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ABSTRACT

The diversity and scale of annotated real-world 3D datasets limit the performance
of monocular 3D detectors. Although data augmentation holds potential, creating
realistic, scene-aware augmentations for outdoor environments presents a signifi-
cant challenge. Existing augmentation methods majorly focus on realistic object
appearance by advancing the rendering quality. However, we show that object
placement is equally important for downstream 3D detection performance. The
main challenge, however, for realistic placement, is to automatically identify the
plausible physical properties (location, scale, and orientation) for placing objects
in real-world scenes. To this end, we propose Smart-Placement, a novel 3D scene-
aware augmentation method for generating diverse and realistic augmentations. In
particular, given a background scene, we train a placement network to learn a dis-
tribution over plausible 3D bounding boxes. Subsequently, we render realistic
cars from 3D assets and place them according to the locations sampled from the
learned distribution. Through extensive empirical evaluation on standard bench-
mark datasets - KITTI and NuScenes, we show that our proposed augmentation
method significantly boosts the performance of several existing monocular 3D de-
tectors, setting a new state-of-the-art benchmark, while being highly data efficient.

1 INTRODUCTION

Monocular 3D object detection has rapidly progressed recently, enabling its use in autonomous navi-
gation and robotics Huang et al. (2022); Ma et al. (2021). However, the performance of 3D detectors
relies heavily on the quantity and quality of the training dataset. Given the considerable effort and
time required to curate extensive, real-world 3D-annotated datasets, specialized data augmentation
for 3D object detection has emerged as a promising direction.

However designing realistic augmentations for 3D tasks, is non-trivial, as the generated augmenta-
tions must adhere to the physical constraints of the real world, such as maintaining 3D geometric
consistency and handling collisions. Existing techniques Ge et al. (2024); Lian et al. (2022) for 3D
augmentation use relatively simple heuristics for placing synthetic objects in an input scene. For
instance, in the context of road scenes, a recent approach Li et al. (2023) generates realistic cars and
places them on the segmented road region. However, such heuristics result in highly unnatural scene
augmentations (Fig. 1), resulting in a marginal improvement in 3D detection performance. In this
work, we ask the following two crucial questions: (1) What key factors are essential for generating
realistic augmentations to improve monocular 3D object detection?, and (2) How can these factors
be integrated to generate effective scene-aware augmentations?

For the first question, we discover two critical factors responsible for generating effective 3D aug-
mentations:

1. Object Placement: Plausible placement of augmented objects, with appropriate physical prop-
erties (location, scale, and orientation), is essential for rendering realistic scene augmentations. For
instance, in road scenes, a car should be placed on the road, be of appropriate size based on the
distance from the camera, and follow the lane orientation. Augmentations that respect such phys-
ical constraints generalize better to real scenes by faithfully modelling the true distribution of the
vehicles in the real world. To give an example of how such an augmentation looks, we compare our
proposed augmentation approach against heuristic-based placement from Lift3D Li et al. (2023) in
Fig. 1. Given the same rendering, our generation looks much more plausible regarding car place-
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Figure 1: a) We compare augmentations from our learned placement with heuristic-based place-
ments from Lift3D Li et al. (2023). In our augmentations, vehicles follow the lane orientations and
are placed appropriately. b) These realistic augmentations significantly improve the 3D detection
performance (KITTI Chen et al. (2015) val set, (easy)). Notably, we achieve detection performance
comparable to that of the fully labeled dataset using only 50% of the dataset.Please refer to Ap-
pendix.A.5 for a detailed analysis.

ment and orientation compared to the baseline approach. Notably, when used for object detection
training, our approach leads to significantly greater performance improvement, making the detector
not only performant, but also highly data efficient (refer Fig. 1c)

2. Object Appearance: For 3D augmentation, it is desired that the generated objects exhibit re-
alism and seamlessly integrate with the background to preserve visual consistency. This, in turn,
minimizes the domain disparity between real and augmented data. Existing augmentation methods
for 3D detection Li et al. (2023); Ge et al. (2024); Lian et al. (2022) primarily focus on the object
appearance. This limits their ability to exploit the full potential of the data augmentations for 3D
detection.

To address both these factors, we propose Smart Placement, a novel scene-aware augmentation
method that generates effective 3D augmentations, as shown in Fig. 1. For plausible object place-
ment, we train a 3D Scene-Aware Placement Network (SA-PlaceNet), which maps a given scene
image to a distribution of plausible 3D bounding boxes. It learns realistic object placements that ad-
here to the physical rules of road scenes, facilitating sampling of diverse and plausible 3D bounding
boxes (see Fig. 1a). For training this network, we consider existing 3D detection datasets, which
typically contain only a limited number of objects per scene, resulting in a sparse training signal.
Therefore, to enable dense placement prediction, we introduce novel modules based on (1) geomet-
ric augmentations of 3D boxes, along with (2) modeling of a continuous distribution of 3D boxes.

For realistic object appearance, we propose a rendering pipeline that leverages synthetic 3D assets
and an image-to-image translation model. We translate the synthetic renderings into a realistic ver-
sion using ControlNet Zhang & Agrawala (2023)(see Fig. 1b) and blend them with the background
to get final augmentations. This allows us to utilize amateur-quality 3D assets and transform them
into diverse, highly realistic car renderings that resemble real-world scenes.

Our two-stage augmentation approach is highly effective and modular, allowing seamless integration
with advancements in placement and rendering for enhancing 3D object detection datasets. Using
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our augmentation method on popular 3D detection datasets led to significant improvements over the
prior baselines and set a new state-of-the-art monocular detection benchmark. Notably, as shown
in Figure 1, using only 40% of the real training data and our 3D augmentations outperforms a
model that is trained on the complete data without any 3D augmentations. Through extensive ab-
lation studies, we thoroughly analyze the role of different components and their effect on detection
performance. We summarize our contributions below:

1. We identify the critical role of 3D-aware object placement and realistic appearance for
generating effective scene augmentations for 3D object detection.

2. We propose Smart-Placement, a novel approach to generate plausible 3D augmentations
for road scenes by realistically placing objects following scene grammar.

3. We demonstrate the effectiveness of the proposed augmentations on multiple 3D detection
datasets and detector architectures with significant gains in performance as well as data
efficiency.

