radii.

If the distance equals the sum of the radii, the circles are touching. If the distance is
greater than the sum of the radii, the circles are apart.

Count the pentagons in the image. Analyze the image containing multiple pentagons. Identify and count each distinct
pentagon, regardless of size or position. Account for all visible pentagons, including
those partially obscured.

Count the number of rows and columns. Examine the grid structure by locating horizontal lines (rows) and vertical lines
(columns). Count the total number of rows and columns, including visible ones with-
out content.

What will be the fourteenth animal the ma-
gician pulls out of his hat?

Identify the five-animal sequence pattern. Determine where the fourteenth animal
falls within the repeated pattern.

Which number do you have to write in the
last daisy?

Identify the pattern in the numbers within each daisy. Determine how the pattern
changes from one daisy to the next. Apply this pattern to the final daisy.

For how many minutes are there exactly
two lights on at the same time?

Analyze the image to identify time intervals where exactly two lights are on simulta-
neously. Calculate the total duration of these intervals.

Find UT in trapezoid QRTU. Use the relationship between the midpoints of the legs and the bases of a trapezoid.
The line segment connecting the midpoints is parallel to the bases and its length is
the average of the base lengths.

Use parallelogram to find x. Utilize the properties of parallelograms, specifically the relationship between oppo-
site sides and angles, to set up and solve an equation involving ’x’.

Find JK in intersecting chords. Apply the Intersecting Chords Theorem: the product of the segments of one chord
equals the product of the segments of the other chord. Set up and solve the equation.

Find GF in trapezoid CDFG with median
HE.

Use the property that the median of a trapezoid is parallel to the bases and half the
sum of their lengths. Express GF in terms of HE and CD, then solve.

Table 6: Some Questions and Their Generated Approaches

Task 0-Shot Approach Adv-App Caption App-Capt App-Capt-Adv
MathVision

Angles 36 36 24 41 33 34
Area 27 28 24 37 39 28
Length 30 32 24 35 29 32
Descriptive Geo 34 26 28 19 24 24
Analytic Geo 16 18 22 25 25 20
Combinatorial Geo 22 26 19 23 24 10
Transformation Geo 18 24 20 25 17 28
Solid Geo 20 32 20 21 30 16
Graph Theory 28 24 22 29 29 22
Arithmetic 26 26 28 27 38 26
Logic 32 32 36 22 39 22
Combinatorics 20 20 12 27 31 14
Algebra 26 22 30 23 35 28
Statistics 26 24 24 27 28 22
Dataset Average 26.44 27.29 23.38 28.89 29.31 24.42

GEO170K
Geometry problems 30 33.33 32 35 39 34

CountBench
Counting objects 62 68 64.67 49 64.66 52

Blind
Line Intersection 50 58 44 48 46 35
Two line intersection 72 70 54 78 78 70
pentagon 53 42 24 49 44 43.34
Subway 23 23 26 0 0 0
Rows/columns 28 32 31 24 26 11
Two circles 89 67 92 86 85 83
Dataset Average 52.50 48.67 45.16 46.87 47.16 40.39

Table 7: Gemini Model Performance Across Various Tasks



Task 0-Shot Approach Adv-App Caption App-Capt App-Capt-Adv
MathVision

Angles 6 14 8 38 34 28
Area 2 4 2 24 26 26
Length 6 14 14 20 26 28
Descriptive Geo 20 12 16 20 22 24
Analytic Geo 4 12 8 22 12 26
Combinatorial Geo 12 14 12 16 12 8
Transformation Geo 18 16 14 24 24 28
Solid Geo 4 10 6 22 26 20
Graph Theory 12 6 6 18 24 28
Arithmetic 2 14 10 16 22 14
Logic 10 16 8 16 24 18
Combinatorics 4 2 8 16 14 20
Algebra 0 4 4 26 28 16
Statistics 6 12 6 20 12 14
Dataset Average 7.31 10.82 8.73 22.27 22.84 22.29

GEO170K
Geometry problems 5 8 6.67 33.33 36 32.66

CountBench
Counting objects 12 14 10 14.66 16 14

Blind
Line Intersection 4 1 3 6 5 6
Two line intersection 32 42 30 64 68 55
pentagon 2 3 2 11 10 9
Subway 6 8 7 28 25 26
Rows/columns 5 9 7 6 10 6
Two circles 38 41 36 41 46 40
Dataset Average 14.50 17.33 14.16 26 27.33 23.67

Table 8: LLAVA Model Performance Across Various Tasks

Task 0-Shot Approach Adv-App Caption App-Capt App-Capt-Adv
MathVision

Angles 5 2 0 22 24 17
Area 4 3 0 22 26 24
Length 6 4 0 16 26 25
Descriptive Geo 3 3 1 16 24 0
Analytic Geo 2 5 2 17 16 20
Combinatorial Geo 3 2 1 19 15 8
Transformation Geo 1 2 1 20 23 18
Solid Geo 4 3 0 19 21 19
Graph Theory 1 2 0 17 23 28
Arithmetic 2 3 1 15 23 18
Logic 2 2 1 15 24 20
Combinatorics 2 4 1 15 15 17
Algebra 2 3 0 24 25 18
Statistics 1 1 1 18 16 16
Dataset Average 3.09 2.83 0.56 18.51 22.04 19.25

GEO170K
Geometry problems 0 1.34 0 4 9 6

CountBench
Counting objects 3 4 2 6 8 8

Blind
Line Intersection 15 10 31 37 38 30
Two line intersection 74 76 31 69 70 69
pentagon 0 0 0 0 0 0
Rows/columns 0 0 0 0 0 0
Two circles 23 23 23 32 34 26
Dataset Average 22.4 21.8 17 27.6 28.4 25

Table 9: Florance-2 Model Performance Across Various Tasks



Task 0-Shot Approach Adv-App Caption App-Capt App-Capt-Adv
MathVision

Angles 0 12 18 10 20 18
Area 2 18 16 14 20 18
Length 6 22 14 14 24 18
Descriptive Geo 6 16 20 16 22 22
Analytic Geo 2 10 14 14 14 26
Combinatorial Geo 4 18 10 12 12 8
Transformation Geo 4 18 24 14 10 8
Solid Geo 6 14 12 4 6 4
Graph Theory 0 16 14 10 16 14
Arithmetic 8 20 16 20 16 18
Logic 6 12 14 10 22 18
Combinatorics 6 14 12 14 14 14
Algebra 2 12 18 4 10 12
Statistics 2 6 4 18 24 18
Dataset Average 3.68 15.28 15 12.44 17.04 15.75

GEO170K
Geometry problems 18.67 26.67 25.33 38 40.67 38

CountBench
Counting objects 53.33 47.33 50 45 50 38

Blind
Line Intersection 35 39 32 33 33 31
Two line intersection 59 62 55 70 69 54
pentagon 12 13 2 6 9 4
Subway 22 44 17 31 24 18
Rows/columns 6 9 9 4 2 0
Two circles 86 77 77 38 51 45
Dataset Average 36.66 40.67 32 30.33 31.33 25.33

Table 10: Phi-3.5-Vision Model Performance Across Various Tasks


