
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUMMARIES AS CENTROIDS FOR INTERPRETABLE
AND SCALABLE TEXT CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means
that periodically replace numeric centroids with textual summaries. The key
idea—summary-as-centroid—retains k-means assignments in embedding space
while producing human-readable, auditable cluster prototypes. The method is
LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, en-
abling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade
that uses an LLM for summaries under a fixed per-iteration budget whose cost
does not grow with dataset size. We also present a mini-batch extension for real-
time clustering of streaming text. Across diverse datasets, embedding models, and
summarization strategies, our approach consistently outperforms classical base-
lines and approaches the accuracy of recent LLM-based clustering—without ex-
tensive LLM calls. Finally, we provide a case study on sequential text streams and
release a StackExchange-derived benchmark for evaluating streaming text cluster-
ing.

1 INTRODUCTION

Text clustering is a core problem in natural language processing (NLP), with applications in doc-
ument organization, topic exploration, and information retrieval (Schütze et al., 2008; Steinbach,
2000). A standard pipeline embeds documents into vectors (Devlin, 2018; Sanh, 2019; Mikolov,
2013; Pennington et al., 2014; Brown et al., 2020; Jin et al., 2023) and then groups them with a
clustering algorithm (Petukhova et al., 2025). Among these algorithms, k-means (MacQueen, 1967)
remains ubiquitous, iteratively updating each centroid as the mean of its assigned points. While
effective, this purely numerical averaging can blur contextual nuance present in the original texts
(Reimers & Gurevych, 2019). Prior work has explored alternative centroid definitions and related
objectives (Jain & Dubes, 1988; Bradley et al., 1996; Kaufman & Rousseeuw, 2008), yet these ap-
proaches remain anchored in vector space, which limits interpretability and can induce semantic
drift between centroids and their underlying documents. This motivates centroids that are explicitly
textual, aligning prototypes with human-interpretable summaries.

Our proposal. We introduce a simple modification to k-means: periodically replace numerical
centroid updates with summarization steps. Rather than averaging embeddings at every iteration, we
compute, at spaced iterations, a textual prototype that summarizes each cluster and then re-embed
it with the same encoder to obtain the centroid used for assignments. These summary-as-centroid
updates remain inside the standard k-means loop but capture richer contextual meaning. Alternating
numerical and summary-based updates yields clusters that are more interpretable and often more
semantically coherent. Figure 1 illustrates our proposal and shows how even a single summarization
step can redirect k-means toward a qualitatively improved solution.

Summarization step. We consider two families of summarizers: (1) Classical NLP—centroid-
based summarization (Radev et al., 2004), graph-based methods such as TextRank (Mihalcea &
Tarau, 2004), and LSA-style techniques (Deerwester et al., 1990)—which are fast and determin-
istic (yielding k-NLPmeans); and (2) LLM-based summaries that can capture richer context and
filter secondary or noisy content (Zhang et al., 2020a; Raffel et al., 2020; Jia & Diaz-Rodriguez,
2025) (yielding k-LLMmeans). In both variants, summaries are recomputed only at scheduled it-
erations, so the algorithms share the same summary-as-centroid mechanism and differ solely in the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

How can I activate my new card and what
is the process involved? Additionally,
how can I top up my account

How can I use Google or Apple
Pay to top up my account

What is the minimum age to open
an account? Additionally, how can
I set up an account for my child?

How do I open up an account for my child?
Do my kids have to be a certain age to
use this service?

How old do you have to be to get an account?

When can I get a new card?

How do I activate a new card?

I just received my new card

What is the process for activating my card?

Can I use Apple pay to top up?

How to add money to my
new payment account

I don’t know how to top up my Google pay

Initialization k-means iterations Summarization step k-means iterations

Figure 1: Illustration of k-NLPmeans/k-LLMmeans with a single summarization step. First panel
shows the text embeddings with stars marking the initial centroids; second shows the partition
reached after k-means iterations (a local minimum); third performs the summarization step, each
previous cluster is summarized into a textual prototype and re-embedded; final panel runs one more
k-means iteration using these summaries as centroids, yielding a qualitatively improved partition.

summarizer. While methods from (1) and (2) are standard in summarization, our periodic use of
summary-derived centroids within the k-means loop is, to our knowledge, novel and central to the
method’s interpretability.

Interpretability and scalability. Each summarization step produces a concise, human-readable
centroid that exposes evolving cluster semantics, simplifying debugging, validation, and labeling.
The summarizer is modular: it can be LLM-free (k-NLPmeans) or LLM-assisted under a fixed per-
iteration budget that does not grow with dataset size (k-LLMmeans). For large-scale and streaming
settings, we adapt mini-batch k-means (Sculley, 2010) by inserting summarization steps into the
mini-batch update rule, enabling efficient online clustering while retaining interpretability.

Relation to existing LLM-based clustering. Recent work shows that LLMs can deliver strong
unsupervised clustering (Zhang et al., 2023; Feng et al., 2024; De Raedt et al., 2023; Viswanathan
et al., 2024; Shi & Sakai, 2023; Tarekegn et al., 2024; Nakshatri et al., 2023). However, many
pipelines face two practical issues: (i) scalability, as they may rely on semi-supervision, iterative
labeling, or a number of LLM calls that grows with dataset size; and (ii) opaque optimization, since
they often combine prompts, greedy merges, and similarity thresholds without an explicit objective,
making convergence behavior hard to analyze. Our k-LLMmeans addresses both: by summarizing
per cluster at spaced iterations, we cap LLM usage independently of dataset size, and by keeping
assignments and numeric updates in embedding space, we preserve the standard k-means objective
between summary steps. In both k-NLPmeans and k-LLMmeans, if the summaries are weak, the
procedure gracefully degrades to vanilla k-means with a suboptimal initialization, retaining its stan-
dard local-convergence behavior. Note that our method is LLM-optional: k-NLPmeans replaces the
summarizer with classical NLP techniques, incurring no LLM usage.

Contributions. In summary, we (i) propose k-NLPmeans and k-LLMmeans, a summary-as-
centroid variant of k-means that periodically replaces numeric centroids with textual prototypes
re-embedded by the same encoder—an LLM-optional design that, by construction, preserves the
standard k-means objective between summary steps; interpretability follows from human-readable
centroids and transparent intermediate outputs; (ii) extend the approach to mini-batch k-means for
efficient, online clustering of streams; (iii) present a comprehensive empirical study across datasets,
embeddings, and summarizers, showing consistent gains over classical baselines and competitive-
ness with recent LLM-based clustering under a dataset-size–independent LLM budget; and (iv)
provide a case study on sequential text streams and release a StackExchange-derived benchmark for
evaluating streaming text clustering.

2 PRELIMINARIES: K-MEANS FOR TEXT CLUSTERING

Given a corpus of n text documents D = {d1, · · · dn}. Each document di is represented as a d-
dimensional embedding vector xi ∈ Rd such that:

xi = Embedding(di).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The goal of k-means clustering is to partition these n document embeddings into k clusters, mini-
mizing the intra-cluster variance. Formally, we define the clustering objective as:

min
C1,C2,...,Ck

k∑
j=1

∑
i∈[Cj]

∥xi − µj∥2, (1)

where Cj denotes the set of embeddings assigned to cluster j, [Cj] = {i|xi ∈ Cj} denotes the set
of embedding indices assigned to cluster j and µj is the cluster centroid, computed as the mean of
the assigned embeddings:

µj =
1

|Cj |
∑

i∈[Cj]

xi. (2)

Lloyd’s algorithm (Lloyd, 1982)—the standard heuristic for k-means—alternates between assigning
each document embedding xi to its nearest centroid and recomputing each centroid as the mean of its
assigned points. Repeating these two steps for T iterations monotonically reduces the within-cluster
sum of squared distances, steering the procedure toward a (locally) optimal set of centroids. How-
ever, due to its sensitivity to initialization and the non-convex nature of its objective function, k-
means does not guarantee convergence to the global optimum and can instead become trapped in
local optima (MacQueen, 1967; Lloyd, 1982). Various strategies, such as k-means++ initialization
and multiple restarts, have been proposed to mitigate these issues and improve the likelihood of
achieving better clustering results (Arthur & Vassilvitskii, 2006).

