
Under review as a conference paper at ICLR 2023

Vectorial Graph Convolutional Network

Anonymous authors
Paper under double-blind review

Abstract

Graph Convolutional Networks (GCN) have drawn considerable atten-
tion recently due to their outstanding performance in processing graph-
structured data. However, GCNs still limited to the undirected graph be-
cause they theoretically require a symmetric matrix as the basis for the
Laplacian transform. This causes the isotropic problem of the operator and
reduced sensitivity in response to different information. In order to solve
the problem, we generalize the spectral convolution operator to directed
graphs by field extension, which improves the edge representations from
scalars to vectors. Therefore, it brings in the concept of direction. That is
to say, and even homogeneous information can become distinguishable by
its differences in directions. In this paper, we propose the Vectorial Graph
Convolutional Network(VecGCN) and the experimental evidence showing
the advantages of a variety of directed graph node classification and link
prediction tasks.

1 Introduction

A graph is a ubiquitous data structure where entities are vertices and edges are their pairwise
relationships. Most Graph Neural Networks(GNNs) fall into one of two categories: spectral
Defferrard et al. (2016); Kipf & Welling (2016) or spatial networks Hamilton et al. (2017a);
Veličković et al. (2017); Backstrom & Leskovec (2011). Spatial approaches are based on
a localized averaging operator with learnable weights that iteratively traverse the entire
graph. Spectral approaches based on eigen-decomposition of graph Laplacian and smooth
those signals through Fourier transform Zhou et al. (2020); Wu et al. (2020). The application
domains ranging from social networks Chen et al. (2012) to quantum chemistry Liao et al.
(2019) and text classification Yao et al. (2019), etc. One of the key techniques is Graph
Convolutional Networks (GCNs) Defferrard et al. (2016); Kipf & Welling (2016); Xu et al.
(2018a), it’s the variant of Convolutional Neural Networks (CNNs) Mallat (2016) on graphs,
that learns the representations from both vertices and edges. It is particularly important to
apply representations to downstream tasks Hamilton et al. (2017b), e.g., node classification
and link prediction Hu et al. (2020).
However, the vast majority of these researches are based on undirected graphs, and even
the original graphs are naturally directed. This phenomenon will take the risk of discard-
ing potentially important information Kawamoto et al. (2018); Zhang et al. (2021). For
example, you may have heard of a celebrity, but he/she doesn’t know you. From the GATs’
perspective, it is easy to understand that the attention values from node i to node j and
node j to node i are not necessarily equal, which means the information is not symmetric
on the edges.
Adjacency matrix A is the topological edge set. Unless graph G is undirected, A is not
symmetric. Unfortunately, GCNs are developed from spectral theory Kipf & Welling (2016);
Xu et al. (2018a); Gilmer et al. (2017) and limited to symmetric convolutional kernels
Beaini et al. (2021), the object matrix of the kernels needs to be positive semi-definite and
symmetric because the decomposition of a such matrix is orthogonal that can be taken as
Fourier transform basis. It, in turn, requires the graph to be undirected to satisfy the above
two conditions, or the eigenvalues of A can not be solved in the real number field. Thus,
extending spectral methods to directed graphs is not straightforward Zhang et al. (2021).

1

Under review as a conference paper at ICLR 2023

Therefore, one of the key challenges lies in defining a symmetric adjacency matrix on a
directed graph.
Recently, there has been a surge of interest in directed GCNs Tong et al. (2020b;a); Monti
et al. (2018); Beaini et al. (2021); Zhang et al. (2021). These studies have proposed different
approaches to solve the problem. However, the original purpose of constructing directed
GCNs is to keep more information from the graph. While these previous studies view the
direction as a one-dimensional scalar, it is supposed to be a vector that shares the same
dimension with the node vector. From a Principal Component Analysis(PCA) perspective
Abdi & Williams (2010), The n-dimensional node vectors is decomposed into k principal
components (k ≤ n), GCNs preserved the 1st component on edge and directed GCNs
preserved the 1st and 2st components. This shows that some of the information is lost.
To address these issues, we proposed VecGCN. We overcome the symmetric problem and
the information loss problem at the same time by using Field Extension, which is the main
research object of field theory in abstract algebra. The basic idea is to start from a base
field and somehow construct a ”larger” field that contains it. And we construct a high
dimensional field according to distances between nodes. Firstly, the distance matrix is
symmetric. Secondly, a high dimensional field does not cause information loss.
The main contributions are summarized as follows:

1. Replace the adjacency matrix with the distance matrix.Replace the adjacency matrix with the distance matrix.Replace the adjacency matrix with the distance matrix. The advantages of replac-
ing the adjacency matrix with the distance matrix include two main aspects. On
the one hand, the distance matrix is symmetric. On the other hand, the topology
of the distance matrix is the same as that of the adjacency matrix. If the distance
between two adjacent nodes is 1, then the distance matrix and the adjacency matrix
are equal. Therefore, we can consider the distance matrix as a generalization of the
adjacency matrix. Not only that, but the distance matrix is also satisfied by the
theory of GCN.

