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Abstract

Transformer-based Language Models have ad-
vanced natural language processing with their
ability to generate fluent text. However, these
models exhibit and amplify toxicity and bias
learned from training data—posing new eth-
ical challenges. This work builds upon the
AttentionlLens framework to allow for scal-
able decoding of attention mechanism infor-
mation. We then use this decoded informa-
tion to implement a pipeline to localize and
remove toxic memories from pre-trained lan-
guage models in a way that is both human in-
terpretable and effective while retaining model
performance.

1 Introduction

As Language Models (LMs) become widespread,
their potential for both helpful and harmful appli-
cations increases. Recent studies have exposed the
inherit biases in LMs (Bender et al., 2021). For
example, LM-based chatbots perpetuate racial bi-
ases based on the names present in a prompt and
their association with certain racial groups (Schulz,
2024). These concerns motivate our research on
better understanding how LMs interpret prompts
and ultimately generate toxic text.

We focus on understanding how individual at-
tention heads contribute to the generation of toxic
text. Our work is driven by the observation that
attention heads can have highly specialized roles
in text completion tasks (Sakarvadia et al., 2023;
Hanna et al., 2024; Wang et al., 2022; Nanda et al.,
2023). While many prior works have attempted to
interpret attention head functions, we notice few
are focused on interpreting where and how biases
are encoded within these models and their harmful
effects.

To address this challenge, we propose
a two-step toxicity analysis and interven-
tion pipeline: (i) Degenerate Attention
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Figure 1: Average number of toxic tokens measured
during DART, out of the top 50 projected tokens, aver-
aged over 500 different Toxic Prompts (Left) and 500
different Non-Toxic Prompts (Right).

Response Tracking (DART) and (ii) TOXicity
INtervention (TOXIN).

DART uses the AttentionLens frame-
work (Sakarvadia et al., 2023) to train custom
lenses for interpreting the contribution of each
attention head of the open-source GPT-2 Small
model to the next predicted token. These decoded
attention heads can then be used to better identify
which attention heads are most prone to contribute
toxic tokens while completing the prompt, and
what those toxic tokens are, over a sample of
500 prompts. Our TOXIN step can then form a
memory (Sakarvadia et al., 2024) and remove it
from the “toxic” attention heads during inference
thus reducing toxicity in LM-generated text.

2 Methodology and Implementation

DART, seen in Figure 2, efficiently identifies toxic
attention heads by comparing the top-k output
logits of a trained AttentionLens with a prede-
fined toxic dictionary (Patch et al., 2020; Grad and
Orthrus-Lexicon, 2021), outputs these problematic
tokens, and visualizes the distribution of toxicity
across layers and attention heads as shown in Fig-
ure 1.
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Figure 2: The DART method selects the top 50 pro-
jected tokens from Attention Lens and cross-references
them with a toxic dictionary, enabling the rapid identifi-
cation of toxic attention heads.

TOXIN then uses these tokens that DART identi-
fies from the most toxic attention heads and forms
a toxic memory by taking k toxic tokens from the
most toxic attention head, reshaping the tokens to
form a R¥*IVI matrix, and reducing it to a one-
hot vector B € RIVI. Our toxic memory is then
m = BW[ where W is the unembedding matrix.
This memory m is scaled by the injection strength
7 and subtracted from attention head h%7, where
£ denotes the layer and j denotes head position:
htd = bt — rm.

3 Experiments and Results

To enable our DART+TOXIN pipeline, we must
first train AttentionLens for GPT-2 Small; we
use a subset of the BookCorpus (Zhu et al.,
2015) dataset for this training. For DART analy-
sis, we form a dictionary using Orthrus Toxic
Dictionary (Grad and Orthrus-Lexicon, 2021)
and LDNOOBW (Patch et al., 2020). For TOXIN anal-
ysis we use the Wiki Toxic Dataset (Sorensen
etal., 2017). For experiments measuring perplexity
we use WikiText Corpus (Merity et al., 2016).
To quantitatively measure the toxicity of LM text
generation before and after interventions, we use
Toxic BERT (Hanu and Unitary team, 2020). In
Figure 3 we see the results of targeting the most
toxic attention heads—specifically L8-H2 (Layer
8, Head 2), L9-H3, L10-H4 and L11-H3—by re-
moving their respective toxic memory at varying
injection strengths. In many of our experiments we
find that a well-tuned injection strength can both
decrease toxicity while only modestly affecting
perplexity such as the injection on L10-H4 with a

Perplexity Toxicity

Layer #, Head # 0.30
1504 -@- 10,4
8,2 0.25
125 4 ® 93
-® 11,3 0.20

—— Baseline

o] 015

0.10

0.05

T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Injection Strength Injection Strength

Figure 3: Relationship between perplexity, toxicity, and
memory injection strength. Increasing the injection
strength leads to a reduction in toxicity, accompanied
by a corresponding decrease in model performance.

strength of 0.25 resulting in a substantial (~29.1%)
reduction in measured toxicity with only a modest
(5.2%) increase in model perplexity.

These promising results demonstrate tremen-
dous potential for future work which will focus
on expanding our framework to larger models (e.g.,
Llama2 (Touvron et al., 2023), Llama3 (Dubey
et al., 2024)), expanding our toxicity dataset, and
considering toxicity mitigation interventions on
multiple attention heads at the same time. Eventu-
ally, we will deploy our toxicity mitigation work-
flow in an user study to assess its real world poten-
tial for safer LM-based text generation.

4 Conclusion

We have enhanced the Attention Lens frame-
work to identify and address toxicity and bias in
transformer-based language models. We trained
large lenses and developed new pipelines to identify
degenerate attention heads, generate and remove
toxic memories for specific heads, and measure
the impact of this excision on toxicity reduction
and language modeling capabilities. By removing
identified toxic memories, we achieved a targeted
reduction in model toxicity with only modest reduc-
tion in model performance. These advancements
significantly improve the AttentionLens frame-
work’s applicability and effectiveness in mitigating
harmful biases in language models.
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