2 RELATED WORK

Object Placement. There are numerous works Zhang et al. (2020); Zhu et al. (2023); Arroyo
et al. (2021); Paschalidou et al. (2021); Wei et al. (2023) which aim to predict object placement by
learning a transformation or the bounding box parameters directly for a given background image.
Paschalidou et al. (2021); Wei et al. (2023) learns the distribution of indoor synthetic objects. Sun
et al. (2020); Lee et al. (2018) learns the plausible locations for humans and other outdoor objects
in a 2D manner. Few works aim to learn the arrangement conditioned on the scene-graph Luo et al.
(2020); Jyothi et al. (2019); Yang et al. (2021). Zhang et al. (2020); Sun et al. (2020); Lee et al.
(2018) are train a deep network adversarially in order to learn plausible 2D bounding box locations.
Similarly, ST-GANLin et al. (2018) learns to predict the geometric transformation of a bounding
box in the given scene using adversarial training. Li et al. (2019) uses a variational autoencoder to
predict a plausible location heatmap over the scene but is limited to placement in restricted indoor
environments.

Monocular Object Detection The current monocular 3D detection methods can be grouped as
image-based or pseudo-lidar-based. Image-based detectors Brazil & Liu (2019); Liu et al. (2020);
Mousavian et al. (2016); Roddick et al. (2018); Simonelli et al. (2019c;a); Wang et al. (2021); Liu
et al. (2021); Zhang et al. (2021) estimate the 3D bounding box information for an object from a sin-
gle RGB image. Due to the lack of depth information, these methods rely on geometric consistency
in order to predict the class and the location of the object. Some works Li et al. (2020); Liu et al.
(2020); Ma et al. (2021) use the prediction of key points of 3D bounding boxes as an intermediate
task in order to improve it’s performance on 3D monocular detection. In this work, we aim to im-
prove the performance of image-based monocular detection models since RGB images are the most
commonly used modality and easy to acquire with low acquisition costs, unlike LIDAR and depth
sensors.

Scene Data Augmentation. Multiple works use 2D data augmentation techniques to improve the
performance of perception tasks Shorten & Khoshgoftaar (2019). However, these augmentations
cannot be lifted directly to 3D without violating the geometric constraints. To alleviate this problem,
a recent method augments the training dataset for the task of 3D monocular detection Li et al. (2023);
Lian et al. (2022); Tong et al. (2023a); Dokania et al. (2022). Lian et al. (2022) learns to paste
cars on roads using the copy-paste operation by considering the cars’ relative scale and pose. An
interesting approach is taken by Dokania et al. (2022), where they model a synthetic urban scene
from real-world distributions using available annotations to mimic the semantic properties of the
real world. Li et al. (2023) learns a neural radiance field to generate realistic 3D cars with GAN
augmented views. Tong et al. (2023a) learns the location to place 3D cars, but the placed cars look
unrealistic. All these methods use heuristics such as lane segments to place cars; however, we aim to
learn the distribution over car locations, scale, and orientation from the real-world object detection
dataset.

3 METHOD
In this section, we first explain why it’s important to have specialized methods for creating realistic
scene-based augmentations for 3D detection. Then, we delve into the details of our unique approach
to 3D augmentation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3D Detection 
Backbone

𝝁1  

𝝁2  

𝝁n  

𝟄 ~ N(0,I)

N(𝝁1,I)

N(𝝁2,I)

N(𝝁n,I)

sample

3D box-1

3D box-2

3D box-n

Reparameterization
Disabled during 
inference

b) Geometry Augmentation (BEV)a) Learning distribution of 3D bounding box

Inpainted Scene (I)

Depth Map (Id)
Source Neighbors Augmented 

location

sample

sample

bloc

bloc
~

nloc

nloc

nloc

nloc

1

2

3

K

Figure 2: a) SA-PlaceNet Architecture: Given an input background image and corresponding
depth to predict the means of a multi-dimensional Gaussian distribution over 3D bounding boxes.
3D bounding boxes are sampled from each of these Gaussian to compute the training loss. b)
Geometry-aware augmentation in BEV (Birds Eye View). For a given source car location (bloc),
we first find K nearest neighbors with the same orientation and augment the location to b̃loc by
interpolating with neighboring locations nloc (Alg.3.1)

Insight-1: Unlike the object-based augmentations suitable for broad image classification tasks, en-
hancing structured tasks as 3D object detection requires careful consideration of object-background
and object-object interactions for generation of plausible scene-based augmentations.

Remarks: Synthetic object-based augmentation for image classification typically involves placing
objects on any suitable background. This method may not always respect the interaction between
the object and the background, its impact on the classification task remains minimal. In contrast,
for scene-based augmentation, which is crucial in tasks like 3D detection, the interactions between
objects and backgrounds, as well as between objects, becomes pivotal. For example, implausible
placements such as a car in a sky background, two cars occluding each other’s 3D volume, or a car-
oriented perpendicular to lanes on the road, need to be avoided. While one might argue that random
placement could aid in a 3D object detection task by helping the model distinguish objects from
the background, empirical evidence suggests otherwise. Hence, it’s crucial to devise a placement-
based augmentation method that respects the scene-prior, thereby instilling this understanding into
the detector model during training.

Insight-2: The distribution of augmented samples for a given real sample xr, denoted as
q(xaug|xr), can be enhanced by better scene-prior modeling; this leads to augmented scenes that
closely align with the real distribution, fostering a robust model that is resilient to failures and can
achieve superior performance with fewer real samples.

Remarks: The equation q(xaug|xr) = q(xaug|z,xr)q(z|xr) represents the distribution of aug-
mented samples for a given real sample xr. Here, q(x|z,xr) represents a pipeline that generates the
augmented scene image upon applying an effective placement-based augmentation. Here, q(z|xr)
denotes the scene-prior related latent factor z given the real image. This factor can model the distri-
bution of plausible location, orientation, and scale to place objects given the scene layout. Improved
modeling of the scene prior ensures that the augmented scene closely matches the real distribution.
Training with such augmentations imbues the model with a strong understanding of the scene prior,
enhancing its robustness and reliability. We demonstrate that this strategy enables efficient training,
yielding superior performance with fewer real samples compared to the baseline.

Approach overview. Our method for 3D augmentation consists of two stages. First, we train the
placement model that maps a monocular RGB image to a distribution over plausible 3D bounding
boxes (Sec. 3.1). Subsequently, we sample a set of 3D bounding boxes from this distribution to
place cars. In the second stage, we render realistic cars following the sampled 3D bounding box and
blend them with the background road scene. (Sec. 3.2).