2. The concept of direction is proposed.The concept of direction is proposed.The concept of direction is proposed.
Since the adjacency matrix is binary, 0 indicates that there is no edge between two
nodes, while 1 is the opposite. Therefore the adjacency matrix does not imply the
concept of direction, which makes the model unable to distinguish the importance
of neighboring nodes, which manifests isotropy. The above problem can be solved
by improving the elements of the adjacency matrix from scalars to vectors using the
field extension method.

3. Propose the VecGCN.Propose the VecGCN.Propose the VecGCN. Our extensive experiments on a series of datasets clearly
show that VecGCN’s performance exceeds most other methods.

2 Related Work

Most graph neural network structures can be categorized as either spectral or spatial. Neigh-
borhoods in spatial networks such as Veličković et al. (2017); Hamilton et al. (2017a); At-
wood & Towsley (2016); Duvenaud et al. (2015) are well-defined even when their adjacency
matrices are not symmetric. Although spatial methods typically have natural extensions
to directed graphs, they may ignore important information in the directed graph, as we
discussed before. Spectral approaches also suffer from this problem. In this section, we
review related work on constructing neural networks for directed graphs, and describe the
development of the problem in detail as well as the various solutions. We refer the reader
to Wu et al. (2020); Zhang et al. (2020) for more background information.

2.1 Notations and Preliminaries.

Given a simple and connected undirected graph G = (V,E) with n nodes and m edges. Let
A denote the adjacency matrix and D the diagonal degree matrix. Spectral-based GCNs are
based on the Laplacian matrix, and the graph Laplacian matrix is defined as L = D−A. The
normalized format of Laplacian matrix is defined as Lsym = D− 1

2LD− 1
2 = I−D− 1

2AD− 1
2 ,

where I is an identity matrix that has same shape with A. Lsym is a matrix representation

2

Under review as a conference paper at ICLR 2023

of a graph in graph theory and can be used to find many useful properties. It is a symmetric
positive semi-definite matrix. With these properties, the eigen-decomposition of normalized
Laplacian matrix Lsys write as UΛUT . Here Λ is a diagonal matrix of the eigenvalues
of Lsys, and U ∈ Rn×n is a unitary matrix that consists of the eigenvectors of Lsys. Let
X ∈ Rn×d denote the representation of node feature matrix, that is, each node in l−th layer
is associated with a d-dimensional feature vector X l = [xl

1, · · · , xl
n]. While h is the input

node feature and is only used in the input layer. The graph convolution operation between
signal is defined as gθ(L)∗x = Ugθ(Λ)U

Tx, where the feature vector x ∈ X is the signal and
gθ(Λ) the spectral filter, and θ corresponds to a vector of spectral filter coefficients. Finally,
Each hidden layer l is assigned with learnable parameters W l, and σ(·) is an activation
function such as ReLU, and ⟨·, ·⟩ represents the inner product between any two vectors.

2.2 Vanilla GCNs

GCN is a generalization of the Fourier transform on the graph. Bruna et al. (2013) proposed
first generation of GCN, written as:

X l+1 = σ(Ugθ(Λ)U
TX l)

Since the computational complexity is O(n3), Defferrard et al. (2016) (referred to as Cheb-
Net) proposed the second generation of GCN, and model outputs can be approximated by
the K − th order polynomial of Laplacians by Chebyshev Polynomials, written as:

X l+1 = σ(

K∑
i=0

αiLiX
l)

The derivation can be found in B.1. Kipf & Welling (2016) further simplified the model,
they set K = 1 and use the renormalization trick, replaces Lsys by a normalized version
L̃ = D̃− 1

2 ÃD̃− 1
2 = (D + I)−

1
2 (A+ I)(D + I)−

1
2 , obtain:

X l+1 = σ(L̃X lW l)

According to the above equation, we know that the vanilla GCN is a multi-layer neural
network that receives and update node features across the graph.

2.3 Limitition of undirected GCNs

Figure 1: Examples of ChebNet’s outputs on a circulant graph. Note that the graph
convolutional operators are isotropic on some local areas due to rotational invariance.

Hence, it is difficult to define directions.

Since L̃ is a symmetric matrix, spectral-based GCNs are limited to applying to undirected
graphs Wu et al. (2020). Unlike convolutional neural networks, GCNs’ convolutional op-
erators are symmetric. One way to apply GCNs to a directed graph is to relax the graph

3

Under review as a conference paper at ICLR 2023

structure by trivially adding edges to symmetrize the adjacency matrices Kipf & Welling
(2016); Wu et al. (2019). However, it loses the distinctive structure of the directed graph and
misleads the message passing scheme with incorrect weights Wang et al. (2020). Almost all
relationships in nature are irreversible, such as time-series relationships, parent-child rela-
tionships, virus transmission relationships, and thermal conductivity relationships. Besides,
it is not capable to learn from complex local structureMonti et al. (2018), inheritance re-
lationship Kampffmeyer et al. (2019) and second-order proximity Tong et al. (2020b). The
above problems are mainly due to the lack of anisotropy in the GCN convolution operator
of GCNMonti et al. (2018); Beaini et al. (2021) as shown in Fig∼1.

