DialogueScore: Evaluating Responses in Task-Oriented Dialogue

Anonymous ACL submission

Abstract

Task-Oriented Dialogue systems have been widely deployed in real-world applications in the last few years. Yet, evaluations of task-oriented dialogue systems are relatively limited. The informative and success score only consider the key entities in the generated responses to judge whether the user’s goal is achieved. On the other hand, the fluency metric (BLEU score) cannot measure the quality of the short responses properly since the golden responses could be diversified. To better explore the behavior and evaluate the generation ability of task-oriented dialogue systems, we explore the relation between user utterances and system responses and their follow-up utterances. Therefore, we design a scorer named DialogueScore based on the natural language inference task and synthesize negative data to train the scorer. Via performances of DialogueScore, we observe that the dialogue system fails to generate high-quality responses compared with the reference responses. Therefore, our proposed scorer could provide a new perspective for future dialogue system evaluation and construction.

1 Introduction

Task-Oriented Dialogue system (Young et al., 2013) is a natural language processing task that aims at accomplishing user’s goals. The process of task-oriented dialogue (TOD) usually consists of dialogue state tracking, dialogue policy for making actions and response generation. Recent pre-trained models directly generate system responses to user’s utterances in a sequence-to-sequence generation manner. The process of evaluating the effectiveness of these dialogue systems is to discriminate whether the user’s goals are accomplished by the generated responses (e.g. using the Informative score and Success score (Budzianowski et al., 2018)) and whether the generated responses are fluent (e.g. using BLEU score (Papineni et al., 2002) or ROUGE score (Lin, 2004)).

However, these existing metrics cannot fully measure the quality of the generated responses: the informative and success metrics only focus on whether the key entities (e.g. places to travel or restaurant to book) exist in the generated responses. That is, once the desired entities are detected in the generated responses, the session will be considered successfully responded. On the other hand, the fluency score such as BLEU is less effective since the dialogue between the user and system is usually short and precise about the goal in the dialogue session. In the task-oriented dialogue tasks, the evaluation process uses golden user utterances in previous turns and measure the quality of current turn responses regardless of the possibility that the generated responses could affect the user utterances in the next turn making the dialogue session unnatural. Human evaluation is often the best indicator of the effectiveness of deep learning systems. Human-involved evaluation in dialogue systems is difficult to construct since the dialogue scenario is hard to reconstruct, therefore automatic scorers are needed.

In this paper, we focus on scoring the quality of the generated responses in the TOD system and explore the relation between the responses and their corresponding dialogue sessions.

Figure 1: The utterance-response pair is coherent while the response and the follow-up utterance pair is not (ask for type of food but respond with location of food). The [value] tokens are later filled with knowledge base information given from the Dataset.
In task-oriented dialogue tasks, we assume that a good response should be coherent within the session even when the responses might not match the reference responses since the reference responses are static. We consider that by measuring the coherence between the responses and their corresponding dialogue sessions, we can measure the quality of the generated responses. The generated responses should match the user’s utterances and it should also match the content of the follow-up utterances. Therefore, we introduce two types of scorer: (1) utterance and response matching scorer (2) response and follow-up utterance matching scorer as illustrated in Figure 1. With these two types of scorers, we can measure the coherence of the generated responses as an auxiliary tool when the BLEU score fails to measure the quality of the generated responses. Further, in task-oriented dialogue systems, the dialogue history is extremely important, we measure the current pair of user utterances of responses based on a certain number of previous turns (e.g. 1/2 turns of history).

To train the proposed scorer, we use annotated user-system conversation pairs as positive pairs and construct negative pairs based on synthetic data that is similar in dialogue history, topic and structure information. We construct negative data based on similar dialogue turns from several perspectives which contain session-similar, action/state similar and domain similar negatives. We train the scorer as a classification task using synthesized data and obtain the confidence of the classification results as the predicted score.

