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ABSTRACT

Scalability remains a challenge in multi-agent reinforcement learning and is cur-
rently under active research. A framework named mean-field reinforcement learn-
ing (MFRL) could alleviate the scalability problem by employing Mean Field
Theory to turn a many-agent problem into a two-agent problem. However, this
framework lacks the ability to identify essential interactions under non-stationary
environments. Causality contains relatively invariant mechanisms behind inter-
actions, though environments are non-stationary. Therefore, we propose an algo-
rithm called causal mean-field Q-learning (CMFQ) to address the scalability prob-
lem. CMFQ is ever more robust toward the change of the number of agents though
inheriting the compressed representation of MFRL’s action-state space. Firstly, we
model the causality behind the decision-making process of MFRL into a structural
causal model (SCM). Then the essential degree of each interaction is quantified
via intervening on the SCM. Furthermore, we design the causality-aware com-
pact representation for behavioral information of agents as the weighted sum of
all behavioral information according to their causal effects. We test CMFQ in a
mixed cooperative-competitive game and a cooperative game. The result shows
that our method has excellent scalability performance in both training in environ-
ments containing a large number of agents and testing in environments containing
much more agents.

1 INTRODUCTION

multi-agent reinforcement learning (MARL) has achieved remarkable success in some challenging
tasks. e.g., video games(Vinyals et al., 2019; Wu, 2019). However, training a large number of agents
remains a challenge in MARL. The main reasons are 1) the dimensionality of joint state-action space
increases exponentially as agent number increases, and 2) during the training for a single agent, the
policies of other agents keep changing, causing the non-stationarity problem, whose severity in-
creases as agent number increases.(Sycara, 1998; Zhang et al., 2019; Gronauer & Diepold, 2021).
Existing works generally use the centralized training and decentralized execution paradigm to miti-
gate the scalability problem via mitigating the non-stationarity problem(Rashid et al., 2018; Foerster
et al., 2018; Lowe et al., 2017; Sunehag et al., 2017). Curriculum learning and attention techniques
are also used to improve the scalability performance(Long et al., 2020; Iqbal & Sha, 2019). How-
ever, above methods focus mostly on tens of agents. For large-scale multi-agent system (MAS)
contains hundreds of agents, studies in game theory(Blume, 1993) and mean-field theory(Stanley,
1971; Yang et al., 2018) offers a feasible framework to mitigate the scalability problem. Under
this framework, Yang et al. (2018) propose a algorithm called mean-field Q-learning (MFQ), which
replaces joint action in joint Q-function with average action, assuming that the entire agent-wise
interactions could be simplified into the mean of local pairwise interactions. That is, MFQ reduces
the dimensionality of joint state-action space with a merged agent. However, this approach ignores
the importance differences of the pairwise interactions, resulting in the poor robustness. Neverthe-
less, one of the drawbacks to mean field theory is that it does not properly account for fluctuations
when few interactions exist(Uzunov, 1993) (e.g., the average action may change drastically if there
are only two adjacent agents). Wang et al. (2022) attempt to improve the representational ability of
the merged agent by assign weight to each pairwise interaction by its attention score. However, the
observations of other agents are needed as input, making this method not practical enough in the
real world. In addition, the attention score is essentially a correlation in feature space, which seems
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unconvincing. On the one hand, an agent pays more attention to another agent not simply because
of the higher correlation. On the other hand, it may be inevitable that the proximal agents will be
assigned high weight just because of the high similarity of their observation.
In this paper, we want to discuss a better way to represent the merged agent. We propose a algorithm
named causal mean-field Q-learning (CMFQ) to address the shortcoming of MFQ in robustness via
causal inference. Research in psychology reveals that humans have a sense of the logic of interven-
tion and will employ it in a decision-making context(Sloman & Lagnado, 2015). This suggests that
by allowing agents to intervene in the framework of mean-field reinforcement learning (MFRL),
they could have the capacity to identify more essential interactions as humans do. Inspired by this
insight, we assume that different pairwise interactions should be assigned different weights, and the
weights could be obtained via intervening. We introduce a structural causal model (SCM) that rep-
resents the invariant causal structure of decision-making in MFRL. We intervene on the SCM such
that the corresponding effect of specific pairwise interaction can be presented by comparing the dif-
ference before and after the intervention. Intuitively, the intervening enable agents to ask “what if
the merged agent was replaced with an adjacent agent” as illustrated in Fig.1. In practice, the pair-
wise interactions could be embodied as actions taken between two agents, therefore the intervention
also performs on the action in this case.
CMFQ is based on the assumption that the joint Q-function could be factorized into local pairwise
Q-functions, which mitigates the dimension curse in the scalability problem. Moreover, CMFQ
alleviates another challenge in the scalability problem, namely non-stationarity, by focusing on cru-
cial pairwise interactions. Identifying crucial interactions is based on causal inference instead of
attention mechanism. Surprisingly, the scalability performance of CMFQ is much better than the
attention-based method(Wang et al., 2022). The reasons will be discussed in experiments section.
As causal inference only needs local pairwise Q-functions, CMFQ is practical in real-world appli-
cations, which are usually partially observable. We evaluate CMFQ in the cooperative predator-prey
game and mixed cooperative-competitive battle game. The results illustrate that the scalability of
CMFQ significantly outperforms all the baselines. Furthermore, results show that agents controlled
by CMFQ emerge with more advanced collective intelligence.
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Figure 1: Blue agents and orange agents belong to different teams. The purple agent denote a
merged agent that simply average all agents in agent i’s neighborhood. The diagram on the left
shows a scenario in which the central agent i interacts with many agents, ik denotes the kth agent
in the observation of agent i. In the framework of MFRL, the scenario is transferred to the diagram
in the middle, in which an merged agent is used to characterize all the agents in the central agent’s
observation. Our method further enables the central agent to learn to ask “what if”. When it asks
this question, it can imagine the scenario illustrated in the right diagram. The central agent can
hypothetically replace the action of the merged agent in MFRL with the action of a neighborhood
agent, and if this replacement will cause dramatic changes in policy, it means this neighborhood
agent is potentially important. Thus central agent should pay more attention to the interaction with
this neighborhood agent.

