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Abstract

A major obstacle to the realization of novel inorganic materials with desirable
properties is the inability to perform efficient optimization across both materials
properties and synthesis of those materials. In this work, we propose a reinforce-
ment learning (RL) approach to inverse inorganic materials design, which can
identify promising compounds with specified properties and synthesizability con-
straints. Our model learns chemical guidelines such as charge and electronegativity
neutrality while maintaining chemical diversity and uniqueness. We demonstrate a
multi-objective RL approach, which can generate novel compounds with targeted
materials properties including formation energy and bulk/shear modulus along-
side a lower sintering temperature synthesis objectives. Using this approach, the
model can predict promising compounds of interest, while suggesting an optimized
chemical design space for inorganic materials discovery.

1 Introduction

The discovery of new materials with desirable properties is crucial to applications in areas such as
energy storage and electronics manufacturing. However, virtual materials screening is still gated by
time- and resource-consuming physics-based simulations and high-throughput experimentation. In
recent years, machine learning (ML) has revolutionized inverse materials design, where given one or
more target properties, a model is trained to generate candidate compounds that satisfy the desired
constraints. Generative neural networks such as autoencoders have been used to optimize organic
molecules with desirable properties over a learned latent space [ 1} |2]]. However, optimizing over a non-
convex objective function over a high-dimensional latent space is difficult [3]. Generative adversarial
networks (GANs) have also seen success in molecular generation tasks. While they circumvent the
need for latent space optimization, GANs suffer from issues such as training instability and mode
collapse, which make it difficult to generate compounds with high diversity and validity [4]. RL
approaches to molecular generation optimize molecules with respect to a reward function. Prior work
includes both policy-gradient and Q-learning approaches to optimization of organic molecules and
has demonstrated these methods to be sample efficient, stable during training, and high performance
[5, 13, 6]. To the best of our knowledge, no prior work has leveraged RL for inorganic materials
generation. Here, we propose a deep Q-network (DQN) approach for inorganic material composition
generation. Our main contributions include:

* First known demonstration of RL for inorganic materials generation
» Multi-objective optimization of both inorganic materials synthesis and property constraints
* Generation of novel, chemically diverse inorganic compounds with desirable properties

*Equal contribution.
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Figure 1: Schematic of (a) deep Q-network for material design where agent is assigned rewards based
on predicted material properties in a feedback loop (b) material generation process. At each step of
the generation sequence, state s is represented by material composition while action a constitutes the
addition of an element (eg. La in step 1) and its corresponding composition (eg. 3 in step 1).

2 Methods

2.1 Deep Q-Network for materials design

Q-learning is a model-free reinforcement learning algorithm which trains an agent to behave optimally
in a Markov process [7]]. The agent performs actions to maximize the expected sum of all future
discounted rewards given an objective function J = ;7 v Ry (s, a;) where v € [0,1] is the
discount factor and R; represents the reward at step ¢ given values s; and a;. For a policy 7 an
action-value function can be defined as

Q" (st,a;) = Rey1 + nginQ” (St41,a¢41) (H

with Q™ (s¢11,a:+1) being the expected sum of all the future rewards the agent receives in the
resultant state s;4 1.

In the context of materials design, the agent uses a policy 7 to maximize the expected future reward
(material property) via a feedback loop by learning a deep Q-network (DQN) Q™ as shown in Fig.
[[fa). The agent (material generator) generates materials, which are then evaluated by material property
predictor(s), hence assigning the reward R to the agent. Here, we formulate the material generation
process as a sequence generation task sg, ag, Ro, s1,a1, R, ... as shown in Fig. [I(b) using DQN,
where states s are represented by material compositions while actions a constitute the addition of an
element and its corresponding composition to the existing incomplete material. The goal here is to
learn a DQN material generator that maximizes expected rewards to generate compounds of desired
properties. More details can be found in Appendices[A.3] and[A.4]

2.2 Constraint satisfaction for chemical validity

Without contraints a DQN may generate invalid materials through unbounded exploration. To address
this, charge neutrality and electronegativity balance constraints are incorporated using a constraint
oracle [8] (a trained function) ¢; ; which is formulated as
Cj¢ = Mmax ¢y 2
gt = A% [¢j.¢/] @)
with ¢; + being the jth constraint to be satisfied at step ¢, and the ¢; ; is determined by the maximum
level of violation to occur in all current and future steps ¢’ in the generation process. The constraint
oracles C(x, a) are learned functions (trained on ¢; ;) of the probability of an action satisfying a
constraint in all future steps. Consequently, the constrained agent now follows a modified policy

7(s) = argmax | Q" (s,a) + oo - min (O, Cj(s,a) — T)} 3)
where T' € [0, 1] is a threshold set at 0.5. This important modification to DQN ensures that actions

predicted (by constraint oracle C;(s, a)) to generate invalid compounds are penalized by the last term
in Eq. |3] increasing the probability of generating chemically valid compounds.