2.4 THREE TYPES OF EDGE VECTORS

To the best of our knowledge, the edge direction in GNNs are divided into four types:

1. Direction of information flow.Direction of information flow.Direction of information flow. Information flow is a series of samples of nodes. Since
GNNs are based on the Message Passing(MP) techniqueGilmer et al. (2017), that
allows nodes repeatedly aggregate and update their own representations. Different
sampling methods cause MP to produce different aggregation results. Therefore,
these sampling methods generate different information flows and significantly affect
the models’ performances Tong et al. (2020b).

2. Edge embedding and representation.Edge embedding and representation.Edge embedding and representation. Many graph data in the real world contain
multiple types of nodes and edges, and these graphs are called heterogeneous graphs
Gasteiger et al. (2019). Typical heterogeneous graphs include molecular graphs,
academic graphs, and recommendation graphs. In order to distinguish different
types of edge information, embedding methods are used to represent different edges
Wang et al. (2021); Schlichtkrull et al. (2018); Zhang et al. (2019). This approach
brings in additional learnable modules based on the GCN model. Further, another
approach Pei et al. (2020); Klicpera et al. (2020) constructs a continuous space
underlying the graph by combining different types of edge representations.

3. Spectral direction.Spectral direction.Spectral direction. By constructing the Hermitian Laplacian matrix Zhang et al.
(2021), the complex eigenvalues are generated after decomposition. The real part
of an eigenvalue indicates the presence of an edge, and the imaginary part indicates
the direction of the edge. Since the obtained directions are unlearnable scalars, it is
also necessary to bring in learnable modules to improve the model’s performance.

4. Spatial direction.Spatial direction.Spatial direction. The Spatial approach is the most intuitive, where the edge vector
is defined as the difference between two adjacent nodes Beaini et al. (2021), e⃗ij =
ui − uj where i ̸= j.

Our proposed VecGCN belongs to the Spatial approach. The advantage of this approach is
that it is very natural to understand the meaning of the direction, the same as our intuition
in daily life. In addition, the design of VecGCN is simple and hardly changes the structure
of vanilla GCN.
Based on vanilla GCN, we define the vector field on the graph and prove the generalization
of the method on an n-dimensional grid, which provides the basis for subsequent analysis.
The vector in the vector field is divided into direction and length. The difference between
the two nodes defines the direction. Inspired by GATVeličković et al. (2017), we define the
length as the importance of an edge, so we again design a normalization function to calculate
the significance of each edge.

3 Method

Since GCNs are based on the explicit assumption of an undirected graph, this leads to a
drawback that the Laplacian operator is rotationally symmetricB.5. For example, the order
of neighbor nodes does not change the final aggregation result, which is isotropicMonti
et al. (2018), making it no preferred direction on the graph. In order to solve the above
problems, we propose the VecGCN, and the key idea is to expand the definition domain of
the adjacency matrix using the field expansion method.

4

Under review as a conference paper at ICLR 2023

3.1 Permutation invariance of distance function

It is not easy to keep the symmetry of the adjacency matrix. However, we notice that
the distance is the same between arbitrary two adjacency node i and node j, written as
d(i, j) = d(j, i), where d is a L2 − norm distance function defines in Euclidean space, it
tells us the distance function is permutation invariant. What is more, the distance matrix
is symmetric. Moreover, the topology of the distance matrix and the adjacency matrix are
the same because the adjacency nodes define both. Therefore, in this paper, we replace
the adjacency matrix with the distance matrix and note it as F , which is the first step in
constructing VecGCN.

3.2 Field Extension

With the help of Field ExtensionB.4 , distance matrix can be extend to high dimension,
R → Rn. In this paper, we set the distance matrix to 64-dimension, note as F 64 and
[F 64/F] = 64. Since F is the basis of F64, we can view F64 as a linear combination of
F , more details are provided in Appendix B.2. That is to say, we can keep a symmetric
distance matrix in high dimensions. This is the second step in constructing VecGCN.

3.3 VecGCN

Figure 2: The four steps of VecGCN are to calculate the node representation, the edge
direction, the local importance degree of each edge, and update the node representation,

respectively.

Now we have a high dimensional form of distance matrix F64 to replace the adjacent matrix
in vanilla GCNs. Overall speaking, in order to adapt the distance matrix F64, we also need to
upgrade both the learnable parameter W and the input node feature h to 64 dimensions, in
which the learnable parameter W is easy to modify by adding only one additional dimension,
and the modification of the input feature h requires a linear layer mapping it to 64-dimension.
In addition, while keeping the structure of GCN unchanged, it is necessary to use the
partition function to normalize edge vectors.
First, a linear transformation is applied to the node feature to map it to a higher dimensional
space Eq∼1.

X0 = ϕ(h) + b (1)
Where ϕ is a linear transform that operates on the input feature space, and b is a basis
term1.
Second, calculate the edge vectors.

elij = xi − xj (2)

elij is defined on the Euclidean space, it is natural and easy to understand the definition
of an edge vector in terms of the difference between two adjacent nodes. The superscript l

1The ϕ and the bias term are only included in this section and will be omitted in later sections.