2 RELATED WORK

The scalability problem has been widely investigated in current literatures. Yang et al. (2018) pro-
pose the framework of MFRL that increases scalability by reducing the action-state space. Several
works in a related area named mean-field game also proves that using a compact representation to
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characterize population information helps solve scalability problem(Guo et al., 2019; Perrin et al.,
2021).
Several works were proposed to improve MFQ. Wu et al. (2022) proposed a weighted mean-field
assigning different weights to neighbor actions according to the correlations of the hand-craft agent
attribute set, which is difficult to generalize to different environments. Wang et al. (2022) calculate
the weights with attention score. The observations of other agents are needed to calculate the
attention scores, making its practicality not satisfactory.
Our work is also closely related to recent development in causal inference. Researches indicate that
once the SCM, which implicitly contains the causal relationships between variables, is constructed,
we can obtain the causal effect by intervening. The causal inference has already been exploited for
communication pruning(Ding et al., 2020), solving credit assignment problem(Foerster et al., 2018;
Omidshafiei et al., 2019), demonstrating the potential of causal inference in reinforcement learning.
(Pearl, 2019; 2001; Peters et al., 2017). Xia et al. (2021) and Zečević et al. (2021) further proved
that SCM could be equally replaced with NCM under certain constraints, enabling us to ask “what
if” by directly intervening on neural network.

𝑎𝑡−1
𝑖,1

𝑎𝑡−1
𝑖,2

𝑎𝑡−1
𝑖,𝑁𝑖

Causal

Module

Causal

Module

Causal

Module

N
o

rm
al

iz
at

io
n

W
ei

g
h

te
d

 A
v

er
ag

e

Q 

Network

Softmax

𝜋𝑡
𝑖

𝑠𝑡

𝑇𝐸𝑡
𝑖,1

𝑇𝐸𝑡
𝑖,2

𝑇𝐸𝑡
𝑖,𝑁𝑖

𝜔𝑡
𝑖,1

𝜔𝑡
𝑖,2

𝜔𝑡
𝑖,𝑁𝑖

�ු�𝑡−1
𝑖

𝑎𝑡−1
𝑖,𝑘

ത𝑎𝑡−1
𝑖

𝑠𝑡

Q 

Network

Q 

Network

S
o

ft
m

ax
S

o
ft

m
ax

𝑇𝐸𝑡−1
𝑖,𝑘

𝑰𝒏 𝒂𝒈𝒆𝒏𝒕𝒔 𝒊′𝒔 𝒏𝒆𝒊𝒃𝒐𝒓𝒉𝒐𝒐𝒅

(a)

𝑎𝑡−1
𝑖,1

𝑎𝑡−1
𝑖,1

𝑎𝑡−1
𝑖,𝑁𝑖

Causal

Module

Causal

Module

Causal

Module

N
o

rm
al

iz
at

io
n

W
ei

g
h
te

d
 A

v
er

ag
e

Q 

Network

Softmax

𝜋𝑡
𝑖

𝑠𝑡

𝑇𝐸𝑡
𝑖,1

𝑇𝐸𝑡
𝑖,2

𝑇𝐸𝑡
𝑖,𝑁𝑖

𝜔𝑡
𝑖,1

𝜔𝑡
𝑖,2

𝜔𝑡
𝑖,𝑁𝑖

ത𝑎′𝑡−1
𝑖

𝑎𝑡−1
𝑖,𝑘

ത𝑎𝑡−1
𝑖

𝑠𝑡

Q 

Network

Q 

Network

S
o

ft
m

ax
S

o
ft

m
ax

𝑇𝐸𝑡−1
𝑖,𝑘

(b)

Figure 2: (a) is CMFQ’s architecture. Each neighborhood agent is assigned a weight according to
its causal effect to the policy of the central agent. (b) is the causal module. It calculate the KL
divergence between the two policies that the merged agent is represented by the average action and
the kth neighborhood agent action respectively. A large KL divergence means the kth neighborhood
agent might be ignored in the merged agent represented by the average action, hence it should be
assigned a higher weight to form a better merged agent.