3.1 SCENE-AWARE PLAUSIBLE 3D PLACEMENT

Realistic 3D placement in road scenes is extremely challenging due to the high diversity in the scene
layouts and underlying grammatical rules of the road scenes (Sec.1). Existing methods use simple
heuristic placement Li et al. (2023) based on the road segmentation unable to model these complex-
ities and hence result in unnatural augmentations (Fig. 1). We propose a data-driven approach to
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Algorithm 1: Proceduce for geometric aware augmentation
1. Input:

query box: b = [bx, by, bz, bh, bw, bl, bθ, bα] where bloc = (bx, by, bz)
number of neighbors: K
radius of interpolation: r
amount of jitter: dj

orientation threshold: ϵθ
2. Sample K neighbors {ni}K1 ∈ B, s.t.

||ni
loc − bloc||2 < r & |ni

θ − bθ| < ϵθ (1)

3. If there are no neighbours i.e K = 0, then do
bx ← bx + dx bz ← bz + dz (2)

where dz > 2dx and dx, dz ∈ U(0, dj)
end If

4. Else do
Generate the augmented location b̃loc = (b̃x, b̃y, b̃z) using Eq. 7
end Else

5. Output : Augmented bounding box parameters b̃ : [b̃x, b̃y, b̃z, bh, bw, bl, bθ, bα]

learn the real-world placement distribution by training a Scene-Aware Placement Network (SA-
PlaceNet), that maps a given image to the distribution of plausible 3D bounding boxes.

Learning such a distribution requires dense supervision about object location, scale, and orientation
for each 3D point in space. Having such a dense annotated real dataset is impractical and can only
be generated in a controlled synthetic setting that does not generalize to the real world. Hence, we
take an alternate approach to learn the 3D bounding box distribution from an existing 3D object
detection dataset. Object detection datasets only provide information on where cars are located but
not where they could be. To mitigate this, we inpaint the vehicles from the scene to generate a paired
image dataset with/without the vehicles. However, detection datasets have only a few vehicles in
each scene, which provides only sparse signals for plausible 3D bounding boxes. Directly training
with such a dataset will lead to overfitting and the model learns the sparse point estimate of loca-
tions as each scene has only a few car locations in the ground truth. To truly learn the underlying
distribution of 3D bounding boxes, we propose two novel modules during training of placement net-
work. Geometry aware augmentation and predicting distribution over 3D bounding box instead
of a single estimate. The proposed modules enable diverse placements for a given scene that follow
the underlying rules of the road scene.

The complete architecture for placement is shown in Fig. 2a. We build SA-PlaceNet using the
backbone of MonoDTR Huang et al. (2022). MonoDTR is designed to perform monocular 3D
object detection and is trained with auxiliary depth supervision. However, depth is not required
during inference. We adapt the architecture of MonoDTR to learn the mapping from background
road images I to a set of 3D bounding boxes B. Following Huang et al. (2022), we define bounding
box b ∈ B as 8 dimensional vector b = [bx, by, bz, bh, bw, bl, bθ, bα], where (bx, by, bz) are 3D
locations, (bh, bw, bl) are height, width, and length of the box, and bθ and bα are orientation angles.
Note that bα can be computed deterministically from bθ and hence we have only 7 variables defining
a given bounding box. As a convention, we consider the xz plane as the road plane.

Dataset preparation. There is no existing real-world dataset that provides plausible placement
annotations for a given road scene. Instead, we take advantage of the KITTI Geiger et al. (2013)
dataset with 3D object detection annotations. We preprocess the dataset by inpainting the foreground
cars in the scene using off-the-shelf inpainting Rombach et al. (2022). Through this process, we
obtain an image dataset (I) with no cars on the road and a set of corresponding 3D bounding boxes
(B). Next, we obtain depth images Id for the inpainted images using Ranftl et al. (2021). The
obtained paired dataset, D = {I, Id,B}, is used to train the SA-PlaceNet.

3.1.1 GEOMETRY AWARE AUGMENTATION

Training SA-PlaceNet directly with the paired dataset D could easily learn a mapping to sparse 3D
locations where real cars were present before inpainting. Additionally, the model can cheat by using
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Figure 3: Rendering pipeline: Given a 3D asset, we first render an image and shadow from a fixed
light source according to the 3D box parameters. Next, we used edge-conditioned ControlNet Zhang
& Agrawala (2023) to generate a realistic car version that follows the same orientation and scale as
the rendered image. Finally, we use the obtained shadow, rendered car, and 3D location to place the
car and render augmented images.
the inpainting artifacts to predict cars at the source location. To overcome these limitations, we pro-
pose geometry-aware augmentation G in the 3D bounding box space. We build on the intuition that
the regions’ neighboring ground truth car locations are also plausible for placement. The augmenta-
tion G transforms the ground truth bounding box b ∈ B of a car, located at bloc = (bx, by, bz) into
a plausible neighboring box b̃ = G(b) located at b̃loc = (b̃x, b̃y, b̃z) shown in Fig. 2b. The detailed
algorithm for geometry-aware augmentation is given in detail in Alg.3.1. Specifically, we first find
a set of K neighboring car boxes {ni}i=K

i=1 to the given car b. We consider ni as the neighbor of b
if ||ni

loc−bloc||2 < r and |ni
θ− bθ| < ϵθ, for a given threshold r and ϵθ. We assume the selected K

nearest cars will be in the same lane and follow similar orientations. To augment the location bloc,
we take a convex combination of neighboring locations ni

loc and bloc and obtain a location b̃loc.

b̃loc = λ0 ∗ bloc +
k∑

i=1

λi ∗ ni
loc (3)

where
∑

i λi = 1, λi ≥ 0 are hyperparameters randomly sampled for each ground truth box b.
This transformation enables us to span a large region of plausible locations during training, hence
enabling diverse placement locations during inference for each scene. If a car doesn’t have any
neighboring cars, we apply a uniform jitter along the length and a smaller jitter along the width of
the car bounding box.

3.1.2 DISTRIBUTION OVER 3D BOUNDING BOXES.
Geometry-aware augmentation enables the generation of diverse placement locations, but it learns a
direct mapping from the input image to a point estimate of bounding boxes. To learn a continuous
representation in the output space, we map the input image to the distribution of 3D boxes. This
improves the coverage of plausible locations and enables diverse bounding box sampling from a
predicted set of mean boxes. Specifically, we approximate each predicted bounding box b as a
multi-dimensional Gaussian distribution with mean µb and a fixed covariance matrix as αI , where
α is used to control the spread as shown in Fig. 2a. We empirically observed that having a fixed
covariance improves training stability. Having a higher α value results in strong augmentations,
where the sampled car is far away from the mean location, resulting in a weaker training signal.
During the forward pass, the SA-PlaceNet predicts mean bounding box parameters µb. To sample a
box b̂, we first sample ϵ ∈ N (0, I) and use the reparametrization trick as follows:

b̂ = µb + ϵ ∗ αI (4)
3.1.3 SA-PLACENET TRAINING.
We train SA-PlaceNet with the acquired paired dataset D = {I, Id,B}, consisting of inpainted
background image (I), inpainted depth image (Id) and the ground truth 3D bounding boxes (B).
Following Huang et al. (2022), we train the model with Lcls for objectness and class scores, Ldep

for depth supervision, and Lreg for bounding box regression.The proposed modules for geometry-
aware augmentation and learning distribution over 3D bounding boxes can be easily integrated into
a modified version of the regression loss Lm

reg as discussed below. The total loss is then defined as:

L = Lcls + Lm
reg + Ldep (5)
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For a given ground-truth bounding box parameter b, we first augment it using geometry-aware aug-
mentation following Eq. equation 7 to obtain modified bounding box parameters b̃ = G(b). To
capture the distribution of 3D boxes, we predict a mean bounding box parameter µb instead of a
point estimate of the box parameters and randomly sample a new bounding box b̂ using the repa-
rameterization trick outlined in Eq. equation 4. Subsequently, we compute the modified regression
loss between the model prediction µb and the ground truth box b as follows:

Lm
reg(µb,b) = Lreg(b̂, b̃) (6)

3.2 WHAT TO PLACE? RENDERING CARS

We generate realistic scenes by selecting cars and rendering them within the projected 3D coordi-
nates of the predicted location, as shown in Fig. 3. To accurately render a car based on 3D bounding
box parameters, we utilize 3D car assets from ShapeNet Chang et al. (2015) that can be adjusted
through orientation and scale transformations. Upon acquiring the 3D bounding box predictions,
our rendering step entails sampling cars from the ShapeNet. Subsequently, the car model under-
goes rotation according to the 3D observation angle of the object before positioning it within the
designated scene. We separately render car shadows with predefined lighting in the rendering envi-
ronment, following Chen et al. (2021). The rendered ShapeNet car images, although following the
3D bounding boxes, look unrealistic when pasted into the scene (Fig. 6, row-2). To resolve this, we
leverage the advances in conditional generation using text-to-image models.

For the generated synthetic car images, we apply an edge detector to obtain an edge map. The edge
map preserves the car’s structure and still follows the same orientation and scale as the original car.
Next, we use edge-conditioned text-to-image diffusion model ControlNet Zhang & Agrawala (2023)
to render a realistic car using the prompt ‘A realistic car on the street.’ We further finetune the
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Figure 4: Given an input source image, we plot
the heatmaps of the mean objectness score at each
pixel location. The generated heatmaps span a
large region on the road with plausible locations
of objects. Next, we show samples of bounding
boxes and realistic renderings of cars in the scene.

backbone diffusion model in ControlNet us-
ing LoRA Hu et al. (2022) on a subset of
‘car’ images from the KITTI dataset. This en-
ables us to generate natural-looking versions of
cars that blend well with the background scene
(Fig. 6). As ControlNet enables diverse gener-
ations from the same edge image, we can gen-
erate multiple renderings of cars from the edge
map of a single ShapeNet car. This enables the
generation of many diverse cars from a small,
fixed set of 3D assets. The generated render-
ings look realistic and substantially boost object
detection performance, as shown in Tab. We
believe, the proposed approach of using a few
3D assets with conditional text-to-image mod-
els is promising and can be applied to gener-
ate diverse 3D augmentations for other tasks
as well. Apart from the proposed rendering
technique, we also experiment directly placing
ShapeNet Chang et al. (2015) and renderings
from Lift3D Li et al. (2023), which is a generative radiance field approach that generates realistic
3D car assets.

4 EXPERIMENTS
In this section, we present results for 3D-aware placement (Sec. 4.1) and car renderings (Sec. 4.2).
Next, we present the results of 3D object detection when trained with our generated augmentations
(Sec. 4.3). We show additional results on 2D detection, additional ablations, and quantitative analy-
sis of SA-PlaceNet in the suppl. document.

Dataset. We use the KITTI Geiger et al. (2013) and NuScenes Caesar et al. (2019) datasets for our
experiments. KITTI consists of a total of 7481 real-world images captured from a camera mounted
on a car. Following Li et al. (2023); Tong et al. (2023b); Chen et al. (2015), we split the data into
3712 train and 3679 validation images. For NuScenes, we use the official split with 700 train scenes
containing 28130 images and 150 validation scenes containing 6019 images.
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4.1 EVALUATION OF PLACEMENT MODEL
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Figure 5: a) Qualitative comparison for object
placement - For a background road scene image,
we visualize the heatmaps of aggregated object-
ness scores at each pixel location. Our proposed
method is capable of predicting dense regions on
the road that are semantically plausible for placing
cars. b) Histogram of the distribution of orienta-
tions of the ground truth bounding boxes and the
generated bounding boxes.

The placement network is trained with RGB
images from the train split. We prepare the
training data by inpainting the moving objects
using Rombach et al. (2022) and obtain a
paired dataset D = {I, Id,B} as detailed in
Sec. 3.1. To visualize the performance of the
placement, we generate heatmaps over the cen-
ter of the bottom face of the bounding box in
Fig. 4. For visualization, we use the mean ob-
jectness score of the anchor boxes correspond-
ing to each grid cell. Geometry-aware aug-
mentation enables learning of a large region
for placing cars even though trained with in-
put scenes with only a few cars. This allows
for the sampling of diverse physically plausi-
ble placement locations for a given input scene
shown as a set of 3D bounding boxes. We sam-
ple two sets of boxes from the predicted dis-
tribution. The sampled boxes have appropriate
locations, scales, and orientations based on the
background road.We present a detailed quan-
titaitve analysis of our method in Appendix
A.1.1.

Analysis. We analyze the impact of each com-
ponent on placement performance in Fig. 5a).
The naive baseline of directly training object
placement without geometric augmentation and
variational modeling only learns a point esti-
mate and results in a few concentrated spots for
placement location. Adding the variational head for learning a distribution of boxes instead expands
the space of plausible locations but is still segregated in small regions. For the variational
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Figure 6: Ablation over rendering methods:
Given the source image and predicted 3D bound-
ing boxes, we sample and render a synthetic
ShapeNet Chang et al. (2015) car; Lift3D Li et al.
(2023) rendered method; and our realistic render-
ing. Observe that the cars in our rendering match
the scene lighting conditions well. This is due to
the smaller domain gap of the rendered cars with
the training samples.

head, we have fixed the alpha as 0.1. This
highlights the sparse training signals for place-
ment using ground truth boxes. However, when
coupled with the geometry-aware augmenta-
tion, the predicted distribution covers a large
driveable area on the road. To further ana-
lyze the orientations, we plot a histogram of
predicted and the ground truth orientations in
Fig. 5b), where the predictions closely follow
the ground truth.