3 K-MEANS WITH SUMMARIZATION STEPS

We enhance k-means for text clustering by periodically replacing the numerical centroid update
with summarization steps that yield textual-summary–based centroids. The procedure (Algorithm 1
in Appendix C) is identical to k-means algorithm except that every l iterations the mean update
in equation 2 is replaced by the embedding of a cluster textual summary. At all other iterations,
the standard update is used (see Figure 1 for an illustration with one summarization step). The
summarizer can be instantiated with classical, deterministic methods (k-NLPmeans) or with LLM-
based summaries (k-LLMmeans), and is not restricted to the specific techniques we discuss—any
textual summarization operator can be dropped in.

3.1 K-NLPMEANS.

Our first variant uses classical extractive summarization to compute a textual prototype in place of
the standard centroid update. Formally, we replace equation 2 with

µj = Embedding
(
f
(q)
NLP(Sj)

)
, (3)

where Sj is the collection (multiset) of sentences obtained by tokenizing all documents assigned to
cluster j. Unless otherwise noted, sentence–sentence similarities are computed as cosine similarity
between sentence embeddings produced by the same encoder used for documents. The operator
f
(q)
NLP returns a short summary of q sentences; typical instantiations include:

• Centroid-based summarization (Radev et al., 2004): compute the centroid of the sentence
embeddings for Sj ; rank sentences by cosine similarity to this centroid; concatenate the top
q sentences (by rank) to form f

(q)
NLP(Sj).

• Graph-based (TextRank) (Mihalcea & Tarau, 2004): build a graph whose nodes are sen-
tences in Sj with edge weights given by pairwise cosine similarity of their embeddings;
run a PageRank-style algorithm to score sentences; select and concatenate the top q.

• LSA-style SVD in embedding space (Deerwester et al., 1990): stack the sentence embed-
dings for Sj , apply singular value decomposition, score sentences by contribution to the
leading components, and concatenate the top q.

The resulting summary text f (q)
NLP(Sj) is then embedded in the same vector space as the documents

to yield the new centroid µj .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 K-LLMMEANS.

If instead we generate the summary with an LLM, we have k-LLMmeans. Formally, we replace
equation 2 by

µj = Embedding(fLLM(pj)) (4)

where pj = Prompt
(
I, {dzi |zi ∼ [Cj]}

mj

i=1

)
, and mj = min(m, |Cj |). Here, zi ∼ [Cj] denotes a

sampled index of the embeddings assigned to cluster Cj (without repetitions) and m is a parameter
that represents the maximum number of sampled indices used to compute the cluster centroid µj . In
simple terms, we update a cluster’s centroid by using the embedding of the response generated by
an LLM when queried with a prompt containing a summarization instruction I and a representative
sample of documents from the cluster. Rather than providing all documents within the cluster as
input, the LLM processes a representative sample as a context prompt. While incorporating the
entire cluster is theoretically possible, it poses practical challenges due to prompt length limitations.
Therefore, we propose selecting the sample cluster documents using a k-means++ sampling of the
cluster embeddings. Our experiments demonstrate that this sampling process facilitates a more
effective synthesis of the cluster’s content, leading to improved summaries and, consequently, more
refined centroid updates. The instruction I varies depending on the clustering task, but standard
summarization prompts are generally sufficient. Figure 1 illustrates how k-LLMmeans with a single
summarization step enhances the standard k-means algorithm.

3.3 ADVANTAGES OF OUR APPROACHES

Over k-means. Periodic summarization steps act as a semantic prototype update that can redi-
rect the search trajectory and reduce sensitivity to initialization. Instead of relying solely on Eu-
clidean means, a textual summary captures contextual cues present in the underlying documents; re-
embedding this summary yields centroids that better reflect cluster semantics. In practice, summary-
based centroids produce more interpretable and often more semantically coherent—partitions, even
when k-means++ seeding is suboptimal. Apart from the summary steps, the procedure follows stan-
dard k-means: assignments and numeric updates are unchanged and the usual objective is preserved
between summary iterations. Section 5.1 shows that our methods often outperform vanilla k-means
across diverse settings.

Over advanced LLM-based clustering methods. Our approach offers three key advantages over
more complex LLM-based clustering methods: (1) Optimization landscape. Grounded in the stan-
dard k-means objective, we inherit algorithmic convergence without relying on the fragile heuristics
common in newer LLM-driven methods. A poor summary simply leads the procedure back toward
a regular k-means local optimum, whereas competing approaches hinge on stable, format-specific
LLM outputs. (2) Scalability. Unlike most state-of-the-art methods, whose LLM usage complexity
grows with sample size (Feng et al., 2024; De Raedt et al., 2023) or require fine-tuning (Zhang et al.,
2023). k-NLPmeans requires no LLM calls and k-LLMmeans only performs k LLM calls per sum-
marization step, with even few summarization steps yielding substantial performance gains. (See
Section 5.1). (3) Interpretability. Replacing numeric centroids with textual summaries turns each
prototype into a concise, human-readable synopsis; practitioners can track how cluster semantics
evolve over time without post-hoc labeling. This transparency extends naturally to our mini-batch
variant, enabling real-time monitoring in streaming scenarios (see Figure 2 and Section 5.1).

4 MINI-BATCH K-NLPMEANS AND K-LLMMEANS

Mini-batch k-means (Sculley, 2010) is an efficient strategy for large-scale text clustering that pro-
cesses small, randomly sampled mini-batches instead of the full dataset. This approach substantially
reduces memory usage and computational cost, making it well suited for continuously generated text
streams—such as those from social media, news, or customer feedback—where data must be clus-
tered incrementally without full dataset access. Mini-batch k-means exhibits convergence properties
comparable to standard k-means while offering superior scalability.

Although numerous streaming clustering methods that do not rely on LLMs have been studied (Silva
et al., 2013; Aggarwal, 2018; Ribeiro et al., 2017; Aggarwal et al., 2003; Ackermann et al., 2012;
Ordonez, 2003), only a few incorporate LLMs (Tarekegn et al., 2024; Nakshatri et al., 2023). More-
over, existing offline LLM-based clustering approaches face scalability issues, highlighting the need

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

for scalable summary-based clustering in an online setting. To address this, we introduce mini-batch
k-NLPmeans and k-LLMmeans, which directly extend mini-batch k-means by inserting summariza-
tion steps into the mini-batch update.

Algorithm 2 details how our approaches sequentially receive b batches of documents D1, . . . Db

where each batch contains a set of documents (these batches can either be random samples from a
large corpus or represent sequential data). It processes each batch sequentially with k-NLPmeans/k-
LLMmeans and updates centroids incrementally using a weighted rule like mini-batch k-means. Our
algorithm preserves the desirable properties of mini-batch k-means, with low memory and none or
low LLM usage. Section 6 shows that it also outperforms in simulations.

5 STATIC EXPERIMENTS

We use four benchmark datasets that span diverse domains and classification granularities: Bank77
(Casanueva et al., 2020), CLINC (Larson et al., 2019), GoEmo (Demszky et al., 2020) and MAS-
SIVE (domain and intent) (FitzGerald et al., 2023). See Appendix A.1 for detailed descriptions of
the datasets. We evaluate our algorithms on each of the four datasets using the known number of
clusters and performing 120 centroid-update iterations. We calculate two variants of our algorithms
differing in the number of summarization steps. The single variant uses a single summarization
step (l = 60), while the multiple variant performs five summarization steps (l = 20). To demon-
strate the robustness of our approach, we compute embeddings with models: DistilBERT(Sanh,
2019), e5-large(Wang et al., 2022), S-BERT(Reimers & Gurevych, 2019), and text-embedding-3-
small(OpenAI, 2023). For k-NLPmeans we evaluate using TextRank, Centroid and LSA summariza-
tion methods mentioned in Section 3.1, with q = 5. For the LLM component of k-LLMmeans, we
use GPT-3.5-turbo(OpenAI, 2023), GPT-4o(Hurst et al., 2024), Llama-3.3(Grattafiori et al., 2024),
Claude-3.7(Anthropic, 2025) and DeepSeek-V3(Liu et al., 2024). For the instruction task I , we
employ a simple summarization prompt depending on the task. For example, for Bank77 we use
the prompt: “The following is a cluster of online banking questions. Write a single question that
represents the cluster concisely.” We explore the effect of prompt size by summarizing using all
cluster documents as input, and a few-shot (FS) variant where each prompt includes only m = 10
randomly selected documents instead of the full cluster. For each setting we run five different seeds.