Experimentally, we train the scorer based on pre-trained models exemplified by BERT (Devlin et al., 2018) and test on state-of-the-art task-oriented dialogue systems. Through DialogueScore performance comparisons between the generated responses and reference responses, we observe that the state-of-the-art systems cannot generate responses that have similar DialogueScore performances compared with the reference responses, indicating that the scorer can serve as a valuable evaluator. We also conduct a human-involved meta-evaluation to score the coherence of the utterance/response pair to prove that the proposed score is similar to human judgments. Therefore, we believe that the proposed DialogueScore serves as an additional tool to evaluate responses in TOD and provides a new perspective to improve current dialogue systems.

2 Related Work

2.1 Task-Oriented Dialogue Systems

Task-Oriented Dialogue (TOD) task is a major dialogue task that aims at achieving user’s goals such as booking flights, restaurants, etc. (Wen et al., 2016; Eric and Manning, 2017). We select the dialogue response generation scenario as our target task to evaluate.

Pipeline methods generate dialogue responses based on a natural language generation module while the dialogue state and policy are obtained by previous modules (Young et al., 2013).

With pre-trained models exemplified by BERT (Devlin et al., 2018), GPT (Radford et al., 2018), BART (Lewis et al., 2019) and T5 (Raffel et al., 2019), generating responses based on pre-trained sequence-to-sequence models (Yang et al., 2020; Hosseini-Asl et al., 2020; Su et al., 2021) is widely explored.

The evaluation metrics used in the task-oriented dialogue systems concern mainly two folds: (1) whether the user’s goal is achieved; (2) quality of the generated responses. The basic metric is the informative score and the success score (Mehri et al., 2019) that measure whether the specific entities of user’s goals (e.g. obtaining the address of the hotel, price of the restaurant) are all extracted and given in the responses. The response quality score is normally measured by BLEU score which uses in evaluating the fluency of generated texts in various tasks such as machine translation (Sutskever et al., 2014; Bahdanau et al., 2014). However, in dialogue tasks, BLEU score does not always indicate good quality responses since the generated texts are usually short and concise (Yang et al., 2020).

2.2 Neural Model Based Evaluation

Recent trends leverage neural models to automatically evaluate generated texts from different perspectives.

FactCC (Kryściński et al., 2019) introduces language inference systems to measure the factuality of the generated summarizations. The factuality checker is trained based on human-designed data that contains certain types of factual errors in the generated summarizations. The core idea of factuality checker is to construct a new task to learn the certain problem in the text generation process (e.g. factuality in the text summarization tasks), which is related to our work that explores the response
closeness to the user utterances in task-oriented dialogue systems.

Dziri et al. (2019) introduces the NLI system to measure the response coherence (Dang, 2005) to the dialogue histories in open-domain dialogue tasks. Open-domain dialogue does not consider the dialogue states and actions which is different from task-oriented dialogue tasks. Therefore, Dziri et al. (2019) uses entailment-based models based on the MNLI data (Williams et al., 2018) without exploring the details between users and systems.

Recently, neural models can be used to construct automatic metrics. For instance, BERTScore (Zhang et al., 2019) uses token-level matching in the distributed representation space to measure the similarity of the generated texts and their references. BARTScore (Yuan et al., 2021) evaluates generated texts using the text generation model (e.g. BART (Lewis et al., 2019)). Methods such as BLEURT (Sellam et al., 2020) use a regression layer and train the scorer as a fine-tuning task based on the pre-trained models to imitate human judgments as well as metrics such as BLEU and ROUGE. The difference between constructing automatic metrics and building neural network based scorers is that metrics are calculated based on reference texts while scorers can give evaluation results independently.

3 DialogueScore

In this section, we first introduce the idea of scoring dialogue states and actions. Then we introduce the scorer that considers the scoring process as a natural language inference task. Finally, we introduce the construction and the training process of our scorer.