Table 1: Validity, diversity and properties of materials generated by DQN vs. baseline. Tasks. Form:
formation energy, Bulk: bulk modulus, Shear: shear modulus, Sinter: sintering temperature, Random:
random baseline. Metrics. Char. neut.: charge neutral, Elec. bal.: electronegativity balanced. Values
and subscripts are mean and std of 103 generated materials, respectively.

Validity Diversity Material property
Task % Char. neut. % Elec. bal. % Unique EIMD  Property 1 Property 2
) Q) Q) M (in Task) ~ (in Task)
Form ({) 41.0 60.1 100 14.17 6 -2.54 72 -
Bulk (1) 85.3 65.8 100 7.54.0 5.35¢p.01 -
Shear (1) 82.8 69.2 100 11.050  4.46¢ 40 -
Sinter ({) 85.7 64.7 100 12.17 4 8279s -
Sinter+Bulk 85.9 61.6 100 11.16.9 826103 4240 77
(A=62.5)
Sinter+Bulk 84.7 62.8 100 10.159 88611- 4.73¢ 67
(A =125)
Sinter+Bulk 92.6 63.9 100 8.84.4 93544 5.22) 36
(A =250)
Random 59.9 42.8 100 20.19 5 -1.379.73 (Form)
(baseline) 4.29¢ 60 (Bulk)

3.650.72 (Shear)
1011551 (Sinter)

2.3 Probabilistic sampling of actions for chemical diversity

DQN agents typically take the greedy action that maximizes the expected return, rendering the policy
deterministic in a static environment. However, for a materials generation task, a deterministic
policy would be problematic as the agent would always take the same actions and generate the
same material over and over again. This would not be optimal as materials generated by the agent
must be chemically diverse. To address this, we implement another crucial modification to DQN.
Instead of taking the greedy action, the policy 7 is given where the action is sampled from the top
n% of actions such that 7(s) = random.sample(aj,...,a’) where aj, ..., a} refer to the top n%
of actions ranked by the Q™ and constraint oracles C}(s, a). Related sampling strategies include
Boltzmann sampling [9]. Consequently, this modification ensures that the DQN takes actions in a
stochastic fashion, which enables the generation of diverse materials.

3 Experiments

We evaluate the DQN agents based on metrics related to real-world material discovery process. These
metrics relate to stability and validity of compounds: formation energy per atom, charge neutrality,
electronegativity balance [|10]. In addition, performance-based material properties of interest include
bulk modulus and shear modulus, which are measures of mechanical strength of a material. Since
synthesis also plays a crucial role in real-world materials discovery, sintering temperature (a key
synthesis parameter) of material is included. Finally, to evaluate the diversity of compounds generated,
the element movers distance (EIMD) [[11]] and % uniqueness are employed.

The DQN agents are evaluated based on generating materials for 1) single-property 2) multi-
property optimization.

3.1 Single-property material optimization

Setup. The task is to generate materials that optimize for a single property of interest. We generate
103 materials using the aforementioned method with hyperparameters presented in Appendix
Subsequently, the properties of the generated materials are predicted using trained ML property
predictor(s), and their charge neutrality and electronegativity balance are checked via the procedure
in [10]. Details on dataset curation and ML property predictor training can be found in Appendices
and respectively. We report the percentage of generated materials that satisfy each validity
constraint. Here, the goal is to: 1) Minimize formation energy per atom: to maximize stability of
material 2) Maximize bulk modulus and shear modulus: to maximize mechanical strength of material
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Figure 2: Property distributions of materials generated by DQN vs. baseline for the multi-property
optimization task (minimize sintering temperature and maximize bulk modulus). DQN generates
materials that have simultaneous improvements over the baseline. As A increases, DQN prioritizes
generating materials with high bulk modulus over those with low sintering temperature. Green star:
0OssWOs, a novel DQN-generated Pareto-optimal material. Green box: its predicted crystal structure.

3) Minimize sintering temperature: lower temperatures are associated with lower energy consumption
costs and greener synthesis pathways.