3 PRELIMINARY

This section discusses the concepts of the stochastic game, mean-field reinforcement learning, and
causal inference.

3.1 STOCHASTIC GAME

A N -player stochastic game could be formalized as G =< S,A, P, r, N, γ >, in which N agents
in the environment take action a ∈ A = ×N

i=1A
i to interact with other agents and the environment.

Environment will transfer according to the transition probability P (s′ | s,a) : S ×A× S → [0, 1],
then every agent obtains its reward ri(s, ai) : S × Ai → R and γ ∈ [0, 1] is the discount factor.
Agent makes decision according to its policy πi(s) : S → Ω(Ai), where Ω(Ai) is a probability
distribution over agent i’s action space Ai.
The joint Q-function of agent i is parameterized by θi and takes s and a. It is updated as

Li(θi) = Es,a,r,s′

[(
Qi (s,a; θi)− y

)2]
,

y = r + γmax
a′i

Qi
(
s′,a; θ−i

) (1)

where θ−i is updated by with θi every C steps and set fixed until the next C steps finish.

where predict network parameters θ update at every epoch. Target network parameters θ− denotes
parameters to be updated with
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3.2 MEAN FIELD REINFORCEMENT LEARNING

Mean field approximation turns a many-agent problem into a two-agent problem by mapping the
joint action space to a single action space. The joint action Q function is firstly factorized considering
only local pairwise interactions, then pairwise interactions are approximated using the mean-field
theory

Qi
(
s, a1, a2, . . . , aN

)
=

1

N i

∑
k∈N(i)

Qi
(
s, ai, ak

)
≈ Qi

(
s, ai, āi

)
(2)

where N i = |N(i)|. N(i) is the set of agent i’s neighboring agents. Interactions between central
agent i and its neighbors are reduced to the interaction between the central agent and an abstract
agent, which is presented by average behavior information of agents in the neighborhood of agent i.
Finally, the policy of the central agent i is determined by pairwise Q-function

πi
t

(
ait | s, āit

)
=

exp
(
βQi

t

(
st, a

i
t, ā

i
t−1

))∑
a′i∈Ai exp

(
βQi

t

(
st, a′

i , āit−1

)) (3)

It is proven that πi
t will converge eventually(Yang et al., 2018).

3.3 CAUSAL INFERENCE

The data-driven statistical learning method lacks the identification of causality which is quite a
vital part of composing human acknowledge. The SCM established with human knowledge is
needed to represent the causality among all the variables we consider. An SCM is a 4-tuple
M =< U,V,F, P (U) >. U = {U1, U2, · · · , Um} is the set of exogenous variables which are
determined by factors outside the model. V = {V1, V2, · · · , Vn} is the set of endogenous variables
that are determined by other variables. F is a set of functions {fV1

, fV2
, · · · , fVn

} such that fVj

maps PaVj
∪ UVj

to Vj . where UVj
⊆ U is all the exogenous variables directly point to Vj and

PaVj
⊆ V\Vj is all the endogenous variables directly point to Vj . That is, Vj = fVj

(PaVj
,UVj

)
for j = 0, 1, · · · , n. P (U) is the probability distribution function over the domain of U. The causal
mechanism in SCM M induced an acyclic graph G, which uses a direct arrow to present a direct
effect between variables as shown in Fig.3. Intervention is performed through an operator called
do(x), which directly deletes fX and replaces it with a constant X = x, while the rest of the model
keeps unchanged. The equation defines the post-intervention distribution

PM(y|do(x)) ≜ PMx
(y) (4)

where Mx is the SCM after performing do(x). Once we obtain the post-intervention distribution,
one may measure the causal effect by comparing it with the pre-intervention distribution. A common
measure is the average causal effect.

E[Y |do(x′
0)]− E[Y |do(x0)] (5)

where x′
0 and x0 are two different interventions. The causal effect may also be measured by the

experimental Risk Ratio(Pearl, 2010)
E[Y |do(x′

0)]

E[Y |do(x0)]
(6)

