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ABSTRACT

Large foundation models have achieved tremendous success with impressive perfor-
mance in multiple applications. However, their performance is often benchmarked
on natural images, where novel combinations of specific objects and nuisances
can be missing and not tested. In this work, we develop a framework to efficiently
probe foundation models for their vulnerabilities with diffusion generation, termed
DiffusionExplorer. We show that our framework can efficiently construct a test
set with novel combinations of object and nuisance factors to expose the failures
of foundation models. Experimental results show that our mined test samples are
challenging to foundation models, such as MiniGPT-4 and LLaVa, significantly
reducing their accuracy by 29.56% and 39.96%, respectively. Our work suggests
that generative models can be viewed as an effective data source in finding the
vulnerability of large vision foundation models.

1 INTRODUCTION

Large foundation models (Bommasani et al., 2021; Li et al., 2022; OpenAI, 2022; Ouyang et al.,
2022; Touvron et al., 2023) have made remarkable strides in numerous applications such as text-to-
image synthesis (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022; Ruiz et al., 2023)
and visual question-answering (Zhu et al., 2023a; Liu et al., 2023; Li et al., 2023a). GPT-4 (OpenAI,
2023) stands out for its advanced conversational capabilities and exceptional multi-modality skills.
However, those foundation models can fail under unforeseen user input (Wang et al., 2023; Zhao
et al., 2023). Due to their wide adaptation, it is becoming increasingly important to identify and
understand the vulnerabilities in large vision foundation models (Ming et al., 2022; Li et al., 2023b).

Prior work studied how to collect hard test samples for vision models. ImageNet-A (Hendrycks
et al., 2021) filters out samples from online image collections, while Stylized-ImageNet (Geirhos
et al., 2018) alters the styles of ImageNet images (Deng et al., 2009). Nevertheless, they cannot
create images with unseen object and background combinations. Another way is to source images
with the specified object and nuisances online. For instance, a search for a plate on the ice
skating rink outdoor should return pictures of a plate on ice. However, as illustrated in
Figure 1, Google could not return the expected image because this novel combination does not exist
online. ObjectNet (Barbu et al., 2019) controls the backgrounds by manually collecting images in 4
different scenes. However, to achieve this, ObjectNet (Barbu et al., 2019) requires 5982 workers to
collect images at their homes, which is time-consuming and labor-intensive.

We introduce DiffusionExplorer, a framework that is able to identify challenging test images for
large foundation models using diffusion generation (Sohl-Dickstein et al., 2015; Ho et al., 2020).
Leveraging diffusion models to generate images with novel combinations, DiffusionExplorer mines
a hard test set by finding the failures across various surrogate models, where the surrogate models’
predicted categories differ from the object category in the diffusion model’s input prompt.

A key advantage of our approach is that it can create hard images with novel combinations that are
absent from the existing image datasets and data source, see Figure 1. Since we can automatically
generate and find the hard images, our test set can be scaled efficiently. Our approach shows that
diffusion models can be an effective test set for exposing the vulnerabilities of large foundation
models. Moreover, we envision our method will be more effective with future generative models that
produce superior images.
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Figure 1: Top 5 images returned by Google when searching for a new combination of an object and
a nuisance. We show that Google often fails to return images with the novel object and nuisance
combination, indicating that Internet-image-based testing for foundation models can miss many
corner cases. Our method can create images with novel combinations to test large foundation models.

Experiments show that our test set significantly reduces the test accuracy of new foundation models,
suggesting that our test set poses a general challenge for large foundation models. For MiniGPT-
4 (Zhu et al., 2023a) and LLaVa (Liu et al., 2023), our test set reduces the accuracy by 29.56% and
39.96%, respectively. Our test set also reveals the spurious bias(Hendrycks et al., 2021) of large
foundation models and their failures in nearest neighbor retrieval. We find that our test set is also
challenging to the latest GPT-4 model and can cause it to mispredict. The main contributions of this
paper are summarized as follows.

• This work proposes the first framework that mines hard test images of large foundation
models through diffusion generation, suggesting generative models can be a effective data
source for testing foundation models.

• This work constructs a test set with novel combinations of objects and nuisances, which can
be a useful benchmark to challenge future foundation models.

• Our test set significantly reduces the performance of large foundation models, e.g., an
accuracy decrease of 29.56% and 39.96% for MiniGPT-4 and LLaVa, respectively.