As traditional clustering baselines, we consider k-means, k-medoids (Kaufman & Rousseeuw,
2008), spectral clustering (Ng et al., 2001), agglomerative clustering (Johnson, 1967), and Gaus-
sian Mixture Models (GMM) (Dempster et al., 1977). We use ground-truth number of clusters and
ten different seeds. For advanced LLM-based methods, we compare with results obtained by Feng
et al. (2024) on ClusterLLM (Zhang et al., 2023), IDAS (De Raedt et al., 2023), and LLMEdgeRe-
fine (Feng et al., 2024). All k-means based methods are initialized with k-means++. We now provide
a summary of the results.

5.1 RESULTS WITH STATIC DATA

Comparing summarization variants and traditional clustering methods. Table 1 reports
mean accuracy (ACC) and normalized mutual information (NMI) for multiple k-NLPmeans and
k-LLMmeans variants (LLM: GPT-4o), using text-embedding-3-small embeddings on four datasets.
Across all datasets, our methods outperform traditional baselines on NMI and generally achieve
higher ACC. Within k-NLPmeans, differences are modest, with LSA yielding the best overall scores
among extractive summarizers. k-LLMmeans achieves the strongest results, attributable to higher-
quality abstractive summaries; interestingly few-shot variants show better performance. Multiple
summarization steps tend to offer additional gains over a single step. Overall, both k-NLPmeans
and k-LLMmeans improve upon traditional algorithms, with k-LLMmeans delivering the best re-
sults, and remaining efficient, as few-shot summarization appears sufficient without needing exten-
sive prompt length.

Comparing our approaches with k-means using different embeddings. Table 2 compares k-
NLPmeans (LSA-multiple) and k-LLMmeans (FS-multiple) with k-means with different embeddings
on three benchmark datasets, reporting average ACC, average NMI, and average Euclidean distance
between the learned and ground-truth centroids (dist). The dist metric directly gauges how closely
each algorithm recovers the true centroids, an especially meaningful criterion for centroid-based

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Average ACC and NMI for four k-LLMmeans variants using GPT-4o, compared against
traditional baselines, with text-embedding-3-small embeddings, evaluated on benchmark datasets.

Dataset/Method BANK77 CLINC GoEmo Massive (D) Massive (I)
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-NLPmeans
TextRank-single 66.4 83.6 78.7 92.4 21.5 20.9 60.6 68.9 53.0 72.5
TextRank-multiple 66.8 83.9 79.6 92.8 21.6 21.0 60.5 69.3 53.7 72.8
Centroid-single 67.2 84.0 78.5 92.2 22.1 21.2 60.9 68.3 53.5 73.0
Centroid-multiple 67.5 84.0 79.0 92.4 21.4 21.1 60.8 69.1 54.3 73.5
LSA-single 66.7 83.7 78.8 92.5 21.9 20.5 61.2 68.7 54.1 73.0
LSA-multiple 67.1 84.0 80.2 92.9 22.3 20.2 63.3 70.0 55.3 73.4

k-LLMmeans
single 67.1 83.6 78.1 92.5 24.0 22.3 61.1 69.6 54.0 73.0
multiple 66.7 83.6 79.1 92.8 24.1 22.1 60.6 69.5 55.8 73.5
FS-single 67.5 83.8 79.2 92.8 23.0 21.9 60.8 69.4 55.3 73.6
FS-multiple 67.9 84.1 80.2 93.1 24.2 22.3 63.2 70.6 56.7 73.9

k-means 66.2 83.0 77.3 92.0 20.7 20.5 59.4 67.9 52.9 72.4
k-medoids 41.7 69.5 49.3 77.7 15.7 15.9 37.6 38.8 35.9 52.4
GMM 67.7 83.0 78.9 92.7 21.5 20.6 56.2 68.6 53.9 73.2
Agglomerative 69.9 83.7 81.0 92.5 15.8 14.1 62.8 67.1 56.6 70.5
Spectral 68.2 83.3 76.3 90.9 17.6 15.2 61.5 67.0 56.6 71.4

Table 2: Average ACC, NMI, and dist for k-means and k-LLMmeans FS-multiple, evaluated on
three datasets using four different embedding models.

Dataset CLINC GoEmo Massive (D)
embedding/Method ACC NMI dist ACC NMI dist ACC NMI dist
DistilBERT

k-means 53.9 77.2 0.34 17.8 18.3 0.364 44.4 45.1 0.309
k-NLPmeans 52.9 77.3 0.353 18.5 18.2 0.365 44.7 45.3 0.311
k-LLMmeans 55.3 78.7 0.343 18.2 18.8 0.351 46.2 46.4 0.295

text-embedding-3-small
k-means 77.3 92.0 0.2 20.7 20.5 0.287 59.4 67.9 0.246
k-NLPmeans 80.0 92.9 0.173 22.3 20.2 0.29 63.3 70.0 0.227
k-LLMmeans 80.2 93.1 0.179 24.2 22.3 0.278 63.2 70.6 0.227

e5-large
k-means 73.8 90.8 0.131 22.8 22.8 0.176 58.4 63.7 0.138
k-NLPmeans 76.5 92.0 0.119 22.6 22.6 0.179 60.4 65.7 0.137
k-LLMmeans 77.2 92.5 0.119 24.2 24.3 0.168 62.3 65.9 0.133

S-BERT
k-means 76.9 91.0 0.215 13.7 13.3 0.355 58.2 64.6 0.271
k-NLPmeans 79.0 91.9 0.201 14.1 12.8 0.363 58.5 64.6 0.272
k-LLMmeans 79.7 92.5 0.198 14.7 13.9 0.346 59.7 65.6 0.254

methods. Across all tested embeddings, our approaches achieve higher average ACC and NMI
than k-means producing smaller average dist values. Interestingly k-LLMmeans stands as the best,
demonstrating that its LLM-guided centroid updates converge to solutions that are both more accu-
rate and more faithfully aligned with the underlying cluster structure.

Comparing our approaches with different LLMs and state-of-the-art LLM-based clustering
methods. Table 3 reports the number of LLM calls (prompts) and mean ACC/NMI for k-NLPmeans
(LSA-multiple) and k-LLMmeans (FS-multiple) on three benchmarks with e5-large embeddings.
For k-LLMmeans we vary the backbone generator—including GPT-3.5—and observe stable per-
formance across LLMs, indicating robustness to the specific model. By design, k-NLPmeans uses
zero LLM calls. For context, we also include results from Feng et al. (2024): ClusterLLM (fine-
tuned) and IDAS use GPT-3.5 with the same e5-large embeddings, while LLMEdgeRefine uses
the stronger Instructor embeddings (Jin et al., 2023). Our GPT-3.5 configuration of k-LLMmeans
achieves comparable, sometimes slightly lower ACC/NMI, but with much fewer LLM calls (inde-
pendent of dataset size) and no fine-tuning. k-NLPmeans trails k-LLMmeans slightly but remains
competitive without any LLM usage. Overall, our framework offers a favorable quality–cost trade-
off: k-NLPmeans for zero-inference-cost deployments, and k-LLMmeans for higher accuracy under
a small, fixed summarization budget.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Number of LLM calls (prompts), average ACC, and average NMI for k-LLMmeans FS-
multiple using various LLMs and e5-large embeddings, compared against other LLM-based text
clustering methods on three benchmark datasets.

