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ABSTRACT

As AI systems become more capable and widely used, a growing concern is the
possibility for trojan attacks in which adversaries inject deep neural networks with
hidden functionality. Recently, methods for detecting trojans have proven surpris-
ingly effective against existing attacks. However, there is comparatively little work
on whether trojans themselves could be rendered hard to detect. To fill this gap,
we develop a general method for making trojans more evasive based on several
novel techniques and observations. Our method combines distribution-matching,
specificity, and randomization to eliminate distinguishing features of trojaned net-
works. Importantly, our method can be applied to various existing trojan attacks
and is detector-agnostic. In experiments, we find that our evasive trojans reduce
the efficacy of a wide range of detectors across numerous evaluation settings while
maintaining high attack success rates. Moreover, we find that evasive trojans are
also harder to reverse-engineer, underscoring the importance of developing more
robust monitoring mechanisms for neural networks and clarifying the offence-
defense balance of trojan detection.

1 INTRODUCTION

A neural trojan attack occurs when adversaries corrupt the training data or model pipeline to im-
plant hidden functionality in neural networks. The resulting networks exhibit a targeted behavior
in response to triggers known only to the adversary. However, these trojaned networks retain their
performance and properties on benign inputs, allowing them to remain undetected potentially until
after the adversary has accomplished their goal. The threat of trojan attacks is becoming especially
salient with the rise of model sharing libraries and massive datasets that are directly scraped from
the Internet and too large to manually examine.

To combat the threat of trojan attacks, an especially promising defense strategy is trojan detection,
which seeks to distinguish trojaned networks from clean networks before deployment. This has the
desirable property of being broadly applicable to different defense settings, and it enables additional
defense measures later on, such as removing hidden functionality from networks (Wang et al., 2019).
Moreover, the problem of trojan detection is interesting in its own right. Being good at detecting
trojans implies that one must be able to distinguish subtle properties of networks by inspecting their
weights and outputs, and thus is relevant to interpretability research. More broadly, trojan detection
could be viewed as a microcosm for identifying deception and hidden intentions in future AI systems
(Hendrycks & Mazeika, 2022), highlighting the importance of developing robust trojan detectors.

There is a growing body of work on detecting neural trojans, and recent progress seems to suggest
that trojan detection is fairly easy. For example, Liu et al. (2019) and Zheng et al. (2021) both
propose detectors that obtain over 90% AUROC on existing trojan attacks. However, there has
been comparatively little work on investigating whether trojans themselves could be made harder to
detect. Very recently, Goldwasser et al. (2022) showed that for single-layer networks one can build
trojans that are practically impossible to detect. This is a worrying result for the offense-defense
balance of trojan detection, especially if such trojans could be designed for deep neural networks.
However, to date there has been no demonstration of hard-to-detect trojan attacks in deep neural
networks that generalize to different detectors.

In this paper, we propose a general method for making deep neural network trojans harder to detect.
Unlike standard trojan attacks, the evasive trojans inserted by our method are trained with a detector-
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Figure 1: Compared to standard trojans, our evasive trojans are significantly harder to detect and
reverse-engineer. In this illustrative example, the standard and evasive trojans contain dangerous
hidden functionality. A meta-network is able to detect the standard trojan and reverse-engineer its
target label and trigger, whereas the evasive trojan bypasses detection.

agnostic loss that specifically encourages them to be indistinguishable from clean networks. The
components of our method are intuitively simple, relying primarily on a distribution matching loss
inspired by the Wasserstein distance along with specificity and randomization losses. Crucially, we
consider a white-box threat model that allows defenders full access to training sets of evasive trojans,
which enables gauging whether our evasive trojans are truly harder to detect. In experiments, we
train over 6, 000 trojaned neural networks and find that our evasive trojans considerably reduce the
performance of a wide range of detection algorithms, in some cases reducing detection performance
to chance levels.

Surprisingly, we find that in addition to being harder to detect, our evasive trojans are also harder to
reverse-engineer. Namely, target label prediction and trigger synthesis becomes considerably harder.
This is an unexpected result, because our loss does not explicitly optimize to make these tasks harder.
In light of these results, we hope our work shifts trojan detection research towards a paradigm of
constructive adversarial development, where more evasive trojans are developed in order to identify
the limits of and improve detectors. By studying the offense-defense balance of trojan detection in
this way, the community could make steady progress towards the ultimate goal of building robust
trojan detectors and monitoring mechanisms for neural networks. Experiment code and models are
available at [anonymized].

2 RELATED WORK

Trojan Attacks on Neural Networks. Trojan attacks, or backdoor attacks, refer to the process
of implanting hidden functionalities into a system that affect its safety (Hendrycks et al., 2021).
Geigel (2013) devise a method to insert malicious triggers into a neural network. Since then, a wide
variety of neural trojan attacks have been proposed (Li et al., 2022). Gu et al. (2017) show how data
poisoning can insert trojans into victim models. They introduce the BadNets attack, which causes
targeted misclassification when a trigger pattern appears in test inputs. Chen et al. (2017) introduce
a blended attack strategy, which uses triggers that are less conspicuous in the poisoned training
set. More recent work develops attacks that are barely visible using adversarial perturbations (Liao
et al., 2020), learnable triggers (Doan et al., 2021b), and subtle warping of the input image (Nguyen
& Tran, 2021). Others have considered making trojan attacks under fine-tuning threat models (Yao
et al., 2019), for textual domains (Zhang et al., 2021), and encompassing a diverse range of attack
vectors and goals (Bagdasaryan et al., 2020; Carlini & Terzis, 2021).

Trojan Detection. An important part of defending against trojan attacks is detecting whether a
given network is trojaned. Wang et al. (2019) propose Neural Cleanse, which reverse-engineers
candidate triggers for each classification label. If a small trigger pattern is found, this indicates the
presence of a deliberately inserted trojan. Liu et al. (2019) analyze inner neurons for suspicious
behavior, then reverse-engineer candidate triggers to confirm whether a neuron is compromised.
Kolouri et al. (2020) and Xu et al. (2021) propose training a set of queries to classify a training
set of trojaned and clean networks. Remarkably, this generalizes well to unseen trojaned networks.
Other work uses conditional GANs to model trigger generation (Chen et al., 2019b), adversarial
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Figure 2: Our method for making trojans more evasive substantially reduces AUROC across various
datasets and underlying trojan attacks. All values are averaged across six detectors, and lower is
better for the attacker. Detectors have access to a training set containing our evasive trojans, so
reductions in AUROC are not caused by optimizing against fixed detectors, but rather indicate that
we can insert trojans in deep neural networks that are truly harder to detect for existing methods.

perturbations (Wang et al., 2020), and persistent homology feature extraction (Zheng et al., 2021).
If inputs with trojan triggers are available, one can also employ activation clustering (Chen et al.,
2019a) or online trojan detection (Gao et al., 2019; Kiourti et al., 2021).