2 RELATED WORK

Large foundation models. Large foundation models (Bommasani et al., 2021) have achieved
significant strides in various applications (Raffel et al., 2020; Scao et al., 2022; Hoffmann et al.,
2022; Smith et al., 2022; OpenAI, 2022), among which BERT (Devlin et al., 2018) and GPT-
2(Radford et al., 2019) are two pioneering large language models that have inspired numerous
advancements (Chowdhery et al., 2022; Ouyang et al., 2022; Touvron et al., 2023). Specifically,
GPT-4 (OpenAI, 2023) is distinguished by its advanced conversational skills and exceptional multi-
modality capabilities. Two followups LLaVa (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2023a)
exhibit many capabilities similar to GPT-4 by visual instruction tuning and adopting a large language
model Vicuna (Chiang et al., 2023), respectively. Despite the remarkable performance of large
foundation models (Sun et al., 2023), they may fail under unexpected user input (Wang et al., 2023;
Zhao et al., 2023). In this work, we challenge large foundation models using diffusion generation to
reveal their vulnerabilities.

Expose the vulnerabilities of large foundation models. Previous research has introduced multiple
benchmarks for evaluating large foundation models (Bai et al., 2023; Bitton et al., 2022; Xu et al.,
2023; Wang et al., 2023). For out-of-distribution (OOD) capabilities, Vlue (Zhou et al., 2022)
evaluates these models using images from MaRVL dataset (Liu et al., 2021). There are also other
test sets available. ImageNet-A (Hendrycks et al., 2021) filters out easy images from the data online,
while Stylized-ImageNet (Geirhos et al., 2018) modifies the styles of ImageNet images (Deng et al.,
2009). However, they cannot obtain images with novel combinations of objects and nuisances, such as
backgrounds. ObjectNet (Barbu et al., 2019) includes images of 4 backgrounds, which are collected
by 5982 workers from their homes. This process requires high time and labor costs. In this paper, we
show that our framework can efficiently find hard test images with novel combinations that do not
even exist online, resulting in a significant accuracy drop of large foundation models.

Large foundation models and diffusion generation. Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Dhariwal & Nichol, 2021; Ho & Salimans, 2022) have demonstrated great success
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Figure 2: Examples of images with novel combinations in our test set, where each image corresponds
to one object category and one background. We show 12 random backgrounds, and for each
background, we show 3 random object categories. Our method, DiffusionExplorer, is able to
construct a test set with novel object and background combinations.

in images generation (Saharia et al., 2022; Ramesh et al., 2022; Ruiz et al., 2023). As a milestone
work, Stable diffusion (Rombach et al., 2022) enables high-fidelity image synthesis with significantly
improved efficiency. A branch of work has applied synthetic images in the training of large foundation
models (He et al., 2022; Lei et al., 2023; Zhou et al., 2023; Tian et al., 2023). GenImage (Zhu et al.,
2023b) proposes a benchmark for the detection of synthetic images from natural ones. To the best of
our knowledge, this paper is the first to use synthetic images to expose the vulnerabilities of large
foundation models.

3 METHODOLOGY

We first present the framework of DiffusionExplorer in Section 3.1, which creates a challenging test
set for large foundation models through diffusion generation. We also introduce the statistics and
distributions of our test set in Section 3.2.

3.1 FRAMEWORK OF DIFFUSIONEXPLORER

Despite the impressive performance of large foundation models, probing these models for their
vulnerabilities is important for safety reasons. Typical ways to test models are adopting existing
test sets or actively querying the Internet to find failures (Hendrycks et al., 2021). However, images
with novel combinations can be missing on the Internet. As shown in Figure 1, an online search for
a plate on the ice skating rink outdoor on Google does not obtain the expected
results, highlighting the absence of such novel image combinations online. While we can conduct
real-world experiments or image editing to obtain those images, the collection procedure can be
expensive and time-consuming. To address this challenge, we propose to create data with missing
combinations using generative models as data sources.

Generative models as data source for novel image synthesis. We use the pioneering Stable
Diffusion model(Rombach et al., 2022) to obtain images with novel combinations of objects and
nuisances, which allows us to create images that follow our text specifications with high fidelity. The
generation of Stable Diffusion can be formulated as follows:

Image(C,B) = Stable Diffusion(Prompt(C,B)), (1)
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The image is a tennis racket. The image is more like a photo of a tennis racket.

This image is more like a photo of a tennis racket 
because it shows a tennis racket hanging on a 
wall in a room with a green background. The 

racket appears to be made of metal and has a 
black grip and white strings. 

The image is more like a photo of a tennis racket 
because it features a tennis racket hanging on a 
net, which is a common sight in a tennis court. 