Dataset/Method CLINC GoEmo Massive (D)
prompts ACC NMI prompts ACC NMI prompts ACC NMI

k-NLPmeans 0 76.5 92.0 0 22.6 22.6 0 60.4 65.7
k-LLMmeans

GPT-3.5-turbo 750 76.0 92.1 135 23.9 24.1 90 63.3 66.2
GPT-4o 750 77.2 92.5 135 24.2 24.3 90 62.3 65.9
Llama-3.3 750 77.2 92.3 135 23.8 23.1 90 62.0 66.3
DeepSeek-V3 750 69.7 90.8 135 22.8 22.7 90 62.6 66.3
Claude-3.7 750 76.9 92.5 135 24.2 23.7 90 61.8 66.0

ClusterLLM 1618 83.8 94.0 1618 26.8 23.9 1618 60.9 68.8
IDAS 4650 81.4 92.4 3011 30.6 25.6 2992 53.5 63.9
LLMEdgeRefine 1350 86.8 94.9 895 34.8 29.7 892 63.1 68.7

Table 4: Average ACC, and average NMI for four sequential mini-batch variants, k-means, mini-
batch k-means, sequential mini-batch k-means on the yearly StackExchange data.

Year/Method
2020 2021 2022 2023

(69147 posts) (54322 posts) (43521 posts) (38953 posts)
ACC NMI ACC NMI ACC NMI ACC NMI

mini-batch k-NLPmeans 68.0 79.5 67.9 78.5 69.0 78.9 71.6 78.8
mini-batch k-LLMmeans

multiple 72.5 80.9 73.6 80.5 74.4 80.5 73.4 80.3
FS + multiple 75.4 81.6 73.5 80.2 72.8 80.1 72.7 80.1

k-means 73.4 80.6 67.7 79.0 68.6 79.0 72.0 79.6
mini-batch k-means 67.0 78.2 67.7 77.4 67.5 77.6 67.2 77.0
seq. mini-batch k-means 67.0 76.6 66.7 75.2 65.6 75.6 65.8 74.8

Results with standard deviations are reported in Tables 5, 6, and 7 of Appendix B.1. We also assess
sensitivity to the instruction prompt I in k-LLMmeans and to parameter q in k-NLPmeans. As shown
in Table 9 (Appendix B.2), performance is generally stable across prompt choices and q values.

6 SEQUENTIAL (MINI-BATCH) EXPERIMENTS

We use yearly posts from 2020 to 2023 from 35 StackExchange sites (StackExchange, 2024). Each
post is accompanied by the site label (domain) and timestamp, making this dataset well-suited for
evaluating online or sequential clustering methods. We release this dataset alongside our submission
(see Appendix A.2 for details). For each yearly subset, we split the data into b = ⌈ n

10000⌉ equal-sized
batches D1, . . . , Db in chronological order, where n is the number of documents for that year. We
run the mini-batch k-LLMmeans algorithm in its four variants described in Section 5 (for practical
reasons we set m = 50 for the full cluster variant). We compare with three baselines: mini-batch k-
means with standard random sampling, sequential mini-batch k-means with b chronological batches,
and standard k-means on the full dataset. We use ground-truth clusters, text-embedding-3-small for
embeddings, GPT-4o for the summarization step, and five different seeds.

6.1 RESULTS WITH STREAMING DATA

Table 4 reports average ACC and NMI on the yearly StackExchange corpus, comparing mini-batch
k-NLPmeans (LSA-multiple) and mini-batch k-LLMmeans variants against standard k-means,
mini-batch k-means, and sequential mini-batch k-means. Mini-batch k-LLMmeans variants achieve
the highest ACC and NMI—consistently outperforming baselines, and even surpassing full-dataset
k-means. Despite operating in a streaming regime, our approach clusters the entire corpus of 205,943
posts using no more than 3,850 LLM calls, demonstrating a favorable accuracy-per-LLM-token
trade-off. The few-shot summarization design keeps prompts short, sidestepping context-window
limits while preserving cluster quality. Mini-batch k-NLPmeans also improves over all mini-batch
baselines, though it trails the k-LLMmeans variants—likely because its extractive summaries are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

How can we improve the robustness and accuracy of
image classification and object detection models,
such as CNNs, YOLO, and Mask R-CNN, against
challenges like adversarial attacks, occlusion, and
varying input scales, while also effectively utilizing
additional data types and addressing issues like
overfitting, segmentation, and bounding box
precision?

How has artificial intelligence research evolved in
various domains, such as board games, semantic
networks, and computational theories, and what are
the practical implications and challenges of
implementing AI in areas like gaming, formal logic,
and general intelligence?

How can I effectively utilize NLP techniques and
models, such as Word2Vec, BERT, and Transformers,
for various tasks like word embedding, sentiment
analysis, text classification, and handling grammatical
errors, while understanding the differences between
these models and the role of preprocessing in
improving their performance?

How can I effectively implement and optimize various
deep learning techniques, such as transfer learning,
object detection, and image preprocessing, for tasks
like facial expression recognition, semantic
segmentation, and anomaly detection, while
addressing challenges like input size inconsistency,
data augmentation, and model uncertainty?

How do current AI models and algorithms,
particularly in the context of AGI and generative
models like GANs, incorporate or benefit from the
concept of flaws or limitations, and what
philosophical or practical implications do these
imperfections have for achieving human-level
intelligence or solving complex problems?

How can we effectively evaluate and understand the
contextual and semantic capabilities of models like
BERT and GPT-3, considering their use of embeddings,
self-attention mechanisms, and transfer learning,
while also exploring alternative evaluation metrics
beyond traditional ones like BLEU for tasks such as
text generation and translation?

How can I effectively utilize AI techniques, such as
convolutional neural networks (CNNs) and object
detection models, for tasks involving image data,
including detecting specific objects or features,
handling imbalanced datasets, and improving model
performance through techniques like transfer
learning, data augmentation, and specialized loss
functions?

How can different AI approaches, such as symbolic AI,
neural networks, and hybrid systems, be effectively
utilized or combined to achieve AGI, considering
factors like computational efficiency, and the
integration of various AI techniques, including
knowledge engineering, neuro-symbolic methods,
and reinforcement learning, while addressing
challenges related to safety, scalability, and
adaptability in diverse applications?

How can I effectively utilize pre-trained language
models and NLP techniques to handle tasks such as
text translation, entity recognition, and text
classification, while addressing challenges like
sequence length limitations, domain-specific
vocabulary, and the need for accurate alignment
between text and audio in multilingual contexts?

Image Model
Optimization

AI evolution and
challenges

Advanced NLP
Techniques

First batch Second batch Third batchCluster description

Figure 2: Sequential evolution of the LLM-generated centroids for three primary clusters during the
three batches of the sequential mini-batch k-LLMmeans process applied to 2021 posts from the AI
Stack Exchange site (StackExchange, 2024). Main aspects are manually highlighted.

more sensitive to the noisiness and heterogeneity of community posts than LLM-generated cen-
troids. Overall, these results highlight that our interpretable, mini-batch formulation scales to long
sequential streams with strong accuracy and limited LLM usage.

Results with standard deviations are reported in Table 8 (Appendix B.1).

7 CASE STUDY

To demonstrate the interpretability of our method in capturing the evolution of clusters within se-
quential data, we present a case study using posts from the AI site in the 2021 Stack Exchange
dataset (StackExchange, 2024). We apply our mini-batch k-LLMmeans algorithm with three equal-
length batches and a total of ten clusters. We use the instruction “The following is a cluster of
questions from the AI community. Write a single question that represents the cluster”.