Evasive Trojans. While there has been substantial work on making trojan triggers stealthy (Liao
et al., 2020; Nguyen & Tran, 2021; Doan et al., 2021b;a), there has been comparatively little work
on making trojaned models themselves hard to detect. Early work on neural trojans considered
evasiveness to consist of maintaining high accuracy on clean inputs (Gu et al., 2017; Chen et al.,
2017). However, examining the clean accuracy is a very simple detection mechanism. Recently,
several works have explored making trojans more evasive for sophisticated detectors. Xu et al.
(2021) train trojans to fool a meta-network detector in a black-box setting, where the detector is
not given full knowledge of the attack. Bagdasaryan & Shmatikov (2021); Hong et al. (2021) train
a trojaned network to fool the Neural Cleanse detector (Wang et al., 2019), but their approach is
not applicable to other detection methods. Goldwasser et al. (2022) examine the problem from a
cryptographic perspective and find that for one-layer networks it is possible to construct trojans
that are computationally infeasible to detect. Most similar to our work is that of Sahabandu et al.
(2022), who train trojans and a meta-network detector in a min-max alternating fashion to be hard
to distinguish from clean networks.

We depart from prior work by developing evasive trojans that generalize to a wide range of detec-
tors without specifically optimizing to fool them. Instead, we give detectors the upper hand in our
evaluations by allowing access to training datasets of networks containing our evasive trojans. Addi-
tionally, we are the first to systematically measure reverse-engineering on a large scale, which allows
us to make the surprising discovery that evasive trojans are also much harder to reverse-engineer.

3 BACKGROUND

Neural Trojans. A neural trojan is described by a trigger that can be applied to the inputs of a
victim network and a hidden behavior that the trigger should activate in the victim network. For
simplicity, we focus on classification networks and all-to-one attacks, where inserting a trigger re-
liably causes the victim network to output a fixed class. Let C be the number of classes, and let
f : X → RC be a victim network that maps inputs x ∈ X to their posterior prediction. An attack
specification is a tuple (q, h, c), where q ∈ Q is a trojan trigger, h : X × Q → X is a function
that inserts triggers into inputs, and c ∈ {1, . . . , C} is the target label of the attack. We also de-
fine distributions PX and PQ over X and Q to model the data distribution and the distribution of
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Figure 3: Top: Our distribution
matching loss successfully maintains
a tight coupling between evasive tro-
jans θf and clean initializations θg
and can thus be interpreted as min-
imizing the 1-Wasserstein distance.
Bottom: Omitting the randomization
loss leads to emergent coordination
in the differences between summary
statistics θ′f − θ′g , which cluster in
one direction. With the randomization
loss, the coordination disappears.

triggers being considered by the adversary. The associated
random variables are X and Q.

A trojan is successfully inserted if the attack suc-
cess rate (ASR) is high, where ASR is defined as
P(argmaxc′f(h(X, q))c′ = c), the probability of a trig-
gered input being classified as the target label. Other desir-
able properties of an attack include not affecting accuracy
on clean inputs and having high specificity, where speci-
ficity refers to the ability of alternate triggers q′ ∈ Q \ {q}
to activate the hidden behavior. If a trojan has low speci-
ficity and the defender has some knowledge of Q, then the
trojan can be readily detected by sampling triggers and an-
alyzing their effect on f . Prior works consider a weaker
notion of specificity (Pang et al., 2022; Zhang et al., 2021;
Ren Pang, 2019), where a trojan has high specificity if it
does not impact accuracy on clean examples. We extend
this to include examples with unintended triggers.

Threat Model. We model trojan detection as an interac-
tion between an attacker and defender. The goal of the at-
tacker is to insert a trojan into a victim network without
being detected, and the goal of the defender is to detect
whether the network contains a trojan. The attacker ran-
domly samples their trigger and target label, and they may
use various methods for inserting the trojan depending on
their degree of access to the victim network. In data poi-
soning attacks, the attacker can poison a small fraction of
the training set, while in training-time attacks they have full
control over the dataset and training function.

Importantly, we assume that the defender has access to a
dataset of clean and trojaned networks, where the trojans
are inserted using the same method as the attacker but with
random triggers q ∼ Q and target labels c ∈ {1, . . . , C}. In
other words, the defender knows what the attacker’s dis-
tribution of trojans looks like, but they do not know the
specific trigger or target label used by the attacker. We
make this assumption because we are interested in studying
whether trojans in deep neural networks can be made diffi-
cult to detect not just for one detector, but for all detectors.

4 EVASIVE TROJANS

We develop a general method for inserting hard-to-detect trojans into deep neural networks. This
method is detector-agnostic and can be applied to a wide variety of underlying trojan attacks, referred
to as “standard trojans”. Starting with a standard trojan attack defined by an attack specification
(q, h, c), the form of our loss for training evasive trojans is Ltask + Ltrojan + Levasion, where Ltask is
the task loss that increases accuracy on clean examples and Ltrojan is the trojan loss that increases
the attack success rate, and Levasion is the evasion loss, which is designed to make trojans hard to
detect. As with standard trojans, the task loss and trojan loss are implemented via cross-entropy on
clean examples and examples with triggers inserted. The main modification for evasive trojans is
the evasion loss, which we describe below.

4.1 EVASION LOSS

We identify three high-level components for an evasion loss: distribution matching, specificity, and
randomization. The core of our approach is our distribution-matching loss, which enforces similarity
between the distribution of clean networks and trojaned networks. The specificity and randomization
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losses augment this central loss by addressing two practical challenges with designing hard-to-detect
trojans for deep neural networks.
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Table 1: Attack success rate (ASR) and task
accuracy. All values are percentages. ASR
is averaged across patch and blended attacks.
Task accuracy is similar across all networks
for each dataset. Both standard and evasive
trojans achieve high ASR.

Distribution Matching. A natural approach to
making trojans hard to detect is to ensure that across
triggers, target labels, and other sources of random-
ness, the distribution of the resulting trojaned net-
works is similar to the distribution of clean networks.
One way of accomplishing this would be to use a
GAN loss. However, for this to be effective one
would need to train a generator of networks or a
diverse population of trojaned networks in parallel,
which is computationally prohibitive for the attacker.

Our key insight is that instead of using a loss based
on GANs, we can use a loss based on the primal
form of the 1-Wasserstein distance. Let F and G
be random variables corresponding to distributions
of trojaned and clean networks, respectively. The
1-Wasserstein distance is defined as W1(F,G) =
infΓ E(F,G)∼Γ [d(F,G)], where Γ is a coupling be-
tween F and G—a joint distribution with marginals
equal to PF and PG—and d is a distance metric. In
general, finding the infimum over all couplings is
challenging. However, we can approximate the in-
fimum by arbitrarily fixing a coupling and maintain-
ing it throughout training. If the distances remain small throughout training, it will remain a faithful
approximation.