The presence of a net in the image suggests that 
it is a tennis court, and the racket hanging on the 

net indicates that it is a tennis racket.

Is the image more like a photo of a frying pan or a tennis racket?

Why do you think this image is more like a photo of a tennis racket?

The image is a mushroom-shaped planter 
with a teapot on top. The image is more like a photo of a teapot.

This image is more like a photo of a teapot 
because it has a spout and handle on top, like a 
teapot. The moss on the top of the teapot also 

resembles the shape of a teapot.

The image is more like a photo of a teapot 
because it features a teapot sitting on a table in 
a garden setting, surrounded by greenery and 

flowers.

Is the image more like a photo of a wok or a teapot?

Why do you think this image is more like a photo of a teapot?

It looks like a photo of a water bottle. The image is more like a photo of a water bottle, 
as it is placed on a rock next to a body of water.

This image appears to be a photograph of a 
water bottle sitting on a rock in a body of water. 
The bottle appears to be made of clear plastic 
and has a white cap on top. The water in the 
background is clear and there are some rocks 

visible in the foreground. 

The image is more like a photo of a water 
bottle because it features a bottle sitting on a 
rock in a pond or a lake. The bottle is placed 
on a rock, which is a common sight in natural 
settings like lakes or ponds. The bottle is also 
partially submerged in the water, which adds 

to the impression that it is a water bottle. 

Is the image more like a photo of a soap dispenser or a water bottle?

Why do you think this image is more like a photo of a water bottle?

The image is more like a photo of a tennis racket 
because it features a tennis net, which is a 

crucial component of a tennis court. The net is 
positioned between two tennis players, and it is 

a common sight in tennis matches. 

The image is a tennis racket. The image is more like a photo of
a tennis racket.

Is the image more like a photo of a frying pan or a tennis racket?

This image appears to be a photo of a tennis 
racket because it has a wooden handle and a 
metal head, which are the main components 
of a tennis racket. The image also shows the 

strings of the racket, which are typically made 
of synthetic material. 

Is the image more like a photo of a  vase or a tennis racket?

Is the image more like a photo of a frying pan or a tennis racket?Why do you think this image is more like a photo of a tennis racket?

Ground Truth Category Failure Category  

Human MiniGPT-4 LLaVa

Background

The image is more like a photo of a basket 
because the main focus is on the intricate woven 
design of the basket, which is made from wicker. 

The basket is also filled with a teapot, which is 
placed inside the basket. 

The image appears to be a woven basket with a 
wooden handle.

The image is more like a photo of a basket, as it is 
described as a woven basket with a teapot inside.

Is the image more like a photo of a frying pan or a tennis racket?

This image appears to be a photo of a woven 
basket. The image shows the intricate design 

of the basket, with the handle and body made 
of woven rattan. The image is well-composed, 

with the handle of the basket in the 
foreground and the body of the basket in the 

background, creating a sense of depth and 
dimension.

Is the image more like a photo of a teapot or a basket?

Why do you think this image is more like a photo of a basket?
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Figure 3: Failure cases of MiniGPT-4 and LLaVa found by DiffusionExplorer. We ask MiniGPT-4
and LLaVa for the category of the input image and the reason for their predictions. For the image
(a) to (d), both MiniGPT-4 and LLaVa are fooled by the input images with novel combinations of
object and background. For image (e), we create novel combinations of object and texture, e.g., a
woven teapot, which can also cause the failure of MiniGPT-4 and LLaVa. Our results show that
the generative model can efficiently expose the failures of state-of-the-art foundation models.
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Figure 4: Framework of DiffusionExplorer. DiffusionExplorer first generates images by exhausting all
object category and background combinations, then mines the hard test images by finding the shared
failure images of surrogate models. For a precise test set, we finalize the test set with human checking.
Our approach can find the challenging test images of new large foundation models efficiently.

Figure 5: Test accuracy of target models on shared failures of surrogate models. We adopt known
surrogate models to identify their shared failure images as the test set, then evaluate a new target
model on this test set. We show that the shared failures of surrogate models can also deceive a new
target model, leading to low test accuracy. Increasing the number of surrogate models lowers the
target models’ test accuracy, suggesting a more difficult test set. Moreover, the test set diversity
decreases as more surrogate models are used, leading to a tradeoff between test set diversity and
difficulty.

where C and B refer to the object category and background, respectively. Specifically, we present the
diffusion model with a Prompt(C,B) in this format:

A [category] in the [background]

where we can create images by specifying the object category and background. The versatility of
diffusion models allows us to extrapolate and create images with specified category and background,
even though this combination is rarely seen in the real-world images.