3.1 Scoring Response Quality

The basic idea of DialogueScore is to measure the quality of the generated system responses. In task-oriented dialogue systems, high quality responses should understand user’s intentions and consist with the entire dialogue session. That is, the responses should be coherent within the entire dialogue session. Such quality cannot be properly measured by current evaluation strategies since the BLEU score focuses more on the faithfulness with the reference responses and Inform and Success score focus on key entities extraction. Specifically, in TOD, the responses are usually concise and faithful to achieving user’s goals, the response quality could be promising while the BLEU score is low since generated texts could be the paraphrasing of the reference texts.

Therefore, to measure the relation between generated responses and their surrounding texts within the dialogue session, we introduce two types of relation between the responses and the dialogue session. By exploring the connections between the responses and their corresponding user utterances and follow-up user utterances, we can measure the coherence of the responses within the dialogue session.

Utterance and Response Relation:

System responses are supposed to satisfy the user’s queries, therefore, the system response should be coherent to the last user utterance. A proper response to the user utterance indicates that the system is familiar with the dialogue states in the current session.

Response and Utterance Relation:

Similarly, system responses should also be coherent to the follow-up user utterances. Human dialogue requires interactions between both customers and service providers, therefore, the generated responses should also focus on the coherence with the follow-up user utterances.

Considering these two types of relation, we build two scorers as an auxiliary evaluation tool to eval-
uate the quality of the generated responses when
the responses are not matched with the reference
responses.

3.2 Scoring with Dialogue Histories
The utterance-response scorer and the response-
utterance scorer described above lacks the dialogue
history information which is the major topic of dia-
logue tasks. Therefore, we improve our coherence
scorer with dialogue histories.

Specifically, we construct scorers that concern
different number of previous turns in predicting
the coherence of the current pair. That is, we
add dialogue histories in the front of the utterance-
response pair for the scorer to learn information
about previous dialogue sessions. Here, we do not
consider all previous dialogue histories since we
aim to fairly measure the response quality in differ-
et turns. Otherwise, responses from the last turns
receive more dialogue history information which
could bring extra information or noise to the scorer.

3.3 NLI System as Scorer
It is straightforward to incorporate natural language
inference to construct a scorer to explore the rela-
tion between generated responses and their corre-
sponding dialogue session since the NLI system is
designed to measure the relation of a pair of texts.

Suppose we have \(T \) turns of dialogue in a given
session, we define the \(t^{th} \) user utterance as \(u_t \). For
the \(t^{th} \) system response to the user’s queries, we de-
define as \(r_t \). Besides current turns, we denote \(N \) turns
of dialogue history before the \(t^{th} \) pair of utterance-
response using \(h_t = [u_{t-N}, r_{t-N}, u_{t-N+1}, \cdots] \).
Therefore, the NLI system \(F(\cdot) \) that scores the con-
sistency between the \(t^{th} \) response and utterance
predicts \(s = F([h_t; u_t], r_t) \) for utterance and re-
response relation and \(s = F([h_t; u_t, r_t], u_{t+1}) \) for
response and follow-up utterance relation. We use
the softmaxed score as the final DialogueScore.

3.4 Data Synthesis
The scorer is supposed to understand whether the
generated responses are natural in the dialogue con-
texts. We construct negatives that are similar to the
reference responses as synthesized data to train the
scorer.

We focus on different perspectives in the dia-
logue dataset:

- Session Information: We assume that informa-
tion of responses in the same dialogue session
is related. That is, the dialogue belief states
and actions are consistent within the same session.
Therefore, for the \(t^{th} \) pair, we use a ran-
domly selected response \(r_s \) where \(s \neq t \) from
the same session as the negative response to
construct the negative sample.

- Domain Information: In task-oriented dia-
logue systems, dialogue sessions from the
same domain (e.g. booking flights or ho-
tels) are supposed to share similar dialogue
structures. That is, the procedure of booking
a flight or finding a place to dine is similar
among different sessions. Therefore, we intro-
duce a simple negative construction method.
We use the same order of system response \(r_d \)
where \(r_d \) is the response from another same-
domain session as the negative response of
the current pair. That is, we use the response
from the \(t^{th} \) turn in session \(r_d \) as the negative
sample for the \(t^{th} \) turn in session \(r \).