4.2 RENDERING OBJECTS

We augment the road scenes by placing syn-
thetic cars rendered by several approaches in
Fig. 6. We compare the rendering quality of the
proposed method with 1) ShapeNet - 3D car as-
sets renderings sampling from ShapeNet Chang
et al. (2015), 2) Lift3D Li et al. (2023) - A gen-
eralized NeRF method for generating 3D car
models. ShapeNet renderings result in unnat-
ural augmentations due to synthetic car appear-
ance and domain gaps from real scenes. On the
other hand, Lift3D renderings, although realis-
tic, lack diversity and suffer from artifacts. Our
rendering method leverages conditional text-to-image diffusion models and generates extremely re-
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alistic cars that blend well with the background and are of high fidelity. Additionally, as our ren-
dering starts from an underlying 3D asset, we use it to render shadows in a synthetic environment
and copy the same shadow to the generated realistic renderings. The proposed rendering pipeline
effectively generates realistic augmentations and results in superior object detection performance
(Tab. 1). Further, we report FID of the generated augmentations with the real training set to evaluate
the realism.
4.3 ENHANCING 3D OBJECT DETECTION PERFORMANCE

We evaluate the effectiveness of our augmentations for monocular 3D object detection. We augment
the training set with the same number of images to prepare an augmented version of the dataset. We
compare our proposed augmentation method with the following augmentation approaches:

Geometric Copy-paste (Geo-CP) Lian et al. (2022). We use instance-level augmentation
from Lian et al. (2022), where cars from the training images are archived along with the corre-
sponding 3D bounding boxes to create a dataset. For augmenting a scene, a car, and its 3D box
parameters are sampled from the dataset and car is simply pasted in the background.

Lift-3D Li et al. (2023) proposed a generative radiance field network to synthetize realistic 3D cars.
The generated cars are then placed on the road using a heuristic-based placement. Specifically, a
placement location is sampled on the segmented road, and other 3D bounding box parameters are
sampled from a predefined parameter distribution.
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Figure 7: Qualitative comparison of the generated
augmentations with all the baseline methods. Our
augmentations are highly realistic, place cars fol-
lowing plausible physical properties, and have a
minimal domain gap from the training dist.

CARLA Dosovitskiy et al. (2017). To com-
pare the augmentations generated by simulated
road scene environments, we use state-of-the-
art CARLA simulator engine for rendering re-
alistic scenes with multiple cars. It can gen-
erate diverse traffic scenarios that are imple-
mented programmatically. However, it’s ex-
tremely challenging for simulators to capture
the true diversity from real-world road scenes
and they often suffer from a large sim2real gap.

Rule Based Placement (RBP). We create a
strong rule-based baseline to show the ef-
fectiveness of our learning-based placement.
Specifically, we first segment out the road re-
gion with Han et al. (2022) and sample place-
ment locations in this region. To get a plausible
orientation, we copy the orientation of the clos-
est car in the scene, assuming neighboring cars
follow the same orientations. We used our our rendering pipeline to generate realistic augmentations.

Qualitative comparison of generated augmentations are shown in Fig. 7. Lift3D augmentations
have cars placed in incorrect orientation as the orientation is sampled from a general predefined
distribution. RBP and Geo-CP augmentations are relatively better in terms of orientation but fail to
place cars in the correct lanes. The proposed augmentation method follows the underlying grammar
of the road well and generates realistic scene augmentations.

Table 1: Monocular 3D detection performance on KITTI dataset
a) MonoDLEMa et al. (2021) 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod. Hard
w/o 3D Augmentation 17.45 13.66 11.69 55.41 43.42 37.81

Geo-CP 17.52 14.60 12.57 58.95 44.23 38.66
CARLA 17.98 14.30 12.17 58.33 44.41 38.81
Lift3D 17.19 14.65 12.48 56.81 44.21 39.13
RBP 20.50 14.32 11.29 60.30 43.69 38.55
Ours 22.49 15.44 12.89 63.59 45.59 40.35

b) GUPNet Lu et al. (2021) 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod. Hard

w/o 3D Augmentation 22.76 16.46 13.27 57.62 42.33 37.59
Geo-CP 21.81 15.65 13.24 59.12 44.03 39.16
CARLA 22.50 16.17 13.61 59.89 43.52 38.22
Lift3D 19.05 14.84 12.64 57.50 43.81 39.22
RBP 21.67 14.56 11.23 60.40 43.25 36.95
Ours 23.94 17.28 14.71 61.01 47.18 41.48

4.3.1 REALISTIC AUGMENTATIONS IMPROVES 3D DETECTION.
We evaluate our augmentation technique on two state-of-the-art monocular 3D detection networks
- MonoDLE Ma et al. (2021) and GUPNet Lu et al. (2021) in Tab. 1 on KITTI Geiger et al. (2013)
dataset. We generate one augmentation per real image for all the baselines. All the augmentation
techniques improve over the baseline for MonoDLE. However, gains from Lift3D, CARLA, and
Geo-CP are marginal. RBP performs better than other baselines primarily due to our realistic ren-
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derings. For GUPNet, none of the baselines can improve the detection performance overall. Our
proposed method significantly improves the score detection scores for both networks. This indicates
a strong generalization of our augmentations on various 3D object detection models. We also show
results on the current state-of-the-art MonoDETR Zhang et al. (2022) in Appendix A.4.1.
4.3.2 IMPACT OF RENDERING FOR 3D OBJECT DETECTION.

Table 2: Rendering ablation with fixed placement
Rendering 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod. Hard
w/o 3D Augmentation 17.45 13.66 11.69 55.41 43.42 37.81

ShapeNet 20.91 14.17 12.28 59.54 43.48 37.64
Lift3D 21.35 14.25 11.65 60.38 42.65 37.53

Ours (w/o shadow) 21.45 14.21 11.73 61.23 43.27 38.28
Ours 22.49 15.44 12.89 63.59 45.59 40.35

Table 2 presents an ablation study of various
rendering approaches for augmentation in 3D
detection. All renderings, when used with
our learned placement, significantly outperform
the baselines, demonstrating their compatibility
with any rendering method. ShapeNet shows
the lowest performance due to limited synthetic
car diversity and a substantial sim2real gap. Lift3D rendering performs better than ShapeNet but ex-
hibits noticeable artifacts when cars are close to the camera (Fig. 6). Our rendering approach, which
uses a generative text-to-image model, outperforms all baselines but also enhances and achieves
state-of-the-art performance when combined with shadows.
4.3.3 AUGMENTING OTHER CLASSES

Though the car is the major category in the road 3D detection benchmarks, we also perform aug-
mentation for two additional categories of cyclists and pedestrians, given they occur at 3.79 % and
11.39 % in the KITTI training set. For simplicity, we integrate our placement method with copy-
paste rendering as described in Appendix A.6.1 (similar to Geo-CP Lian et al. (2022)). Note that
we trained another placement model to predict the placement of all the classes together. We use the
augmented dataset with renderings of cyclists and pedestrians to train MonoDLE Ma et al. (2021)
object detector. The results are shown in Tab. 3; our augmentation significantly improves the detec-
tion performance of both categories over the baselines. We show qualitative results for other classes
in the Appendix. A.1.4.