5

Under review as a conference paper at ICLR 2023

in Eq∼B.10 represents the lth layer. Besides, the distance is shift-invariant, and its visual
explanation can be found in A1.
Third, compute the length of elij , which is the L2 − norm ||elij ||2, it indicates the strength
of the interrelationship between node i and j. Then normalize the vector length with the
partition function Zij in Eq∼3 so that ||elij ||2 ∈ [0, 1]. Basically, ||elij ||2 is expected to be
small if node i and j are close or similar to each other.

Zij =
∑

j∈N (i)

||elij ||2 (3)

Fourth, αl
ij in Eq∼4 is the importance coefficient that measures the relatedness between

node i to node j with respect to layer l, and it is inversely proportional to the length of the
edge vector. Di is a smoothing value that indicates the degree of node i.

αl
ij = (1−

||elij ||2
Zij

)/Di (4)

Due to the value domain of α is in [0, 1− 1/Di]B.3, we know that α ∈ [0, 1], it tells us that
the smaller the degree of a node, the less significant it is, i.e., a node with a minor degree
can be ignored.

Subsequently, according to Eq∼3 and Eq∼4, the new edge vector can be updated by el+1
ij =

αl
ij × elij . For example, in Fig∼2, the lengths of the three adjacent edges of node u are

0.3, 0.2, 0.1. These edges’ lengths after normalization Eq∼3 equals 0.50, 0.33, 0.16 and
corresponding importance coefficients are 0.17, 0.11, 0.05.
Fifth, under the message passing scheme, the update of the node vector can be determined
by Eq∼5.

xl+1
i =

∑
j∈N (i)

αl
ije

l
ijx

l
ij (5)

In summary, as shown in Eq∼6, the way each layer is updated can be written as:

X l+1 = σ(L̃αlelX lW l) (6)

From Eq∼6 we know that VecGCN is beneficial to address the isotropy of directed graph-
based GCNs. There are two main reasons: on the one hand, the inclusion of edge vectors
makes the importance of neighbor nodes v to the central node u change, and prior to that,
the importance is the same 2.2, since the edge vectors are all 1; On the other hand, the order
of neighboring nodes cannot be changed during the information aggregation phase, because
eijxij ̸= eijxik where j ̸= k and j, k ∈ N (i), this shows that VecGCN is anisotropic.
The pseudo-code for VecGCN is detailed in A.2.

4 Experiments

In this section, we will verify our proposed VecGCN on 6 datasets: Cora, Citeseer, Pubmed,
Texas, Wisconsin, and Cornell(An overview summary of characteristics of the datasets is
given in Table∼1).
Cora, Citeseer, and Pubmed are popular citation networks with node labels correspond-
ing to scientific subareas and downloaded automatically through the official Deep Graph
Library(DGL)2 program. In these networks, nodes represent papers, and edges denote cita-
tions of one paper by another. Node features are the bag-of-words representation of papers,
and the node label is the academic topic of a paper.

2https://github.com/dmlc/dgl

6

Under review as a conference paper at ICLR 2023

Table 1: Datasets statistics

Dataset Cora Citeseer Pubmed Cornell Texas Wisconsin
Nodes 2708 3327 19717 183 183 251
Edges 5429 4732 44338 295 309 499
Features 1433 3703 500 1703 1703 1703
Classes 7 6 3 5 5 5

WebKB is a webpage dataset collected from computer science departments of various uni-
versities by Carnegie Mellon University and available from the official PyTorch Geomet-
ric(PyG)3 program. We use the three sub-datasets of Cornell, Texas, and Wisconsin, where
nodes represent web pages, and edges are hyperlinks between them. Node features are the
bag-of-words representation of web pages. The web pages are manually classified into five
categories, student, project, course, staff, and faculty.
To guarantee the correctness of our proposed method, we conduct experiments with 12
different GNN models A.1 in the following experiments with pytorch-1.104, hardware is an
8-core CPU with 16G Memory, and the GPU is GeForce RTX 2080 (11GB).

4.1 Training and implementation details.

4.1.1 Node Classification

We performed node classification in a semi-supervised setting. Due to the small graph size,
we use a 60%/20%/20% training/validation/test split for Cornell, Texas, and Wisconsin.
For Cora, CiteSeer, and Pubmed, we use the same split as Kipf & Welling (2016). Because
VecGCN is an extension of Kipf & Welling (2016) in higher dimensional space, we take only
hyperparameter d, which is the dimension of the feature, fixed at 64. The appendixA.5
provides more hyper-parameter details.

4.1.2 Link Existence Prediction

Given arbitrary two nodes u and v, the link existence prediction model is asked to predict
if euv ∈ E, by scoring their inner product of representations xu and xv as the likelihood of
connectivity, written as score(euv) = ⟨xu, xv⟩. We applied negative sampling to VecGCN.
Training a link prediction model involves comparing the scores between nodes connected by
an edge against the scores between an arbitrary pair of nodes. For example, given an edge
connecting u and v, we encourage the score between node u and v to be higher than the score
between node u and a sampled node v′ from an arbitrary noise distribution v′ ∼ Pn(u)

5,
which is v′ /∈ N (u). Like the section4.1.1 above, we randomly split the edge-set into 3 parts
at each beginning of the epochs: 80% for training, 15% of edges for testing, and 5% for
validation. During splitting, the connectivity was maintained. The appendixA.5 provides
more hyper-parameter details.