Table 1: Test accuracy of CLIP (ViT-L/14). We
show that CLIP achieves high accuracy on syn-
thetic images with all object and background pairs.

Test Set ImageNet ObjectNet Synthetic
Acc (%) 73.95 67.88 95.29

We first evaluate CLIP (ViT-L/14) on the gener-
ated images, which exhaust all object category
and background combinations. As shown in Ta-
ble 1, we find that CILP can correctly classify
most of the synthetic images, achieving a high
accuracy of 95.29%. To expose the vulnerabil-
ities of large foundation models, we propose an
efficient strategy to find the hard test samples among all synthetic images as follows.

When creating an image with Stable Diffusion using a specified object category, the vision model
should recognize that same category during classification. This helps us detect perception failures
in vision models due to category inconsistency. Images deemed hard are those where the model’s
classification differs from the diffusion input, and these are added to our test set.

Hard image mining by category consistency. Since we create an image with a specified object
category with Stable Diffusion, the vision model should perceive that same category during classifica-
tion. This helps us automatically detect perception failures in vision models by category consistency.
Specifically, if the predicted category of a classification model differs from the object category in
diffusion’s input prompt, we view this image to be hard and include it in our test set. However, we
find that failure images of a single model can often be correctly classified by another new model,
indicated by the high test accuracy with one surrogate model used in Figure 5. We term the unseen
new models as target models to distinguish the surrogate models used in failure image selection.
A preferred hard sample should expose the shared vulnerability in multiple vision models, causing
concurrent failures. To identify these hard images, we create test sets with images that fail different
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Figure 7: Frequency of object category and
background pairs. Each dot indicates a pair,
while the x-axis and y-axis indicate the back-
ground and category, respectively. A darker
color indicates more samples.

numbers of surrogate models, and evaluate them using unseen target models in Figure 5. Figure 5
shows that the test accuracy of target models decreases with more surrogate models used in hard
image selection. This trend demonstrates that failure images of multiple surrogate models can form
a challenging test set for unseen new models. Notably, increasing the number of surrogate models
reduces the diversity of selected images, balancing between test set difficulty and diversity.

Quality control by human-in-the-loop. The above algorithm allows us to automatically find a hard
test set that can deceive unseen models. However, generative models are not perfect, and they can
generate incorrect images that do not contain the specified category in the prompt. For a precise test
set, we resort to human annotation to finalize the test set. Figure 2 displays example images from our
test set, demonstrating high fidelity and diversity with various object and background combinations.
Despite novel combinations, graduate students achieve an estimated 90% accuracy on our test set.
The framework of DiffusionExplorer is shown in Figure 4.

3.2 DATASET STATISTICS

Figure 6: Histogram of the image fre-
quency per category in our test set, fol-
lowing a natural long-tail distribution.

We generate images using 113 categories from ImageNet
and ObjectNet overlap and 468 backgrounds from the
Broden dataset (Bau et al., 2017), resulting in a total of
52884 object and background combinations. The lists of
category and background are reported in Appendix A and
Appendix B, respectively. The final test set after hard
sample selection has 5910 images, with an average of 52
images per category, similar to the 50 images per category
in ImageNet’s test set. Due to the efficiency and flexibility
of our framework, more images of new categories and
backgrounds can be readily added in our test set. Figure 6
displays the image distribution per category in our test set, showing a natural long-tail pattern. We
also show the frequency of different object category and background pairs in Figure 7, indicating a
sparse and non-uniform distribution. This non-uniform distribution shows the necessity of exhausting
all category and background pairs in test set construction. The frequency of category and background
pairs in the lower left corner of Figure 7 is relatively higher than other regions, indicating the higher
difficulty of these pairs. Here, we show some example combinations with high frequencies, such as a
bench in the badminton court, a paper towel in the corral, and a wok in the forest path. These are all
rare object and background combinations in the real world.

4 BENCHMARK THE VULNERABILITIES OF FOUNDATION MODELS

We start by describing our experimental setups and present the experimental results of large foundation
models on our test set in Section 4.1. We observe that our test set causes a significant accuracy drop
of 29.56% and 39.96% for MiniGPT-4 and LLaVa, respectively. We then probe the large foundation
models using our test set to uncover more vulnerabilities, including the spurious bias problem and
their failures in nearest neighbor retrieval.