Table 3: Augmenting multiple categories for 3D detection
Cyclist 3D@IOU=0.50 3D@IOU=0.25

Easy Mod Hard Easy Mod Hard
w/o 3D Augmentation 4.92 2.03 1.85 18.41 10.82 9.52

Ours 6.75 3.41 3.37 21.59 11.23 9.90

Pedestrian 3D@IOU=0.50 3D@IOU=0.25
Easy Mod Hard Easy Mod Hard

w/o 3D Augmentation 4.60 3.81 2.99 22.98 18.38 15.12
Ours 4.98 3.89 3.34 26.28 20.81 16.16

4.4 EXPERIMENTS ON LARGE DATASETS

Table 4: Detection on NuScenes
FCOS3D Caesar et al. (2019) MAP NDS

w/o 3D Augmentation 0.3430 0.415
Lift3D 0.3211 0.371
Ours 0.3704 0.440

We validate the generalization of our method by training SA-
PlaceNet on a large driving dataset - NuScenes (Caesar et al.,
2019). Our approach produces plausible realistic augmen-
tations for the given scene (see Appendix A.1.3) and we
show improved performance on the NuScenes dataset with the
FCOS3D (Caesar et al., 2019) monocular detection network in Tab. 4.
4.5 COST OF SMART PLACEMENT

Training of SA-PlaceNet takes a fraction of the time of the detection training. The relative training
time reduces significantly on the large datasets such as NuScenes. We present the computational

Table 5: Analysis of Training Time
Model Dataset Training Time #GPU’s GPU Model

SA-PlaceNet KITTI 12h 1 A5000
SA-PlaceNet NuScenes 32h 1 A5000

GUPNet Original KITTI 20h 1 A5000
GUPNet Augmented KITTI 22h 1 A5000
FCOS3D Original NuScenes 5d18h 2 A5000
FCOS3D Augmented NuScenes 6d 2 A5000

requirements of our augmentation in comparison to the
training time in Table 5. We train GUPNet and Mono-
DLE for an additional 10 epochs and FCOS3D for an ad-
ditional 5 epochs when training with our augmented data
as compared to the training on the original dataset.
5 CONCLUSION
This work proposes a novel scene-aware augmentation technique to improve outdoor monocular 3D
detectors. The core of our method is an object placement network, that learns the distribution of
physically plausible object placement for background road scenes from a single image. We utilize
this information to generate realistic augmentations by placing cars on the road scenes with geo-
metric consistency. Our results with scene-aware augmentation on monocular 3D object detectors
suggest that realistic placement is the key to substantially improving the augmentation quality and
data efficiency of the detector. The primary limitation of our approach is the dependency on the
off-the-shelf inpainting method for data preparation for the training of the placement network. Also,
our current framework does not consider more nuanced appearance factors in augmentations such
as the lighting of the scene. In conclusion, we provide important insights for designing scene-based
augmentations for 3D object detection.
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A APPENDIX

A.1 ADDITIONAL PLACEMENT RESULTS

A.1.1 QUANTITATIVE EVALUATION

To quantify the performance of placement, we compute the following three metrics on the training
set of KITTI: 1) Overlap: As road regions can cover most of the plausible locations for cars, we
evaluate the predicted location by checking whether the center of the base of the 3D bounding box is
on the road. Specifically, we compute the fraction of boxes that overlap with the road segmentation
obtained using Han et al. (2022). 2) θKL: We evaluate the KL-divergence between the distribution
of orientation of the predicted 3D bounding box and the ground truth boxes. We present quantitative
results in Tab. 6, where our method achieves superior overlap scores, suggesting the superiority of
placement.

Table 6: Ablation over SA-PlaceNet components
Method Random w/o var & geo w/o geo w/o var Ours

Overlap ↑ 0.20 0.15 0.17 0.35 0.36
θKL ↓ 1.37 0.66 1.18 0.32 0.30

A.1.2 CONTROLLING TRAFFIC DENSITY IN SCENES

Our augmentation method enables us to control the traffic density of vehicles in the input scenes
by controlling the number of bounding boxes to be sampled. We present results for generating
low-density (1− 3 cars added) and high-density (3− 5 cars added) traffic scenes in Fig. 8.
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This figure is for different outputs for a single input image. Given a RGB image, we have to generate three variations with 
different density. We will sample different number of cars for density and render using repaint by example for high 
realism.--

Figure 8: Augmented training dataset for 3D object detection: Given a sparse scene with few cars,
we place cars at the predicted 3D bounding box locations using our rendering algorithm. We present
two sets of results, one with low density (1−3 cars added) and another with high density (4−5 cars
added) for each scene.

A.1.3 PLACEMENT ON NUSCENES CAESAR ET AL. (2019) DATASET

We validate the generalization of our method by training SA-PlaceNet on a subset of a recent driving
dataset - NuScenes Caesar et al. (2019) in Fig. 9. We visualize predicted 3D bounding boxes and
realistic renderings from our method. Our approach produces plausible placements and authentic
augmentations for the given scene.
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Source Image Sampled 3D boxes Augmented Scene

Figure 9: Placement on NuScenes Caesar et al. (2019) dataset.

A.1.4 PLACING OTHER CATEGORIES

Our method enables us to learn placement for other categories from KITTI datasets. Specifically, we
trained a joint placement model to learn the distribution of 3D bounding boxes for cars, pedestrians,
and cyclists. To render the pedestrians and cyclists, we leverage simple copy-paste rendering as
discussed in Sec. A.6.1. We present placement results in additional categories in Fig. 10. The
proposed method predicts plausible locations, orientation, and shape of the object, enabling rich
scene augmentations. Using these augmentations for training leads to significant improvement in
performance for less frequent cyclist and pedestrian categories (Tab. 3 in the main paper).
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Figure 10: Placement results for other categories
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A.2 GENERALIZATION OF SA-PLACENET

Table 7: Performance on VKITTI
MonoDLE 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod. Hard
w/o 3D Augmentation 15.78 11.67 8.71 48.98 38.18 30.11

Ours 17.71 12.21 8.90 50.19 39.78 30.91

To validate the generalization capa-
bility of our placement network, we
infer our model trained on KITTI
dataset on Vitual KITTI (VKITTI)
dataset. Specifically, we use SA-
Placenet to predict the placement locations in VKITTI and augment the images by placing new
cars. We perform 3D monocular detection on VKITTI on a 50− 50 split for training and validation
images to evaluate the generalization of our SA-PlaceNet in generating realistic augmentations for
improving 3D detection. We show the results in Tab 7.