4.1.3 The impact of dimension on VecGCN

The dimension d is the key hyperparameter in VecGCN, which determines the size of the edge
direction vector. We tested the effect of dimension d on model performance on two tasks,
node classification and link prediction, and three datasets, Cora, Citeseer, and Pubmed. In
these experiments, we set the dimension to 23, 24, 25, 26, 27, and 28, respectively.

4.2 Results

As shown in Table∼2, we see that VecGCN performs well across all tasks, implying that the
symmetrization-based approach can benefit citation networks in the context of node classi-

3https://github.com/pygteam/pytorch_geometric
4https://pytorch.org/
5Pn(v) indicates the nodes that are not u’s neighbours

7

Under review as a conference paper at ICLR 2023

fication tasks. This matches our intuition, and if given a paper on the topic of reinforcement
learning, then it is likely to cite or to be cited by other reinforcement learning papers.

Table 2: Node classification accuracy (mean±std %). The best results are in bold.
Because the best scores are distributed over several models, to make this analysis more

quantitative, we compute the absolute difference in the accuracy of each method from that
of the top performing method (%) on each data set and take the average as ”inferior
index”, the closer to 0, the better this indicator is. (Digraph and MagNet are out of

memory on the pubmed dataset because they use the PyG framework.)

Model Cora Citeseer Pubmed Cornell Texas Wisconsin inferior

Spectral

GCN 81.1±0.2 70.3±0.4 79.4±0.1 59.0±6.4 58.7±3.8 55.9±5.4 -14.8
JKnet 86.1±1.5 70.9±1.9 76.6±1.2 57.3±5.0 61.1±6.2 52.8±5.7 -14.8
SGC 79.3 ± 0.0 71.9±0.1 78.9 ± 0.0 58.6±3.4 56.4±4.3 51.3±6.4 -16.2

GCNII 82.2±0.1 67.8±0.2 78.1±0.1 74.2±6.5 69.2±6.6 70.3±4.8 -8.6
ChebNet 81.2±0.5 69.8±0.2 74.4±0.3 79.8±5.0 79.2±7.5 81.6±6.3 -4.6

Spatial
GAT 82.3±0.3 70.0±0.5 78.5±0.2 57.6±4.9 61.1±5.0 54.1±4.2 -15.0

SAGE 82.1±0.4 70.3±0.8 78.2±0.4 80.0±6.1 84.3±5.5 83.1±4.8 -2.6
APPNP 82.4±0.7 70.4±1.1 79.3±0.6 58.7±4.0 57.0±4.8 51.8±7.4 -15.6

GIN 78.1±2.0 63.3±2.5 78.9±0.1 57.9±5.7 65.2±6.5 58.2±5.1 -15.3

Directed
DGCN 81.3±1.4 66.3±2.0 76.9 ± 1.9 67.3±4.3 71.7±7.4 65.5±4.7 -14.2
Digraph 79.4±1.8 62.6±2.2 - 66.8±6.2 64.9±8.1 59.6±3.8 -16.1
MagNet 79.8±2.5 67.5±1.8 - 84.3±7.0 83.3±6.1 85.7±3.2 -2.7

Ours VecGCN 83.1±0.3 71.4±0.4 79.1±0.2 85.7±6.3 84.5±5.1 84.1±3.7 -0.9

For the node classification task, we added the jump-connection JKnetXu et al. (2018b), the
multi-layer stack GCNIIChen et al. (2020), and the low-complexity SGCWu et al. (2019), for
detailed descriptions refer to AppendixA.1. The purpose of doing so is to expand the scope of
comparison and highlight VecGCN features and advantages. From the above tableTable∼2
we can see that as a generalization of vanilla GCN, VecGCN has achieved almost a compre-
hensive surpass, which shows that VecGCN inherits and carries forward the advantages of
GCN. Similarly, the edge vector computation module of VecGCN is also inspired by GAT,
which achieves a comprehensive surpass, showing that VecGCN inherits and carries forward
the advantages of GAT. In addition, we also see that other directed methods perform rela-
tively poorly on the WebKB network, probably because these graphs are small and have few
training samples. Therefore, this does not indicate that those models that perform poorly
are inferior. In addition, because of the uneven distribution of optimal scores, to make the
analysis more quantitative. We use ”inferior” to calculate the difference between each model
and the optimal model by calculating the absolute difference between the classification ac-
curacy of each method and that of the best performing method (percentage), and averaging
over the six data sets. In this case, a lower score is better, and a method with a score of
0 indicates that the method is the best-performing method on each dataset. As shown in
Table∼2, VecGCN achieved an overall best result of -0.9%.

(a) GCN on Cora (b) VecGCN on Cora (c) GCN on Citeseer (d) VecGCN on Citeseer

Figure 3: t-SNE Analysis: results from visual analysis of the distribution of node
representations.