Interpretation. Our interpretable clustering enables temporal analysis of topic change, since each
centroid is a human-readable summary rather than a latent vector. Figure 2 shows this for three
major clusters: Image Model Optimization, AI Evolution and Challenges, and Advanced NLP Tech-
niques. Across 2021, these clusters drift from fundamentals toward integration-at-scale, mirroring
how tools, models, and deployment pressures matured. Image Model Optimization begins with ro-
bustness anxieties (adversaries, occlusion, scale) around mainstream detectors/segmenters, pivots
mid-year to “how do I implement this well?” (transfer learning, augmentation, preprocessing), and
ends with production hardening (class imbalance, specialized losses, edge efficiency) as strong pre-
trained models and libraries made setup routine and pushed bottlenecks to data and deployment
(Bochkovskiy et al., 2020; Kolesnikov et al., 2021). AI Evolution and Challenges moves from his-
torical “what is AI becoming?” to curiosity about large generative/multimodal systems—probably
sparked by public releases like CLIP/DALL·E and their failure modes—and finishes with system-
level synthesis (neuro-symbolic integration, RL control, compute efficiency, safety) as enterprise
adoption and policy attention grow (Radford et al., 2021; Ramesh et al., 2021; Nayak, 2021; Ope-
nAI, 2021; European Commission, 2021). Advanced NLP Techniques tracks the transformer boom:
early questions focus on which models and preprocessing to use; mid-year attention shifts to measur-
ing semantics beyond BLEU (e.g., BERTScore, BLEURT) as long-context and domain-shift issues
surface; late-year concerns are product-driven—sequence limits, domain vocab, multilingual/cross-
modal alignment—reflecting rapid uptake of pretrained encoders/decoders in industry (Brown et al.,
2020; Zhang et al., 2020b; Sellam et al., 2020; Xue et al., 2021). Practically, these trajectories can
power better post categorization, searchability, answer routing, and trend detection. More broadly,
they showcase how our mini-batch k-LLMmeans exposes readable centroids enabling end-to-end in-
terpretability for sequential text streams, letting practitioners track topic evolution, attribute causes,
and make transparent, timely decisions in dynamic corpora.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

8 RELATED WORK

Traditional clustering. Hierarchical methods (Johnson, 1967; Blashfield & Aldenderfer, 1978)
build tree-structured representations of nested document relationships. Density-based approaches
like DBSCAN (Ester et al., 1996) and graph-based methods detect clusters of arbitrary shapes, while
spectral clustering (Ng et al., 2001) leverages eigen-decomposition to uncover complex structures.
Model-based techniques—including Gaussian mixture models (Dempster et al., 1977) and recent
neural network frameworks (Zhou et al., 2019; Huang et al., 2014; Yang et al., 2016; Zhang et al.,
2021; Xie et al., 2016)—provide probabilistic clustering formulations. Additionally, topic modeling
methods, from probabilistic latent semantic analysis (Hofmann, 2001) to latent Dirichlet allocation
(Blei et al., 2003), capture word co-occurrence patterns and latent topics. BERTopic (Grootendorst,
2022) offers an embedding–reduction–density pipeline for interpretable topics, while DeepCluster
(Caron et al., 2018) uses clustering to iteratively train encoders in a self-supervised manner (orthog-
onal to our fixed-embedding setting). LLM-based clustering. Viswanathan et al. (2024) employ
LLMs to augment document representations, generate pseudo pairwise constraints, and post-correct
low-confidence assignments for query-efficient, few-shot semi-supervised clustering. Zhang et al.
(2023) propose ClusterLLM, which uses instruction-tuned LLMs via interactive triplet and pairwise
feedback to cost-effectively refine clustering granularity. Complementary approaches (Tipirneni
et al., 2024; Petukhova et al., 2025) show that context-derived representations capture subtle seman-
tic nuances beyond traditional embeddings. Wang et al. (2023) introduce a goal-driven, explainable
method that employs natural language descriptions to clarify cluster boundaries, while (De Raedt
et al., 2023) present IDAS for intent discovery using abstractive summarization. Feng et al. (2024)
propose LLMEdgeRefine an iterative mechanism that forms super-points to mitigate outliers and
reassign ambiguous edge points, resulting in clusters with higher coherence and robustness.

9 DISCUSSION

We presented k-NLPmeans and k-LLMmeans, which replace the numeric centroid in k-means with
textual summaries, yielding interpretable prototypes while preserving scalability. The LLM-free k-
NLPmeans achieves competitive accuracy with minimal additional complexity; k-LLMmeans aug-
ments clusters with LLM summaries under a fixed, iteration-bounded LLM budget, offering a favor-
able accuracy–efficiency trade-off without fine-tuning. A mini-batch extension enables streaming
operation. Overall, summary-as-centroid is a simple yet powerful and novel modification that uni-
fies interpretability and efficiency and broadens the applicability of k-means to modern text streams.
Beyond text, summary-as-centroid could be generalized by replacing numeric centroids with re-
embedded, domain-specific prototypes (e.g., image collages, synthetic utterances, DNA consensus
motifs, representative subgraphs), preserving interpretability without altering the clustering.

Limitations. Our k-LLMmeans relies on LLM-generated summaries; thus, biases or errors in the
underlying model can propagate to cluster prototypes and downstream analyses. Although sim-
ple instruction prompts are effective (Appendix B.2), prompt design can still influence outcomes.
The few-shot variant assumes that a small set of representative samples captures cluster struc-
ture—practical in many settings but potentially limiting for heterogeneous clusters. Regarding po-
tential pretraining exposure, note that the LLM in our pipeline is used solely to summarize texts
already assigned to each cluster; it does not inject external labels or unseen content, so any expo-
sure does not confer an unfair advantage. As indicated by suboptimal results on the StackExchange
dataset (Table 4), k-NLPmeans may benefit from applying text-cleaning preprocessing prior to use.

Cost. Our k-NLPmeans is LLM-free; runtime is dominated by standard k-means and a lightweight
summarization step. In contrast, k-LLMmeans incurs one LLM call per cluster per summarization
step. These calls are highly parallelizable, so wall-clock time is roughly the latency of a single LLM
call multiplied by the number of summarization steps. In practice, running any static dataset with
five summarization rounds using GPT-4o and text-embedding-3-small cost < $1 and completed in
≈ 1 minute on a single laptop without parallelization; for the Stack Overflow dataset, the end-to-
end run cost $2.5 and took ≈ 8 minutes under the same conditions. By comparison, competing
LLM-heavy approaches would require $18–$25 and > 40 minutes on identical hardware and API
settings. Thus, k-LLMmeans remains interpretable and cost-efficient among LLM-assisted methods,
while k-NLPmeans provides a strong, interpretable, zero-LLM alternative when budget or latency is
constrained.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We release anonymized code to reproduce all results in this paper at https://anonymous.
4open.science/r/summaryCentroids-877C/ (see the README for instructions).

REFERENCES

Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot, Christiane Lam-
mersen, and Christian Sohler. Streamkm++ a clustering algorithm for data streams. Journal
of Experimental Algorithmics (JEA), 17:2–1, 2012.

Charu C Aggarwal. A survey of stream clustering algorithms. In Data Clustering, pp. 231–258.
Chapman and Hall/CRC, 2018.

Charu C Aggarwal, S Yu Philip, Jiawei Han, and Jianyong Wang. A framework for clustering
evolving data streams. In Proceedings 2003 VLDB conference, pp. 81–92. Elsevier, 2003.

Anthropic. Claude 3.7 sonnet: Hybrid reasoning ai model. https://www.anthropic.com/
news/claude-3-7-sonnet, 2025. Accessed: 2025-05-09.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006.

Roger K Blashfield and Mark S Aldenderfer. The literature on cluster analysis. Multivariate behav-
ioral research, 13(3):271–295, 1978.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

Paul Bradley, Olvi Mangasarian, and W Street. Clustering via concave minimization. Advances in
neural information processing systems, 9, 1996.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. In Proceedings of the European conference on computer
vision (ECCV), pp. 132–149, 2018.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient in-
tent detection with dual sentence encoders. In Tsung-Hsien Wen, Asli Celikyilmaz, Zhou Yu,
Alexandros Papangelis, Mihail Eric, Anuj Kumar, Iñigo Casanueva, and Rushin Shah (eds.),
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pp.
38–45, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
nlp4convai-1.5. URL https://aclanthology.org/2020.nlp4convai-1.5/.