- Dialogue States/Action Information: Besides
the domain and session level similar informa-
tion, we could directly use the dialogue
actions and states information to construct
negative responses. We use responses that
share the same dialogue states and actions as
negative responses.

We introduce several straightforward strategies
to synthesize data to train the scorer that is able
to evaluate the quality of the generated responses.
Different from synthesizing data in building fac-
tuality checker in summarization evaluations, in
task-oriented dialogue systems, the unnatural re-
sponses are relatively difficult to define. Therefore,
instead of synthesizing certain types of unrelated
responses or useless responses, we synthesize neg-
atives by categories. We aim at certain perspectives
which could be essential to the task-oriented dia-
logue systems. In task-oriented dialogue systems,
information such as domain difference or action
difference could significantly affect the response
generation.

With our proposed scorer training process, we
are able to construct multiple scorers that can be
used in evaluating the quality of generated texts in-
stead of simply counting key entities and using co-
ocurrence compared with the reference responses
as evaluation.
4 Experiments

In this section, we construct experiments on task-oriented dialogue tasks using our proposed DialogueScore to evaluate the strong baselines and explore whether the state-of-the-art models can achieve satisfactory results on DialogueScore. Plus, we design experiments exploring the faithfulness of our proposed score compared with human judges.

4.1 Datasets

We use the Multi-WOZ 2.0 dataset (Budzianowski et al., 2018) which is the most widely used dataset in the task-oriented dialogue tasks. Multi-WOZ dataset contains end-to-end dialogue modeling, dialogue state tracking and user intent classification sub tasks. We only test the dialogue response modeling task since DialogueScore aims to evaluate the quality of the generated responses. In the Multi-WOZ dataset, the response generation process is constructed on the database state which is automatically retrieved from a database pre-constructed. We also use this pre-defined database information in the response generation. Further, we establish both full-data and few-shot settings based on the Multi-WOZ dataset. That is, we use a small proportion of the training set (10 %) to train the model.

4.2 Baseline Models

We use several state-of-the-art models and use our proposed DialogueScore to evaluate the quality of their generated responses.

The first model we test is the state-of-the-art model named PPTOD (Su et al., 2021) which includes a unique further pre-training stage initialized from the T5 (Raffel et al., 2019) model. The PPTOD model achieves the state-of-the-art performances on task-oriented dialogue tasks using text-to-text pre-training task that specially designed for task-oriented dialogue tasks.

We use the small version of the PPTOD model which contains 6 layers of encoder and 6 layers of decoder which has similar parameter number compared with BERT-base model.

We also test the UBAR (Yang et al., 2020) model which uses GPT model as their backbone model. The UBAR model uses dialogue states in the response generation process different from the vanilla sequence-to-sequence generation process used in the PPTOD model.

4.3 Scorer Training Details

We train our scorer based on the BERT-base-uncased model (Devlin et al., 2018) following the implementations provided by Huggingface Transformers (Wolf et al., 2019). Following the details of fine-tuning NLI tasks, we train the scorer with hyper-parameters listed below. We set batch size to 64 with learning rate 2e-5 and run 3 epochs on NVIDIA 3090 GPUs.

The numbers of using more number of history turns in the synthesized dataset are smaller since some sessions do not have enough turns to construct dialogue histories.

4.4 Metrics

4.4.1 Automatic Evaluation

The traditional evaluation metric includes Inform, Success and BLEU score. Following , a combined score is introduced: Combined = (Inform + Success) / 2 +BLEU.

In the Inform and Success calculation, the score is calculated based on the entire session.

In the BLEU score calculation, we calculate the BLEU score based on the reference responses and the generated responses. The evaluation unit is one turn in a dialogue session.