In practice, this corresponds to first training a clean network g ∼ G, then initializing the trojan
network f from the parameters of g and maintaining a small distance between the two networks
according to a distance metric d. The selection of d is an important hyperparameter. In preliminary
experiments, we found that a simple combination of ℓ2 distance in parameter space and ℓ1 distance
in the final unnormalized logits on clean examples was sufficient to see a notable increase in eva-
siveness, so this is what we use throughout the paper. Concretely, our distribution matching loss is

Ldist = λ1∥θf − θg∥2 + λ2EX [∥f ′(X)− g′(X)∥1] ,

where θf , θg are the parameters of f and g, the functions f ′, g′ output unnormalized logits, and
λ1, λ2 are weights for adjusting the strength of the two distances.

Specificity. Under our threat model, the defender has access to a training dataset of clean and
trojaned models. In some cases, they may also have access to the triggers accompanying the trojaned
models in their training set. If the attacker’s trojans have low specificity and respond to many
unintended triggers, they can become trivial to detect by simply inserting the available triggers into
clean inputs and analyzing their effect on a given network f .

In experiments, we find that low specificity is a significant problem for trojan attacks on deep neural
networks, possibly because high-specificity trojans require more complex feature detectors to filter
out unintended trigger patterns. This motivates us to add a loss encouraging high specificity. Let
q ∈ Q be the trigger used for a trojan. The general approach for a specificity loss involves inserting
incorrect triggers q′ ∈ Q \ {q} into training examples and enforcing normal behavior on those
“negative examples”. Prior works with specificity losses have used cross-entropy to the clean label
on negative examples (Nguyen & Tran, 2021). However, we find that optimizing this loss introduces
additional discrepancies, since clean networks do not behave normally on examples with triggers
inserted. We find that a more effective loss is to match posteriors between the trojaned network f
and its clean initialization g on negative examples. Concretely, our specificity loss is

Lspecificity = EX,Q [cross-entropy(f(h(X,Q)), g(h(X,Q)))] ,

where h is the trigger insertion function. This can be interpreted as a component of the distribution
matching loss, but it serves a distinct purpose of increasing the specificity of the trojan.
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Figure 4: ROC curves for standard trojans and our evasive trojans across a variety of detectors and
datasets. In some cases, evasive trojans reduce detection performance to near-chance levels.

Randomization. Empirically, we find that the distribution matching loss greatly increases eva-
siveness against many detectors. However, a simple logistic regression on summary features of the
network parameters is able to detect trojans using Ldist surprisingly well—even better than state-of-
the-art detectors. This suggests that the distribution matching loss induces emergent coordination in
the parameter space, such that independently trained evasive trojans acquire similarities. To mitigate
this problem, we propose an additional randomization loss Lrand = 1 − cosine(θ′f − θ′g, r), where
θ′f , θ

′
g are the summary statistics for f and g, and r is a random direction fixed at the start of training.

This loss encourages the difference between θf and θg to not only be small, but to also point in a
random direction. Note that enforcing this loss directly in the feature space is too strict, so we use
summary statistics instead. See Appendix A for more details. In Figure 3, we visualize the effect of
the distribution matching and randomization losses.

5 EXPERIMENTS

To evaluate our approach for creating evasive trojans, we ask whether trojans with a fixed distribution
of triggers can be made harder to detect for a variety of detectors, ranging from simple baselines to
state-of-the-art detection algorithms. We generate collections of clean networks, networks with
standard trojans, and networks with evasive trojans. We train these networks on MNIST, CIFAR-
10, CIFAR-100, and GTSRB (downsampled to 32x32). For each dataset, we generate 250 clean
networks and 250 networks for each trojan attack, split evenly into training and test sets. The training
sets of networks are used for developing trojan detectors. These detectors are then evaluated on the
test networks. In total, we train over 6, 000 neural networks to evaluate our method.

Trojan Attacks. We consider two foundational trojan attacks from the literature: the Patch attack
(Gu et al., 2017) and Blended attack (Chen et al., 2017). The patch attack uses small patches with
binary patterns as triggers, and the trigger insertion function stamps them onto the input image.
Each patch trigger consists of a pattern and a mask indicating where the pattern should go in an
input image. We sample patch triggers with masks of varying shapes and locations, but the mask
for each trojan is static once the location is initially decided. The blended attack is a more subtle
attack, using image-wide random noise as the trigger, which is blended into the input image at a low
magnitude. Both attacks are implemented by poisoning a small percentage of the training data. We
poison 1% of the training set and refer to these attacks as Standard Trojans.

We train networks with Evasive Trojans using the procedure described in Section 4. First, we train
a new dataset of clean networks for initializing the evasive trojans. These are independent from
the clean networks used for training and evaluating detectors and are only used for initializing and
training evasive trojans. Next, we train the evasive trojans using the same patch and blended triggers
that the standard trojans use. The trigger distribution is fixed, so the method for inserting trojans
is the main independent variable. In Table 1, we show that the attack success rate is similar for
standard trojans and our evasive trojans.
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s MNIST Patch 53.0 64.8 80.2 51.8 55.4 69.3 80.2 61.1

Blended 53.0 100.0 100.0 83.1 72.6 91.7 100.0 81.7

CIFAR-10 Patch 55.8 100.0 80.0 90.0 57.6 99.4 100.0 76.7
Blended 63.6 100.0 100.0 82.0 83.0 100.0 100.0 85.7

CIFAR-100 Patch 57.9 99.9 84.9 70.8 61.8 96.5 99.9 75.0
Blended 61.3 100.0 100.0 72.0 85.2 99.8 100.0 83.7

GTSRB Patch 50.3 71.0 64.0 56.2 48.5 63.3 71.0 58.0
Blended 51.4 78.5 100.0 60.9 99.9 96.8 100.0 78.2

Average 55.8 89.3 88.6 70.8 70.5 89.6 93.9 75.0

E
va

si
ve

Tr
oj

an
s MNIST Patch 55.6 54.3 66.5 51.1 70.6 53.0 70.6 58.5

Blended 60.2 67.8 99.2 54.9 84.8 67.2 99.2 72.4

CIFAR-10 Patch 61.3 67.4 58.1 60.0 52.2 62.3 67.4 60.2
Blended 53.5 67.2 100.0 84.0 79.7 93.3 100.0 79.6

CIFAR-100 Patch 54.9 50.4 61.1 50.7 61.6 55.0 61.6 55.6
Blended 54.4 65.1 100.0 64.6 91.7 76.1 100.0 75.3

GTSRB Patch 50.8 73.7 56.6 54.8 77.1 48.7 77.1 60.3
Blended 55.0 72.3 100.0 81.3 85.5 62.0 100.0 76.0

Average 55.7 64.8 80.2 62.7 75.4 64.7 84.5 67.2

Table 2: Detection results. Our evasive trojans are harder to detect across a wide range of detectors,
datasets, and attack specifications. All values are percent AUROC, and lower is better for the at-
tacker. For each detector, we bold the better value in the “Average” row.