Maarten De Raedt, Fréderic Godin, Thomas Demeester, and Chris Develder. Idas: Intent discovery
with abstractive summarization. arXiv preprint arXiv:2305.19783, 2023.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the American society for information science, 41
(6):391–407, 1990.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

10

https://anonymous.4open.science/r/summaryCentroids-877C/
https://anonymous.4open.science/r/summaryCentroids-877C/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://aclanthology.org/2020.nlp4convai-1.5/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and Su-
jith Ravi. GoEmotions: A dataset of fine-grained emotions. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 4040–4054, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.372. URL https://aclanthology.org/
2020.acl-main.372/.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

European Commission. Proposal for a regulation laying down harmonised rules on artificial
intelligence (artificial intelligence act). COM(2021) 206 final, April 2021. URL https://
eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206.
Brussels, 21.4.2021.

Zijin Feng, Luyang Lin, Lingzhi Wang, Hong Cheng, and Kam-Fai Wong. Llmedgerefine: En-
hancing text clustering with llm-based boundary point refinement. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 18455–18462, 2024.

Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez,
Aaron Nash, Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist,
Misha Britan, Wouter Leeuwis, Gokhan Tur, and Prem Natarajan. MASSIVE: A 1M-example
multilingual natural language understanding dataset with 51 typologically-diverse languages. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4277–
4302, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.235. URL https://aclanthology.org/2023.acl-long.235/.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine learn-
ing, 42:177–196, 2001.

Peihao Huang, Yan Huang, Wei Wang, and Liang Wang. Deep embedding network for clustering.
In 2014 22nd International conference on pattern recognition, pp. 1532–1537. IEEE, 2014.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

Mumin Jia and Jairo Diaz-Rodriguez. Dynamics of” spontaneous” topic changes in next token
prediction with self-attention. arXiv preprint arXiv:2501.06382, 2025.

Zhuoran Jin, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Instructor: Instructing unsupervised
conversational dense retrieval with large language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 6649–6675, 2023.

Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

Leonard Kaufman and Peter J. Rousseeuw. Partitioning Around Medoids (Program PAM), pp. 68–
125. John Wiley & Sons, Inc., 2008. ISBN 9780470316801. doi: 10.1002/9780470316801.ch2.
URL http://dx.doi.org/10.1002/9780470316801.ch2.

11

https://aclanthology.org/2020.acl-main.372/
https://aclanthology.org/2020.acl-main.372/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://aclanthology.org/2023.acl-long.235/
http://dx.doi.org/10.1002/9780470316801.ch2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit,
Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas Un-
terthiner, and Xiaohua Zhai. An image is worth 16x16 words: Transformers for image recognition
at scale. In International Conference in Learning Representations ICLR, 2021.

Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars.
An evaluation dataset for intent classification and out-of-scope prediction. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1311–1316, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1131. URL
https://aclanthology.org/D19-1131/.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

J MacQueen. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of
California Press, 1967.

Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceedings of the 2004
conference on empirical methods in natural language processing, pp. 404–411, 2004.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 3781, 2013.

Nishanth Nakshatri, Siyi Liu, Sihao Chen, Dan Roth, Dan Goldwasser, and Daniel Hopkins. Us-
ing llm for improving key event discovery: Temporal-guided news stream clustering with event
summaries. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
4162–4173, 2023.

Pandu Nayak. Mum: A new ai milestone for understanding information, May 2021. URL https:
//blog.google/products/search/introducing-mum/.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

OpenAI. Clip: Connecting text and images; and dall·e: Creating images from text, January 2021.
URL https://openai.com/index/clip/. See also: https://openai.com/index/dall-e/.

OpenAI. text-embedding-3-small. https://platform.openai.com/, 2023. Accessed:
2025-02-01.

OpenAI. Gpt-3.5 turbo. https://platform.openai.com/docs/models/
gpt-3-5-turbo, 2023. Accessed: 2025-05-09.

Carlos Ordonez. Clustering binary data streams with k-means. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery, pp. 12–19,
2003.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Alina Petukhova, João P. Matos-Carvalho, and Nuno Fachada. Text clustering with large language
model embeddings. International Journal of Cognitive Computing in Engineering, 6:100–108,
2025. ISSN 2666-3074. doi: https://doi.org/10.1016/j.ijcce.2024.11.004. URL https://www.
sciencedirect.com/science/article/pii/S2666307424000482.

12

https://aclanthology.org/D19-1131/
https://blog.google/products/search/introducing-mum/
https://blog.google/products/search/introducing-mum/
https://openai.com/index/clip/
https://platform.openai.com/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://www.sciencedirect.com/science/article/pii/S2666307424000482
https://www.sciencedirect.com/science/article/pii/S2666307424000482

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dragomir R Radev, Hongyan Jing, Małgorzata Styś, and Daniel Tam. Centroid-based summarization
of multiple documents. Information Processing & Management, 40(6):919–938, 2004.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–
3992, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410/.

Swen Ribeiro, Olivier Ferret, and Xavier Tannier. Unsupervised event clustering and aggregation
from newswire and web articles. In Proceedings of the 2017 EMNLP Workshop: Natural Lan-
guage Processing meets Journalism, pp. 62–67, 2017.

V Sanh. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge, 2008.

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international conference
on World wide web, pp. 1177–1178, 2010.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for text
generation. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7881–7892,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.
704. URL https://aclanthology.org/2020.acl-main.704/.

Haoxiang Shi and Tetsuya Sakai. Self-supervised and few-shot contrastive learning frameworks for
text clustering. IEEE Access, 2023.

Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka, André CPLF de Carvalho,
and João Gama. Data stream clustering: A survey. ACM Computing Surveys (CSUR), 46(1):1–31,
2013.

StackExchange. Stack exchange data dump, 2024. URL https://archive.org/download/
stackexchange. Creative Commons Attribution-ShareAlike 4.0 License. Accessed: 2025-02-
08.

Michael Steinbach. A comparison of document clustering techniques. Technical report, Technical
Report# 00 034/University of Minnesota, 2000.

Adane Nega Tarekegn, Fazle Rabbi, and Bjørnar Tessem. Large language model enhanced clustering
for news event detection. arXiv preprint arXiv:2406.10552, 2024.

Sindhu Tipirneni, Ravinarayana Adkathimar, Nurendra Choudhary, Gaurush Hiranandani, Rana Ali
Amjad, Vassilis N Ioannidis, Changhe Yuan, and Chandan K Reddy. Context-aware clustering
using large language models. arXiv preprint arXiv:2405.00988, 2024.

13

https://aclanthology.org/D19-1410/
https://aclanthology.org/2020.acl-main.704/
https://archive.org/download/stackexchange
https://archive.org/download/stackexchange

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Vijay Viswanathan, Kiril Gashteovski, Kiril Gashteovski, Carolin Lawrence, Tongshuang Wu, and
Graham Neubig. Large language models enable few-shot clustering. Transactions of the Associ-
ation for Computational Linguistics, 12:321–333, 2024.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Zihan Wang, Jingbo Shang, and Ruiqi Zhong. Goal-driven explainable clustering via language
descriptions. arXiv preprint arXiv:2305.13749, 2023.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478–487. PMLR, 2016.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 483–498, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL https://aclanthology.org/
2021.naacl-main.41/.

Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations
and image clusters. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 5147–5156, 2016.

Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ramesh
Nallapati, Andrew Arnold, and Bing Xiang. Supporting clustering with contrastive learning.
arXiv preprint arXiv:2103.12953, 2021.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In International conference on machine learning,
pp. 11328–11339. PMLR, 2020a.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert. In International Conference of Learning Representations ICLR,
2020b.

Yuwei Zhang, Zihan Wang, and Jingbo Shang. ClusterLLM: Large language models as a guide for
text clustering. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 13903–13920, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
858. URL https://aclanthology.org/2023.emnlp-main.858/.

Jie Zhou, Xingyi Cheng, and Jinchao Zhang. An end-to-end neural network framework for text
clustering. arXiv preprint arXiv:1903.09424, 2019.