Our proposed DialogueScore measures the turn-level response quality therefore the evaluation unit is also a turn. We calculate the average score of multiple turn history DialogueScore as the final score measuring the utterance and response coherence and the response and follow-up utterance coherence.

4.4.2 Human Evaluation

Besides DialogueScore evaluation and traditional metrics evaluation, we introduce a human-involved meta evaluation to measure the quality of the generated responses. Through this meta evaluation, we are able to calculate the correlation coefficient between the evaluation scores and the human ratings. Specifically, we select 50 dialogue responses and give certain number (4 turns) of dialogue histories plus the follow-up utterance and ask human judges to score whether the responses are natural in the given dialogue session.

Following Su et al. (2021), we ask multiple human judges to evaluate the responses with respect to whether the responses are coherent within the session and use the averaged score. Human judges need to predict the responses as
As seen in Table 1, state-of-the-art models are evaluated on the Testset of MultiWOZ 2.0 Dataset. The arrow suggests that generated texts can obtain higher performances than the reference responses in the utterance-response score. We assume that the neural dialogue systems always respond to the user’s queries without deeply understanding the dialogue states. Therefore, when the scorer only considers the utterance and response pair without any dialogue histories, the query-answer pattern is prevailing and the generated responses are more concise than reference responses. On the other hand, the reference responses are sometimes spontaneous which makes it harder for automatic scorers to evaluate. We explore this phenomenon in detail in the later section.

Further, in the results of the Response-Utterance DialogueScore, the performances of the generated texts are constantly worse than the reference responses. The generated responses cannot match the follow-up user utterances, indicating that these generated responses cannot anticipate the user’s goals properly. The generated responses only answer to the user’s queries without paying attention to the entire dialogue session, which is more similar to a question-answering system instead of dialogue system.

4.5 Results

In Table 1, we show the evaluation results of the DialogueScore on state-of-the-art models as long as the traditional metric results. In Table 2, we show the evaluation results of DialogueScore metric measured by the Kendall and Spearman correlation index compared with the meta evaluation results.

4.5.1 Response Evaluation with DialogueScore

As seen in Table 1, state-of-the-art models are struggling in achieving promising results of DialogueScore.

In Utterance-Response DialogueScore which considers over 3 turns of dialogue histories, the generated texts from the best model PPTOD are still 7 points worse than the reference responses, indicating that the generated texts are less satisfactory when the scorer considers multiple turns of dialogue histories. The generated responses do not match their corresponding user utterances, indicating that these responses do not understand the dialogue states given previous dialogue information.

Also, we can observe that when the dialogue history number is small (less than 3 turns), the generated texts can obtain higher performances than the reference responses in the utterance-response score.

In Table 2, we observed that different models perform differently in both traditional metrics and DialogueScore. Compared with standard PPTOD model, the fewshot PPTOD model that uses only 10% training data achieves unsatisfied performances in DialogueScore. We can notice that when the data is limited, the model focus more on the utterance-response pair without considering dialogue histories, which results in the highest performances in the 0-turn and 1-turn history utterance-response scorer. On the other hand, we can observe that when the traditional performances are similar, the DialogueScore can fairly score generated texts. Further, we consider that DialogueScore can fairly score generated texts that are not match the reference texts by the BLEU score, therefore we construct an additional testset that only selects low BLEU score (lower than 1.0) samples from the testset annotated by human judges.

As seen in Table 2, we can observe that:

<table>
<thead>
<tr>
<th>Model Metric</th>
<th>Reference</th>
<th>PPTOD</th>
<th>UBAR</th>
<th>PPTOD-fewshot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inform</td>
<td>-</td>
<td>87.8</td>
<td>85.1</td>
<td>83.5</td>
</tr>
<tr>
<td>Success</td>
<td>-</td>
<td>75.3</td>
<td>71.0</td>
<td>68.2</td>
</tr>
<tr>
<td>BLEU</td>
<td>-</td>
<td>19.9</td>
<td>16.2</td>
<td>15.6</td>
</tr>
</tbody>
</table>