Results. For all tasks except for Form in Table [T] the DQN outperforms the baseline in terms
of generating materials that are charge neutral and electronegativity balanced. This is due to the
constraints enforced by the constraint oracles as described in Section [2.2] resulting in generation of
valid materials. For uniqueness, the sampling strategy in Section allows DQN to achieve 100%
uniqueness. According to material properties in Table [T| DQN generates materials with significantly
improved properties over the baseline: more negative formation energy, higher bulk/shear modulus
and lower sintering temperature. Generally, the standard deviation (see subscripts) of DQN-generated
material properties are lower vs. the baseline, which is supported by the lower EIMD for DQN.
This could be explained by DQN prioritizing exploitation over exploration of chemical space, and is
testament to the inherent trade-off between chemical diversity and optimal material property.

3.2 Multi-property material optimization

Setup. The task is to generate materials that jointly optimize for multiple properties of interest, which
is more challenging and more closely represents real-world materials design. The generation protocol
is similar to that of single-property task. Here, the goal is to jointly maximize bulk modulus and
minimize sintering temperature. The reward function is now a linear combination R = P; + AP,
where P; and P, are rewards corresponding to individual material properties. ) is a hyperparameter
to weigh the relative importance of individual material properties in the joint optimization. Here, we
investigate the influence of varying A on the properties of generated materials. The evaluation metrics
are similar to that of the single-property task.

Results. In Fig. 2| as A increases, the DQN prioritizes maximizing bulk modulus over minimizing
sintering temperature (shifts up and right). When A = 250 or 125, DQN generates materials that
have simultaneous improvements in both material properties over the baseline (Table[T)) as shown in
the shift to the upper-left corner of the subplots in Fig. 2] Moreover, Table|[I|clearly shows that DQN-
materials have higher rates of validity (Char. neut. and Elec. bal.) but with lower diversity (EIMD).
However, when A = 62.5, it over-prioritizes minimizing sintering temperature at the expense of bulk
modulus (Table[T). This shows the trade-off between the two properties, resulting in a characteristic
Pareto front in multi-objective optimization, where A is a parameter that could be tuned according
to the application. We also show a novel, DQN-generated Pareto-efficient material OssWOs (green
star in Fig. 2)) with its crystal structure (space group: Pmn2;) predicted by a template matching
algorithm [12]]. This approach has enabled us to suggest materials, but to assess them and understand
their stability future work must involve validation using simulation-based quantum chemical methods.

4 Broader Impact

The ability to propose novel, chemically valid compounds with desirable properties in terms of
synthesis and property constraints is an important step towards bridging experiment and computation
to accelerate Al-guided materials design for tackling pressing modern-day challenges.
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A Appendix

A.1 Data acquisition and preprocessing

Datasets. To train the materials property predictor models, we leveraged a subset of inorganic
materials and their computed properties contained within the Materials Project (MP) database [[13].
Materials Project is a widely used inorganic materials database containing crystal structures and
materials properties data calculated from high-throughput quantum mechanical calculations. To train
the sintering temperature predictor model, we used a publicly released inorganic solid-state synthesis



database text-mined from scientific literature using a combination of NLP and rule-based extraction
techniques [14].

To preprocess the materials property data, we use a similar preprocessing strategy as [[15} (10, [16]].
For a formula with multiple reported formation energies, we choose the lowest one to select the
most stable compound. We additionally removed all single-element compounds and any compounds
with a formation energy outside the interval [z — 50, u + 50, where p and o are the average and
standard deviation of the formation energies of all compounds in the MP dataset. For each property,
all entries which did not contain a computed property value were discarded. After preprocessing, we
obtained datasets containing the formation energies for 68,708 compounds as well as the bulk and
shear modulus values for 9,888 compounds. For bulk and shear moduli, property values were taken
as their corresponding logarithm.

To preprocess the extracted sintering temperature data, reactions without at least one sintering step
with a reported temperature were removed. Temperatures were converted into units of Celsius (°C)
and limited to between 200 °C and 2000 °C. If sintering occurred more than once in a recipe, the last
operation in chronological order was taken. For reactions with more than one reported occurrence in
literature (same target and precursors), the ground truth reaction condition was taken to be the average
of the reported conditions. From this dataset, we extracted the experimental sintering temperatures
for 12,296 inorganic compounds.

A.2 ML property prediction models

We built ML property prediction models for both materials properties (formation energy, bulk/shear
modulus) and synthesis objectives (sintering temperature). For the materials property prediction, we
leveraged Roost [[17]], a graph-composition message passing neural network architecture which can
predict materials properties from composition. Models were trained based on default hyperparameters
presented in package using a random 90/10 train-test split.