Test set construction setups. We use Stable Diffusion (Rombach et al., 2022) for image generation
due to its high-fidelity synthesis, and use the pretrained weight of version stable-diffusion-2-1 from
Hugging Face. As a tradeoff between test set diversity and difficulty, we adopt 4 surrogate models
in hard image selection, including CLIP (ViT-L/14), CLIP (ViT-L/14) with resolution 336, CLIP
(ResNet50) and a vision model (ResNet50).

Test set evaluation setups. For reproducibility, we test open-source vision and foundation models,
such as CLIP (Radford et al., 2021), MiniGPT-4 (Zhu et al., 2023a) and LLaVa (Liu et al., 2023). For
CLIP, we follow the original paper (Radford et al., 2021) to adopt A photo of a category as
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Table 2: Test accuracy of vision models and large foundation models. We show the test accuracy for
the vision models and large foundation models (rows) on different test sets (columns). The lowest
accuracy for each model is bolded, indicating a more difficult test set. Our test set achieves the lowest
test accuracy for all models. For MiniGPT-4 and LaVa, our test set reduces the accuracy by 29.56%
and 39.96% compared to the ImageNet, respectively. Our results show that the generative model can
efficiently expose the failures of state-of-the-art foundation models.

Model Architecture ImageNet ObjectNet DiffusionExplorer Resolution

Vision model (CNN) VGG11 51.90 12.84 7.80 224
VGG13 54.90 13.89 9.41 224
VGG16 58.64 17.51 13.40 224
VGG19 59.30 17.95 11.87 224
ResNet18 54.99 14.04 8.91 224
ResNet34 61.82 19.73 10.77 224
ResNet101 69.62 27.91 14.50 224
ResNet152 69.98 29.43 15.01 224
Densenet121 62.35 21.50 12.13 224
Densenet161 70.99 27.62 15.35 224
Densenet169 68.51 25.52 15.10 224
Densenet201 68.67 26.07 14.42 224
Wideresnet50 73.63 29.56 10.60 224
Wideresnet101 74.11 31.74 13.99 224

Vision model (ViT) ViT-B/32 75.94 26.95 16.54 224
ViT-B/16 82.26 36.29 20.19 224
ViT-L/16 80.03 33.69 20.36 224

CLIP ResNet101 62.00 43.60 21.15 224
ViT-B/32 63.71 44.13 21.40 224
ViT-B/16 67.15 55.54 22.59 224

LLaVa Vicuna 13B 73.00 66.67 33.04 336
MiniGPT-4 Vicuna 13B 86.84 73.91 57.28 224

the text template and report the zero-shot accuracy. MiniGPT-4 and LLaVa provide textual answers
to image-based questions. For the evaluation of MiniGPT-4 and LLaVa, we ask the model for the
object category and their reasons for predictions with the following questions:

• Is the image more like a photo of a [Ground truth category]
or a [Failure category]?

• Why do you think this image is more like a photo of a
[Predicted category]?

We choose the category with the highest CLIP (ViT-L/14) confidence among all incorrect categories
as the failure category for the first question. For quantitative evaluation, accuracy is defined as the
ratio where the model selects the ground truth category in the response to the first question. Notably,
the first question offers two choices, making the random guessing accuracy 50%.

4.1 EXPERIMENTAL RESULTS

Plunger

The object in the image 
is a pool cleaning brush

or scrubber. It is used 
to clean the sides and 
bottom of swimming 

pools. 

What is the object?
Swimming pool 

Ground Truth Category

Human GPT-4

Background

Figure 8: Failure case of GPT-4 in our
test set. GPT-4 misclassifies the plunger
as a brush or scrubber.

Quantitative results. We report the test accuracy of vision
and large foundation models on different test sets in Ta-
ble 2. Each row is the test accuracy for one model where
we compare our test set with ImageNet and ObjectNet.
We bold the lowest result for each model (row), which
indicates the most difficult test set. From Table 2, we can
see that our test set achieves the lowest test accuracy for
all models, highlighting the difficulty of our test set. For
the CLIP model with the architecture ViT-B/16, our test
set yields an accuracy of 22.59%, which is 44.56% and
32.95% lower than ImageNet and ObjectNet, respectively.
For MiniGPT-4 and LLaVa, our test set reduces the ac-
curacy by 29.56% and 39.96% compared to ImageNet,
respectively. Notably, the accuracy of MiniGPT-4 and LLaVa is based on the two-choice question
introduced in the experimental setups. Therefore, the test accuracy of MiniGPT-4 on our test set
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Figure 9: Visualizing the spurious bias in foundation models. For each row, we show examples of
images with the same background and different ground truth categories. As shown in the red text of
column 1, images in the same row are predicted to the same failure category by CLIP model. Notably,
the failure category is highly correlated to the background for each row. In columns 4, 6, and 8, we
show the saliency map (Chefer et al., 2021) to see where CLIP model looks when making predictions.
Our results reveal that large foundation models can be deceived by spurious cues.