4 METHOD

4.1 CONSTRUCTION OF SCM

The first step to obtain the causal effects behind the interactions among agents is constructing an
SCM, which reveals the causal relations among all the variables. In the setting of MFRL, mean
action āit−1 and state st determine the policy πi

t(· | st, āit−1) of agent i. As the key causal effect we
concern is how important an interaction is for decision making, that is, how the interaction contains
in āit−1 affects πi

t, we construct the SCM center on πj
t as illustrated in Fig.3(b). The importance

of the interaction with adjacent agent k on the central agent i could be estimated by replacing āit−1

with ai,kt−1 and quantified by the change of πi
t. Formally, the causal effect of acting ak on πi

t is

TEi,k
t = DIST (πi

t(· | st, ait, āit−1), π
i
t(· | st, ait, do(āit−1 = ai,kt−1))) (7)
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where ai,kt−1 is the action of the kth agent in the neighborhood of agent i. The causal effects in Eq.(5)
and Eq.(6) are quantified using the difference in statistics before and after the intervention. As the
policy are known, we can utilize the difference in policy to quantify causal effects. DIST measures
the difference between pre-intervention policy and post-intervention policy. We use KL divergence
as the DIST function in practice. As πi

t is parameterized using neural network, the do(·) calculation
is performed by directly changing the input of πi

t. It is worth noting that not all neural networks
are capable of causal inference(Xia et al., 2021). As a neural network learned by interacting with
the environment, πi

t lies on the second layer of Pearl Causal Hierarchy (Bareinboim et al., 2022),
and naturally contains both the causality between agent-wise interaction and the causality between
agent-environment interaction. It is sufficient for estimating the causal effect of certain interaction.
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Figure 3: (a) is a canonical SCM, when do(x0) operation is performed on X , all causes of X will be
broken and keep all variable constant but only change X to x0. (b) is the SCM of MFRL, the do(·)
operation on āit−1 follows the same procedure.

4.2 IMPROVING MFQ WITH CAUSAL EFFECT

In MFRL, we assume that different pairwise Q-functions should be assigned different weights de-
pending on their potential influences on the policy of central agent. Hence, the factorization of
Eq.(2) should be revised to

Qi
(
s, a1t , a

2
t , . . . , a

N
t

)
=

∑
k∈N(i)

wi,kQi
(
s, ai, ai,k

)
(8)

where N(i) is the set of agent i’s adjacent agents. Then Qj(s, a1, a2, · · · , aN ) is approximated
using mean-field theory and considering the causality-aware weights

Qi(s, a1, a2, · · · , aN ) =
∑

k∈N(i)

wi,kQi
(
s, ai, ai,k

)
=

∑
k∈N(i)

wi,k

[
Qi

(
s, ai, ǎi

)
+∇ǎiQi

(
s, ai, ǎi

)
· δai,k +

1

2
δai,k · ∇2

ãi,kQ
i
(
s, ai, ãi,k

)
· δai,k

]

= Qi
(
s,ai,ǎi

)
+∇ǎiQi

(
s,ai,ǎi

)
·

 ∑
k∈N(i)

wi,kδai,k

+∑
k∈N(i)

wi,k

[
1

2
δai,k ·∇2

ãi,kQ
i
(
s,ai,ãi,k

)
·δai,k

]
= Qi

(
s, ai, ǎi

)
+

∑
k∈N(i)

wi,kRi
s,ai

(
ai,k

)
≈ Qi

(
s, ai, ǎi

)
(9)

where δai,k = ai,k − ǎi and ǎi =
∑

k∈N(i) w
i,kai,k, hence

∑
k w

i,kδai,k = 0. In the second-order
term, ãi,k = ǎi + ϵi,kδai,k, ϵi,k ∈ (0, 1). Ri

s,ai

(
ai,k

)
denotes the first-order Taylor expansion’s

Lagrange remainder which is bounded by [−L,L] in the condition that the Qi
(
s, ai, ai,k

)
function

is L-smoothed. To be self-contained, we put the derivation in Appendix B. The remainder is a value
fluctuating around zero. As Yang et al. (2018) discussed in their work, under the assumption that
fluctuations caused by adjacent agents tend to cancel each other, the remainder could be neglected.
Once causal effects of pairwise interactions are known, the next question is how to to improve
the representational capacity of the merged agent. Both linear methods, e.g., weighted sum, or
nonlinear methods, e.g., encoding with a neural network, might be useful. However, to ensure
the merged agent’s reasonability, we prefer a representation in the linear space formed by adjacent
agents’ action vectors. An intuitive method that can induce reasonable output is a weighted sum. In
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practice, we find that weighted sum using respective causal effects as weight is enough to effectively
improve the representational capacity of average action

πi
t

(
ait | st, ǎit−1

)
=

exp
(
βQi

t

(
st, a

i
t, ǎ

i
t−1

))∑
a′i∈Ai exp

(
βQi

t

(
st, a′

i, ǎit−1

)) , ǎit−1 =
∑

k∈N(i)

wi,k
t ai,kt−1 (10)

wi,k
t =

TEi,k
t + ϵ∑

k∈N(i)

(
TEi,k

t + ϵ
) (11)

where subscripts are used to denote time steps. TEi,k
t is calculated according to Eq.(7). Each ai,kt−1 is

encoded in one hot vector. Hence the weighted sum returns a reasonable representation in the linear
space formed by the actions of neighborhoods. Moreover, the representation is close to essential
actions, emphasizing high-potential impact interactions. A term ϵ was introduced to smooth the
weight distribution across all adjacent agents, avoiding additional non-stationarity during training.
Besides, the naive mean-field approximation could be achieved when ϵ → ∞.
The Q-function Qi update using the following loss function similar with Eq.(1)

