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Abstract

Molecule-text modeling, which aims to facili-001
tate molecule-relevant tasks with a textual in-002
terface and textual knowledge, is an emerging003
research direction. Beyond single molecules,004
studying reaction-text modeling holds promise005
for helping the synthesis of new materials and006
drugs. However, previous works mostly ne-007
glect reaction-text modeling: they primarily008
focus on modeling individual molecule-text009
pairs or learning chemical reactions without010
texts in context. Additionally, one key task of011
reaction-text modeling – experimental proce-012
dure prediction – is less explored due to the013
absence of an open-source dataset. The task is014
to predict step-by-step actions of conducting015
chemical experiments and is crucial to automat-016
ing chemical synthesis. To resolve the chal-017
lenges above, we propose a new pretraining018
method, ReactXT, for reaction-text modeling,019
and a new dataset, OpenExp, for experimental020
procedure prediction. Specifically, ReactXT021
features three types of input contexts to incre-022
mentally pretrain LMs. Each of the three in-023
put contexts corresponds to a pretraining task024
to improve the text-based understanding of ei-025
ther reactions or single molecules. ReactXT026
demonstrates consistent improvements in ex-027
perimental procedure prediction and molecule028
captioning and offers competitive results in ret-029
rosynthesis. Our code is available at https:030
//anonymous.4open.science/r/ReactXT.031

1 Introduction032

Multi-modal large language models (LMs) have033

recently attracted extensive research attention. Re-034

markably, in the vision-language domain, LMs035

enhanced with visual encoders show impressive036

results in visual question-answering and image cap-037

tioning (Liu et al., 2023a; Li et al., 2023). Inspired038

by their successes, molecule-text modeling (MTM)039

becomes an emerging research field (Zeng et al., 040

2022; Su et al., 2022; Liu et al., 2023b), aiming 041

to build the natural language interface for molec- 042

ular tasks, including text-guided molecule gener- 043

ation, molecule captioning, and molecule-text re- 044

trieval (Edwards et al., 2022; Liu et al., 2022). 045

Building upon these MTM works, we study 046

reaction-text modeling (RTM), aiming to im- 047

prove LMs’ performance on reaction-relevant tasks. 048

Chemical reactions, involving the transformation of 049

reactants into products, are fundamental to advanc- 050

ing drug discovery and material science (Schwaller 051

et al., 2022). Revisiting prior works, we identify 052

key research gaps in both the learning paradigm 053

and the evaluation benchmark for RTM: 054

• Learning Paradigm. Most prior works either 055

focus on generating the textual description of a 056

single molecule (cf. Figure 1a) (Liu et al., 2023b; 057

Edwards et al., 2022; Su et al., 2022), or apply 058

LMs for chemical reaction prediction without in- 059

cluding the textual descriptions of molecules/re- 060

actions in the context (cf. Figure 1b) (Christofi- 061

dellis et al., 2023; Fang et al., 2023; Born and 062

Manica, 2023). Such methods overlook the po- 063

tential knowledge in textual descriptions to im- 064

prove performance. Pioneer works (Guo et al., 065

2023; Shi et al., 2023) include labels of molecular 066

roles and experimental conditions when prompt- 067

ing ChatGPT, but achieve suboptimal perfor- 068

mances for being limited to prompt engineering. 069

• Evaluation Benchmark. An open-source 070

dataset for experimental procedure prediction is 071

notably missing. As illustrated in Figure 2, exper- 072

imental procedure prediction aims to deduce the 073

step-by-step actions for experimental execution 074

through interpreting chemical reactions (Vaucher 075

et al., 2021), which has a significant value for au- 076

tomating chemical synthesis processes (Vaucher 077

et al., 2020; Zeng et al., 2023). This task aligns 078
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Figure 1: Comparison of molecule-text generative modeling methods. Orange arrows denote the chemical
relations for generation. 2D graph embeddings (Liu et al., 2023b) are omitted here for simplicity, but are added in
the final framework for improved performance. $DESCj denotes the description of the j-th molecule. The chemical
reaction in Figures (b) and (d) is: COC(OC)N(C)C + CCC(=O)CC(=O)OC → CCC(=O)/C(=C/N(C)C)C(=O)OC.

1. MAKESOLUTION with $1$ (140 
mg, 0.37 mmol) and $2$ (112 
mg, 0.74 mmol) and $3$ (4 mL); 

2. STIR for 16 hours at 70°C; 
3. CONCENTRATE; 
4. DRYSOLID under vacuum; 
5. YIELD $-1$ (82 mg, 51%).

Structured actions of 
experimental procedure

A solution of (5-Chloro-3-methyl-pyridin-2-ylmethyl)-isoquinolin-1-
ylmethyl-piperidine-4-yl-amine (140 mg, 0.37 mmol) and N-
(phenoxycarbonyl) hydroxylamine (112 mg, 0.74 mmol) in 
anhydrous THF (4 mL) was stirred for 16 hours at 70° C. The 
solution was then cooled and concentrated under reduced 
pressure and dried in vacuo. The crude material was purified by 
column chromatography with silica gel (50:1:0.1 CH2Cl2/MeOH/
NH4OH) to give COMPOUND 308 as a white solid (82 mg, 51%). 

Description 
to Action

+ →

Cc1cc(Cl)cnc1CN(Cc1nccc2ccccc12)C1CCNCC1 + O=C(NO)Oc1ccccc1 
→ Cc1cc(Cl)cnc1CN(Cc1nccc2ccccc12)C1CCN(C(=O)NO)CC1

Source: Chemical papers and patents

Chemical reaction Unstructured description of experimental procedure

Multi-modal Language Model
Input Output
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Reactant Reactant ProductSolvent

1D input: SMILES, exp. conditions, etc.
2D input: molecular graphs 1D output: experimental actions

TEMP
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$3$

$-1$

Figure 2: Illustration of the experimental procedure prediction task and its dataset curation process. We employ the
actions defined by (Vaucher et al., 2021) and the description to action model from (Christofidellis et al., 2023).

well with our focus on RTM, requiring an un-079

derstanding of chemical reactions and a textual080

interface to articulate experimental steps. Unfor-081

tunately, the absence of public datasets hinders082

further research and development in this area.083

Addressing the identified research gaps, we084

propose Reaction-Contextualized Molecule-Text085

Pretraining (ReactXT), aiming to improve the086

text-based understanding of chemical reactions087

and molecules. Further, we construct an open-088

source dataset for experimental procedure predic-089

tion (OpenExp), serving as a key benchmark to090

evaluate RTM methods. Below, we elaborate on091

their details.092

ReactXT aims to improve the learning paradigm093

of RTM by introducing three types of input con-094

texts, each of which corresponds to a pretraining095

task to improve LMs’ understanding of chemical096

reactions or individual molecules. As Figure 1d097

depicts, the forward reaction context is crafted to098

learn the chemical connections among molecules099

involved in the same reaction. These connections100

are grounded on chemical reaction principles, such101

as the conservation laws (Atkins and Jones, 2007). 102

Building on this molecular interplay, we hypoth- 103

esize that understanding other molecules in the 104

same reaction and their descriptions can help pre- 105

dict the current molecule and its textual description. 106

ReactXT encourages LMs to harness these inter- 107

molecule relationships to improve their ability to 108

generate molecular descriptions in reactions and, 109

in turn, deepen their understanding of chemical 110

reaction principles. Further, a backward reaction 111

context is introduced to support retrosynthesis tasks 112

(cf. Section 3.1). Finally, as Figure 1c illustrates, 113

ReactXT includes the random molecule context, 114

cultivating the LMs’ understanding of individual 115

molecules outside their reactions. 116

OpenExp features 274, 439 pairs of chemical 117

reactions and their corresponding step-by-step in- 118

structions of experimental procedures. This dataset, 119

compiled from the USPTO-Applications (Lowe, 120

2017) and ORD (Kearnes et al., 2021) databases, 121

will be released under the CC-BY-SA license. To 122

ensure data quality, we have conducted careful data 123

preprocessing. Further, we invite human experts to 124

evaluate the dataset quality. Out of 100 randomly 125
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chosen samples, 50 samples could be directly used126