A.3 IMPLEMENTATIONS DETAILS

A.3.1 PLACEMENT DATA PREPROCESSING

We use the state-of-the-art Image-to-Image Inpainting method Rombach et al. (2022) to remove
vehicles and objects from the KITTI dataset Geiger et al. (2013). The input prompt ‘inpaint’ is
passed to the inpainting pipeline. A few outputs from this method can be seen in Fig. 11

Source Image Inpainted Image

Figure 11: Outputs generated from Stable Diffusion Inpainting pipeline Rombach et al. (2022).
These inpainted images are used for training our placement model.

A.3.2 BASELINE METHODS

Geometric Copy-paste (Geo-CP). To augment a given scene, a car is randomly sampled from the
database, and its 3D parameters are altered before placement. Specifically, the depth of the box
(z coordinate) is randomly sampled, and corresponding x and y are transformed using geometric
operations. Other parameters, such as bounding box size and orientation, are kept unchanged. The
sampled car is then pasted using simple blending on the background scene.

CARLA Dosovitskiy et al. (2017). To compare the augmentations generated by simulated road
scene environments, we use state-of-the-art CARLA simulator engine for rendering realistic scenes
with multiple cars. It can generate diverse traffic scenarios that are implemented programmatically.
However, it’s extremely challenging for simulators to capture the true diversity from real-world road
scenes and they often suffer from a large sim2real gap.

Rule Based Placement (RBP). We create a strong rule-based baseline to show the effectiveness
of our learning-based placement. Specifically, we first segment out the road region with Han et al.
(2022) and sample placement locations in this region. To get a plausible orientation, we copy the
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orientation of the closest car in the scene, assuming neighboring cars follow the same orientations.
We used our proposed rendering pipeline to generate realistic augmentations.

Lift-3D Li et al. (2023) proposed a generative radiance field network to synthetize realistic 3D cars.
Lift3D trains a conditional NeRF on multi-view car images generated by StyleGANs. However,
the car shape is changed following the 3D bounding box dimensions. The generated cars are then
placed on the road using a heuristic based on road segmentation. We used a single generated 3D car
provided in the official code to augment the dataset as the training code is unavailable. Specifically,
road region is segmented using off-the-shelf drivable area segmentor Han et al. (2022). Next, the 3D
bounding box of cars is sampled from a predefined distribution of box parameters as given in Tab.8,
and the ones outside the drivable area are filtered out. For a sampled 3D bounding box parameters
b=[bx, by, bz, bw, bh, bl, bθ], we render the car at adjusted orientation angle θ̃ using Eq. 7. We place
the camera at the fixed height of 1.6m, with an elevation angle of 0. Also, we used (bw, bh, bl) to
render the car of a particular shape. We render the car image for 512x512 resolution using volume
rendering and the defined camera parameters. Along with the RGB image, Lift3D also outputs the
segmentation mask for the car which is used to blend it with the background. Fig. 12 shows some
sample renderings from Lift3D.

Figure 12: Sampled views rendered from Lift3D Li et al. (2023).

Table 8: Preset distribution of bounding boxes. Lift3D Li et al. (2023) samples bounding boxes
from the predefined parameter distribution.

Pose Distribution Parameters
x Uniform {[−20m, 20m]}
y Gaussian µ = height, σ = 0.2
z Uniform {[5m, 45m]}
l Gaussian µ = lmean , σ = 0.5
w Gaussian µ = wmean , σ = 0.5
h Gaussian µ = hmean , σ = 0.5
θ Gaussian µ = ±π/2, σ = π/2

A.4 ADDITIONAL OBJECT DETECTION RESULTS

A.4.1 3D OBJECT DETECTION ON MONODETR ZHANG ET AL. (2022)

Table 9: Rendering ablation with fixed placement
MonoDETR 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod. Hard
w/o 3D Augmentation 28.84 20.61 16.38 68.86 48.92 43.57

Geo-CP 23.26 16.41 14.58 60.65 43.93 37.71
Lift3D 22.00 16.61 14.59 63.45 47.34 38.57
RBP 24.92 17.75 15.90 61.99 44.02 38.04
Ours 29.90 21.91 16.85 69.63 49.10 43.63

To validate the
generalizability
of our approach,
we evaluate
proposed 3D
augmentation
on a recent
3D monocu-
lar detection
model Mon-
oDETR Zhang et al. (2022) on the KITTI dataset in Tab. 9. We report the baseline results without
our augmentation from the original paper. Our method consistently outperforms the baseline in
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Table 11: Monocular 3D detection performance of Poisson Blending on our Rendering on
KITTI Chen et al. (2015) validation set.

Table 12: MonoDLEMa et al. (2021) on Car with and without Poisson Blending
Rendering 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod Hard
w/o 3D Aug. 17.45 13.66 11.69 55.41 43.42 37.81

Ours 22.49 15.44 12.89 63.59 45.59 40.35
Ours (+Poisson) 21.34 14.44 12.81 59.60 44.11 38.15

Table 13: GUPNetLu et al. (2021) on Car with and without Poisson Blending
Rendering 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod Hard
w/o 3D Aug. 22.76 16.46 13.27 57.62 42.33 37.59

Ours 23.94 17.28 14.71 61.01 47.18 41.48
Ours (+Poisson) 22.43 17.03 14.55 60.00 45.28 39.60

all three settings. The comprehensive evaluation across several detectors (also in the main paper)
evidently shows the generalization of our proposed 3D augmentation method.

A.4.2 IMPROVING 2D OBJECT DETECTION

Table 10: 2D Detection Performance
on ‘Car’ category with CenterNet Zhou
et al. (2019)

Rendering AP2D@IOU=0.5
Easy Mod. Hard

w/o 3D Aug. 86.03 73.74 65.08
Ours 89.56 76.79 72.28

As our approach provides consistent 3D augmentations, it
also enables to improve the performance of 2D object de-
tectors. Specifically, our placement model also predicts
the 2D bounding box along with the 3D bounding box
(followed in most of the 3D detection works). We use
these predicted 2D bounding box annotations to obtain a
labeled 2D detection dataset. We evaluate the gains from
our augmentations on 2D object detection on off-the-shelf
2D detector CenterNet Zhou et al. (2019) in Tab. 10. Following Simonelli et al. (2019b), we use a
standardized approach to report AP40 metric instead of the AP11 for evaluation. Notably, our pro-
posed augmentation method, though designed for 3D detection, can also improve the performance
of 2D object detection, proving the task generalization of the proposed approach.