Moreover, we give the visualizationFig∼3 of VecGCN on the Cora and Citeseer datasets
after dimension reduction on node vectorsVan der Maaten & Hinton (2008). We can see

8

Under review as a conference paper at ICLR 2023

that VecGCN has a better clustering tendency than GCN. Since GNN can have as sizeable
discriminative power as the Weisfeiler-Lehman(WL) testXu et al. (2018a), we argue that
this is mainly owed to the fact that VecGCN brings in the edge directional vectors.
In link existence classification task, we achieve the best performance on all datasets in Ta-
ble∼3. Due to the clear clustering tendency of VecGCN, which makes node representations
more distinguishable, the discrimination between edge directions is more significant. This
matches our intuition and demonstrates that VecGCN is a natural extension of GCN.

Table 3: Link existence classification accuracy (mean±std %). In addition, the spectral
domain approach has many jump connections that directly use the information of the
adjacency matrix, which is equivalent to label leakage in link existence prediction, and

therefore it is not considered for inclusion in this table. (Digraph and MagNet are out of
memory on the pubmed dataset because they use the PyG framework.)

Model Cora Citeseer Pubmed Cornell Texas Wisconsin
Spectral GCN 70.0±0.3 65.4±0.8 68.9±0.3 62.9±1.6 63.3±2.6 63.7±2.3

ChebNet 70.9±0.5 68.2±0.3 71.0±0.4 70.9±3.2 71.6±3.6 72.4±2.3

Spatial
GAT 72.3±0.9 68.2±0.4 68.4±0.8 64.7±1.7 64.4±3.2 65.5±2.4

SAGE 63.8±0.8 62.8±0.6 65.1±0.1 67.8±3.0 66.7±2.6 66.4±3.4
APPNP 75.0±0.6 71.3±0.8 72.6±0.9 67.2±2.3 67.0±1.8 68.1±2.1

GIN 75.4±0.4 69.3±0.7 72.0±0.8 68.2±2.6 67.5±3.6 69.3±1.6

Directed
DGCN 80.2±0.4 78.2±0.5 79.3±0.6 77.9±3.4 80.2±4.5 80.8±2.0
Digraph 80.0±0.2 80.3±0.9 - 78.7±2.5 79.2±2.8 80.9±2.6
MagNet 80.7±0.5 77.9±0.7 - 79.5±3.3 79.3±5.3 80.8±2.9

Ours VecGCN 82.6±1.0 81.8±0.2 82.1±0.5 80.8±5.2 81.1±5.1 81.2±5.1

Finally, we test the effect of dimensions on the model performances. As shown in Fig∼A2,
a higher dimension is not better, and the model’s performance will be saturated. The
emergence of this phenomenon will be studied in future works.

5 Conclusion

In this paper, we propose VecGCN solve the problem of the lack of anisotropy in GNNs.
From intuition, we define the edge vectors in Euclidean space. This approach to defining di-
rection at the physical level naturally extends the usability of vanilla GCN. Typical examples
include different atoms in a chemical molecule passing messages to each other, relational data
in social networks, all kinds of field propagation in crystal lattices, and magnetic anisotrop-
icity in metals and alloys. VecGCN is a new approach to designing spectral-based GCN
layers to fit directed graphs without requiring feature vectors. Moreover, this approach can
be applied to any GCN model and is compatible with real problems to the maximum extent.
Supported by a series of theoretical and empirical results, we believe that our approach will
generate new ideas for the study of GCN.

References
Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary

reviews: computational statistics, 2(4):433–459, 2010.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances in
neural information processing systems, 29, 2016.

Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recommending
links in social networks. In Proceedings of the fourth ACM international conference on
Web search and data mining, pp. 635–644, 2011.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and
Pietro Liò. Directional graph networks. In International Conference on Machine Learning,
pp. 748–758. PMLR, 2021.

9

Under review as a conference paper at ICLR 2023

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. ICML, pp. 1725–1735, 2020.

Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. Svdfea-
ture: a toolkit for feature-based collaborative filtering. The Journal of Machine Learning
Research, 13(1):3619–3622, 2012.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. Advances in neural information
processing systems, 29, 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional
networks on graphs for learning molecular fingerprints. arXiv preprint arXiv:1509.09292,
2015.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing
for molecular graphs. In International Conference on Learning Representations, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pp. 1263–1272. PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584, 2017b.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. Advances in neural information processing systems, 33:22118–22133, 2020.

Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, and Eric P
Xing. Rethinking knowledge graph propagation for zero-shot learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 11487–11496,
2019.

Tatsuro Kawamoto, Masashi Tsubaki, and Tomoyuki Obuchi. Mean-field theory of graph
neural networks in graph partitioning. Advances in Neural Information Processing Sys-
tems, 31, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then
propagate: Graph neural networks meet personalized pagerank. arXiv preprint
arXiv:1810.05997, 2018.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. arXiv preprint arXiv:2003.03123, 2020.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale
deep graph convolutional networks. arXiv preprint arXiv:1901.01484, 2019.

Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):
20150203, 2016.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW),
pp. 225–228. IEEE, 2018.