without any human intervention, and 90 samples127

required only minor modifications for experimental128

execution (cf. Figure 5).129

Our contributions can be summarized as follows:130

• We propose ReactXT, a method that incorporates131

three types of input contexts to incrementally132

pretrain an LM. These contexts are tailored to en-133

hance LMs’ understanding of chemical reactions134

and individual molecules.135

• We curate an open-source experimental proce-136

dure prediction dataset OpenExp, a new bench-137

mark for automating chemical synthesis research.138

• ReactXT achieves state-of-the-art performances139

for experimental procedure prediction on the140

OpenExp dataset, highlighting its superior RTM141

ability. It also outperforms baselines by 3.2%142

for molecule captioning on the PubChem324k143

dataset. ReactXT has competitive performances144

for retrosynthesis, and we are refining it to sur-145

pass the current state-of-the-art method.146

2 Related Works147

Molecule-Text Modeling (MTM). MTM aims148

to jointly model molecules and texts to address149

text-related molecular tasks (Edwards et al., 2022,150

2021). Molecules can be represented by 1D se-151

quences of SMILES (Weininger, 1988) and SELF-152

IES (Krenn et al., 2020), making it feasible to pre-153

train unified LMs on mixed 1D sequences of texts154

and molecules (Taylor et al., 2022; Edwards et al.,155

2022; Chithrananda et al., 2020; Zeng et al., 2022).156

Further, these LMs can be aligned to human pref-157

erence via instruction tuning (Christofidellis et al.,158

2023; Fang et al., 2023). In parallel to 1D LMs,159

multi-modal methods are also studied, using graph160

neural networks (GNNs) (Hu et al., 2020) to encode161

2D molecular graphs. Notably, CLIP-style (Rad-162

ford et al., 2021) cross-modal contrastive learning163

and BLIP2-style (Li et al., 2023) cross-modal pro-164

jector are both investigated to facilitate molecule-165

text retrieval (Su et al., 2022; Liu et al., 2022), and166

molecule-to-text generation (Liu et al., 2023b), re-167

spectively. However, prior works mainly focus on168

individual molecules rather than chemical reactions.169

To bridge the gap, ReactXT explores reaction-text170

modeling, facilitating reaction-relevant tasks with171

a text interface and textual knowledge.172

Experimental Procedure Prediction. Synthe-173

sizing complex compounds requires detailed plan-174

ning of synthetic pathways and intermediate steps, 175

a process that is both labor-intensive and complex. 176

Machine learning (ML) can potentially automate 177

the process by predicting experimental procedures. 178

Prior works have explored predicting reaction con- 179

ditions (e.g., catalyst and solvent) (Gao et al., 2018) 180

and sequences of synthesis steps (Vaucher et al., 181

2021) by reading chemical reactions. Given known 182

experimental procedures, ML is also explored to 183

empower chemical lab robots (Burger et al., 2020), 184

and automated lab pipelines (Coley et al., 2019; 185

Nicolaou et al., 2020). Notably, tool-augmented 186

GPT4 (OpenAI, 2023) is explored to plan and ex- 187

ecute known chemical experiments (Boiko et al., 188

2023). Unlike prior works, our OpenExp dataset is 189

the first open-source dataset to facilitate the proce- 190

dure prediction of unseen chemical experiments. 191

Retrosynthesis and Chemical Reaction Pre- 192

diction. Given a chemical reaction, retrosynthe- 193

sis is to predict reactants from products and reac- 194

tion prediction is to predict products from reac- 195

tants (Schwaller et al., 2022). They can be for- 196

malized as sequence-to-sequence translation rep- 197

resented by SMILES strings (Liu et al., 2017; Ir- 198

win et al., 2022; Zhong et al., 2022; Tetko et al., 199

2020; Ucak et al., 2022). Concurrently, 2D molec- 200

ular graphs are explored for reaction prediction: 201

selection-based methods focus on classifying the 202

most suitable reaction templates (Chen and Jung, 203

2021; Dai et al., 2019); and graph-based generative 204

models directly synthesize target molecules (Shi 205

et al., 2020; Sacha et al., 2021; Yan et al., 2020). 206

However, the methods above leverage only reac- 207

tions without texts. While notably two pioneer 208

works apply ChatGPT for reaction prediction (Shi 209

et al., 2023; Bran et al., 2023), their performances 210

are limited to exploring only prompt engineering. 211

3 ReactXT: Reaction-Contextualized 212

Molecule-Text Pretraining 213

ReactXT consists of two key components: 1) the 214

method of creating input contexts to incrementally 215

pretrain an LM, and 2) a balanced sampling strategy 216

for the reaction contexts. We begin by introducing 217

our multi-modal LM backbone, then proceed to 218

elaborate on ReactXT’s two components. 219

Multi-Modal Language Model Backbone. 220

Molecules can be represented by their 1D SMILES 221

or 2D molecular graphs (Wells, 2012). We em- 222

ploy MolCA (Liu et al., 2023b) as our primary LM 223

backbone to effectively harness both the 1D and 224
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Figure 3: Illustration of Reaction-Contextualized Molecule-Text Pretraining. Example uses forward reaction context.

Context Type Prompt Template

Forward reaction Reactants: $SMI1 <Mol1> $DESC1;︸ ︷︷ ︸
×n: Number of reactants

Solvent: $SMIn+1 <Moln+1> $DESCn+1; Product: $SMIn+2 <Moln+2> $DESCn+2<STOP>

Backward reaction Product: $SMI1 <Mol1> $DESC1; Solvent: $SMI2 <Mol2> $DESC2; Reactants: $SMI3 <Mol3> $DESC3︸ ︷︷ ︸
×n: Number of reactants

<STOP>

Random molecule $SMI1 <Mol1> $DESC1; $SMI2 <Mol2> $DESC2; $SMI3 <Mol3> $DESC3; $SMI4 <Mol4> $DESC4<STOP>

Table 1: Prompt templates for creating input contexts. <Moli> is the placeholder for the 2D graph embedding of the
i-th molecule; $SMIi and $DESCi is the SMILES and textual description for the i-th molecule, respectively.

[Abstract] The invention relates to indole acetic acid compounds which function as antagonists of the CRTH2 receptor. The invention also relates to the use of
these compounds to inhibit the binding of prostaglandin D2 and its metabolites or certain thromboxane metabolites to the CRTH2 receptor and to treat disorders
responsive to such inhibition. [Properties] Molecular Weight: 547.60; XLogP3: 6.10; Hydrogen Bond Donor Count: 0; Hydrogen Bond Acceptor Count: 7;
Rotatable Bond Count: 8; Exact Mass: 547.19; Monoisotopic Mass: 547.19; Topological Polar Surface Area: 89.40; Heavy Atom Count: 39; Formal Charge: 0;
Complexity: 1020; Isotope Atom Count: 0; Defined Atom Stereocenter Count: 0; Undefined Atom Stereocenter Count: 0; Defined Bond Stereocenter Count: 0;
Undefined Bond Stereocenter Count: 0; Covalently-Bonded Unit Count: 1; Compound Is Canonicalized: Yes.

Table 2: Molecule description example, including the patent abstract and the computed/experimental properties.
The described molecule is Cc1c(C2=NN(CCc3ccccc3)S(=O)(=O)c3ccccc32)c2cc(F)ccc2n1CC(=O)OC(C)(C)C.

2D molecular modalities. Specifically, MolCA in-225

corporates a GNN encoder (You et al., 2020) for226

encoding 2D molecular graphs. This GNN’s output227

then is mapped to an LM’s (i.e., Galactica; Taylor228

et al. (2022)) input space via a cross-modal projec-229

tor, thereby enabling the LM to perceive 2D molec-230

ular graphs. Both the cross-modal projector and the231

GNN have been pretrained for molecule-text align-232

ment (Li et al., 2023). MolCA shows promising233

performances when finetuned for molecule caption-234

ing and IUPAC name prediction.235

3.1 Creating Input Contexts236

Addressing the core challenges of LMs hinges on237

the careful selection of the input data. As shown in238

Table 1, ReactXT incorporates three types of input239

contexts to incrementally pretrain LMs: forward240

reaction context, backward reaction context, and241

random molecule context. These contexts are tai-242

lored for a text-based understanding of chemical243

reactions and individual molecules:244

• Forward Reaction Context. As Figure 3 il-245

lustrates, the forward reaction context labels246

molecules according to their roles – Reactant,247

Catalyst, Solvent, and Product – in the reac- 248

tion, and arranges them in this specific sequential 249

order. Note, not every reaction has a Catalyst 250

or Solvent. For each molecule, we append its 251

2D molecular graph embeddings (e.g., <Mol1>; 252

Liu et al. (2023b)) after its SMILES to enhance 253

the LM’s understanding of molecular structures; 254

and append molecular descriptions (e.g., $DESC1) 255

following the 2D molecular graph embeddings 256

to align molecules with texts. 257

• Backward Reaction Context. Similar to the 258

forward context but with the order of molecular 259

roles reversed, this context aims to combat the 260

Reversal Curse (Berglund et al., 2023) of LMs: 261

LMs trained on “A is B” fail to generalize to “B 262

is A”. The reversal generalization is crucial be- 263

cause downstream applications include backward 264

retrosynthesis (Schwaller et al., 2022). 265

• Random Molecule Context. Introduced to en- 266

sure LMs retain the capability to describe indi- 267

vidual molecules outside chemical reactions. 268

Context Length. In each input context, we use 269

up to k molecules and their descriptions, where 270
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k is a hyperparameter. For reactions with over k271

molecules, we apply weighted molecule sampling,272

as explained in Section 3.2.273

Molecule Descriptions. One crucial component274

of the input contexts is the molecule description,275

whose quality and comprehensiveness are vital for276

molecule-text alignment. We collect molecular de-277

scriptions and properties from multiple sources,278

encompassing three types of content:279

• Molecule Patent Abstracts. We source patent280

abstracts from PubChem’s Patent View1. These281

abstracts typically describe molecular structures,282

properties, or applications, but may also in-283

clude irrelevant information if the molecule is284

merely mentioned in passing rather than be-285

ing the central subject. Despite the noise,286

patent abstracts are indispensable for RTM: they287

cover ∼95% molecules in our employed reaction288

databases (Lowe, 2017; Kearnes et al., 2021). In289

contrast, the molecule-text datasets (Liu et al.,290

2022, 2023b) derived from PubChem’s descrip-291

tion section only cover ∼1% of these molecules.292

• Computed and Experimental Properties. We293

retrieve these numerical properties from Pub-294

Chem, aiming to enhance the understanding of295

molecular structures through predictive learning.296

Certain properties are also helpful for reaction297

prediction. For example, knowing the solubility298

helps determine concentrations when preparing299

solutions; the knowledge of melting and boiling300

points helps identify the states of matter at given301

temperatures. Table 2 shows an example of a302

patent abstract and computed/experimental prop-303

erties. Table 12 includes detailed statistics of our304

collected molecule properties.305

• PubChem Descriptions. Following (Liu et al.,306

2022, 2023b), we employ molecular descrip-307

tions from PubChem. Due to their limited308

coverage (∼1%) for molecules in reaction309

databases (Lowe, 2017; Kearnes et al., 2021),310

we incorporate them exclusively for the random311

molecule context.312

Autoregressive Language Modeling for Inter-313

leaved Molecule-Text Sequences. Given the input314

contexts above of interleaved molecules and texts,315

we apply language modeling loss to incrementally316

pretrain the LM, molecule encoder, and projector.317

We compute loss only for text tokens, excluding318

2D molecular graph embeddings.319

1https://pubchem.ncbi.nlm.nih.gov/docs/patents

Figure 4: Distribution of molecules in the pretraining
chemical reactions. For after adjustment, we conduct
weighted sampling of chemical reactions matching the
size of the pretraining dataset.