A.4.3 EFFECT OF POISSON BLENDING

We use Poisson blending to enhance the quality of the composition of synthetic cars with the back-
ground scene. We observe a slight dip in the detection performance using the obtained augmenta-
tions as reported in Tab. 11. A similar observation was made in Zhao et al. (2023), where improved
blending does not positively affect the detection performance.

A.5 DATA EFFICIENCY

Table 14: Data efficiency of SA-PlaceNet
MonoDLE 3D@IOU=0.7 3D@IOU=0.5

% Real Data % Aug. Data Easy Mod. Hard Easy Mod. Hard
10 10 4.94 3.90 3.26 27.21 21.03 18.06
25 25 13.38 9.78 8.23 48.28 36.99 30.83
50 50 20.46 13.70 11.71 58.04 43.83 37.87
75 75 21.53 14.95 12.38 60.94 45.19 39.99
100 100 22.49 15.44 12.89 63.59 45.59 40.35
100 0 17.45 13.66 11.69 55.41 43.42 37.81

In this section we
demonstrate the
data efficiency
of our method.
As observed
in Tab.14 our
method can sig-
nificantly reduce
the dependence
on real data
when training
monocular detection networks. Specifically augmenting just 50 % of the real data can achieve better
performance than training with 100 % of original training data.
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A.6 RENDERING CARS

A.6.1 COPY-PASTE

We provide details about a simple copy-paste rendering, where the cars from the training corpus are
added to the predicted 3D bounding boxes. We extract

Copy-Paste Car Binary Mask

Figure 13: Sample cars from the Copy-
Paste Database

cars of various orientations from the training set im-
ages through instance segmentation using Detectron2 Wu
et al. (2019). These cars are archived in a database with
their corresponding 3D orientation and binary segmen-
tation mask data. During inference, given a 3D bound-
ing box, we query and search for cars whose orienta-
tion closely aligns with the given 3D box orientation. A
certain degree of randomness is introduced in selecting
the nearest-matching car, contributing to increased diver-
sity and seamless integration with the input scene. Next,
we compose the retrieved car image onto the background
scene using the 2D-coordinated obtained from the 3D
bounding box and the binary mask. This simple rendering
essentially captures the diverse cars present in the train-
ing dataset and helps in generating scenes that are close
to training distribution. However, such rendering has a problem with shadows as the composition is
not 3D-aware given the placed cars are stored as images.

A.6.2 SHAPENET

Figure 14: Sample of ShapeNet Chang et al. (2015) cars
rendered at different views.

ShapeNet Chang et al. (2015) is
a large-scale synthetic dataset that
provides 3D models for various
object categories, including cars.
The ShapeNet Cars dataset focuses
specifically on providing 3D models
of different car models from various
viewpoints. We leverage the high di-
versity of cars (nearly 7500 models)
in the dataset and render the cars at
the predicted box locations with 3D bounding box parameters using Blender Community (2018)
software. We employ a random sampling technique to select a 3D car model from this extensive
dataset, which is then loaded in the Blender Community (2018) environment. To ensure consis-
tency in the car shapes, we initially calculated the average dimensions of the cars within the dataset.
We exclude any car model with dimensions exceeding 50% of the computed average, and we repeat
this random sampling procedure until the specified conditions are satisfied. Following that, we align
and render the car by a 3D rotation angle. Specifically, as the orientation angle θ is defined in 3D,
using it directly to render the image does not take care of perspective projection. Eg. all the cars
following a lane will have similar orientation angles (close to zero) but look visually different when
projected on the image as shown in Fig. 15. Both the rendered cars have 0 orientation angle in 3D
but when projected onto the image planes, the rendered orientation changes with the location. To
this end, we adjust the car orientation by a correction factor to incorporate the perspective view, as
described in equation equation 7,

θ̃ = θ + tan−1(
x

z
) (7)

where x and z are the respective 3D coordinates of the bounding box. We use the final corrected θ̃
value for rendering the ShapeNet car. We render car images at 512x512, with a white background,
which can be later used as a segmentation mask to blend the rendered image. A few examples of the
ShapeNet cars rendered with different orientations are visualized in Fig. 14.
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Figure 15: Perspective and Absolute projection of cars with the same 3D orientation.

A.7 REALISTIC RENDERING USING TEXT-TO-IMAGE MODEL

A.7.1 CONTROLNET ZHANG & AGRAWALA (2023) BASED RENDERING.

We leverage a state-of-the-art image-to-image translation method to convert the synthetic ShapeNet
renderings into realistic cars that blend well with the background scene. We use edge-conditioned
ControlNet, which takes an edge image and a text prompt to generate images following the edge map
and the prompt. Specifically, we utilize an edge detector to create edge maps for synthetic car images
rendered using ShapeNet Chang et al. (2015), preserving the car’s structure while maintaining its
original orientation and scale. These edge maps, generated through the Canny Edge Detection algo-
rithm Canny (1986), serve as input for the edge-conditioned ControlNet Zhang & Agrawala (2023),
enabling the rendering of realistic cars using the prompt ‘A realistic car on the street’. Furthermore,
given an edge map and hence a ShapeNet-rendered car, we can obtain various realistic renderings
at each iteration, facilitating diverse scene generations (Fig. 16). We further enhance ControlNet’s
backbone diffusion model using LoRA Hu et al. (2022) on a subset of ‘car’ images from the KITTI
dataset. This process enables the generation of natural-looking car versions that seamlessly blend
with the background scene. Finally, we integrate the ControlNet-rendered car and its shadow base
into the predicted location within the scene to achieve a realistic rendering.

ControlNet

Edge image Diverse realistic cars

‘A realistic car on 
street’

Shadow

Rendering Shadows for 3D assets in Blender

a)

b)

Figure 16: Diverse renderings generated with edge-conditioned ControlNet.

A.7.2 RENDERING REALISTIC SHADOWS.

Shadows are realistically generated using the ShapeNet Chang et al. (2015) Cars dataset and
rendered with Blender Community (2018) software, following the rendering procedure outlined
in A.6.2. However, to generate shadows, we modify the rendering method by introducing a 2D
mesh plane beneath the car base and adding a uniform ‘Sun’ Light source along the z-axis of the
blender environment, placed in the top on the z-axis of the car (Fig. 16). Additionally, we introduce
slight variations across all axes for the light source position. Once the cars are positioned within the
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Blender Community (2018) environment with suitable orientation, we render the entire scene while
setting both the car and the 2D plane as transparent. This method enables us to create a collection
of shadow renderings with a transparent background for each car in the placement setting.
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