DialogueScore: Utterance-Response

<table>
<thead>
<tr>
<th>0-Hrs.</th>
<th>1-Hrs.</th>
<th>2-Hrs.</th>
<th>3-Hrs.</th>
<th>4-Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-His.</td>
<td>51.3</td>
<td>43.1</td>
<td>44.4</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>56.7</td>
<td>53.9</td>
<td>44.7</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>51.2</td>
<td>52.1</td>
<td>44.7</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>49.6</td>
<td>52.0</td>
<td>44.7</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>52.8</td>
<td>53.1</td>
<td>44.7</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>53.7</td>
<td>53.3</td>
<td>44.7</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>53.1</td>
<td>53.3</td>
<td>44.7</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>53.5</td>
<td>53.7</td>
<td>44.7</td>
<td>43.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DialogueScore: Response-Utterance</th>
<th>0-Hrs.</th>
<th>1-Hrs.</th>
<th>2-Hrs.</th>
<th>3-Hrs.</th>
<th>4-Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Hrs.</td>
<td>55.0</td>
<td>53.7</td>
<td>53.2</td>
<td>49.6</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>34.4</td>
<td>33.1</td>
<td>34.9</td>
<td>42.3</td>
<td>44.3</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>20.6</td>
<td>18.3</td>
<td>17.3</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>19.4</td>
<td>18.3</td>
<td>17.3</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>58.5</td>
<td>58.5</td>
<td>58.5</td>
<td>58.5</td>
</tr>
</tbody>
</table>

Table 1: Model Evaluation with DialogueScore on the Testset of MultiWOZ 2.0 Dataset. The arrow suggests the gap between the generated and reference texts.

Table 2: Evaluation results of DialogueScore with traditional metrics and meta evaluation. The row of the arrow suggest that the generated texts are constantly worse than the reference responses.
High Correlation in DialogueScore: in the response and follow-up utterance scorer, we can observe that the scorer considers limited dialogue histories obtain high correlation score with human judges, indicating that the scorer can successfully tell whether the generated responses are coherent within the dialogue session.

Scorer with Dialogue Histories: we found that with limited history or too much dialogue histories, the user-response scorer does not show significant correlation with human judges while show significant correlation with reference responses. This unusual phenomenon indicates that in TOD systems, the response answered by human might not consist with other human judges considering that the dialogue sessions cannot be easily re-constructed. Therefore, strong automatic scorers are needed in TOD system to imitate human behaviors since human responses and judgements might be different.

Low-BLEU Score Samples:
We introduced DialogueScore as an auxiliary tool to score the quality of the generated response.

Table 2: Metric evaluation of DialogueScore. The arrow suggests the gap between DialogueScore and the corresponding BLEU score.