3.2 Balanced Sampling of Reaction Contexts 320

Figure 4 reveals a skewed distribution of molecules 321

in chemical reactions (the red bars), with a small 322

group of molecules appearing far more frequently 323

than others. To address this imbalance, we de- 324

velop a sampling strategy that promotes a fairer 325

representation of molecules across reactions. This 326

method reduces the dominance of commonly oc- 327

curring molecules by adjusting 1) the sampling 328

weight of each reaction r: W (r), and 2) the sam- 329

pling weight of each molecule m within a chosen 330

reaction r: W (m|r), based on the equations below: 331

W (r) =

∑
m∈r Count(m)∑

r′∈R
∑

m∈r Count(m)
, (1) 332

W (m|r) = 1/Count(m)∑
m′∈r 1/Count(m′)

, (2) 333

where R denotes the dataset of chemical reactions; 334

Count(m) denotes molecule m’s count in R. 335

Equation (1) sets a reaction’s sampling weight in- 336

versely to the total occurrences of its molecules, fa- 337

voring reactions with rare molecules; Equation (2) 338

boosts the weights of rarer molecules within a 339

given reaction. These weights are then applied 340

for weighted random sampling without replace- 341

ment (Efraimidis and Spirakis, 2006). The blue 342

bars in Figure 4 present the sampling frequency of 343

molecules after adjustment, showing a flatter distri- 344

bution. Implementation details are in Appendix B. 345

4 OpenExp: An Open-Source Dataset for 346

Experimental Procedure Prediction 347

Here we briefly introduce OpenExp’s curation 348

process and defer the details to Appendix A.1. 349

OpenExp is sourced from chemical reaction 350

databases of USPTO-Applications (Lowe, 2017) 351
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Total reactions 2262637 100%

Too large perplexity score 329160 14.55%
More than one product 105577 4.67%
Incomplete mapping of molecules
(from chemical equation)

1034908 45.74%

Incomplete mapping of molecules
(from action sequence)

178689 7.90%

Remove duplicate reactions 254099 11.23%
Filter out too short actions 14022 0.62%
Other errors 71743 3.16%

Remaining reactions 274439 12.13%

Table 3: Preprocessing steps and the number of samples
removed at each step.

Dataset Total Train Valid Test Open Source

Vaucher et al. (2021) 693k 555k 69k 69k No
OpenExp, Ours 274k 220k 27k 27k Yes

Table 4: Dataset statistics and comparison to prior work.

and ORD (Kearnes et al., 2021). As illustrated in352

Figure 2, these databases include chemical reac-353

tions and the corresponding unstructured descrip-354

tions of experimental procedures. To convert these355

unstructured descriptions into structured action se-356

quences, we first run the pragraph2action model357

from (Christofidellis et al., 2023), and then conduct358

preprocessing following (Vaucher et al., 2021). The359

preprocessing is to remove low-quality data, elim-360

inate duplicates, and construct molecule mapping361

between reactions and experimental procedures.362

Specific preprocessing steps are summarized in363

Table 3. Table 10 shows an example of the final364

dataset.365

As shown in Table 4, the final OpenExp dataset366

includes 274k reaction-procedure pairs. It is ran-367

domly divided into train/valid/test sets by the 8:1:1368

ratio. Compared to the prior work (Vaucher et al.,369

2021), which is closed-source for using the com-370

mercial Pistachio database2, we open-source this371

dataset to assist future research.372

To obtain insights on dataset quality, we invite373

two graduate students in chemistry to rate the align-374

ment between the action sequences and their orig-375

inal descriptions, on a scale from 1 (lowest) to 5376

(highest), as depicted in Figure 5. Briefly, of the377

100 samples evaluated, 50 action sequences are378

deemed directly executable (scores above 4), and379

90 are considered executable with slight manual380

adjustments (scores above 3).381

2https://www.nextmovesoftware.com/pistachio
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Figure 5: Human evaluations on OpenExp.

5 Experiment 382

We empirically evaluate ReactXT across three 383

downstream tasks, including experimental procedu- 384

ral prediction, molecule captioning, and retrosyn- 385

thesis. Further, we include ablation studies show- 386

casing the contributions of individual components. 387

5.1 Experimental Setting 388

ReactXT is initialized by the stage-2 checkpoint 389

of MolCA1.3B (Liu et al., 2023b), if not specially 390

noted. It is then pretrained using our proposed 391

method, and subsequently finetuned for each down- 392

stream dataset separately. The context length k is 393

4. We employ full-parameter tuning for pretraining 394

and finetuning. More details are in Appendix B. 395

ReactXT’s Pretraining Dataset. Our pre- 396

train dataset includes PubChem324k’s pretrain 397

subset (Liu et al., 2023b), which includes 298k 398

molecule-text pairs, and 1.11 million chemical 399

reactions from the USPTO-Applications (Lowe, 400

2017) and ORD (Kearnes et al., 2021) databases. 401

For molecules in reactions, we obtain their patent 402

abstracts and molecular properties following Sec- 403

tion 3.1. To prevent information leakage, we have 404

excluded 54k reactions that appear in the valid/test 405

sets of the downstream datasets (i.e., OpenExp, 406

USPTO-50K (Schneider et al., 2016)) from the 407

initial collection of 1.16 million reactions. See 408

Appendix A.2 for more details. 409

Baselines. We compare ReactXT with the 410

state-of-the-art LMs in science domain, includ- 411

ing Galactica (Taylor et al., 2022), MolT5 (Ed- 412

wards et al., 2022), TextChemT5 (Christofidel- 413

lis et al., 2023), and MolCA (Liu et al., 2023b). 414

For retrosynthesis and forward reaction prediction 415

tasks, we also compare with task-specific LMs: R- 416

SMILES (Zhong et al., 2022), AT (Tetko et al., 417

2020), MEGAN (Sacha et al., 2021), and Chem- 418

former (Irwin et al., 2022). For captioning, we ad- 419

ditionally compare against MoMu (Su et al., 2022). 420
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Method Validity BLEU-2 BLEU-4 100%LEV 90%LEV 75%LEV 50%LEV ROUGE-1 ROUGE-2 ROUGE-L

Random, among all reactions 63.2 34.5 19.1 0.0 0.0 0.0 13.6 46.6 18.1 36.4
Random, compatible pattern 100.0 37.8 22.1 0.0 0.0 0.1 16.5 47.8 21.0 38.4
Nearest neighbor 76.0 45.0 30.7 0.6 6.5 13.0 38.4 55.7 29.2 47.0

TextChemT5220M 99.3 54.1 40.6 0.4 4.6 13.7 61.2 61.5 40.3 56.4
MolT5-Large780M 99.6 54.5 41.0 0.6 6.6 16.6 63.7 62.5 40.9 57.2
Galactica1.3B 99.9 53.5 39.5 0.4 5.7 13.4 60.5 60.9 38.6 55.2
MolCA, Galac1.3B 99.9 54.9 41.5 1.0 9.2 18.9 65.3 62.5 40.4 57.0

ReactXT, Galac1.3B, Ours 100.0 57.4 44.0 1.0 9.5 22.6 70.2 64.4 42.7 58.9

Table 5: Comparison of experimental procedure prediction performances (%) on the OpenExp dataset. The subscript
denotes each model’s parameter size. We conduct full-parameter fine-tuning for all models.

Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

MolT5-Small80M 14.8 8.5 26.5 13.5 23.6 18.5
MolT5-Base250M 30.1 20.9 40.3 25.1 33.8 35.6
MolT5-Large780M 30.2 22.2 41.5 25.9 34.8 36.6
Galactica1.3B, LoRA ft 34.6 26.9 46.3 32.3 41.5 41.1

MoMu-Small82M 19.1 12.0 29.7 16.3 26.7 21.8
MoMu-Base252M 30.2 21.5 40.5 25.1 34.4 34.2
MoMu-Large782M 31.1 22.8 41.8 25.7 36.7 36.2
MolCA, MolT5-Large877M 32.9 26.3 49.8 35.7 44.2 42.4
MolCA, Galac125M 31.9 24.3 47.3 33.9 43.2 41.6
MolCA, Galac1.3B, LoRA ft 38.7 30.3 50.2 35.9 44.5 45.6
MolCA, Galac1.3B, full ft* 39.4 32.2 52.7 39.4 47.6 49.2

ReactXT, Galac1.3B, Ours 42.6 35.2 54.7 41.7 49.6 51.2

(a) PubChem324k dataset.

Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

MolT5-Small80M 51.9 43.6 62.0 46.9 56.3 55.1
MolT5-Base250M 54.0 45.7 63.4 48.5 57.8 56.9
MolT5-Large780M 59.4 50.8 65.4 51.0 59.4 61.4
TextChemT560M 56.0 47.0 63.8 48.8 58.0 58.8
TextChemT5220M 62.5 54.2 68.2 54.3 62.2 64.8

MoMu-Small82M 53.2 44.5 - - 56.4 55.7
MoMu-Base252M 54.9 46.2 - - 57.5 57.6
MoMu-Large782M 59.9 51.5 - - 59.3 59.7
MolCA, Galac125M 61.2 52.6 67.4 52.1 60.6 63.6
MolCA, Galac1.3B, LoRA ft 62.0 53.1 68.1 53.7 61.8 65.1

ReactXT, Galac1.3B 62.9 55.0 69.2 56.0 63.4 66.4

(b) CheBI-20 dataset.
Table 6: Molecule captioning performance (%) on the PubChem324k and CheBI-20 datasets. * denotes our
re-implementation. Other baseline results are borrowed from (Liu et al., 2023b; Christofidellis et al., 2023).

Method Top-1 Top-3 Top-5 Top-10

MEGAN 48.1 70.7 78.4 86.1
AT 53.5 - 81.0 85.7
Chemformer 54.3 - 62.3 63.0

Train with aug., test without aug.
R-SMILES 51.2 74.9 81.1 83.0
MolT5-Large780M* 53.9 69.9 74.6 77.3
ReactXT, Galac1.3B, Ours 54.2 70.9 74.9 78.3

Train with aug., test with aug.
R-SMILES 56.3 79.2 86.2 91.0
MolT5-Large780M* 56.0 76.0 80.7 85.1
ReactXT, Galac1.3B, Ours 56.2 75.8 81.4 86.1

Table 7: Retrosynthesis accuracies (%) on USPTO-50K.
* denotes our re-implementation. Other baselines are
from (Zhong et al., 2022). In each part, bold denotes
the best result, and underline denotes the second best.

5.2 Experimental Procedure Prediction 421

Following (Vaucher et al., 2021), we employ 422

the following evaluation metrics: Validity, which 423

checks the syntactical correctness of the action se- 424

quence; machine-translation metrics BLUE (Pap- 425

ineni et al., 2002) and ROUGE (Lin, 2004); and 426

the normalized Levenshtein similarity (Levenshtein 427

et al., 1966). Specifically, 90%LEV denotes the 428

proportion of predictions with a normalized Lev- 429

enshtein score larger than 0.9. The three naive 430

baselines based on random sampling and nearest 431

neighbor are borrowed from (Vaucher et al., 2021). 432

See Appendix B for details. 433

Table 5 presents the performances. We can 434

observe that ReactXT consistently outperforms 435

baselines across all metrics. Specifically, it sur- 436
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Pretrain Input Context Pretrain Data Type BLEU-2 BLEU-4 75%LEV 50%LEV ROUGE-1 ROUGE-2 ROUGE-L

No incremental pretrain - 54.9 41.5 18.9 65.3 62.5 40.4 57.0
Random molecules reaction, sing. mol. 56.6 43.2 20.9 69.4 63.8 41.9 58.3
Reactions w/o bal. samp. reaction 56.8 43.3 21.3 69.2 64.0 42.1 58.5
Reactions reaction 57.1 43.8 22.2 70.1 64.3 42.6 58.9
ReactXT reaction, sing. mol. 57.4 44.0 22.6 70.2 64.4 42.7 58.9

Table 8: Ablation study of input contexts for incrementally pretrain MolCA, Galac1.3B. Results are for experimental
procedure prediction. Reactions denote both the forward reaction context and the backward reaction context.

passes baselines by 2.2% for BLEU-2 and 3.3% for437

75%LEV, demonstrating ReactXT’s effectiveness438

for text-based reaction understanding.439

5.3 Molecule Captioning440

To evaluate ReactXT’s ability to understand441

single-molecules, we present its performances of442

molecule captioning on the PubChem324k (Liu443

et al., 2023b) and CheBI-20 (Edwards et al.,444

2022) datasets. We report metrics of BLEU (Pap-445

ineni et al., 2002), ROUGE (Lin, 2004), and ME-446

TEOR (Banerjee and Lavie, 2005).447

Table 6 presents the captioning performances.448

We can observe that ReactXT consistently outper-449

forms the baselines. Specifically, ReactXT shows450

improvements of 3.2% BLEU-2 and 2.3% ROUGE-451

2 scores on PubChem324k, and 1.7% ROUGE-2452

on CheBI-20. These improvements underscore the453

effectiveness of our pretraining method for enhanc-454

ing understanding of individual molecules.455

5.4 Retrosynthesis456

Retrosynthesis is to predict the reactant molecules457

given the product molecules. For this task, we458

employ the evaluation metrics of top-k accuracy,459

which measures the percentage of exact match to460

the ground truth in the top-k predictions. Follow-461

ing (Zhong et al., 2022), we use the root-aligned462

augmentations of SMILES during training and test-463

ing. Additionally, we report performances of test-464

ing without these augmentations.465

Table 7 presents the results. We can observe466

that ReactXT outperforms MolT5-Large, which467

is also a multi-modal LM, in most metrics. This468

highlights the effectiveness of our approach among469

multi-modal methods. Further, we observe that Re-470

actXT and MolT5 outperform R-SMILES in top-1471

accuracy when testing without augmentation, but472

underperform R-SMILES for top-3, top-5, and top-473

10 accuracies. We conjecture that this discrepancy474

arises from a distribution shift between pretrain-475

ing and finetuning: unlike R-SMILES, which uses476

root-aligned augmentations during pretraining, Re-477

actXT and MolT5 do not. To address this, we are478

pretraining a new ReactXT model that includes 479

root-aligned augmentations. 480

5.5 Ablation Study 481

In this study, we ablate the key components of 482

ReactXT, using the baseline of MolCA, Galac1.3B 483

without incremental pretraining. Table 8 presents 484

the results. Specifically, we compare three variants 485

of ReactXT: 1) pretraining with solely the random 486

molecule contexts using the same pretrain dataset; 487

2) pretraining with forward and backward reaction 488

contexts without the random molecule context; and 489

3) applying uniform sampling on reaction contexts 490

instead of balanced sampling. 491

We can observe that 1) ReactXT’s full model 492

shows the best performance, showing its perfor- 493

mance is the integrated contribution of all com- 494

ponents; 2) applying random molecule contexts 495

alone improves upon the baseline, underscoring 496

the valuable textual knowledge from our meticu- 497

lously crafted pretraining dataset; 3) incorporat- 498

ing reaction contexts yields better results than ran- 499

dom molecule contexts, highlighting the benefits 500

of learning reaction knowledge during pretrain- 501

ing; and 4) balanced sampling improves the perfor- 502

mance upon uniform sampling. 503

6 Conclusion and Future Works 504

In this work, we explore reaction-text modeling to 505

empower reaction-relevant tasks with textual inter- 506

faces and knowledge. We present ReactXT, a pre- 507

training method to learn chemical reactions within 508

the context of the corresponding molecular tex- 509

tual descriptions. Additionally, we propose a new 510

dataset OpenExp to support open-source research 511

for experimental procedure prediction. ReactXT 512

establishes the best performances across tasks of 513

experimental procedure prediction and molecule 514

captioning. It presents competitive performances 515

for retrosynthesis. In future work, we plan to 516

apply LMs to learn the interactions among large 517

molecules (e.g., proteins and nucleic acids), focus- 518

ing on their dynamics and 3D spatial structures. 519
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Limitations520

In this and also the previous work (Vaucher et al.,521

2021), the evaluation for experimental procedure522

prediction is constrained to the comparison be-523

tween the predictions and the reference action se-524

quences. While improving this metric does reflect525

the improvement in experimental design, it should526

be acknowledged that the evaluation of real-world527

chemical experiments is preferred for the devel-528

oped models in future. For this purpose, the meth-529

ods on automated chemistry pipelines (Boiko et al.,530

2023; Coley et al., 2019; Nicolaou et al., 2020) can531

be potentially considered.532

Another limitation or future direction is improv-533

ing the action space defined in our proposed Open-534

Exp dataset, aiming to cover a wider range of chem-535

ical experiments. For example, the action of ‘Pu-536

rify’ is absent; and the action of ‘Concentration’537

can be refined into operations such as ‘Evapora-538

tion’ and ‘Pressurize’ for clearer instructions of539

chemical experiments.540

Potential Ethics Impact541

In this study, the proposed method and dataset fo-542

cus on chemical reactions and molecules, and in-543

clude no human subjects. Consequently, we believe544

this study presents no direct ethical concerns. How-545

ever, the inclusion of LMs in our study does raise546

potential issues, as LMs can be misused to produce547

incorrect or biased information. Therefore, the548

ethical implications of our work align with those549

common to LM research, emphasizing the need for550

responsible use and application of LMs.551
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A Dataset Details799