(57.28%) is comparable to random guess accuracy (50%), while the accuracy of LLaVa (33.04%)
performs even worse than a random guess. Our results show that the generative model can efficiently
expose the failures of state-of-the-art foundation models.

Visualization results. We show example conversations with MiniGPT-4 and LLaVa on our test set in
Figure 3. Although humans can easily recognize the primary object in images, both MiniGPT-4 and
LLaVa mistakenly interpret the image as a failure category. For instance, Figure 3(a) shows a wok in
a topiary garden, which is quite a rare object and background combination. Interestingly, MiniGPT-4
understands this image as a photo of the teapot, and explains its reason by claiming that this object
has a spout and handle on top. We visualize more examples in Appendix C. We also find that our test
set is challenging to the latest GPT-4 model and can cause it to mispredict as shown in Figure 8.

4.2 CHARACTERIZING THE LARGE FOUNDATION MODELS

To probe large foundation models with our test set for more vulnerabilities, we conduct the following
investigations.

Will large foundation models be deceived by spurious cues? Previous studies (Geirhos et al., 2020;
Arjovsky et al., 2019; Hendrycks et al., 2021) suggest that datasets with spurious cues can cause
inflated performance evaluations. For instance, a model might classify an image by its background
instead of the object. Our test set, featuring novel object and background combinations, facilitates
spurious cue analysis. As shown in Figure 3(c) and Figure 3(d), both MiniGPT-4 and LLaVa
misclassify images with a frying pan and vase as a tennis racket due to the background. MiniGPT-4
specifically mentions the tennis net in the background as its reason. We show more examples and
visualize their saliency map in Figure 9. Our results highlight that large foundational models can be
misled by spurious cues.

Can CLIP find the correct neighbors of our test images? CLIP model (Radford et al., 2021)
shows potential in the nearest neighbor search tasks. To investigate whether CLIP can find the correct
neighbors of our test images, we retrieve the most similar images from ImageNet for our test images.
Figure 10 shows that CLIP fails to return the neighbors with the same object category as the query
image. As shown in Figure 10(a), retrieved images have a similar background to the query image
instead of the object. Moreover, CLIP may retrieve the images that include the object related to the
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Figure 10: Visualizations of nearest neighbor images. We visualize the nearest neighbor images with
the images from our test set as the query image. Instead of following the same object category as the
query image, the nearest neighbor images either follow a similar background or follow another object
category that is highly correlated with the background of query image. Our results show that our test
set can find the vulnerability of foundation models in nearest neighbor retrieval.
Table 3: Failure transferability of natural images and our synthesized images. We study a new task
checking whether examples that cause one model to fail can also lead to the failure of another model,
termed failure tranferability. To compare the failure transferability of our synthetic test set and
natural test sets, we extract shared failure images of surrogate models from the original ImageNet and
ObjectNet, forming new sets: ImageNet (Failure) and ObjectNet (Failure). We show that our test set
achieves comparable test accuracy to ImageNet (Failure) and ObjectNet (Failure), indicating that our
synthetic images achieve comparable ability to natural images in finding the failures of new models.

Model Architecture ImageNet ObjectNet ImageNet (Failure) ObjectNet (Failure) DiffusionExplorer
CLIP ResNet101 62.00 43.60 8.85 6.85 21.15

ViT-B/32 63.71 44.13 11.15 7.23 21.40
LLaVa Vicuna 13B 73.00 66.67 33.27 36.86 33.04
MiniGPT-4 Vicuna 13B 86.84 73.91 70.46 57.06 57.28

query image’s background. In Figure 10(b), a T-shirt retrieves images like pill bottle or chair that are
commonly found in an operating room, the background of query image. Our results show that our
test set can find the vulnerability of large foundation models in the nearest neighbor search.

Beyond background: what else can DiffusionExplorer reveal? Our approach is a flexible frame-
work that can uncover other vulnerabilities in large foundation models beyond background. For
instance, while Stylized-ImageNet (Geirhos et al., 2018) exposes texture bias by modifying the styles
of ImageNet images, its diversity is limited by the original images. By contrast, DiffusionExplorer
can construct a hard test with novel object and texture combinations by specifying the texture in
the diffusion models’ input prompt. Figure 3(e) shows a woven teapot generated by Diffu-
sionExplorer, which both MiniGPT-4 and LLaVa misinterpret as a basket due to the texture. Our
results show that DiffusionExplorer can be flexibly extended to expose various vulnerabilities of large
foundation models.