<table>
<thead>
<tr>
<th>Model</th>
<th>Metric</th>
<th>Average</th>
<th>Kendall</th>
<th>Spearman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inform</td>
<td></td>
<td>87.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Success</td>
<td></td>
<td>75.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BLEU</td>
<td></td>
<td>18.9</td>
<td>0.17</td>
<td>0.24</td>
</tr>
<tr>
<td>BLEU(low-BLEU)</td>
<td></td>
<td>0.5</td>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td>DialogueScore: Utterance-Response</td>
<td></td>
<td>57.0</td>
<td>0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>0-His.</td>
<td></td>
<td>56.8</td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>1-His.</td>
<td></td>
<td>53.9</td>
<td>0.25</td>
<td>0.08</td>
</tr>
<tr>
<td>3-His.</td>
<td></td>
<td>43.0</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>4-His.</td>
<td></td>
<td>44.4</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>DialogueScore: Response-Utterance</td>
<td></td>
<td>34.5</td>
<td>0.37</td>
<td>0.14</td>
</tr>
<tr>
<td>0-His.</td>
<td></td>
<td>33.4</td>
<td>0.48</td>
<td>0.31</td>
</tr>
<tr>
<td>1-His.</td>
<td></td>
<td>35.3</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>3-His.</td>
<td></td>
<td>42.4</td>
<td>0.24</td>
<td>0.07</td>
</tr>
<tr>
<td>4-His.</td>
<td></td>
<td>44.3</td>
<td>0.37</td>
<td>0.20</td>
</tr>
<tr>
<td>Utterance-Response(low-BLEU)</td>
<td></td>
<td>52.9</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>0-His.</td>
<td></td>
<td>56.8</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>1-His.</td>
<td></td>
<td>45.7</td>
<td>0.27</td>
<td>0.07</td>
</tr>
<tr>
<td>3-His.</td>
<td></td>
<td>39.9</td>
<td>0.08</td>
<td>0.19</td>
</tr>
<tr>
<td>4-His.</td>
<td></td>
<td>44.0</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>Response-Utterance(low-BLEU)</td>
<td></td>
<td>32.2</td>
<td>0.38</td>
<td>0.18</td>
</tr>
<tr>
<td>0-His.</td>
<td></td>
<td>35.6</td>
<td>0.40</td>
<td>0.20</td>
</tr>
<tr>
<td>2-His.</td>
<td></td>
<td>41.6</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>3-His.</td>
<td></td>
<td>46.7</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>4-His.</td>
<td></td>
<td>45.7</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td>Human Rating</td>
<td></td>
<td>1.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Human Rating (low-BLEU)</td>
<td></td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Ablation Studies of scorers using different synthetic data on the Multi-WOZ 2.0 testset using the PPTOD-small model. -/- is the reference response score and PPTOD model output score correspondingly.

<table>
<thead>
<tr>
<th>Model</th>
<th>Metric</th>
<th>DS</th>
<th>Session</th>
<th>Domain</th>
<th>State/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DialogueScore: Utterance-Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-His.</td>
<td>53.5/56.8</td>
<td>82.4/86.6</td>
<td>72.2/76.0</td>
<td>62.2/65.5</td>
<td></td>
</tr>
<tr>
<td>1-His.</td>
<td>54.2/56.7</td>
<td>85.9/88.7</td>
<td>75.1/79.2</td>
<td>63.4/65.2</td>
<td></td>
</tr>
<tr>
<td>2-His.</td>
<td>52.8/53.9</td>
<td>83.4/81.3</td>
<td>76.6/80.0</td>
<td>62.6/66.3</td>
<td></td>
</tr>
<tr>
<td>3-His.</td>
<td>51.3/44.4</td>
<td>84.3/82.2</td>
<td>78.2/78.9</td>
<td>63.1/58.9</td>
<td></td>
</tr>
<tr>
<td>4-His.</td>
<td>55.0/33.4</td>
<td>83.4/75.9</td>
<td>80.0/73.0</td>
<td>62.9/56.8</td>
<td></td>
</tr>
<tr>
<td>DialogueScore: Response-Utterance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-His.</td>
<td>55.0/34.4</td>
<td>84.5/85.0</td>
<td>73.0/52.5</td>
<td>64.8/48.6</td>
<td></td>
</tr>
<tr>
<td>1-His.</td>
<td>53.7/53.1</td>
<td>84.9/87.0</td>
<td>73.6/51.1</td>
<td>65.1/51.1</td>
<td></td>
</tr>
<tr>
<td>2-His.</td>
<td>53.2/54.9</td>
<td>83.0/84.7</td>
<td>73.7/56.2</td>
<td>64.2/53.3</td>
<td></td>
</tr>
<tr>
<td>3-His.</td>
<td>49.5/42.3</td>
<td>81.0/74.3</td>
<td>74.8/56.3</td>
<td>65.1/57.0</td>
<td></td>
</tr>
<tr>
<td>4-His.</td>
<td>50.0/48.9</td>
<td>80.4/73.6</td>
<td>74.5/55.3</td>
<td>67.5/60.0</td>
<td></td>
</tr>
</tbody>
</table>