Network Architectures and Hyperparameters. For CIFAR-10 and CIFAR-100, we use 40-2
Wide ResNets (Zagoruyko & Komodakis, 2016) with a dropout rate of 0.3 (Srivastava et al., 2014).
For GTSRB, we use the SimpleViT Vision Transformer (Beyer et al., 2022) as implemented by
lucidrains. For MNIST, we use a simple 5-layer convnet with batch norm.

We train all CIFAR-10, CIFAR-100, and GTSRB networks for 50 epochs with a batch size of 128.
We train all MNIST networks for 10 epochs with a batch size of 256 except for evasive trojans,
which we found benefited from 20 epochs of training after initializing from clean networks.

We train all CIFAR-10 and CIFAR-100 networks using SGD with learning rate 0.1, weight decay
of 5 × 10−4, and Nesterov momentum of 0.9. We train all MNIST and GTSRB networks using
Adam with a weight decay of 1 × 10−5 and other hyperparameters at default settings. All training
hyperparameters were chosen early in preliminary experiments and received minimal tuning.

Detectors. To measure the evasiveness of different trojans, we use a variety of detectors. The
accuracy-based detector (Acc) simply uses the clean accuracy of a network as a score for detection.
The specificity-based detector (Spec) computes the entropy of average posteriors on inputs with
random triggers inserted. If a trojan has low specificity, these random triggers will activate it and
reveal its presence. Neural Cleanse (NC) iterates over possible target labels for an attack and directly
searches for candidate triggers using gradient-based optimization (Wang et al., 2019). ABS monitors
the behavior of neurons while perturbing the input to identify candidate compromised neurons.
These candidate neurons are used to generate a trojan trigger similarly to Neural Cleanse, and the
maximum attack success rate across candidates is used as a detection score (Liu et al., 2019). MNTD
trains a set of queries and a shallow classifier on the training set of clean and trojaned models (Xu
et al., 2021). The Param detector is a logistic regressor with a single linear layer that takes summary
statistics of the raw network parameters as its input. Finally, the Max and Avg baselines are the
maximum and average AUROC obtained by the six detectors on a given set of trojaned networks.

5.1 DETECTION

To measure the effectiveness of detectors, we use area under the ROC curve (AUROC) on test sets
of clean and trojaned networks. AUROC is a threshold-independent metric that can be interpreted as
the probability that a positive example has a higher detection score than a negative example (Fawcett,
2006), so 50% corresponds to random detection performance. For hand-crafted detectors that do not
leverage the training set, the AUROC can sometimes be below 50%. We find that this happens to a
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NC ABS Param MNTD Max Avg

St
an

da
rd
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oj

an
s MNIST Patch 60.8 16.8 8.0 40.0 60.8 31.4

Blended 100.0 41.6 8.8 98.4 100.0 62.2

CIFAR-10 Patch 52.0 94.4 11.2 99.2 99.2 64.2
Blended 98.4 84.8 11.2 100.0 100.0 73.6

CIFAR-100 Patch 38.4 70.4 0.0 28.8 70.4 34.4
Blended 100.0 48.0 0.0 14.4 100.0 40.6

GTSRB Patch 35.2 19.2 3.2 9.6 35.2 16.8
Blended 100.0 32.0 3.2 46.4 100.0 45.4

Average 73.1 50.9 5.7 54.6 83.2 46.1

E
va

si
ve

Tr
oj

an
s MNIST Patch 28.8 13.6 8.0 17.6 28.8 19.4

Blended 92.0 28.0 9.6 68.8 92.0 58.1

CIFAR-10 Patch 9.6 40.0 11.2 12.8 40.0 22.7
Blended 7.2 80.8 9.6 88.8 88.8 55.0

CIFAR-100 Patch 1.6 2.4 0.0 0.8 2.4 1.4
Blended 2.4 34.4 1.6 8.8 34.4 16.3

GTSRB Patch 1.6 20.0 1.6 3.2 20.0 9.3
Blended 3.2 76.0 1.6 19.2 76.0 35.2

Average 18.2 36.9 5.6 27.3 47.8 27.2

Table 3: Target label prediction results. Although we do not specifically design our evasive trojans to
be hard to reverse-engineer, we find that predicting their target labels is much harder. All values are
percent accuracy, and lower is better for the attacker. These are unexpected and concerning results
that highlight the need for more robust trojan detection and reverse-engineering methods.

small degree in some experiments. In these cases, we negate the detection score before computing
AUROC on the test set.

Main Results. Detection results are in Table 2, and sample ROC curves are in Figure 4. We train
standard and evasive trojans in eight settings and evaluate them on six detectors. Average AUROC
across all eight settings is lower for evasive trojans in five out of the six detectors. In some cases,
evasiveness substantially improves. For example, average AUROC for the MNTD detector drops
by 25%. When looking at the most effective detector in each setting, evasiveness also improves on
average, with a 9.4 percent drop in AUROC. This shows that our evasive trojans are harder to detect
not just for a specific detector, but for a diverse range of detectors that use different mechanisms.

Surprisingly, the blended attacks are detected very easily by Neural Cleanse, and our evasion loss
is unable to reduce the efficacy of Neural Cleanse in these settings. This is unexpected, because
Neural Cleanse is designed specifically to detect patch attacks. However, our evasion loss does
make blended attacks harder to detect for other methods, including MNTD and in some settings
ABS. As shown in Figure 2, although blended attacks tend to be easier to detect than patch attacks,
evasive trojans reduce the efficacy of the average detector across all four datasets. Additional results
and experiment details are in Appendix B.

5.2 REVERSE-ENGINEERING

Once a trojan has been detected, one might want to know what the intended functionality of the
trojan is or what causes it to activate. Reverse-engineering trojans is a nascent field with relatively
little prior work. However, since evasive trojans make detection more challenging, a natural ques-
tion to ask is whether they also make reverse-engineering harder. We operationalize these reverse-
engineering tasks as predicting the target label of a trojan attack and predicting the segmentation
mask of patch attacks. Since recovering trigger patterns is nontrivial (Guo et al., 2019), we focus on
reverse-engineering the trigger mask.