Can our test set match natural ones in failure transferability? We study a new task checking
whether images that cause one model to fail can also lead to the failure of another model, termed
failure transferability. In Section 3.1, we select hard images by category consistency and show that
the shared failures of surrogate models in our test set can also deceive a new target model. This
indicates the capability of failure transferability of our synthetic test set. We conduct the same
experiment on natural images, including ImageNet (Failure) and ObjectNet (Failure), by finding the
shared failure images that all surrogate models misclassify. As shown in Table 3, we find that our
generated data achieve similar failure transferability as natural images. In contrast to traditional static
datasets like ImageNet and ObjectNet, our method enjoys a lower cost in creating novel data and can
be scaled efficiently, suggesting generative models can be a good data source for finding hard test
images.

5 CONCLUSION

In this paper, we propose a framework that challenges the foundation models by mining hard test
samples through diffusion generation. We construct a test set containing various novel combinations
of object categories and backgrounds, which shows a general challenge for the large foundation
models. Our test set significantly reduces the test accuracy of large foundation models, e.g., an
accuracy drop of 29.56% and 39.96% for MiniGPT-4 and LLaVa, respectively. Our work shows
that generative models can be a effective data source in finding the vulnerability of large foundation
models.
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A CATEGORY OVERVIEW

We generate images using 113 categories from ImageNet and ObjectNet overlap and follow Ob-
jectNet (Barbu et al., 2019) for the category names. We present the category list of our test set in
alphabetical order as in Table 4. Notably, more object categories can be added to our test set readily
due to the efficiency of DiffusionExplorer.

Table 4: Category list of our test set in alphabetical order. There are 113 categories in total, and more
categories can be added to our test set readily due to the efficiency of DiffusionExplorer.

Alarm clock Backpack Banana Band aid Basket
Bath towel Beer bottle Bench Bicycle Binder (closed)
Bottle cap Bread loaf Broom Bucket Butcher’s knife
Can opener Candle Cellphone Chair Clothes hamper
Coffee/French press Combination lock Computer mouse Desk lamp Dishrag or hand towel
Doormat Dress shoe (men) Drill Drinking cup Drying rack for plates
Envelope Fan Frying pan Dress Hair dryer
Hammer Helmet Iron (for clothes) Jeans Keyboard
Ladle Lampshade Laptop (open) Lemon Letter opener
Lighter Lipstick Matchstick Measuring cup Microwave
Mixing / Salad bowl Monitor Mug Nail (fastener) Necklace
Orange Padlock Paintbrush Paper towel Pen
Pill bottle Pillow Pitcher Plastic bag Plate
Plunger Pop can Portable heater Printer Remote control
Ruler Running shoe Safety pin Salt shaker Sandal
Screw Shovel Skirt Sleeping bag Soap dispenser
Sock Soup Bowl Spatula Speaker Still camera
Strainer Stuffed animal Suit jacket Sunglasses Sweater
Swimming trunks T-shirt TV Teapot Tennis racket
Tie Toaster Toilet paper roll Trash bin Tray
Umbrella Vacuum cleaner Vase Wallet Watch
Water bottle Weight (exercise) Weight scale Wheel Whistle
Wine bottle Winter glove Wok

B BACKGROUND OVERVIEW

To generate images with novel object and background combinations, we adopt the 468 backgrounds
from the Broden dataset (Bau et al., 2017). We randomly select 100 backgrounds as examples in
Table 5.

Table 5: Background examples of our test set in alphabetical order. We show 100 randomly selected
examples from all 468 backgrounds for reference. The background list demonstrates the diversity of
backgrounds and novel object background combinations in our test set.

Airplane cabin Airport Amphitheater Apartment building outdoor Apse indoor
Archive Arrival gate outdoor Auto factory Badminton court indoor Bakery
Ballroom Banquet hall Barn Basketball court indoor Beach
Bedroom Bistro indoor Bog Botanical garden Brewery outdoor
Bridge Bullpen Bullring Canal urban Candy store
Canteen Car interior backseat Cardroom Casino indoor Checkout counter
Choir loft exterior Clothing store Coast Coffee shop Convenience store outdoor
Corral Courtroom Cubicle library Diner outdoor Dinette vehicle
Dining hall Donjon Doorway indoor Drainage ditch Driveway
Earth fissure Elevator freight elevator Escalator indoor Fence Forest broadleaf
Formal garden Fort Galley Game room Granary
Gymnasium indoor Hallway Hayfield Highway Hill
Hotel outdoor Ice cream parlor Jacuzzi outdoor Jail indoor Joss house
Junk pile Kennel outdoor Kiosk outdoor Labyrinth indoor Library indoor
Lighthouse Liquor store indoor Manufactured home Marsh Mission
Museum indoor Natural history museum Ocean Parking garage outdoor Parlor
Pasture Podium indoor Pub outdoor Ranch River
Sandbar Savanna Shopfront Shower Skyscraper
Snowfield Stadium baseball Street Subway station corridor Subway station platform
Water mill Waterfall fan Wheat field Wrestling ring indoor Yard