A.1 Collection and Preprocessing of OpenExp800

OpenExp is compiled from the raw data from the801

two following sources:802

• USPTO-Applications (Lowe, 2017). This803

dataset comprises records of 1.94 million reac-804

tions and their corresponding applications from805

the United States Patent and Trademark Office806

(USPTO) published between 2001 and Septem-807

ber 2016. We download the raw XML files from808

the Figshare website 3. For each reaction in809

this dataset, we extract its key information from810

four elements: <productList>, which contains811

the products of the reaction; <reactantList>,812

detailing the reactants; <spectatorList>, en-813

compassing the catalysts and solvents; and814

<dl:paragraphText>, which provides a textual815

description of the experimental procedures.816

• Open Reaction Database (Kearnes et al., 2021).817

The ORD 4 dataset contains over 2 million chem-818

ical reactions, which include detailed records of819

reaction conditions and experimental procedures.820

It includes data from the USPTO applications821

(2001-2016 Sep), USPTO-granted patents (1976-822

2016 Sep), and experimental records from chem-823

ical literature.824

Paragraph2Action. As illustrated in Figure 2,825

these databases include chemical reactions and826

the corresponding unstructured descriptions of827

experimental procedures. The unstructured na-828

ture of these descriptions poses a significant chal-829

lenge to 1) automate chemical synthesis with830

robots (Vaucher et al., 2020; Burger et al., 2020);831

and 2) apply ML methods to predict experimen-832

tal procedures of unseen reactions. To address833

this, the task of paragraph2action (Vaucher et al.,834

2020; Zeng et al., 2023) is proposed, aiming to835

convert unstructured experimental procedure de-836

scriptions into structured, step-by-step instructions837

with pre-defined actions. In this study, we lever-838

age the action space defined by (Vaucher et al.,839

2020, 2021), and the pragraph2action model re-840

leased by (Christofidellis et al., 2023).841

Preprocessing. Following (Vaucher et al.,842

2021), we conduct preprocessing after the para-843

graph2action conversion, The preprocessing has844

3https://figshare.com/articles/dataset/
Chemical_reactions_from_US_patents_1976-Sep2016_
/5104873?file=8664370

4https://open-reaction-database.org

Action Occurrence Action Occurrence

Add 744, 533 Wait 38, 211
Stir 287, 413 Recrystal. 25, 600
Concentrate 276, 551 PhaseSepa. 24, 141
Yield 274, 439 PH 21, 756
MakeSolution 272, 537 Quench 18, 699
Filter 247, 625 Partition 16, 045
Wash 224, 286 Triturate 13, 390
DrySolution 178, 248 DrySolid 6, 435
CollectLayer 146, 379 Degas 4, 789
Extract 114, 855 Microwave 2, 237
SetTemp. 44, 126 Sonicate 450
Reflux 43, 296

Table 9: Action space and actions’ occurrences in the
OpenExp dataset.

two purposes: 1) extracting the important entities 845

(i.e., molecules) in experimental procedures and 846

mapping all molecules to their precursors in the 847

chemical reaction; 2) applying a rule-based filtra- 848

tion to improve the dataset quality. Our preprocess- 849

ing strategy is inspired by (Vaucher et al., 2020), 850

augmented with additional 2 steps: perplexity filter- 851

ing and similar action aggregation. The complete 852

preprocessing steps are listed below: 853

• Perplexity Filtering. To ensure the quality of the 854

above translation step, we compute a perplexity 855

score for each output and exclude samples with 856

a score larger than 1.0. These perplexity scores 857

are calculated using the TextChemT5 model. 858

• Entity Recognition. We extract all the molecules 859

(either by name or SMILES) from the action se- 860

quences using the source codes of (Vaucher et al., 861

2020). Then, we conduct string matching of IU- 862

PAC names between the extracted molecules and 863

those in the chemical reactions. STOUT (Rajan 864

et al., 2021) and PubChemPy5 are used for the 865

translation between IUPAC names and SMILES. 866

If any molecule cannot be matched with its coun- 867

terpart in the chemical reactions, we consider 868

the reaction data invalid and remove it from the 869

dataset. However, we permit the inclusion of 870

certain common substances, such as common or- 871

ganic solvents, in every reaction. The names and 872

SMILES expressions of the 134 common sub- 873

stances are included in our code. After entity 874

recognition, we assign each entity a unique ID 875

and update the experimental procedures by re- 876

placing the entity mentions with the correspond- 877

ing entity IDs. 878

5https://github.com/mcs07/PubChemPy
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Field Value

Reactant $1$: OC(CCc1ccccn1)C(F)(F)F
$3$: CC(C)(C)[Si](C)(C)Cl
$4$: c1c[nH]cn1

Solvent $2$: ClCCl

Catalyst $5$: CN(C)c1ccncc1

Product $-1$: CC(C)(C)[Si](C)(C)OC(CCc1ccccn1)C(F)(F)F

Experimental MAKESOLUTION with $1$ and $2$ (10 mL) ;
Procedures ADD $3$ (616 mg, 4.1 mmol, 1.2 eq) at 0°C ;

ADD $4$ (697 mg, 10.2 mmol, 3.0 eq) at 0°C ;
ADD $5$ (415 ng, 3.4 mmol) at 0°C ;
STIR for 36 hours ;
CONCENTRATE ;
YIELD $-1$ (970 mg, 89%).

Source A solution of 700 mg (3.4 mmol) of 1,1,1-trifluoro-4-pyridin-2-ylbutan-2-ol in 10 mL
of dichloromethane was treated with 616 mg (4.1 mmol, 1.2 eq.) of
tert-butyldimethylsilyl chloride, 697 mg (10.2 mmol, 3.0 eq.) of imidazole and
415 ng (3.4 mmol) of 4-dimethylaminopyridine at 0° C. The resulting mixture was
allowed to warm to room temperature and as stirred for 36 hours. Then the mixture
w was concentrated and the residue was purified by flash chromatography to give
970 mg (89%) of 2-[3-(tert-butyldimethylsilanyloxy)-4,4,4-trifluorobutyl]pyridine
as a colorless oil.

Table 10: Illustrative example of the OpenExp dataset. BOLDED BLUE indicates pre-defined action.

• Common Substance Renaming. We standardized879

the nomenclature for common substances that are880

known by multiple names (e.g., water may also881

be referred to as H2O, pure water, water (aq.),882

etc.) to improve the dataset’s precision. Using883

PubChemPy, we align the different names to their884

standardized SMILES representations, allowing885

us to identify when different terms refer to the886

same molecule by comparing their SMILES ex-887

pressions.888

• Similar Action Aggregation. If two adjacent op-889

erations are highly similar (e.g., STIR and STIR890

for 5 min), they are merged together.891

• Ensuring Single Product. This dataset focuses892

on the preparation of a single material, hence we893

remove reactions that yield multiple products.894

• Action Filtering. We remove action sequences895

that have fewer than five actions or contain in-896

valid actions.897

• Reaction Deduplication. We remove the dupli-898

cated reactions from the dataset.899

Table 11 presents the number of samples re-900

moved at each preprocessing step. Further, Table901

10 provides an example from the final OpenExp902

dataset, we can observe that it encompasses:903

Total reactions 2262637 100%

Too large perplexity score 329160 14.55%
More than one product 105577 4.67%
Incomplete mapping of molecules
(from chemical reaction)

1034908 45.74%

Incomplete mapping of molecules
(from action sequence)

178689 7.90%

Remove duplicate reactions 254099 11.23%
Filter out too short actions 14022 0.62%
Other errors 71743 3.16%

Remaining reactions 274439 12.13%

Table 11: Number of samples removed at each prepro-
cessing step.

• Structured, step-by-step instructions of experi- 904

mental procedures; 905

• All molecules in the reaction and their roles (i.e., 906

reactant, solvent, catalyst, product). 907

• The mapping between the recognized entities 908

(i.e., molecules) and their IDs. 909

• The original unstructured experimental proce- 910

dures. 911

Discussion on License. The ORD database 912

is accessible under the CC-BY-SA license, and 913

the USPTO-Applications dataset is available un- 914

der the CC0 license. We have used codes from 915

TextChemT5 (Christofidellis et al., 2023) and Para- 916

graph2Actions (Vaucher et al., 2021), which are 917
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both licensed under the MIT license. Therefore, we918

will release OpenExp under the CC-BY-SA license919

to comply with the most restrictive license of these920

resources. This license permits content distribution921

and sharing, provided the same license is applied.922

Human Evaluation. We invite two graduate stu-923

dents majoring in chemistry to evaluate the quality924

of the OpenExp dataset. They are compensated925

by the local average hourly rate. Specifically, we926

randomly sample 100 data points, the evaluators927

are then asked to rate the quality of each data point928

on a scale from 1 (lowest) to 5 (highest). Our in-929

structions to the evaluators are shown below:930

Instructions to human evaluators.

We are curating a dataset partially generated by an
AI model and want to seek feedback on its quality
from human experts. During the evaluation process,
we will provide both machine language sequences
(the machine-generated operational sequences of ex-
perimental actions) and the corresponding natural
language sequences (descriptions of experimental
procedures in their original free texts).
You should rate these samples based on how well the
operational sequences align with the original descrip-
tions. Please use a rating scale of 1 (low alignment)
to 5 (high alignment). Molecular skeletal formulas
are provided as images for reference during evalua-
tion. All original data for this dataset come from the
United States Patent and Trademark Office (USPTO),
ensuring the viability of the reactions.

The following are the detailed scoring guidelines,
with a maximum score of 5:
• 5: The AI model’s output captures key operations

and experimental details present in the original
description.