10

Under review as a conference paper at ICLR 2023

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
semantic web conference, pp. 593–607. Springer, 2018.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew
Lim. Digraph inception convolutional networks. Advances in neural information processing
systems, 33:17907–17918, 2020a.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Di-
rected graph convolutional network. arXiv preprint arXiv:2004.13970, 2020b.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. Self-supervised heterogeneous graph neural
network with co-contrastive learning. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, pp. 1726–1736, 2021.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi.
Nodeaug: Semi-supervised node classification with data augmentation. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 207–217, 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learn-
ing, pp. 6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A comprehensive survey on graph neural networks. IEEE transactions on neural networks
and learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
In International conference on machine learning, pp. 5453–5462. PMLR, 2018b.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classi-
fication. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp.
7370–7377, 2019.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Het-
erogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 793–803, 2019.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Mag-
net: A neural network for directed graphs. Advances in Neural Information Processing
Systems, 34:27003–27015, 2021.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. AI Open, 1:57–81, 2020.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnık, and Jürgen Schmidhuber. Re-
current highway networks. In International conference on machine learning, pp. 4189–
4198. PMLR, 2017.

11

Under review as a conference paper at ICLR 2023

A Appendix - Details

A.1 List of method abbreviations

SpectralSpectralSpectral

1. GCN (Kipf &
Welling (2016))

2. JKnet (Xu et al.
(2018b))

3. SGC (Wu et al.
(2019))

4. GCNII (Chen et al.
(2020))

5. ChebNet (Defferrard
et al. (2016))

SpatialSpatialSpatial

1. GAT (Veličković
et al. (2017))

2. SAGE (Hamilton
et al. (2017a))

3. APPNP (Klicpera
et al. (2018))

4. GIN (Xu et al.
(2018a))

DirectionalDirectionalDirectional

1. DGCN (Zilly et al.
(2017))

2. Digraph (Tong et al.
(2020a))

3. MagNet (Zhang
et al. (2021))

4. VecGCN (this pa-
per)

A.2 Pseudo code

Algorithm 1 An algorithm with caption
iteration← 0
L̃ = (D + I)−

1
2 (A+ I)(D + I)−

1
2

X0 = ϕ(h) + b
while iter ≤ 200 do

elij = xi − xj

αl
ij = (1− ||elij ||2∑

j∈N(i)(||elij ||2)
)/Di

elij = αl
ije

l
ij

X l+1 = σ(L̃αlelX lW l)
iter = iter + 1

end while

A.3 Shift Invariant

Figure A1: The picture’s red points change only in coordinates but not in content.

A.4 Accuracy in different dimensions

A.5 Hyper-parameters details

B Appendix - Mathematical Proofs

B.1 Vanilla GCNs

X l+1 = σ(Ugθ(Λ)U
TX l)

12

Under review as a conference paper at ICLR 2023

Figure A2: Effect of dimensions(mean %). The vertical axis indicates the accuracy and the
horizontal axis the dimension.

Table A1: Hyperparameters for Baseline GNNs

Hyperparameters
Models lr weight_decay dropout hidden layers others

Spectral

GCN 0.01 5E-4 0.5 16 2 -
GCNII 0.01 0.01/5E-4 0.6 64 64 λ=0.5, α=0.2
SGC 0.2 5E-6 0 - 1 -

JKnet 0.005 - 0.5 32 5 cat
ChebNet 0.01 5E-4 0 32 2 K=2,num_hop=2

Spatial
GAT 0.01 5E-4 0.6 8 2 num_heads=8

SAGE 0.001 5E-4 0.5 256 3 mean
APPNP 0.01 5E-4 0.5 64 2 α = 0.1

GIN 0.01 5E-6 0.6 64 5 mean

Directed
DGCN 0.001 1E-8 0.5 64 5 cat
Digraph 0.01 1E-4 0.5 128 2 α=0.1
MagNet 0.005 5E-4 0.5 - 2 K=1,q=0.25
VecGCN 0.005 5E-4 0.5 16 2 dimension =64

, where gθ(Λ) =
∑K

i=0 αiΛi.

Ugθ(Λ)U
T = U(

K∑
i=0

αiΛi)U
T

=

K∑
i=0

αiUΛiU
T

=

K∑
i=0

αiLi

(B.1)

B.2 Linear Combination

Proof. The eigenvalues in the extended field G are linear combinations of the eigenvalues in
its basis F

13

Under review as a conference paper at ICLR 2023

∵ F ⊆ G
∴ G can be viewed as a linear space on F , B × F → G. Thus, G has a group of F−basis
{bi ∈ B|i ∈ I}, where I is the index set and B is the basis of G on F , that is to say, every
element in G is a linear combination of F−basis {bi ∈ B|i ∈ I}. Written as gi = bi · fi,
where g ∈ G, b ∈ B, f ∈ F .
let MF = UΛUT be the decomposition of matrix M in F .