C MORE FAILURE CASES OF LLAVA AND MINIGPT-4

We show additional examples in our test set that deceive LLaVa and MiniGPT-4 in Figure 11 and
Figure 12, respectively. Our results show that DiffusionExplorer can efficiently expose the failures of
state-of-the-art foundation models.
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Plunger

The image is more like a photo of a broom.

The image resembles a photo of a broom because it features a yellow 
mop head, which is a common tool used for cleaning floors. The mop 

head is placed on top of a computer server, which is a large, 
rectangular box with multiple compartments, typically used for 

storing and organizing electronic components. 

Is the image more like a photo of a plunger or a broom?

Why do you think this image is more like a photo of a broom?

Broom

Computer Room 

Ladle

The image is more like a photo of a tennis racket.

The image is more like a photo of a tennis racket because it shows a 
blue tennis racket, which is a common piece of equipment used in 

the sport of tennis. The racket is positioned in a way that suggests it 
is being held or resting on a tennis court, which is the typical setting 

for playing tennis. 

Is the image more like a photo of a ladle or a tennis racket?

Why do you think this image is more like a photo of a tennis racket?

Tennis racket

Badminton court

Drinking cup

The image is more like a photo of a beer bottle, as it is being held by a 
person's hand and is being served at an outdoor event.

The image is more like a photo of a beer bottle because the focus 
is on the beer bottle, with the person's hand holding it in the 

foreground. The bottle is clearly visible, and the hand holding it is 
also prominently displayed. 

Is the image more like a photo of a drinking cup or a beer bottle?

Why do you think this image is more like a photo of a beer bottle?

Beer bottle

Beer garden

Nail (fastener) 

The image is more like a photo of a plunger.

The image is more like a photo of a plunger because it features a 
round, white object with a long, thin handle, which is commonly 

associated with a plunger. The object is positioned in front of a wall, 
which could be a bathroom or a sink, where plungers are often used 

to clear clogged drains.

Is the image more like a photo of a nail (fastener) or a plunger?

Why do you think this image is more like a photo of a plunger?

Plunger

Subway station

Ground Truth Category Failure Category  

Human LLaVa

Background

Figure 11: Failure cases of LLaVa found by DiffusionExplorer.
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Wok

The image is a tennis racket.

This image is more like a photo of a tennis racket because it has a 
black handle and a white ball on it. The image also shows a blue 

court in the background, which is a common 
Feature  of a tennis court.

Is the image more like a photo of a wok or a tennis racket?

Why do you think this image is more like a photo of a tennis racket?

Tennis racket

Basketball court

Soap dispenser

The image is a picture of a pitcher.

This image appears to be a photograph of a pitcher on a baseball 
field. The pitcher is made of white plastic and has a metal lid on 

top. The image is taken from a low angle, showing
the pitcher from the side.

Is the image more like a photo of a soap dispenser or a pitcher?

Why do you think this image is more like a photo of a pitcher?

Pitcher

Dirt track 

Bench

The image is a photo of a speaker.

This image appears to be a photo of a speaker because it shows
the speaker's sound waves and the way they are reflected 

and absorbed by the materials around it. 

Is the image more like a photo of  a  bench or a speaker?

Why do you think this image is more like a photo of a speaker?

Speaker

Anechoic chamber 

Matchstick

The image is a wine bottle.

This image is more like a photo of a wine bottle because it shows a 
bottle of wine in a vineyard. The vineyard in the background and the 

rows of grapevines make it clear that the image is of
a wine bottle in a vineyard.

Is the image more like a photo of a matchstick or a wine bottle?

Why do you think this image is more like a photo of a wine bottle?

Wine bottle

Vineyard

Ground Truth Category Failure Category  

Human MiniGPT-4

Background

Figure 12: Failure cases of MiniGPT-4 found by DiffusionExplorer.
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