Li(θi) = Es,a,r,s′

[(
Qi

(
s, ai, ǎi; θi

)
−
(
r + γmax

a′i
Qi

(
s′, a′

i
, ǎi; θ−i

)))2
]

(12)

5 EXPERIMENTS

We evaluate CMFQ in two tasks: a mixed cooperative-competitive battle game and a coopera-
tive predator-prey game. In the battle task, we compare CMFQ with IQL(Tampuu et al., 2017),
MFQ(Yang et al., 2018), and Attention-MFQ(Wang et al., 2022) to investigate the effectiveness and
scaling capacity of CMFQ. We further verify the effectiveness of CMFQ in another task. In the
predator-prey task, we compare CMFQ with MFQ and Attention-MFQ. Our experiment environ-
ment is MAgent(Zheng et al., 2018).

5.1 MIXED COOPERATIVE-COMPETITIVE GAME
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Figure 4: Total reward during training.

Task Setting. In this task, agents are separated into two
groups, each containing N agents. Every agent tries to
survive and annihilate the other group. Ultimately the
team with more agents surviving wins. Each agent ob-
tains partial observation of the environment and knows
the last actions other agents took. Agents will be pun-
ished when moving and attacking to lead agents to act
efficiently. Agents are punished when dead and only
rewarded when killing the enemy. The reward setting
requires the agent to cooperate efficiently with team-
mates to annihilate enemies. In the experiments, we train
CMFQ, IQL, MFQ, and Attention-MFQ in the setting of
N = 64, then we change N from 64 to 400 to investigate
the scalability of CMFQ. The concrete reward values are
set as follow: rattack = −0.1, rmove = −0.005, rdead =
−0.1, rkill = 5. We train every algorithm in self-play
paradigm.
Quantitative Results and Analysis. As illustrated in Fig.5(a), we compare CMFQ with Attention-
MFQ, MFQ, and IQL. We do not choose Wu et al. (2022) as a baseline because it is a correlation-
based algorithm identical to Attention-MFQ. We assume that the attention-based method is a more
challenging baseline. Moreover, in addition to these algorithms, we also set ablation algorithms
named Random to verify that the performance improvement of CMFQ is not caused by random-
ization. Random follows the same pipeline as CMFQ but returns a random causal effect for each
interaction. Fig.4 shows the learning curve of all algorithms. We can see that the total rewards of
all algorithms converge to a stable value, empirically demonstrating the training scalability of our
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algorithm.
To compare the performance of each algorithm, we put trained algorithms in the test environment
that N = 64, and let them battle against each other. Fig.5(a) shows that MFQ performs better
than IQL but worse than Attention-MFQ, indicating that the mean-field approximation mitigates
the scalability problem in this task. However, the simply averaging as MFQ is not a good repre-
sentation of the population behavioral information. In order to improve its representational ability
for large-scale scenarios, it is necessary to assign different weights to different agents. Moreover,
CMFQ outperforms Attention-MFQ during the test, verifying the correctness of our hypothesis that
correlation-based weighting is insufficient to catch the essential interactions properly, while the in-
tervention fills this gap by giving agents the ability to ask “what if”.
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(a) Performance comparisons.
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(b) Test Scalability curve.
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(c) Ablation experiments of ϵ.

Figure 5: Win rate during execution. (a) shows the results that algorithms battle against each other.
the horizontal axis is divided into five groups by algorithms, and within each group there are five bars
representing the win rate of the algorithm on the horizontal axis. (b) shows win rates of algorithms
in the label against MFQ algorithms which are on the horizontal axis. (c) shows the win rate of
CMFQ with different ϵ against other algorithms.

We further investigate the test scalability of CMFQ, MFQ, and Attention-MFQ. Firstly, we
train these three algorithms in 64 vs. 64 scenario with self-play, denoted as CMFQ64, MFQ64,
Attention-MFQ64 respectively, and further train the MFQ algorithm in 100 vs. 100 and 400 vs. 400
scenarios, denoted as MFQ100 and MFQ400. Then, allow CMFQ64, MFQ64, and Attention-MFQ64

to battle against MFQ64, MFQ100 and MFQ400 in environments 64 vs. 64, 100 vs. 100, 400
vs. 400 respectively, that is, letting CMFQ, MFQ, and Attention-MFQ control more agents than
they were trained, to reveal the test scalability of the algorithms. As shown in Fig.5(b), the test
scalability of MFQ is the worst, which means that we need to retrain MFQ when the number of
agents increases and the test scalability of Attention-MFQ is slightly better. The test scalability of
CMFQ is significantly better than both of them. Furthermore, CMFQ achieves win rates of nearly
100% against MFQ100 and 32% against MFQ400.