4.6 Ablations
We conduct experiments to explore the construction process of our proposed scorer. That is, we only consider a certain type of synthesized data in training the scorer. We test the reference response DialogueScore and the generated response DialogueScore and show in Table 3. As seen, when the scorer is trained on one type of synthesized data, the average score is higher than the scorer trained by all synthesized data combined. We can observe that scorer trained using the state and action similar negatives does not show significant difference between reference and generated responses. This indicates that though the purpose of the scorer is to evaluate the quality of the generated responses, directly using negatives with similar states/actions does not help much. Using different perspectives of negatives can help the scorer to understand better about the quality of the generated responses. Therefore, we believe that a stronger scorer trained on higher quality negatives could obtain better results in response evaluation.
As illustrated above, in Table 1, the generated responses achieve even higher performances than the reference responses in the utterance-response DialogueScore with small number of histories (smaller than 3 turns).

When the utterance-response scorer only considers limited number of dialogue histories, the scorer can only focus on the query-answer pair between the user and the system.

As seen in the case study in Figure 3, when the scorer is able to consider previous histories, it can understand that the question asked by the user in the follow-up utterance is a proper response to the system question "can I help you with anything else?". Without considering the dialogue histories, the scorer does not understand the user’s intent about looking for the attraction, therefore a follow-up question may be considered inconsistent with the system response. Therefore, it is effective that we construct multiple scorers which consider different numbers of dialogue histories.

4.7 Analysis

4.7.1 Difference between BLEU and DialogueScore

The major problem about using the BLEU score in evaluating TOD systems is that the BLEU score highly rely on the co-occurrence between the reference response and the generated response. While in response generation, texts can be very different with the same purpose in TOD systems. The case study in Table 4 also proves such a phenomenon: the responses generated by the neural networks can understand the user’s goals and give proper suggestions for the user. Yet the representation does not match the reference responses which results in poor BLEU score. In such a case, we can observe that the DialogueScore can give high confidence that the generated texts are fluent and proper as system responses.

Therefore, the matching of tokens might not be necessary when it comes to system responses in the TOD system. We can conclude that in the TOD systems, automatic scorer can be helpful in improving dialogue systems as a proper evaluation guidance.

Our proposed DialogueScore could be a possible direction of exploring automatic evaluations in the dialogue systems.

4.7.2 Variance in Multi-Turn DialogueScore

As illustrated above, in Table 1, the generated responses achieve even higher performances than the reference responses in the utterance-response DialogueScore with small number of histories (smaller than 3 turns).

When the utterance-response scorer only considers limited number of dialogue histories, the scorer can only focus on the query-answer pair between the user and the system.

As seen in the case study in Figure 3, when the scorer is able to consider previous histories, it can understand that the question asked by the user in the follow-up utterance is a proper response to the system question "can I help you with anything else?". Without considering the dialogue histories, the scorer does not understand the user’s intent about looking for the attraction, therefore a follow-up question may be considered inconsistent with the system response. Therefore, it is effective that we construct multiple scorers which consider different numbers of dialogue histories.

<table>
<thead>
<tr>
<th>Type</th>
<th>Text</th>
<th>BLEU</th>
<th>DialogueScore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>User: hi, i need a train to broxbourne, please.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialogue</td>
<td>System: what time would you be traveling?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>User: i will be leaving on saturday and i am departing from cambridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System: there are [value_choice] trains that day you will be traveling?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User: i need to arrive by 16:15 and i want to book it for 6 people.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generated</td>
<td>User: hi, i need a train to broxbourne, please.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialogue</td>
<td>System: i can help you with that... where will you be departing from?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>User: i will be leaving on saturday and i am departing from cambridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System: there are [value_choice] trains leaving [value_departure] on [value_day].</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>what time would you like to leave?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User: i need to arrive by 16:15 and i want to book it for 6 people.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Difference in the BLEU score and Dialogue Score evaluation.
References