A DATASETS

A.1 NON-STREAMING DATASETS

We evaluate our clustering approach on four benchmark datasets. Bank77 (Casanueva et al., 2020):
Consists of 3,080 customer queries related to banking services, categorized into 77 distinct intents.
CLINC (Larson et al., 2019): A diverse set of 4,500 queries spanning 150 intent classes across
multiple domains, designed for open-domain intent classification. GoEmo (Demszky et al., 2020):
Contains 2,984 social media posts annotated with 27 fine-grained emotion categories. We removed
the neutral expressions to address data imbalance and retained only entries with a single, unique
emotion. MASSIVE (FitzGerald et al., 2023): Comprises 2,974 English-language virtual assistant
utterances grouped into 18 domains and 59 intent categories.

These datasets provide a robust evaluation setting for text clustering across different domains and
classification granularities.

14

https://aclanthology.org/2021.naacl-main.41/
https://aclanthology.org/2021.naacl-main.41/
https://aclanthology.org/2023.emnlp-main.858/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Average ACC and NMI for four k-LLMmeans variants using GPT-4o, compared against
traditional baselines, with text-embedding-3-small embeddings, evaluated on benchmark datasets.
Standard deviations of ACC and NMI in parenthesis

Dataset/Method BANK77 CLINC GoEmo Massive (D) Massive (I)
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-NLPmeans
TextRank-single 66.4 83.6 78.7 92.4 21.5 20.9 60.6 68.9 53.0 72.5

(0.94) (0.47) (1.56) (0.41) (0.63) (0.29) (3.47) (1.27) (1.8) (0.71)
TextRank-multiple 66.8 83.9 79.6 92.8 21.6 21.0 60.5 69.3 53.7 72.8

(0.94) (0.45) (1.51) (0.45) (1.29) (0.65) (3.66) (1.22) (1.65) (0.58)
Centroid-single 67.2 84.0 78.5 92.2 22.1 21.2 60.9 68.3 53.5 73.0

(0.81) (0.39) (1.68) (0.37) (0.6) (0.41) (3.02) (0.91) (2.07) (1.13)
Centroid-multiple 67.5 84.0 79.0 92.4 21.4 21.1 60.8 69.1 54.3 73.5

(0.57) (0.3) (1.95) (0.46) (0.87) (0.12) (2.72) (1.09) (1.72) (0.84)
LSA-single 66.7 83.7 78.8 92.5 21.9 20.5 61.2 68.7 54.1 73.0

(0.99) (0.47) (2.07) (0.63) (1.11) (0.87) (2.66) (1.03) (1.86) (0.91)
LSA-multiple 67.1 84.0 80.2 92.9 22.3 20.2 63.3 70.0 55.3 73.4

(0.98) (0.42) (0.98) (0.41) (0.85) (0.56) (3.06) (1.02) (1.32) (0.72)
k-LLMmeans

single 67.1 83.6 78.1 92.5 24.0 22.3 61.1 69.6 54.0 73.0
(1.22) (0.46) (1.67) (0.47) (1.35) (0.57) (3.39) (1.6) (1.51) (0.58)

multiple 66.7 83.6 79.1 92.8 24.1 22.1 60.6 69.5 55.8 73.5
(0.78) (0.2) (1.68) (0.48) (1.33) (0.65) (2.82) (1.66) (1.4) (0.76)

FS-single 67.5 83.8 79.2 92.8 23.0 21.9 60.8 69.4 55.3 73.6
(1.07) (0.36) (1.73) (0.43) (0.94) (0.64) (3.21) (1.09) (1.76) (0.77)

FS-multiple 67.9 84.1 80.2 93.1 24.2 22.3 63.2 70.6 56.7 73.9
(1.55) (0.41) (1.52) (0.32) (1.16) (0.67) (2.84) (1.38) (1.32) (0.7)

k-means 66.2 83.0 77.3 92.0 20.7 20.5 59.4 67.9 52.9 72.4
(1.82) (0.56) (1.83) (0.35) (1.0) (0.67) (4.03) (1.67) (1.07) (0.54)

k-medoids 41.7 69.5 49.3 77.7 15.7 15.9 37.6 38.8 35.9 52.4
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

GMM 67.7 83.0 78.9 92.7 21.5 20.6 56.2 68.6 53.9 73.2
(1.78) (0.54) (1.18) (0.22) (0.82) (0.47) (2.88) (1.01) (1.91) (0.80)

Agglomerative 69.9 83.7 81.0 92.5 15.8 14.1 62.8 67.1 56.6 70.5
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Spectral 68.2 83.3 76.3 90.9 17.6 15.2 61.5 67.0 56.6 71.4
(0.56) (0.38) (0.401) (0.14) (0.32) (0.32) (0.02) (0.02) (0.84) (0.23)

A.2 NEW COMPILED DATASET FOR TESTING TEXT-STREAMING CLUSTERING ALGORITHMS

We extract and unify a challenging data stream comprising unique archive posts collected from 84
Stack Exchange sites (StackExchange, 2024). Each post is accompanied by the site label (domain)
and timestamp, making this dataset well-suited for evaluating online or sequential clustering meth-
ods. Our raw dataset spans 84 domains, each containing at least 20 posts per year from 2018 to 2023
(with post lengths ranging from 20 to 1000 characters), totaling 499,359 posts. For our experiments,
we focus on posts from 2020 to 2023 and further filter out labels that do not exceed 500 posts in
2023. The resulting subset comprises 35 distinct groups and 69,147 posts. Both the raw and clean
data are provided with this paper. Stack Exchange content is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

B SUPPLEMENTARY RESULTS

B.1 MAIN RESULTS WITH STANDARD DEVIATIONS

In Tables 5, 6, 7 and 4 we report the same results as in Tables 1, 2, 3 and 8 including standard
deviations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Average ACC, NMI, and dist for k-means and k-LLMmeans FS-multiple, evaluated on
three datasets using four different embedding models. Standard deviations of ACC, NMI and dist
in parenthesis.

Dataset CLINC GoEmo Massive (D)
embedding/Method ACC NMI dist ACC NMI dist ACC NMI dist
DistilBERT

k-means 53.9 77.2 0.34 17.8 18.3 0.364 44.4 45.1 0.309
(0.96) (0.49) (0.007) (0.86) (0.67) (0.005) (1.53) (0.99) (0.021)

k-NLPmeans 52.9 77.3 0.353 18.5 18.2 0.365 44.7 45.3 0.311
(0.25) (0.22) (0.003) (0.58) (0.38) (0.004) (2.44) (1.22) (0.02)

k-LLMmeans 55.3 78.7 0.343 18.2 18.8 0.351 46.2 46.4 0.295
(1.1) (0.53) (0.009) (0.52) (0.73) (0.004) (1.35) (1.12) (0.015)

text-embedding-3-small
k-means 77.3 92.0 0.2 20.7 20.5 0.287 59.4 67.9 0.246

(1.83) (0.35) (0.014) (1.0) (0.67) (0.005) (4.03) (1.67) (0.015)
k-NLPmeans 80.2 92.9 0.173 22.3 20.2 0.29 63.3 70.0 0.227

(0.98) (0.41) (0.006) (0.85) (0.56) (0.007) (3.06) (1.02) (0.018)
k-LLMmeans 80.2 93.1 0.179 24.2 22.3 0.278 63.2 70.6 0.227

(1.52) (0.32) (0.015) (1.16) (0.67) (0.011) (2.84) (1.38) (0.022)
e5-large

k-means 73.8 90.8 0.131 22.8 22.8 0.176 58.4 63.7 0.138
(2.34) (0.74) (0.01) (0.92) (0.73) (0.003) (3.89) (1.75) (0.02)

k-NLPmeans 76.5 92.0 0.119 22.6 22.6 0.179 60.4 65.7 0.137
(1.76) (0.58) (0.009) (0.7) (0.32) (0.003) (3.2) (1.79) (0.008)

k-LLMmeans 77.2 92.5 0.119 24.2 24.3 0.168 62.3 65.9 0.133
(1.6) (0.4) (0.007) (0.76) (0.7) (0.003) (1.36) (0.78) (0.007)

S-BERT
k-means 76.9 91.0 0.215 13.7 13.3 0.355 58.2 64.6 0.271

(1.63) (0.5) (0.013) (0.62) (0.57) (0.005) (2.03) (1.09) (0.023)
k-NLPmeans 79.0 91.9 0.201 14.1 12.8 0.363 58.5 64.6 0.272

(1.65) (0.31) (0.017) (0.3) (0.29) (0.003) (2.24) (1.29) (0.022)
k-LLMmeans 79.7 92.5 0.198 14.7 13.9 0.346 59.7 65.6 0.254

(0.73) (0.25) (0.008) (0.55) (0.5) (0.004) (2.54) (0.79) (0.019)

Table 7: Number of LLM calls (prompts), average ACC, and average NMI for k-LLMmeans FS-
multiple using various LLMs and e5-large embeddings, compared against other LLM-based text
clustering methods on three benchmark datasets. Standard deviations of ACC and NMI in parenthe-
sis (not available for baseline LLM-based methods).