Target Label Prediction. We use accuracy as a metric for predicting target labels. Neural Cleanse
and ABS predict target labels as part of their detection pipeline, so no modification is needed. For
the MNTD and Param detectors, we replace their output layer and train them as classifiers with
multiclass cross-entropy. Results are in Table 3. Surprisingly, we find that evasive trojans are not
only harder to detect, but they also make predicting the target label considerably harder. For each of

8



Under review as a conference paper at ICLR 2023

NC ABS Param MNTD Max Avg

St
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rd

Tr
oj
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s

MNIST 4.9 4.5 4.6 3.8 4.9 4.4
CIFAR-10 6.0 4.6 5.5 7.6 7.6 5.9
CIFAR-100 6.4 5.0 7.6 7.1 7.6 6.5
GTSRB 5.5 6.5 7.2 5.6 7.2 6.2

Average 5.7 5.2 6.2 6.0 6.8 5.8

E
va

si
ve

Tr
oj

an
s MNIST 5.7 5.3 5.9 5.2 5.9 5.5

CIFAR-10 5.7 4.3 4.1 4.8 5.7 4.7
CIFAR-100 5.9 5.6 4.8 5.2 5.9 5.4
GTSRB 5.6 6.0 7.2 4.0 7.2 5.7

Average 5.7 5.3 5.5 4.8 6.2 5.3

Table 4: Trigger synthesis results. All values are percent IoU, and lower is better for the attacker.
Although IoU is low across the board, evasive trojans further reduce IoU for the most effective
methods. This demonstrates the need to develop stronger and more robust trigger synthesis methods.

the four classifiers, accuracy on evasive trojans is lower. Notably, the average accuracies for Neural
Cleanse, ABS, and MNTD drop by 54.9, 14 and 27.3 percentage points, respectively. The accuracy
of the best classifier in each setting drops by 35.4% on average.

Accuracy on evasive trojans drops to chance levels in several settings. For example, on CIFAR-10
standard trojans, MNTD reaches 99.2% accuracy, but for evasive trojans it drops to 11.2% accuracy
(random chance would be 10%). As with detection, the classifiers are more effective on blended at-
tacks, but Neural Cleanse is also reduced from near-perfect prediction to random chance on blended
attacks. Our evasion loss was only intended to make trojans harder to detect, and there is no a pri-
ori reason for it to make target labels hard to predict. Consequently, this is a very unexpected and
concerning result for defense methods.

Trigger Synthesis. We use mean intersection over union (IoU) across trojaned networks as a met-
ric for predicting trigger masks. Neural Cleanse and ABS generate candidate trigger masks as part
of their detection pipeline, so no modification is needed. For MNTD and Param, we replace the out-
put layer with a 4-dimensional output that regresses to the top-left and bottom-right coordinates of
trigger masks in the training set. If a predicted bounding box is invalid, the predicted mask defaults
to the entire image. In all trigger synthesis experiments, only patch attacks are used. The trigger
masks have varying shapes and locations, but they are fixed upon sampling for a given trojan. Thus,
the task is well-defined and is a standard binary segmentation task.

Results are in Table 4. In general, performance is quite poor across the trigger synthesis methods,
with IoU never reaching above 8%. Additionally, average IoU is very close for standard trojans
and evasive trojans on Neural Cleanse and ABS. However, average IoU for Param and MNTD is
decreased by evasive trojans. For MNTD, IoU drops from 6% to 4.8%, which is a 20% relative
reduction. The IoU of the most effective trigger synthesis method drops from 6.8% to 6.2% on
average. These results indicate that trigger synthesis is somewhat more difficult on evasive trojans.
However, IoU values are close to the floor in all cases, which demonstrates a need for more research
on this important aspect of reverse-engineering trojans.

6 CONCLUSION

We introduced a method for inserting evasive trojans in deep neural networks. Unlike standard
trojan attacks, our evasive trojans are specifically designed to be hard to detect. To evaluate our
method, we trained standard and evasive trojans on a large scale, creating training and test sets
containing over 6, 000 neural networks. These networks were used to train and evaluate a wide
variety of trojan detectors, including state-of-the-art detection algorithms and simple yet effective
baselines. We found that our evasive trojans are much harder to detect across a wide range of
evaluation settings, in some cases reducing detection performance to chance levels. Surprisingly,
we found that our evasive trojans also make reverse-engineering the target label and trigger of a
trojan attack substantially harder. We hope these results demonstrate the need for further research
into robust mechanisms for monitoring and detecting hidden functionality in deep neural networks.
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A EVASIVE TROJANS DETAILS

Randomization Loss. The randomization loss minimizes the cosine distance between the network
parameters and a random direction. However, using the randomization loss in the raw parameter
space is far too restrictive and effectively amounts to adding noise to the parameters. Thus, we use
a space of differentiable summary features of the parameters instead. We concatenate the mean and
standard deviation of each parameter vector obtained via the PyTorch parameters enumerator, which
forms a single vector summarizing the network parameters.

For MNIST networks, we found that even this loss was too restrictive and hard to satisfy, perhaps
due to the smaller size of the networks. Thus, we use an alternate randomization loss for MNIST
networks. Let θ′f be summary statistics of the trojaned model parameters, let θ′g be summary statis-
tics of the clean initialization, and let r be a binary random vector. The alternate randomization loss
is

Lrand = ∥min(θ′f − θ′g,0)⊙ r∥1 + ∥min(θ′g − θ′f ,0)⊙ (1− r)∥1,
where the min function outputs the elementwise minimum. This loss allows each summary statistic
in the trojaned network to either be greater or smaller than the corresponding summary statistic
in the clean initialization, where the direction of allowed change is selected by the binary random
vector. This can be considered a softer, axis-aligned version of the original randomization loss.

Hyperparameters. Our evasive trojans have several hyperparameters. The two components of
the distribution matching loss and the randomization loss each receive a separate weight. Let these
weights be denoted by λ1, λ2, and λ3, respectively. We use different loss weights for different
experiments, and the weights are coarsely tuned primarily to ensure that ASR is high enough. Em-
pirically, we find that increasing the weights for these losses smoothly decreases ASR and eventually
the task accuracy. This is because the evasion loss is in direct conflict with the trojan loss, so there is
a balancing act between satisfying the evasion loss and maintaining high ASR. Concretely, we use
the following settings of the loss weights:

• For blended attacks on CIFAR-10, λ1 = 0.02, λ2 = 0.02, λ3 = 0.00005

• For blended attacks on CIFAR-100, λ1 = 0.01, λ2 = 0.02, λ3 = 0.0001

• For blended attacks on GTSRB, λ1 = 0.005, λ2 = 0.01, λ3 = 0.00001

• For patch attacks on GTSRB, λ1 = 0.02, λ2 = 0.02, λ3 = 0.0001

• For patch attacks on CIFAR-10, λ1 = 0.02, λ2 = 0.02, λ3 = 0.00005

• For all other experimental settings, λ1 = 0.1, λ2 = 0.05, λ3 = 0.0001

We tune these weights by training small numbers of individual networks and monitoring the evasion
loss components and ASR. Importantly, we do not tune them specifically to obtain better results in
the main experiments except in preliminary experiments meant to identify appropriate ranges for
the losses, which we performed in a small number of settings. In a few experimental settings, we
observed that there was a long tail of networks with low ASR. We hypothesized that this was due
to the randomization loss picking a challenging direction. Thus, we retrained all networks below a
cutoff ASR using new random directions, which solved the problem. In general, we find that our
evasion loss is fairly robust to selections of loss weights and easy to use once the appropriate ranges
for the weights are identified. The specificity loss is implemented by inserting incorrect triggers into
16 examples for blended attacks and 10 examples for patch attacks. These numbers were selected
early during preliminary experiments.
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ASR Accuracy
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ks MNIST 99.3

CIFAR-10 94.0
CIFAR-100 74.6
GTSRB 84.7

Average 88.1
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s MNIST Patch 100.0 99.3

Blended 100.0 99.3

CIFAR-10 Patch 100.0 93.9
Blended 99.5 93.9

CIFAR-100 Patch 99.8 74.5
Blended 97.5 74.5

GTSRB Patch 99.8 85.5
Blended 94.6 83.5

Average 98.9 88.0

E
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si
ve

Tr
oj

an
s MNIST Patch 99.5 99.3

Blended 99.2 99.2

CIFAR-10 Patch 100.0 93.9
Blended 95.8 94.0

CIFAR-100 Patch 99.9 74.6
Blended 97.4 74.7

GTSRB Patch 96.4 84.4
Blended 97.8 83.5

Average 98.3 87.9

Table 5: Attack success rate (ASR) and task accuracy in all experimental settings. Each value is
averaged across 125 neural networks in the validation set for the indicated experimental setting. All
values are percentages.

Other Details. In preliminary experiments, we found that several implementation details were im-
portant for increasing the evasiveness of our trojans. Namely, we train all evasive trojans without
dropout. Clean initializations are trained with dropout, but during the second stage of training we
turn dropout off. This is because dropout introduces uncorrelated randomness in the activations of
the trojaned network and its clean initialization, which makes satisfying the logit matching compo-
nent of Ldist challenging. For similar reasons, we also switch batch norm layers in clean initialization
networks to eval mode throughout the second stage of training evasive trojans.

To improve performance on blended attacks, we found that it was important to process the inputs for
the clean, trojan, and specificity losses together in a single forward pass. This is because networks
that use batch norm are able to “cheat” by aggregating information across the batch. Empirically,
this issue arose most prominently with blended attacks. Concatenating the inputs together fixes the
problem.

B ADDITIONAL RESULTS

Additional Details on Detectors.

• The accuracy-based detector (Acc) simply uses the clean accuracy of a network as a score for
detection. If a trojan insertion method consistently decreases clean accuracy, it can become trivial
to detect, so this is an important baseline detector.

• The specificity-based detector (Spec) assumes that the defender has access to a small set of k
triggers sampled from the same distribution of triggers that are used by the trojaned networks in
question. This detector inserts each of the k triggers into images from the validation set and com-
putes the entropy of the average posterior. The k entropy values are then averaged, the negative of
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Acc Spec NC ABS Param MNTD Max Avg

W
ith

ou
tL

ra
nd

MNIST Patch 56.5 53.4 63.1 53.6 67.7 60.9 67.7 59.2
Blended 58.4 54.1 97.3 61.4 93.6 74.4 97.3 73.2

CIFAR-10 Patch 72.8 71.1 54.7 61.3 85.7 88.6 88.6 72.4
Blended 57.4 66.7 100.0 90.8 100.0 91.3 100.0 84.4

CIFAR-100 Patch 74.1 98.8 55.7 54.1 100.0 74.9 100.0 76.3
Blended 50.0 72.2 100.0 74.1 100.0 94.5 100.0 81.8

GTSRB Patch 51.4 62.6 54.5 53.0 78.2 49.5 78.2 58.2
Blended 52.2 55.4 100.0 84.5 93.5 74.8 100.0 76.7

Average 59.1 66.8 78.2 66.6 89.8 76.1 91.5 72.8

W
ith

L
ra

nd

MNIST Patch 55.6 54.3 66.5 51.1 70.6 53.0 70.6 58.5
Blended 60.2 67.8 99.2 54.9 84.8 67.2 99.2 72.4

CIFAR-10 Patch 61.3 67.4 58.1 60.0 52.2 62.3 67.4 60.2
Blended 53.5 67.2 100.0 84.0 79.7 93.3 100.0 79.6

CIFAR-100 Patch 54.9 50.4 61.1 50.7 61.6 55.0 61.6 55.6
Blended 54.4 65.1 100.0 64.6 91.7 76.1 100.0 75.3

GTSRB Patch 50.8 73.7 56.6 54.8 77.1 48.7 77.1 60.3
Blended 55.0 72.3 100.0 81.3 85.5 62.0 100.0 76.0

Average 55.7 64.8 80.2 62.7 75.4 64.7 84.5 67.2

Table 6: Randomization loss ablation. Without the randomization loss, the Param detector is espe-
cially strong, leading to a high maximum AUROC across all detectors. Adding the randomization
loss greatly reduces AUROC for MNTD and Param detectors. For the other detectors, average AU-
ROC remains nearly unchanged. All values are percent AUROC, and lower is better for the attacker.

which is used as the detection score. For trojans with low specificity, the entropy of the average
posterior for triggered inputs will be lower than for clean networks, which enables detection.

• Neural Cleanse (NC) iterates over possible target labels for an attack and directly searches for
candidate triggers using gradient-based optimization (Wang et al., 2019). We use a simplified
version of Neural Cleanse that we found obtains stronger detection performance. Namely, in
preliminary experiments we found that early stopping did not improve results, so we optimize
for a fixed number of gradient steps. Additionally, the original Neural Cleanse method uses an
anomaly index based off of the ℓ1 norms of the optimized trigger masks for detection, which
enables selecting a principled threshold. However, we find that simply using the raw ℓ1 norms
results in significantly better detection, so we switch to this simpler score for Neural Cleanse.
This is enabled by our large-scale evaluations on datasets of clean and trojaned networks, which
allows using threshold-independent metrics and any real-valued detection score.

• ABS monitors the behavior of neurons while perturbing the input to identify candidate compro-
mised neurons. These candidate neurons are used to generate a trojan trigger similarly to Neural
Cleanse, and the maximum attack success rate across candidates is used as a detection score (Liu
et al., 2019).