• 4: No key experimental steps are missing compared
to the original description. Minor discrepancies of
in experimental details may exist, but they do not
impede the execution of the experiment.

• 3: There are discrepancies in key steps compared
to the original description, yet these can be rectified
with minor manual modifications to successfully
carry out the experiment.

• 2: There are significant differences in key experi-
mental steps compared to the original description,
requiring manual corrections on more than 50% of
the sequence.

• 1: The AI model’s output differs substantially from
the original description, rendering it ineffective.

931

Each data point is evaluated by a single evalua-932

tor. Figure 5 presents the human evaluation results.933

In certain cases, evaluators are undecided about934

assigning a lower or higher score, leading to the935

assignment of decimal scores (e.g., 3.5 and 4.5).936

A.2 Collection and Preprocessing of 937

ReactXT’s Pretraining Dataset 938

In Section 3, we collect and compile a dataset to 939

incrementally pretrain an LM for improved un- 940

derstanding of chemical reactions and individual 941

molecules. Here we elaborate on the details of this 942

dataset, which includes the following contents: 943

• A total of 1,162,551 chemical reactions; 944

• Patent abstracts and computed/experimental 945

properties of 1,254,157 molecules, which are all 946

from the chemical reactions. 947

We extract chemical reactions from ORD and 948

USPTO datasets. Then, we source patent ab- 949

stracts from PubChem’s Patent View6 and obtain 950

molecular properties using the PubChem’s Pub- 951

View API7. For each molecule, the abstract text de- 952

rives from the abstracts of patent documents where 953

the molecule is mentioned, and its properties in- 954

clude both computational and experimental ones. 955

Table 12 shows a complete list of these properties. 956

In Table 13, we compare the statistics of our pre- 957

training dataset with that of PubChem324k. We 958

can observe that ReactXT’s pretraining dataset in- 959

cludes more molecules and additionally includes 960

chemical reactions. 961

To prevent information leakage, we exclude a 962

total of 54,403 reactions that appear in the vali- 963

dation and test sets of the downstream datasets 964

(i.e., OpenExp and USPTO-50K (Schneider et al., 965

2016)) from the pretraining dataset. The remaining 966

1,108,148 reactions are used for pretraining. 967

Discussion on License. The ORD database is 968

accessible under the CC-BY-SA license, and the 969

USPTO-Applications dataset is available under the 970

CC0 license. The patent abstracts from PubChem 971

are provided by Google Patent8, which is released 972

under the CC-BY-4.0 license. To comply with the 973

strictest license terms, we will release our dataset 974

under the CC-BY-SA license. 975

Additionally, we have utilized textual descrip- 976

tions, computed properties, and experimental prop- 977

erties from the PubChem website for pretraining. 978

Given that this data is aggregated from various 979

sources by PubChem, determining a single appro- 980

priate license is challenging. To support future 981

research while avoiding licensing complexities, we 982

6pubchem.ncbi.nlm.nih.gov/docs/patents
7pubchem.ncbi.nlm.nih.gov/docs/pug-view
8patents.google.com

14

pubchem.ncbi.nlm.nih.gov/docs/patents
pubchem.ncbi.nlm.nih.gov/docs/pug-view
patents.google.com


Computed Properties Experimental Properties

Property Count Property Count Property Count Property Count

Molecular Weight 1244109 Physical Descrip-
tion

8368 Vapor Density 1043 Enthalpy of
Sublimation

9

Hydrogen Bond
Donor Count

1244109 Kovats Retention
Index

6878 Autoignition
Temperature

771 Acid Value 4

Hydrogen Bond Ac-
ceptor Count

1244109 Solubility 5909 Heat of Vapor-
ization

583 Dielectric
Constant

2

Rotatable Bond
Count

1244109 Chemical Classes 5726 Viscosity 550 Dispersion 1

Exact Mass 1244109 Melting Point 4468 Taste 514 Hydrophobicity 1
Monoisotopic Mass 1244109 Vapor Pressure 3032 Henry’s Law

Constant
502

Topological Polar
Surface Area

1244109 Boiling Point 2996 Surface Tension 448

Heavy Atom Count 1244109 Color/Form 2927 pH 444
Formal Charge 1244109 Density 2862 Odor Threshold 442
Complexity 1244109 LogP 2763 Corrosivity 410
Isotope Atom Count 1244109 Other Experimen-

tal Properties
2393 Heat of Com-

bustion
405

Defined Atom Stere-
ocenter Count

1244109 Decomposition 2033 Ionization Effi-
ciency

332

Undefined Atom
Stereocenter Count

1244109 Refractive Index 1777 Optical Rota-
tion

265

Defined Bond Stere-
ocenter Count

1244109 Collision Cross
Section

1634 Ionization
Potential

253

Undefined Bond
Stereocenter Count

1244109 Odor 1512 LogS 166

Covalently-Bonded
Unit Count

1244109 Stability/Shelf
Life

1506 Polymerization 134

Compound Is
Canonicalized

1244109 Flash Point 1479 Relative Evapo-
ration Rate

101

XLogP3 1184175 Dissociation Con-
stants

1250 Caco2 Perme-
ability

79

Table 12: Statistics of the collected molecule properties, including computed properties and experimental properties.

Our Dataset Pubchem324k

Num of Molecules 1, 254, 157 313, 083
Num of Reactions 1, 162, 551 -
Avg. Molecule Weight 362.4 502.4
Avg. Atom Count 24.9 35.2
Avg. Bond Count 26.8 37.6
Avg. Ring Count 2.9 3.5
Avg. Text Length 517.8 120.4
Avg. Property Count 17.8 -

Table 13: Statistics of ReactXT’s pretraining dataset
and Pubchem324k.

will provide the scripts for downloading and pre-983

processing this data, rather than distributing the984

data directly.985

B Experimental Details986

B.1 Hyperparameters987

Here we detail the hyperparameters for ReactXT’s988

pretraining and finetuning across three downstream989

tasks. Due to the prohibitive costs associated990

with training large LMs, finetuning on downstream991

datasets is limited to a single run.992

ReactXT Pretrain. The pretraining stage of993

ReactXT has 5 million steps, with the number of994

molecules per reaction being k = 4. Following 995

MolCA’s (Liu et al., 2023b) experimental setup, 996

we employ a Q-former with 8 query tokens. We 997

use AdamW as the optimizer, with a weight decay 998

set to 0.05. The optimizer’s peak learning rate is 999

set to 1× 10−4, scheduled by linear warmup with 1000

cosine decay. The warmup has 1000 steps and 1001

starts at a learning rate of 1× 10−6. 1002

Experimental Procedure Prediction. We fully 1003

finetune all the baseline methods and ReactXT for 1004

20 epochs, with a batch size of 32. The optimizer 1005

and learning rate settings are consistent with the 1006

pretraining phase. 1007

Retrosynthesis. Following (Zhong et al., 2022), 1008

we sample 20 root-aligned augmentations for the 1009

training and testing subsets. We train MolT5 for 1010

20 epochs and ReactXT for 10 epochs on the aug- 1011

mented training set using a batch size of 32. During 1012

testing, we conduct a beam search with a beam size 1013

of 20 for both models and return the top ten re- 1014

sults as the model’s predictions. The optimizer and 1015

learning rate settings are kept consistent with the 1016

pretraining phase. 1017
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Pretrain Input Context Pretrain Data Type BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

No incremental pretrain - 39.4 32.2 52.7 39.4 47.6 49.2
Reactions reaction 37.3 29.9 50.3 36.5 45.0 46.7
ReactXT reaction, sing. mol. 42.6 35.2 54.7 41.7 49.6 51.2

Table 14: Ablation study. Performances (%) for molecule captioning on the PubChem324k dataset.