For sintering temperature prediction, inorganic compounds were featurized using Magpie composi-
tional features, which are physically motivated descriptors that take the form of a 145-dimensional
embedding containing stoichiometric properties, elemental properties, electronic structure, and ionic
compound features [[18]]. To predict sintering temperature from materials composition, we trained a
random forest (RF) model and optimized hyperparameters using a 5-fold cross-validation.

Metrics of these prediction models are reported in Table 2]

Table 2: Performance metrics of ML property prediction models.

Task Model Dataset Test R2 Test MAE Test RMSE
Formation energy per atom (eV)  Roost MP 0.913 0.1367 0.3467
Bulk modulus (log MPa) Roost MP 0.753 0.2331 0.4323
Shear modulus (log MPa) Roost MP 0.701 0.3321 0.5135
Sintering temperature (°C) RF MP 0.854 52.09 96.63

A.3 Deep Q-Network

In Q-learning (or DQN), the )-value is the expected discounted reward for a given state and action,
and therefore the optimal policy 7* can be found using iterative updates with the Bellman equation
(Eq. (1)). Upon convergence, the optimal Q-value Q* is defined as:

Q" (st;ar) = Es,np | Reg1 + ngiwa* (st41,a41) | s, 4)
t
Q (s¢, at) can be represented by a function approximator. The Q-function is approximated with a

deep Q-network (DQN) Qy parameterized by weights 6 [19].

DQN architecture. The inputs are state x; and action a; at the corresponding step ¢. The architecture
of the DQN can be found in Fig. [3] Leaky ReLU is used in all fully connected (fc) layers. The 4
vectors (vide infra) are then individually passed through fc layers, and their corresponding hidden
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Figure 3: Architecture of deep Q-network.

states (dim = 64) are concatenated into a single vector (dimn = 256) before passing through another
fc layer to give the Q-value.

The state representation has two components:

1. Material composition: Each generated material (complete or incomplete) is featurized using
Magpie to give a R vector as described in A

2. Step: Step of generation. It has been reported in previous works [3]] that the inclusion of
the step (time-dependent policy) outperforms exclusion of such (time-independent policy).
Since horizon is capped at 5 steps, this is represented by a one-hot encoding of R®.

The action representation has two components:

1. Element: The atomic species being added to the sequence. Since a element set consists of
80 elements, this is represented by a one-hot encoding of R%°.

2. Composition: The numerical subscript of the atomic species that is added to the sequence.
Since this ranges from 0-9, this is represented by a one-hot encoding of R1°.

DQN training. The DQN is trained over 500 iterations with the use of a replay buffer of size 50000
that addresses the issue of correlated sequential samples [20]. In each iteration, 100 compounds were
generated, stored in the replay buffer, and Q-network is trained on 100 samples randomly sampled
from the replay buffer with smooth L1 loss function and Adam optimizer with learning rate of 0.01.
Initial exploration is encouraged using an e-greedy policy starting with high € value of 0.99, which
is decayed (by a factor of 0.99 after each iteration) over the course of training to ensure eventual
exploitation and convergence to the optimal policy. Discount factor ~ is set at 0.9. Models are trained
on a single NVIDIA RTX A5000 GPU. Training a DQN agent generally takes 2-3 hours.

Table 3: Reward functions of optimization tasks. F = formation energy per atom, K = bulk modulus,
G = shear modulus, S = sintering temperature, A = weighing coefficient to weigh individual rewards.

Task Reward
Formation energy per atom -F
Bulk modulus K
Shear modulus G
Sintering temperature -5

Sintering temperature + Bulk modulus —S5 + AK

A.4 Material generation

The material generation process is formulated as a sequence generation task sg, ag, Ry, s1,a1, R1, ...
as shown in Fig. [T(b) with a horizon capped at 5 steps. At each step, an element (out of a set of 80



possible elements) and its corresponding composition (0-9) are appended to the existing (or empty)
material. If the corresponding composition is 0, the agent does not add the element. This allows
the agent to generate materials of any length of < 5 elements (length of horizon) hence increasing
chemical diversity. In all experiments in this work, we restrict to generating oxides, hence any
element can be added in the first 4 steps, but only oxygen for the final step.

To increase the diversity of generated materials, the action is sampled from the top n% of actions
ranked by the Q™ and constraint oracles C (s, a). Empirically, it was found that n can be increased
from O up until 20 without a deterioration of material properties, hence n was set to 20 to maximize
diversity of generated materials. Any larger value than n = 20 would further improve diversity, but
at the expense of material properties. Rewards at all non-terminal are assigned zero until step 5
(terminal step) where the reward R is assigned according to Table 3]
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