Teaming up

Besiege

(a)

Teaming up

Besiege

(b)

Figure 6: Visualization of CMFQ vs MFQ in 64 vs 64 en-
vironment. Red squares denote CMFQ, and blue squares
denote MFQ, the vertical bar on the left side of the square
indicates its health point, and the surrounding circular area
indicates its attack range. When agent attacks, an arrow will
be extended to point at the attack target.

Ablations. We set two ablation
experiments. The first one to ablate
the effectiveness of causal effects in
CMFQ. As illustrated in Fig.5(a), the
performance of Random is inferior to
MFQ, verifying the validity of causal
effect in CMFQ. The other one is
ablation for ϵ. As we analyze in 4.2,
ϵ is an adjustable parameter in the
interval [0,+∞]. As ϵ increases, the
effect of each interaction becomes
smoother and eventually CMFQ
equal to MFQ when ϵ → +∞. From
the Fig.5(c), we can see that as we
adjust ϵ from 0.001 to 1, the learning
curve of CMFQ always converges,
and in the test environment, win rates
of CMFQ always outperform other
baselines. When ϵ is relatively large,
the win rate is close to that of MFQ.
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Visualization Analysis. As illustrated in Fig.6(a), CMFQ learns the tactic of besieging, while
MFQ tends to confront frontally. The results in Fig.6(b) indicate the tricky issue in mixed
cooperative-competitive game: agents need to cooperate with their teammates to kill enemies,
whereas only the agent who hits a fatal attack gets the biggest reward rkill, driving agents hesitating
to attack first. When there are few agents, the policies of MFQ and CMFQ tend to be conservative.
However, CMFQ presents more advanced tactics: agents learn the trick of teaming up in the mixed
cooperative-competitive game. When an agent chooses to attack, the adjacent teammates will
arrive to help, achieving the maximum reward with the smallest cost of health. Moreover, Fig.6(b)
also shows that attacks of CMFQ are more focused than baselines. CMFQ can discriminate key
interactions and have a more accurate timing of attacks, while MFQ lacks this discriminatory ability
and thus keeps attacking.

5.2 COOPERATIVE GAME
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Figure 7: Total reward during training.

Task Setting. In this task, agents are divided
into predator and prey. Prey move 1.5 times
faster than predators, and their task is to avoid
predators as much as possible. Predators are
four times larger than prey and can attack but
not yield any damage. Predators only get re-
warded when they are close to prey. Therefore,
to gain the reward, they must cooperate with
other predators and try to surround prey with
their size advantage. In our experiments, to
test the scalability of the CMFQ, we first train
MFQ, CMFQ, and Attention-MFQ employing
the self-play paradigm in a scenario involving
20 predators and 40 prey, and then test them in
environments involving (20 predators, 40 prey), (80 predators, 160 prey), (180 predators, 360 prey)
respectively. The reward are set as follow: rattack = −0.2, rsurround = 1, rbe surrounded = −1.
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(a) MFQ controls prey.
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(b) Attention-MFQ controls prey.
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(c) CMFQ controls prey.

Figure 8: Total reward of predators during execution changes when the number of agents increases.
1× denotes Npredator=20, Nprey=40, 4× demotes Npredator=80, Nprey=160 and so on. All algo-
rithms are trained in the 1× environment.

Quantitative Results and Analysis. We compare CMFQ with MFQ and Attention-MFQ. First, we
investigate their training scalability in (20 predators, 40 prey), as shown in Fig.7(a) and Fig.7(b),
all of them converge to a stable reward total reward, verifying their training scalability. Then, we
enlarge the number of agents during execution to investigate their test scalability. To demonstrate
the scalability gap of different algorithms, we allow the algorithms to execute in an adversarial
form, which means that one algorithm controls the predator and another controls the prey. For
the environment, we change the number of agents to 1x, 4x, and 9x of the number in the training
environment.
Because the reward rbe surrounded of prey and the reward rsurround of predator are zero-sum and
cooperation exists mainly among predators, we use the total reward of predators to indicate each
algorithm’s performance. The results are shown in Fig.10. Total rewards in specific environment
indicate the train scalability, since a higher total reward means agents learn better policy during
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training. Trends of lines are related to test scalability, and a more flat line indicates the better test
scalability of the algorithm. We can see that the total reward of Attention-MFQ is higher than that
of MFQ, and the trend is similar to that of MFQ. In comparison, the total reward of CMFQ is higher
than that of both MFQ and Attention- MFQ, and the trend is ever more flat, indicating that CMFQ
has better scalability.

Figure 9: Visualization of cooperative predator prey game. The first row is results of CMFQ,
the second row is results of Attention-MFQ. Npredator=20,Nprey=40 for the left column,
Npredator=40,Nprey=80 for the middle column, Npredator=180,Nprey=360 for the last column. Red
squares are predators while blue squares are prey, the grey squares are obstacles. All images are ob-
tained 400 steps after the game begin.