Molecule Captioning. On both datasets, we full1018

finetune MolCA and ReactXT 20 epochs, with a1019

batch size of 32. The optimizer and learning rate1020

settings are consistent with the pretraining phase.1021

B.2 Other Implementation Details1022

Baselines. We briefly introduce the baselines:1023

• Galactica (Taylor et al., 2022). Galactica is a1024

scientific language model which is pretrained on1025

2 million compounds from PubChem. It has a1026

decent understanding of SMILES formulas.1027

• MolT5 (Edwards et al., 2022). MolT5 is devel-1028

oped based on the T5 model. Its training corpora1029

include both natural language and SMILES data,1030

making it suitable for both molecule captioning1031

and text-based molecular generation tasks.1032

• TextChemT5 (Christofidellis et al., 2023).1033

TextChemT5 is a T5-based multi-domain LM,1034

which is tuned on various text-molecule tasks.1035

• MolCA (Liu et al., 2023b). MolCA is a multi-1036

modal language model finetuned on Galactica. It1037

includes both graph encoder and LM, where a1038

Querying Transformer is applied to align their1039

latent spaces.1040

• AT (Tetko et al., 2020). AT trains transformers1041

with data augmentation for retrosynthesis. The1042

data augmentation is achieved by rearranging the1043

order of characters in SMILES strings in both the1044

training and test sets.1045

• MEGAN (Sacha et al., 2021). MEGAN repre-1046

sents chemical reactions as a sequence of graph1047

edits and performs retrosynthesis by sequentially1048

modifying the target molecule.1049

• MoMu (Su et al., 2022). Momu contrastively pre-1050

trains a GNN and an LM with paired molecular1051

graph-text data, and can be adapted to retrieval1052

and generation tasks.1053

• Chemformer (Irwin et al., 2022). Chemformer1054

is a Transformer-based molecule LM that is self-1055

supervised pretrained on a SMILES corpus. It1056

can be applied to both generation and property 1057

prediction tasks. 1058

• Random, among all reactions (Vaucher et al., 1059

2021). Randomly pick an action sequence from 1060

the training set. 1061

• Random, compatible pattern (Vaucher et al., 1062

2021). Randomly pick an action sequence from 1063

the training subset of reactions that have the same 1064

number of molecules as the current reaction. 1065

• Nearest Neighbor (Vaucher et al., 2021). Pick 1066

the action sequence from the training set with 1067

the reaction most similar to the current one, as 1068

determined by reaction fingerprints (Schwaller 1069

et al., 2019). 1070

C More Experimental Results 1071

C.1 Ablation Study 1072

Table 14 presents an ablation study examining the 1073

impact of input contexts on molecule captioning. 1074

The removal of the random molecule context re- 1075

sults in diminished captioning performance. This 1076

observation can be attributed to two factors: 1) in- 1077

cluding the PubChem324k dataset, which is used 1078

for creating random molecule contexts, is impor- 1079

tant to maintain molecule captioning performance; 1080

and 2) without random molecule contexts, the LM 1081

becomes overly dependent on reaction contexts, 1082

compromising its capability to accurately caption 1083

individual molecules. This finding underscores the 1084

significance of incorporating random molecule con- 1085

texts in training. 1086

C.2 Case Studies and Error Analysis 1087

In this section, we present case studies from the 1088

experimental procedure prediction task to inform 1089

future research. We include examples of accurate 1090

predictions (see Table 15), inaccurate predictions 1091

(see Tables 16), and predictions that are different 1092

from the annotations but may also work (see Ta- 1093

ble 17 and Table 18). Our selection criteria pri- 1094

oritizes the accuracy of action sequences and the 1095

correct identification of primary materials, while 1096
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Field Value

Reactant $1$: OCCCCCCCc1ccccc1
$2$: C#CC(=O)O
$4$: c1ccccc1

Catalyst $3$: Cc1ccc(S(=O)(=O)O)cc1

Product $-1$: C#CC(=O)OCCCCCCCc1ccccc1

Source A mixture of 0.5 g of 7-phenylheptanol, 0.27 g of propiolic acid, 0.005 g of p-toluenesulfonic acid
and 25 ml of benzene was refluxed with stirring for six hours while water formed was removed by
a Dean-Stark water separator. After the reaction was completed, the reaction solution was washed
successively with a 5% aqueous sodium bicarbonate solution and a saturated sodium chloride solution,
and dried over anhydrous magnesium sulfate. After removal of the solvent under reduced pressure, the
obtained residue was subjected to silicagel column chromatography to yield 0.368 g of 7-phenylheptyl
propiolate (compound 3).

Annotated
Actions

MAKESOLUTION with $1$ (1.1 g) and
$2$ (0.005 g) and $3$ (25 ml) and $4$ ;
REFLUX for 6 hours ;
CONCENTRATE ;
WASH with NaHCO3 ;
WASH with sodium chloride ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
YIELD $-1$ (1.15 g).

Predicted
Actions

MAKESOLUTION with $1$ (0.27 g) and
$2$ (0.005 g) and $3$ (25 ml) and $4$ ;
REFLUX for 10 hours;
CONCENTRATE ;
WASH with NaHCO3 ;
WASH with sodium chloride ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
YIELD $-1$ (0.368 g).

(a) Example 1.

Field Value

Reactant $1$: C[Si]1(C)CC[Si](C)(C)N1c1ccc(C(O)c2cn(S(=O)(=O)c3ccccc3)c3ncc(Cl)cc23)cn
$2$: Nc1ccc(C(O)c2cn(S(=O)(=O)c3ccccc3)c3ncc(Cl)cc23)cn1
$4$: CC[SiH](CC)CC
$5$: O=C(O)C(F)(F)F

Solvent $3$: ClCCl

Product $-1$: Nc1ccc(Cc2cn(S(=O)(=O)c3ccccc3)c3ncc(Cl)cc23)cn1

Source To (1-benzenesulfonyl-5-chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)-[6-(2,2,5,5-tetramethyl-[1,2,5]azadisi-
lolidin-1-yl)-pyridin-3-yl]-methanol and (6-amino-pyridin-3-yl)-(1-benzenesulfonyl-5-chloro-1H-
pyrrolo[2,3-b]pyridin-3-yl)-methanol (118, 119, 1.70/1.25 g mix, 2.41 mmol) in 25.0 mL of
dichloromethane, triethylsilane (3.00 mL, 18.8 mmol) and trifluoroacetic acid (1.50 mL, 19.5 mmol)
were added and the reaction stirred at room temperature overnight. The reaction was concentrated under
vacuum, combined with aqueous potassium carbonate and extracted with ethyl acetate. The organic
layer was dried over sodium sulfate, filtered and the filtrate concentrated under vacuum. The resulting
material was purified by silica gel column chromatography eluting with 20-100% ethyl acetate in hexane
to provide the desired compound (120, 0.70 g).

Annotated
Actions

MAKESOLUTION with $1$ and $2$ and
$3$ (25.0 mL) ;
ADD $4$ (3.00 mL, 18.8 mmol) ;
ADD $5$ (1.50 mL, 19.5 mmol) ;
STIR for overnight at room temperature ;
CONCENTRATE ;
ADD K2CO3 ;
EXTRACT with ethyl acetate ;
COLLECTLAYER organic ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (0.70 g).

Predicted
Actions

MAKESOLUTION with $1$ (1.00 g, 1.91
mmol) and $2$ (0.69 g, 1.72 mmol) and $3$
(35 mL) ;
ADD $4$ (1.35 mL, 7.84 mmol) ;
ADD $5$ (1.90 mL, 26.7 mmol) ;
STIR for 8 h at room temperature ;
CONCENTRATE ;
EXTRACT with K2CO3 ;
EXTRACT with ethyl acetate ;
COLLECTLAYER organic ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (0.13 g, 19%).

(b) Example 2.

Table 15: Examples of accurate experimental procedure predictions.
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overlooking specifics like material quantities and1097

temperatures. All the examples are from the test1098

set of OpenExp.1099

Table 15 displays two examples where experi-1100

mental procedures are accurately predicted, show-1101

ing close alignment between predicted and anno-1102

tated actions, albeit with slight variances in mate-1103

rial quantities and experiment times. These cases1104

highlight the capability of LMs to predict exper-1105

imental procedures, suggesting a path toward au-1106

tomating chemical synthesis.1107

Table 16 displays two failed examples of experi-1108

mental procedure prediction. The predicted action1109

sequences significantly deviate from the annotated1110

sequences, making them impractical. Additionally,1111

we can observe one common error of repetition,1112

with the same or similar actions being duplicated.1113

Tables 17 and Table 18 showcase three exam-1114

ples where the predictions, while different from1115

the annotations, could still be viable. In Example1116

5, as an alternative to the annotated ’EXTRACT1117

with ethyl acetate’, the model proposes a series of1118

actions (‘COLLECT LAYER’, ‘WASH with ethyl1119

acetate’, ‘DRY SOLUTION’, and ‘FILTER’), serv-1120

ing a similar function. In Example 6, instead of1121

the specified ’SET TEMPERATURE’ and ’STIR’,1122

the model recommends ‘STIR for 1h at 0 °C’, serv-1123

ing the same purpose. In Example 7, the model1124

suggests adding components (‘ADD $4$’, ‘ADD1125

$5$’, ‘ADD $6$’) sequentially rather than making1126

a single solution as annotated, which could also be1127

effective.1128
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Field Value

Reactant $1$: Nc1ccc(C(=O)N[C@H](CO)Cc2ccccc2)c(/C=C/c2ccccc2)c1
$3$: CC(=O)OC(C)=O

Solvent $2$: C1CCOC1

Product $-1$: CC(=O)Nc1ccc(C(=O)N[C@H](CO)Cc2ccccc2)c(/C=C/c2ccccc2)c1

Source 1 g (2.7 mmol) of (S)-4-amino-2(E-2-phenylethen-1-yl)-N-(3-phenylpropan-1-ol-2-yl)benzamide
(intermediate 43f) was suspended in 50 ml of tetrahydrofuran and mixed with 0.25 ml (2.7
mmol) of acetic anhydride at 100° C. The mixture was stirred for 16 h. The reaction was then
concentrated under reduced pressure and the residue was recrystallized from ethanol. 0.78 g
(71%) of the product was obtained.

Annotated
Actions

ADD $1$ (1 g, 2.7 mmol) ;
ADD $2$ (50 ml) ;
ADD $3$ (0.25 ml, 2.7 mmol) ;
STIR for 16 h at 100 °C ;
CONCENTRATE ;
RECRYSTALLIZE from ethanol
(0.78 g) ;
YIELD $-1$.

Predicted
Actions

MAKESOLUTION with $1$ and $2$ (15 ml) ;
ADD $3$ (0.27 ml, 2.9 mmol) ;
STIR for 10 h at 100 °C ;
WAIT for 10 h at 100 °C ;
STIR for 10 h at 100 °C ;
CONCENTRATE ;
ADD ethyl acetate ;
ADD water ;
PHASESEPARATION ;
COLLECTLAYER aqueous ;
EXTRACT with ethyl acetate ;
COLLECTLAYER organic ;
WASH with brine ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (144 mg, 75%).