G =
−→
BF

MG =
−→
BMF

=
−→
BUΛUT

= U
−→
BΛUT

(B.2)

 From Eq∼B.2 we know that, the eigenvalues of G are linear combinations of basis B on
F

B.3 Value Domain of α

Proof. Eq∼4 Value Domain of α∑
j∈N (i)

(1− eij/Zi) =
∑

j∈N (i)

1−
∑

j∈N (i)

eij/Zi

= Di − 1

(B.3)

bring Eq∼B.3 into Eq∼4, we have:

∑
j∈N (i)

αij = (Di − 1)/Di

= 1− 1/Di

(B.4)

∴ αi ∈ [0, 1− 1/Di] = [0, 1]

B.4 Field Extension

A subfield G of a field F is a subset G ⊆ F that G is a field with respect to the field
operations inherited from F . Then F is an extension field of G, and G is the basis field of
F . Such a field extension is denoted F/G.
In each field expansion, the subfield can be regarded as a vector space with the base field as
the coefficient field. with filed expansion F/G, considering the elements in F as vectors and
the elements in G as the corresponding coefficients. Under such definition, F is an G-vector
space. The dimension of the vector space is called the degree of the filed expansion, which
is generally denoted as [F : G].
For example, the field of complex numbers C is an extension field of the field of real numbers
R . Clearly then, C/R is a field extension and we have [C : R] = 2 because {1, i} is a basis,
such extension C/R is finite.

B.5 Rotation Invariant

Proof. Laplacian operator is rotational invariant.
The Laplace operator in GNN is equivalent to that under discrete conditions, where we can
prove that the Laplace operator under continuous conditions is rotationally invariant.
let:

14

Under review as a conference paper at ICLR 2023

x = x′cos− y′sin (B.5)
y = x′sin+ y′cos (B.6)

where (x, y) are the original coordinates and (x′, y′) are the rotation coordinates.

∇2f =
∂2f

∂x′2 +
∂2f

∂y′2

=
∂

∂x′

(
∂f

∂x′

)
+

∂

∂y′

(
∂f

∂y′

)
=

∂

∂x′

(
∂f

∂x

∂x

∂x′ +
∂f

∂y

∂y

∂x′

)
+

∂

∂y′

(
∂f

∂x

∂x

∂y′
+

∂f

∂y

∂y

∂y′

)
=

∂

∂x′

(
∂f

∂x
cos θ + ∂f

∂y
sin θ

)
+

∂

∂y′

(
− sin θ

∂f

∂x
+ cos ∂f

∂y

)
=

∂

∂x

(
∂f

∂x
cos θ + ∂f

∂y
sin θ

)
∂x

∂x′ +
∂

∂y

(
∂f

∂x
cos θ + ∂f

∂y
sin θ

)
∂y

∂x′

+
∂

∂x

(
− sin θ

∂f

∂x
+ cos ∂f

∂y

)
∂x

∂y′
+

∂

∂y

(
− sin θ

∂f

∂x
+ cos ∂f

∂y

)
∂y

∂y′

=
∂

∂x

(
∂f

∂x
cos θ + ∂f

∂y
sin θ

)
cos θ + ∂

∂y

(
∂f

∂x
cos θ + ∂f

∂y
sin θ

)
sin θ

+
∂

∂x

(
− sin θ

∂f

∂x
+ cos ∂f

∂y

)
(− sin θ) +

∂

∂y

(
− sin θ

∂f

∂x
+ cos θ∂f

∂y

)
cos θ

=
∂

∂x

∂f

∂x
+

∂

∂y

∂f

∂y

=
∂2f

∂x′2 +
∂2f

∂y′2

(B.7)

B.6 Proof on the eigenvectors of the skew-symmetric matrix are pure
imaginary numbers

Proof. The eigenvectors of the skew-symmetric matrix are pure imaginary numbers.
M is a real skew-symmetric matrix of order T :
Let λ be the eigenvalue of M , and ∃λ ∈ R

s.t. Mξ = λξ

Multiply both sides by the conjugate transpose of ξ, and we have:
ξTMξ = λξT ξ (B.8)

Take the conjugate transpose of both sides: ξTMξ = λξT ξ

Similarly,
ξT MT ξ = λ ξT ξ (B.9)

∵ M
T
= −M

bring M
T
= −M into (B.9)

−ξTMξ = λ ξT ξ (B.10)

15

Under review as a conference paper at ICLR 2023

Add (B.10) to (B.8):

(λ+ λ)ξT ξ = 0

∴ ∀ξ ∈ Cn , ξT ξ ̸= 0⇒ λ+ λ = 0⇔ real(λ) = 0

16

	Introduction
	Related Work
	Notations and Preliminaries.
	Vanilla GCNs
	Limitition of undirected GCNs
	THREE TYPES OF EDGE VECTORS

	Method
	Permutation invariance of distance function
	Field Extension
	VecGCN

	Experiments
	Training and implementation details.
	Node Classification
	Link Existence Prediction
	The impact of dimension on VecGCN

	Results

	Conclusion
	Appendix - Details
	List of method abbreviations
	Pseudo code
	Shift Invariant
	Accuracy in different dimensions
	Hyper-parameters details

	Appendix - Mathematical Proofs
	Vanilla GCNs
	Linear Combination
	Value Domain of
	Field Extension
	Rotation Invariant
	Proof on the eigenvectors of the skew-symmetric matrix are pure imaginary numbers