Visualization Analysis. The results that the trained CMFQ and Attention-MFQ controls predators
are shown in Fig.9. In the the environment that Npredator=20, Nprey=40, both CMFQ and Attention-
MFQ perform similarly. Predators learn two strategies: four predators cooperating to surround the
prey in an open area; two or three predators surrounding the prey with the help of obstacles. In the
environment that Npredator=40, Nprey=80, when the number of agents increases, predators con-
trolled by Attention-MFQ are more dispersed than predators controlled by CMFQ. Besides, MFQ
has more predators idle than CMFQ. Predators controlled by CMFQ gather on map edges, because
it is more efficient to surround prey with the help of map edges. In addition, predators controlled by
CMFQ learn an advanced strategy to drive prey to map edges then take advantage of the terrain to
surround them. In the environment that Npredator=180, Nprey=360, the advanced strategy is also
presented. Moreover, predators controlled by CMFQ master the skill to utilize the bodies of still
teammates who have captured prey as obstacles. Thus, predators controlled by CMFQ present a
high degree of aggregation and environmental adaptability.

6 CONCLUSIONS

This paper aims at scalability problem in large-scale MAS. Firstly, We inherit the framework of
MFRL which significantly reduce the dimensionality of joint state-action space. To further handle
the intractable non-stationarity when the number of agent is large, we propose a SCM to model the
decision-making process, and enable agents to identify the more crucial interactions via intervening
on the SCM. Finally a causality-aware representation of population behavioral information could be
obtained by the weighted sum of the action of each agent according to its causal effect. Experiments
in two tasks reveal the excellent scalability of CMFQ.
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A IMPLEMENTATION DETAILS

The pseudocode of CMFQ is listed below.

Algorithm 1 Causal Mean Field Q-learning
Input: Initialize state s0; Qθi , Qθ−

i
, ǎi0 for all agent i ∈ {1, 2, · · · , N}; trajectory length M ;

while in the training loop do
for t = 0, 1, · · · ,M do

for i = 1, 2, · · · , N do
Calculate policy πi

t(· | st, āit−1) with average merged agent;
Calculate causal effect for every neighborhood agent by Eq.(7);
Obtain a new merged agent ǎit−1 and a new policy πi

t(· | st, ǎit−1) by Eq.(10);
end for
Sample joint action a = [a1, a2, · · · , aN ] from [π1

t , π
2
t , · · · , πN

t ]
obtain the next state st+1 and the reward r = [r1, r2, · · · , rN ] and merged agent ǎ =

[ǎ1t−1, ǎ
2
t−1, · · · , ǎNt−1];
Store transition < st, a, r, st+1, ǎ > in replay buffer;

end for
for i = 1, 2, · · · , N do

Sample a minibatch transition from replay buffer;
Calculate Li and update θi by Eq.(12);
Updata target network by θ−i = θi after every C updates of θi;

end for
end while

B DERIVATION FOR THE BOUND OF THE LAGRANGE REMAINDER

As s, ai in Qi(s, ai, ai,k) are fixed parameter in the derivation of Eq.(9), for simplicity, the pairwise
Q-function Qi(s, ai, ai,k) can be rewrite as Q(ak) in the following. We assume that ak is a one-hot
encoding for n actions, to make Q(ak) more general, we replace the discrete ak (ak ∈ RN ) by a
continuous x (x ∈ RN ) which don’t violate the domain of the parameterized Q-function. Given the
Q (x) is L-smooth, then for any two points x, y ∈ dom (Q) ⊆ RN , there exists a Lipschitz constant
L ∈ [0,+∞) that

∥∇Q(x)−∇Q(y)∥2 < L∥x− y∥2 (13)

By the first order Taylor expansion with Lagrange remainder, we have

∇Q (y) = ∇Q (x) +∇2Q (x) · u+R (u) (14)

where u = y − x, limu→0
R(u)
∥u∥2

= 0. Assume x ̸= y, then we can reform the first order Taylor
expansion

∥∇2Q(x) · u∥2
∥u∥2

=
∥∇Q(y)−∇Q(x)−R(u)∥2

∥u∥2

≤ ∥∇Q(y)−∇Q(x)∥2
∥u∥2

+
∥R(u)∥2
∥u∥2

≤ L+
∥R(u)∥2
∥u∥2

, ∀x, y ∈ dom(Q), x ̸= y

(15)

u could be the eigenvalue of ∇2Q (x), then Eq.(15) can be convert to

∥∇2Q(x) · u∥2
∥u∥2

=
∥λu∥2
∥u∥2

=| λ |≤ L+
∥R(u)∥2
∥u∥2

(16)
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Obviously, we can obtain the bound of λ, λ ∈ [−L,L]. ∇2Q (x) is a real symmetric matrix, so
there exist an orthogonal matrix U to diagonalize ∇2Q (x) such that UT

[
∇2Q (x)

]
U = Λ ≜

diag [λ1, λ2, . . . , λN ]. Then the bound of Ri
s,ai(ai,k) can be derived as follow

Ri
s,ai(ai,k) =

1

2
δai,k ·∇2Q

(
ak

)
· δai,k =

1

2

[
U · δai,k

]T
Λ
[
U · δai,k

]
=

1

2

N∑
n=1

λn

[
U · δai,k

]2
n

(17)

−L∥U · δai,k∥2 ≤
N∑

n=1

λn

[
U · δai,k

]2
n
≤ L∥U · δai,k∥2 (18)

where
[
U · δai,k

]
n

refers to the nth element of vector U · δai,k.