(a) Example 3.

Field Value

Reactant $1$: Brc1ccc2noc(-c3ccccc3)c2c1
$2$: O

CATALYST $3$: [Zn]

SOLVENT $4$: CC(=O)O

PRODUCT $-1$: Nc1ccc(Br)cc1C(=O)c1ccccc1

Source 5-Bromo-3-phenyl-2,1-benzisoxazole (7.5 g, 28.6 m mol), water (14.6 ml), and zinc dust (9.3 g, 143
m mol) were combined. Acetic acid (8.6 ml, 143 m mol) was added and the mixture was stirred and
heated at 80° C. for 90 minutes. After cooling to room temperature, both the liquid and solid portion
of the reaction were extracted with methylene chloride. The combined methylene chloride solutions
was washed once with sodium hydroxide solution (10%) and several times with water. Drying (sodium
sulfate) and evaporation yielded the desired product (7.42 g) of mp. 92°-102° C.

Annotated
Actions

ADD $1$ (7.5 g) ;
ADD $2$ (14.6 ml) ;
ADD $3$ (9.3 g) ;
ADD $4$ (8.6 ml) ;
STIR for 90 minutes at 80 °C ;
EXTRACT with methylene chloride ;
EXTRACT with CH2 Cl2 ;
WASH with NaOH ;
WASH with $2$ ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
YIELD $-1$ (7.42 g).

Predicted
Actions

MAKESOLUTION with $1$ and $2$ (150 ml) ;
ADD $3$ (24 g) ;
ADD $4$ (60 ml) ;
STIR for 120 minutes at 80 °C ;
WAIT for 120 minutes at 80 °C ;
FILTER ;
ADD carbon ;
COLLECTLAYER organic ;
WASH with $2$ (200 ml) 3 x ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
RECRYSTALLIZE from 2-amino-5-bromo-
benzophenone (20.7 g) ;
YIELD $-1$ (20.7 g, 57.9%).

(b) Example 4.

Table 16: Examples of inaccurate experimental procedure predictions. Green denotes error of repetition.
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Field Value

Reactant $1$: COc1ccc(-c2cccc(CC(=O)O)c2)cc1C(C)=NO
$3$: FC(F)(F)c1ccc(CBr)cc1
$4$: [H-].[Na+]
$5$: Cl

SOLVENT $2$: C1CCOC1

PRODUCT $-1$: COc1ccc(-c2cccc(CC(=O)O)c2)cc1C(C)=NOCc1ccc(C(F)(F)F)cc1

Source 9 mg of [3’-(1-Hydroxyiminoethyl)-4’-methoxybiphenyl-3-yl]acetic acid was dissolved in 0.2 mg of
tetrahydrofuran, then 25 mg of 4-trifluoromethylbenzyl bromide and 10 mg of sodium hydride were
added thereto, and the mixture was stirred at room temperature for 3 days. The reaction mixture was
neutralized with 1N hydrochloric acid and then extracted with ethyl acetate. The organic layer was
concentrated, and the residue was purified by reverse-phase high performance liquid chromatography to
give 5.21 mg of the title compound.

Annotation
Actions

ADD $1$ (9 mg) ;
ADD $2$ (0.2 mg) ;
ADD $3$ (25 mg) ;
ADD $4$ (10 mg) ;
STIR for 3 days at room temperature ;
PH with $5$ (1 normal) to pH neutral
at room temperature ;
EXTRACT with ethyl acetate ;
CONCENTRATE ;
YIELD $-1$ (5.21 mg).

Predicted
Actions

MAKESOLUTION with $1$ (25 mL) and $2$ ;
ADD $3$ (292 mg) ;
ADD $4$ (104 mg) ;
STIR for overnight at room temperature ;
PH with $5$ (1 normal) to pH neutral at room tem-
perature ;
COLLECTLAYER organic ;
WASH with ethyl acetate ;
COLLECTLAYER organic ;
WASH with water ;
WASH with brine ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (204 mg).

(a) Example 5.

Field Value

REACTANT $3$: Cc1ccc2c(N)ccc(O)c2n1
$4$: O=N[O-].[Na+]
$5$: [N-]=[N+]=[N-].[Na+]

Solvent $1$: Cl
$2$: O

PRODUCT $-1$: Cc1ccc2c(N=[N+]=[N-])ccc(O)c2n1

Source 5-Amino-8-hydroxy-2-methylquinoline (12; 723 mg, 4.2 mmol) was dissolved in a solution of concen-
trated hydrochloric acid (0.4 mL) and water (5 mL), cooled to -3° C. in a salt-ice bath, stirred for 10 min,
then treated dropwise with a cold solution of sodium nitrite (0.50 g, 7.2 mmol) in water (5 mL). The
mixture was stirred for 20 min, then treated dropwise with sodium azide (0.60 g, 9.2 mmol) in water
(40 mL), stirred at 0° C. for a further 1.5 h, then allowed to warm to room temperature over 24 h in the
dark. Isolation by extraction with diethyl ether gave a dark brown solid, which was recrystallized from
light petroleum to yield 13 as light brown crystals (554 mg, 66%). 1H NMR (500 MHz, CD3OD) δ ppm:
3.31 (s, 3H), 7.06 (d, J=8.5 Hz, 1H), 7.15 (d, J=8.5 Hz, 1H), 7.36 (d, J=8.5 Hz, 1H), 8.21 (d, J=8.5 Hz,
1H). 13C NMR (125 MHz, CD3OD) δ ppm: 24.9, 111.8, 115.6, 121.6, 123.7, 127.9, 132.6, 139.6, 151.1,
159.7. HRMS (ESI): calcd for C10H8N4O [M+H]+: 201.0771, found: 201.0773.

Annotation
Actions

MAKESOLUTION with $1$ (0.4 mL)
and $2$ (5 mL) ;
ADD $3$ (723 mg, 4.2 mmol) ;
SETTEMPERATURE -3 °C ;
STIR for 10 min ;
MAKESOLUTION with $4$ (0.50 g,
7.2 mmol) and $2$ (5 mL) ;
STIR for 20 min ;
MAKESOLUTION with $5$ (0.60 g,
9.2 mmol) and $2$ (40 mL) ;
STIR for 1.5 h at 0 °C ;
RECRYSTALLIZE from petroleum ;
YIELD $-1$ (554 mg, 66%).

Predicted
Actions

MAKESOLUTION with $1$ (3 ml) and $2$ (1
ml) ;
ADD $3$ (210 mg, 1.24 mmol) ;
STIR for 1 h at 0 °C;
MAKESOLUTION with $4$ (80 mg, 1.24
mmol) and $2$ (1 ml) ;
STIR for 1 h at 0 °C;
MAKESOLUTION with $5$ (88 mg, 1.24
mmol) and $2$ (1 ml) ;
STIR for 2 h at 0 °C ;
RECRYSTALLIZE ;
YIELD $-1$ (120 mg, 47%).

(b) Example 6.

Table 17: Examples of experimental procedure predictions that are different from the annotation but might be viable.
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Field Value

Reactant $1$: CNC(=O)c1cn(CCCCc2ccc(N)nn2)nn1
$2$: O=C(O)Cc1cc(Br)ccn1
$4$: CCCP1(=O)OP(=O)(CCC)OP(=O)(CCC)O1
$6$: CCN(C(C)C)C(C)C

Solvent $3$: CN(C)C=O
$5$: CCOC(C)=O
$7$: O

Product $-1$: CNC(=O)c1cn(CCCCc2ccc(NC(=O)Cc3cc(Br)ccn3)nn2)nn1

Source To a solution of 1-(4-(6-aminopyridazin-3-yl)butyl)-N-methyl-1H-1,2,3-triazole-4-carboxamide (2.0 g,
7.2 mmol) and 2-(4-bromopyridin-2-yl)acetic acid (1.6 g, 7.2 mmol) in DMF (5 ml) were added T3P
(50 wt. % in EtOAc, 9.2 g, 14 mmol) and DIEA (2.7 g, 22 mmol). The mixture was stirred at RT for 3
h, then water (50 mL) was added, the mixture was stirred for 30 min, and precipitate was isolated by
filtration to give the title compound as a yellow solid (1 g, 40%). MS (ES+) C19H21BrN8O2 requires:
473. found: 474 [M+H]+.

Annotated
Actions

MAKESOLUTION with $1$ (2.0 g, 7.2
mmol) and $2$ (1.6 g, 7.2 mmol) and $3$
(5 ml) ;
MAKESOLUTION with $4$ and $5$ (9.2
g, 14 mmol) and $6$ (2.7 g, 22 mmol) ;
STIR for 3 h at RT ;
ADD $7$ (50 mL) ;
STIR for 30 min ;
YIELD $-1$ (1 g, 40%).

Predicted
Actions

MAKESOLUTION with $1$ (30 mg, 0.109
mmol) and $2$ (23 mg, 0.109 mmol) and $3$
(0.5 ml) ;
ADD $4$ (67 l, 0.109 mmol, 0.109 mmol) ;
STIR for 3 h at room temperature ;
ADD $5$ (5 ml) ;
ADD $6$ (67 l, 0.38 mmol, 0.38 mmol) ;
STIR for 30 min at room temperature ;
ADD $7$ (0.5 ml) ;
CONCENTRATE ;
YIELD $-1$ (36 mg, 70% yield).

Table 18: Examples of experimental procedure predictions that are different from the annotation but might be viable.
Example 7.
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