• MNTD consists of a set of query inputs, which are passed through the network in question. The
outputs on these queries are then concatenated and passed to a shallow classifier, which outputs a
detection score. The queries and shallow classifier are optimized on the training set of clean and
trojaned networks (Xu et al., 2021). MNTD is an example of a broad class of techniques called
meta-networks: neural networks trained to interpret or monitor other neural networks.

• The Param detector is a logistic regressor with a single linear layer that takes summary statistics
of the raw network parameters as its input. For summary statistics, we concatenate the min,
max, mean, median, and standard deviation of each parameter vector into a single feature vector
summarizing the raw parameters of the network.

B.1 ABLATIONS.

Our evasive trojan training procedure has several distinct components. Here, we examine what
happens when certain components are removed.
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NC Param MNTD

With Lpenultimate
Patch 58.8 100 60.5
Blended 91.6 100 70.9

Without Lpenultimate
Patch 66.5 70.6 53.0
Blended 99.2 84.8 67.2

Table 7: Evaluation of using an ℓ1 distance on the penultimate features as an additional component
of the distance metric. Compared to the original distance metric, this improves evasiveness against
Neural Cleanse (lower AUROC) but reduces evasiveness against MNTD and Param (higher AU-
ROC). All values are percent AUROC, and lower is better for the attacker.

Randomization Loss. We include the randomization loss to mitigate emergent coordination
across independently trained evasive trojans. This coordination occurs when only using the
distribution-matching and specificity losses, and it enables strong detection performance with a sim-
ple detector that performs a logistic regression on summary statistics of the parameters (Param).

In Table 6, we compare evasive trojans with and without the randomization loss. When the ran-
domization loss is removed, the Param and MNTD detectors become much stronger, while average
AUROC for the other detectors remains relatively unchanged. In several cases for trojans without
the randomization loss, the Param detector obtains 100% AUROC. Consequently, including the ran-
domization loss substantially reduces the AUROC of the best detector from an average of 91.5%
to 84.5%. These results demonstrate that the randomization loss is an important component of our
method for training evasive trojans.
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Figure 5: When training evasive trojans with
different weights on the evasion loss, one can
control the distance from the paired clean
network in logit-space and parameter-space.
These distances correlate with the detection
performance of MNTD. This suggests that
further reducing our current distance metric
could lead to even greater evasiveness.

Specificity Loss. We include the specificity loss
to prevent the issue of low specificity, where un-
intended triggers can activate the trojan. If a tro-
jan has low specificity, then a defender with knowl-
edge of the distribution of triggers can easily detect
the trojan by checking whether the known triggers
cause unusual behavior. Our specificity-based de-
tector (Spec) is based on this intuition. To validate
the importance of the specificity loss, we retrain the
CIFAR-10 blended evasive trojans without the speci-
ficity loss. The specificity detector obtains 100%
AUROC on these networks compared to 67.2% AU-
ROC when the specificity loss is used. This indicates
that the specificity loss has the desired effect and is
an important component of our method for training
evasive trojans.

Logit Matching Loss. The logit matching loss
is one of the two components of our distribution
matching loss. To isolate the impact of this loss,
we train retrain the CIFAR-10 patch evasive trojans
without the logit matching loss. The MNTD detector
obtains 70.8% AUROC on these networks compared
to 62.3% with the logit matching loss and 99.4% for
standard trojans. This shows that the logit matching
loss is an important component of our evasive tro-
jans, but it only accounts for part of the increased
evasiveness.

Different Distance Metrics. Since the distance metric is an important component of our
distribution-matching loss, an interesting question is what happens when the metric is changed.
Here, we explore adding an ℓ1 distance on the penultimate features to the distance metric. Con-
cretely, we add Lpenultimate = λpEX [∥fp(X)− gp(X)∥1], where gp and fp are functions that output
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the penultimate features of the respective networks and λp is a scalar loss weight. We set λp to equal
0.1 and retrain the MNIST evasive trojans using the modified distance metric. As before, we train
500 models, split evenly into patch and blended triggers and divided into training and test sets. We
evaluate these trojaned models against baseline detectors and show the results in Table 7. We find
that that evasiveness against Neural Cleanse increases, but evasiveness against MNTD and Param
decreases. This demonstrates that the distance metric has a large effect on evasiveness, and designing
good distance metrics that improve evasiveness across many diverse detectors is nontrivial.

Impact of Evasion Loss on Detector Performance. Two natural questions are (1) whether our
evasion loss actually reduces the distance in parameter and logit space as intended and (2) whether
this correlates with improved evasiveness. To more precisely evaluate the impact of our evasion
loss, we retrain our evasive trojans with patch triggers on MNIST using different weights on the
evasion loss. For each training run, we multiply all components of the evasion loss by a fixed
scalar ranging from 1 (original evasion loss) to 0 (no evasion loss, but still initializing from a clean
network). In particular, the loss weights are 1, 0.01, 0.001, and 0. The corresponding distance values
in parameter space are 0.7, 2.0, 6.5, and 8.8. In logit space, the distance values are 2.2, 2.5, 5.9,
and 33.9, respectively. This shows that our evasion loss is optimized successfully. To see whether
this translates into changes in detectability, we compute the percent AUROC for MNTD at each
of these loss weights. In Figure 5, we show the results of this experiment by plotting distance in
parameter-space on the x-axis and MNTD AUROC on the y-axis. There is a clear correlation: larger
parameter distances result in higher detection performance. This suggests that evasiveness could
be further improved by developing approaches that allow one to reduce our current distance metric
even further.

B.2 ADDITIONAL ATTACK COMPARISONS

Here, we compare to other trojan attacks that are designed with evasiveness in mind. In each section,
we clarify how these prior attacks differ from our own.

Blind Backdoors Neural Cleanse Evasion Method. Bagdasaryan & Shmatikov (2021) train tro-
jans specifically to evade Neural Cleanse. Namely, a Neural Cleanse search process is carried out
simultaneously with model training in a two-phase update approach. We implement this method and
train a dataset of 500 MNIST models to evaluate its evasiveness. As with the standard and evasive
trojans, we evenly split these models into patch and blended triggers and divide them into training
and test sets.

With MNTD, the AUROC for patch and blended trojans is 72.8% and 98.7%, respectively. With
Neural Cleanse, the AUROC for patch and blended trojans is 77.3% and 98.9%, respectively. With
the Param detector, the AUROC for patch and blended trojans is 100.0% in both cases. Compared
to the performance of Neural Cleanse on standard trojans, this is slightly better in both cases. This
shows that their evasion method does work. However, MNTD and Param still have high perfor-
mances on their trojans (in the case of Param, this reaches perfect detection performance). This
shows that training trojans to be evasive for a specific detector may not generalize to all detectors.
By contrast, our evasive trojans do generalize to reducing the detection performance of a broad range
of detectors without specifically training against them.