∥U · δai,k∥2 = ∥δai,k∥2 = (ai,k − ǎi)T (ai,k − ǎi)

= ai,k
T
ai,k + ǎiT ǎi − ǎiTai,k − ǎiai,k

T
= 2(1− ǎin) ≤ 2

(19)

where ai,k is a one-hot encoding action, ǎin denotes the nth element in ǎi. Finally, according to
Eq.(17) Eq.(18) Eq.(19), the bound of Ri

s,ai(ai,k) is [−L,L].

C VISUALIZATION FOR THE WEIGHTS OF CMFQ AND ATTENTION-MFQ

To further analyze the reasons why CMFQ is more effective than Attention-MFQ empirically, we
randomly select an agent in the mixed cooperative-competitive game task and visualize its weight.
Some interesting observations can be made from Fig.10(a). First of all, it makes sense that the agents
on the front line will be given high weights because they are battling. Secondly, the weights of agents
at the edge of the front line are relatively small, possibly because these agents can cooperate with
nearby teammates to attack an enemy due to their position advantages, so they are in a relatively
dominant state. In addition, agents at the very edge of the front line are given higher weights, even
if they are out of combat. This is because they are in a position to flank their opponents and work
with their teammates to surround the opponents. In Fig.10(b), we observe a result consistent with
the analysis in our paper. That is, the attention-based method uses the attributes of other agents to
calculate the attention scores, and observation is an important part of the attributes, so it tends to
give high weight to the agents nearby because their observations are similar.

(a) The weights obtained by CMFQ. (b) The weights obtained by Attention-MFQ.

Figure 10: The two figures visualize the mixed cooperative-competitive task, where each agent in
the blue team in (a) is controlled by CMFQ and each agent in the blue team in (b) is controlled
by Attention-MFQ. Each agent in the red team is controlled by MFQ. We label the agents in the
blue team whose weights are visualized in green. The number above the blue agent represents the
normalized weight given by the green agent to the pairwise interaction between them. Due to space
constraints, the integer bits of all weights are omitted
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D SUPPLEMENTAL EXPERIMENT ON MPE

To further investigate the applicability of CMFQ, we perform an experiment on another environment
named multi-agent particle environment (MPE)(Mordatch & Abbeel, 2017). As the dimentionality
of action-state space will change as the initial number of agent changes, making it difficult to verify
scalability, but we believe that CMFQ’s scalability performance has been adequately validated in
previous experiments. For MPE, we tested the predator prey task in MPE when the number of
agents was the same as that in the training environment, and compared it with 5.2 to see whether
the same conclusions could be drawn in the two environments.
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Figure 11: Average reward during training.

Task Setting. There are 20 predators, 40 preys,
and 20 obstacles. Predator gets rcollide = 10
if it collide with prey. Prey gets rbe collided =
−10 if it collided with predator. The speed of
prey is 1.3 times of that of predator. In order
to make preys learn to leverage obstacles in-
stead of running to infinity, we manually draws
an area. If preys go beyond this area, they will
get penalty rbound which will be aggravate as
the distance preys go beyond this area increase,
until rbound = −10. We trained MFQ, CMFQ
and Attention-MFQ in the self-play paradigm.
The training curve is shown in Fig.11.
Quantitative Results and AnalysisIn the test phase, we controlled 20 Predators and 40 prey with
different algorithms respectively, test 10 times and calculated the average reward of each algorithm,
as shown in Table.1. First, the average reward of MFQ is lower than CMFQ and Attention-MFQ,
regardless of whether it controls predators or preys. This indicates that the representational ability
of average merged agent is insufficient. Secondly, when MFQ controls prey, the average predator
reward of CMFQ is higher than Attention-MFQ, indicating that the weight obtained by CMFQ was
more representational. Finally, in the comparison between CMFQ and Attention-MFQ, CMFQ out-
performs Attention-MFQ in both predator reward and prey reward, further confirms the superiority
of CMFQ. In the task that the number of agents in testing was the same as that in the training, We
compare the performance of MFQ, CMFQ, and Attention-MFQ and come to the same conclusion
consistent with 5.2, empirically certify the applicability of CMFQ.

Predator Predator reward Prey Prey reward
MFQ 4.23 CMFQ -8.64

CMFQ 6.68 MFQ -13.05
MFQ 4.01 Attention-MFQ -8.47

Attention-MFQ 6.05 MFQ -12.46
CMFQ 3.15 Attention-MFQ -11.07

Attention-MFQ 3.02 CMFQ -4.23

Table 1: Results that let two different algorithm control predators and preys respectively. Predator
reward is the average reward a predator obtain every step. Prey reward is the average reward a prey
obtain every step.
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