Dataset/Method CLINC GoEmo Massive (D)
prompts ACC NMI prompts ACC NMI prompts ACC NMI

k-NLPmeans 0 76.5 92.0 0 22.6 22.6 0 60.4 65.7
(0.02) (0.01) (0.01) (0.0) (0.03) (0.02)

k-LLMmeans
GPT-3.5 750 76.0 92.1 135 23.9 24.1 90 63.3 66.2

(1.16) (0.28) (0.65) (0.39) (1.47) (0.62)
GPT-4o 750 77.2 92.5 135 24.2 24.3 90 62.3 65.9

(1.6) (0.4) (0.76) (0.7) (1.36) (0.78)
Llama-3.3 750 77.2 92.3 135 23.8 23.1 90 62.0 66.3

(1.6) (0.44) (0.66) (0.62) (2.97) (1.56)
DeepSeek-V3 750 69.7 90.8 135 22.8 22.7 90 62.6 66.3

(1.02) (0.29) (1.68) (0.88) (2.24) (0.71)
Claude-3.7 750 76.9 92.5 135 24.2 23.7 90 61.8 66.0

(1.83) (0.52) (1.0) (0.65) (4.83) (1.99)
ClusterLLM 1618 83.8 94.0 1618 26.8 23.9 1618 60.9 68.8
IDAS 4650 81.4 92.4 3011 30.6 25.6 2992 53.5 63.9
LLMEdgeRefine 1350 86.8 94.9 895 34.8 29.7 892 63.05 68.67

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Average ACC, and average NMI for four sequential mini-batch variants, k-means, mini-
batch k-means, sequential mini-batch k-means on the yearly StackExchange data. Standard devia-
tions of ACC and NMI in parenthesis.

Year/Method
2020 2021 2022 2023

(69147 posts) (54322 posts) (43521 posts) (38953 posts)
ACC NMI ACC NMI ACC NMI ACC NMI

mini-batch k-NLPmeans 68.0 79.5 67.9 78.5 69.0 78.9 71.6 78.8
(3.09) (0.61) (2.5) (0.27) (4.15) (0.71) (2.74) (0.43)

mini-batch k-LLMmeans
multiple 72.5 80.9 73.6 80.5 74.4 80.5 73.4 80.3

(3.02) (0.65) (2.18) (0.46) (2.48) (0.87) (2.24) (0.81)
FS + multiple 75.4 81.6 73.5 80.2 72.8 80.1 72.7 80.1

(2.02) (0.48) (2.39) (0.7) (2.28) (0.91) (1.38) (0.45)
k-means 73.4 80.6 67.7 79.0 68.6 79.0 72.0 79.6

(3.79) (0.75) (2.8) (0.25) (4.03) (0.69) (3.79) (0.56)
mini-batch k-means 67.0 78.2 67.7 77.4 67.5 77.6 67.2 77.0

(2.09) (0.9) (2.12) (0.84) (4.02) (0.98) (2.76) (0.97)
seq. mini-batch k-means 67.0 76.6 66.7 75.2 65.6 75.6 65.8 74.8

(2.39) (0.57) (4.61) (1.54) (1.23) (0.78) (2.55) (0.9)

Table 9: Average ACC, and average NMI for multiple instruction prompts I for k-LLMmeans; and
multiple values of q for k-NLPmeans on BANK77. Standard deviations in parenthesis.

ACC NMI
k-LLMmeans (Prompt I)

The following is a cluster of online banking queries.
Write a text that summarizes the following cluster: 67.5 83.8

(1.07) (0.36)
The following is a cluster of texts.

Write a text that summarizes the following cluster: 66.3 83.6
(0.2) (0.3)

Write a query that summarizes the following online banking queries: 67.4 83.8
(0.7) (0.3)

Write a text that summarizes the following texts: 66.9 83.7
(0.6) (0.2)

Summarize the following list of online banking queries: 67.0 83.7
(0.4) (0.1)

Summarize the following list of texts: 66.4 83.8
(0.6) (0.1)

k-NLPmeans (q)
3 66.7 84.0

(1.8) (0.8)
5 66.4 83.8

(0.5) (0.3)
10 66.6 83.8

(0.7) (0.4)
15 66.4 83.7

(0.6) (0.3)

B.2 ADDITIONAL EXPERIMENTS

We evaluated the sensitivity of k-LLMmeans to the instruction prompt I on BANK77 by testing five
prompt variants using k-LLMmeans (FS-single) with text-embedding-3-small and GPT-4o. We also
examined the effect of the parameter q on the same dataset and embeddings. As shown in Table 9,
performance remains remarkably stable across prompt choices and q settings, indicating that the
methods are insensitive to these hyperparameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C ALGORITHMS

This section includes Algorithm 1 (k-NLPmeans / k-LLMmeans) and Algorithm 2 (mini batch ver-
sion).

Algorithm 1: k-NLPmeans / k-LLMmeans
input: D = {d1, . . . , dn}, k, I,m, l, T
for i← 1 to n do

xi = Embedding(di);
end
for t← 1 to T do

if t = 1 then
// Initialize using k-means++
{µ1, . . . ,µk} ← k-means++({d1, . . . , dn}, k);

end
else if t mod l = 0 then

// Summarization step every l iterations
for j ← 1 to k do

µj ← Embedding
(
jth cluster summary

)
;

end
end
else

// k-means step
for j ← 1 to k do

µj ← 1
|Cj |

∑
i∈[Cj]

xi;
end

end
for j ← 1 to k do

Cj = {};
end
for i← 1 to n do

j∗ ← argminj∈{1,...,k} d(xi,µj);
// Assign xi to cluster Cj∗

Cj∗ ← Cj∗ ∪ {xi};
end

end
return {µ1, . . . ,µk}, {s1, . . . , sk}

1Here k-NLPMmeans/k-LLMmeans is initialized with the final centroids of the previous batch

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2: Mini-batch k-NLPmeans / k-LLMmeans
input: {D1, · · · , Db}, k, I,m, l, T // b batches of documents
for j ← 1 to k do

Cj = {};
end
{µ1, . . . ,µk} ← {0, . . . ,0};
for i← 1 to b do

// Compute k-NLPmeans / k-LLMmeans with documents in batch1

{µ∗
1, . . . ,µ

∗
k}, {C∗

1 , . . . , C
∗
k}, Sb ←

k-NLPmeans(Di, k, I,m, l, T) or k-LLMmeans(Di, k, I,m, l, T);
// Update centroids proportional to cluster and batch sizes
for j ← 1 to k do

η ← |C∗
j |

|Cj |+|C∗
j |

;

µj ← µj(1− η) + ηµ∗
j ;

end
end
return {µ1, . . . ,µk}, {S1, . . . , Sb}

19

	Introduction
	Preliminaries: k-means for text clustering
	k-means with summarization steps
	k-NLPmeans.
	k-LLMmeans.
	Advantages of our approaches

	Mini-batch k-NLPmeans and k-LLMmeans
	Static experiments
	Results with static data

	Sequential (mini-batch) experiments
	Results with streaming data

	Case study
	Related work
	Discussion
	Datasets
	Non-streaming datasets
	New compiled dataset for testing text-Streaming Clustering Algorithms

	Supplementary results
	Main results with standard deviations
	Additional experiments

	Algorithms