WaNet Warping Attack. As we note in the related work, there have been numerous prior works
exploring how to make trojan triggers more stealthy, which we distinguish from making trojans
themselves more evasive. These methods are specifically designed to evade dataset-level and input-
level detectors like Activation Clustering, Spectral Signatures, STRIP, and SentiNet. They do so by
making inputs with triggers appear more similar to inputs without triggers (either in the input-space
or intermediate features). However, these methods are not designed to evade model-level detectors
like MNTD or ABS and are almost never evaluated on these detectors. An interesting question
is whether the strong evasiveness of this class of trojans on dataset-level and input-level detectors
transfers to evasiveness on model-level detectors. To investigate this, we train 500 trojaned CIFAR-
10 models using the WaNet attack (Nguyen & Tran, 2021). This attack uses subtle spatial warping
of the input as a trigger, which improves evasiveness against input-level detectors like STRIP.
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We evaluate our baseline detectors against the trained WaNet models. The Neural Cleanse, MNTD,
and Param detectors obtain AUROC scores of 99.5%, 100.0%, and 99.98%, respectively. Thus, they
are very easy to detect. The result on Neural Cleanse runs counter to Neural Cleanse experiments
in the WaNet paper. We are not certain what the cause for this discrepancy is, although there are
several possible sources: (1) We use a custom PyTorch implementation of Neural Cleanse that uses
a different detection score due to our evaluations being threshold-independent, (2) Many papers that
propose attacks with whole-image triggers observe low detection performance with Neural Cleanse
[cite, cite, cite]. However, our implementation of Neural Cleanse obtains very high AUROC on
blended triggers. This is itself unexpected, but it could explain why our Neural Cleanse implemen-
tation also works for whole-image warping triggers. We tried out different hyperparameters for the
warping field to see if this would affect evasiveness, but this did not help. These results indicate that
methods designed for evasiveness against input-level detectors do not generalize to being evasive
for model-level detectors. Thus, separate approaches are needed for evasiveness against model-level
detectors.

Acc Spec NC ABS Param MNTD

Standard Patch 53.6 63.1 65.5 52.3 46.3 59.2
Blended 54.5 99.8 90.3 69.8 66.3 82.3

TaCT Patch 50.8 58.3 50.9 51.6 52.7 54.4
Blended 50.6 78.8 68.4 61.7 64.6 94.5

Evasive Patch 52.8 55.4 57.2 51.7 58.2 50.9
Blended 55.6 71.2 72.8 53.8 65.3 74.4

Evasive+TaCT Patch 51.7 51.9 50.1 51.5 57.7 47.1
Blended 55.7 69.3 66.0 51.0 64.5 69.6

Table 8: Results on source-specific trojans. TaCT obtains highly general evasion, although our eva-
sive trojans are slightly better on average. Combining the two methods yields even greater evasion,
demonstrating that TaCT is complimentary with our approach. All values are percent AUROC, and
lower is better for the attacker.

Targeted Contamination Attack (TaCT). In our main experiments, we focus on one-to-all at-
tacks. However, one-to-one attacks, also known as source-specific attacks, are an important setting
as well. In these attacks, the hidden behavior is only trained to activate on one specific source class.
The target class is selected from among the other classes. Tang et al. (2021) find that in this source-
specific setting, one can greatly improve evasiveness against Neural Cleanse and MNTD detectors
with a simple modification to the standard data-poisoning attack. Instead of just inserting poisoned
examples in the source class, they also insert “cover examples”, which contain the trigger but are
labeled with their original clean label. These cover examples are inserted for all classes besides the
source class, which can be considered a form of specificity loss for the source-specific setting. They
name this method the Targeted Contamination Attack (TaCT).

TaCT is a method for training evasive trojans in the source-specific setting, and there is some evi-
dence in the original paper that it generalizes across various model-level detectors. To compare our
evasive trojans to TaCT, we adapt our standard and evasive trojans for the source-specific setting.
This involves only inserting triggers for examples from the source class. For TaCT, we insert cover
examples as well. Since TaCT can be combined with our evasive trojans, we include an experiment
for this as well. We train 500 trojaned MNIST models for each setting and show results in Table 8.

Interestingly, we find that standard trojans are far harder to detect in the source-specific setting than
in the all-to-one setting. Additionally, TaCT greatly improves evasiveness compared to the standard
trojans. In fact, it is comparable to our evasive trojans. However, when we combine TaCT with our
evasion loss, we obtain the best results. Averaging across all settings, the percent AUROC values
for standard trojans, TaCT, evasive trojans, and evasive trojans with TaCT are 66.9, 61.4, 59.9, and
57.2. This shows that TaCT and our evasion loss are complimentary, and in settings where TaCT is
applicable we strongly recommend evaluating detectors against it.
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Standard
Trojans

Evasive
Trojans

MNIST Patch 94.6 80.0
Blended 53.9 62.6

CIFAR-10 Patch 98.8 76.9
Blended 99.9 100.0

GTSRB Patch 57.3 52.5
Blended 71.3 75.4

Average 79.3 74.6

Table 9: The state-of-the-art PixelBackdoor trojan detector evaluated against standard trojans and
our proposed evasive trojans. All values are percent AUROC, and lower is better for the attacker.

B.3 ADDITIONAL DETECTOR EVALUATIONS

Our six baseline detectors are selected to be representative of various different approaches to model-
level detection. Here, we evaluate several additional strong detectors from recent years.

PixelBackdoor Detector. Tao et al. (2022) propose an improved optimization process for trigger
inversion. Their method builds on the trigger synthesis paradigm introduced by Neural Cleanse, and
they obtain stronger detection results when compared to Neural Cleanse. We evaluate their detector
on MNIST, CIFAR-10, and GTSRB (due to the long runtime, we did not evaluate on CIFAR-100
for the rebuttal deadline). Results are shown in Table 9. For all the patch attack settings, our evasive
trojans are considerably harder to detect. In the blended attack settings our evasive trojans are easier
to detect. However, the average AUROC is lower for our evasive trojans. Moreover, when we
consider the other detectors in Table 2, the maximum AUROC on blended attacks is still obtained
by Neural Cleanse, so the blended results here would not impact the central metric of Max AUROC.

K-Arm Detector. Shen et al. (2021) propose the K-Arm detector. This detector iteratively selects
the most promising labels for a trigger optimizer and can be thought of as an improved version of
Neural Cleanse. On CIFAR-10, standard trojans with patch and blended triggers obtain 52.9% and
89.0% AUROC, respectively. Our evasive trojans obtain 51.1% and 69.5% AUROC, respectively.
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