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ABSTRACT

Actor—critic (AC) algorithms underpin many of today’s most successful reinforce-
ment learning (RL) applications, yet their finite-time convergence in realistic set-
tings remains largely underexplored. Existing analyses often rely on oversimpli-
fied formulations and are largely confined to linear function approximation. In
practice, however, nonlinear approximations with deep neural networks dominate
AC implementations, leaving a substantial gap between theory and practice. In
this work, we provide the first finite-time analysis of single-timescale AC with
deep neural network approximation in continuous state-action spaces. In partic-
ular, we consider the challenging time-average reward setting, where one needs
to simultaneously control three highly-coupled error terms including the reward
error, the critic error, and the actor error. Our novel analysis is able to establish

convergence to a stationary point at a rate (’)(T’l/ 2), where T denotes the to-
tal number of iterations, thereby providing theoretical grounding for widely used
deep AC methods. We substantiate these theoretical guarantees with experiments
that confirm the proven convergence rate and further demonstrate strong perfor-
mance on MuJoCo benchmarks.

1 INTRODUCTION

Actor-critic (AC) methods have achieved substantial success in many challenging applications (Sil-
ver et al., [2017; [Vinyals et al., 2019} |[Lazaridis et al.| [2020). In particular, it becomes instrumental
in enabling highly robust and agile robot motion control involving continuous state-action spaces,
such as quadruped locomotion control (Miki et al.| 2022 Hoeller et al.| [2024), humanoid whole-
body control (Radosavovic et al.,[2024])), drone racing (Kaufmann et al.l 2023)), etc. These successes
are largely driven by the use of powerful function approximators, such as deep neural networks, to
represent control policies (actors) and value functions (critics).

Despite substantial empirical success, the theoretical understanding of AC methods remains under-
developed, especially in the most practical settings. Existing studies often restrict attention to finite
state—action spaces and adopt simplified algorithmic variants to ease analysis. For instance, double-
loop methods perform multiple critic updates per fixed actor (Yang et al., |2019; Kumar et al., 2023}
Agarwal et al.| 2021} Xu et al.| | 2020b)), which improves value estimation and thereby yields a more
accurate policy gradient for that actor. This enables a clean, decoupled analysis of the actor and
critic, but at the cost of impractically high sampling complexity. Similarly, two-timescale meth-
ods (Wu et al.| [2020; |Xu et al., |2020c; (Chen et al.| [2023)) impose a smaller step size on the actor
than the critic, with their ratio vanishing as iterations grow (i.e., lim; ,~, «;/f; = 0). This asymp-
totically decouples the actor and critic, mimicking multiple critic updates per actor. However, this
artificial slowing down of the actor is undesirable and rarely adopted in practice.

In contrast, the canonical form widely used in practice is the single-timescale AC algorithm, where
both actor and critic are updated simultaneously with proportional step sizes at each iteration (i.e.,
at /By = ¢). However, analyzing its convergence is more challenging than for the aforementioned
simplified variants, as the actor and critic updates are strongly coupled. The aforementioned decou-
pled analysis is over-conservative and cannot establish convergence of the single-timescale AC.

Recent efforts to study the convergence of the single-timescale AC algorithm include (Chen et al.
(2021)), |Olshevsky & Gharesifard| (2023)), (Chen & Zhao| (2024), and [Tian et al.| (2024), with their
respective settings summarized in Table [I| Among these works, only [Tian et al.[ (2024)) considers
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Table 1: Comparison of related works on single-timescale actor-critic algorithm analysis.

MDP Sampling Approximation Convergence
Reference
Continuous | Continuous | Markovian | Markovian | Neural Network | Experiment Convergence
State Space | Action Space | for Actor | for Critic | Function Class | Validation Rate

Chen et al.{(2021) X X X X X o(T—9-5)

Olshevsky & Gharesifard&mm X X X X x X o(T—°%)

I Chen & Zhao|(2024) X X X (,-)(T,o_s)
Tian et al.[(2024) X X X X O(T=9% + m=0:9)

- Our; @@=y

single-timescale AC with neural network approximation. Nevertheless, it suffers from two funda-
mental limitations. First, it is restricted to finite state—action spaces, where linear function approx-
imation already suffices. This renders the neural network perspective redundant and undermines
the practical significance of the analysis. In contrast, real-world reinforcement learning problems
typically involve continuous state—action spaces and rely on neural networks for expressive func-
tion approximation. Second, as shown in Table [1} the convergence rate in Tian et al.| (2024) is
O(T~%5 4 m~05), where T denotes the number of iterations and mn the neural network width.
While the T-dependence is natural for finite-time analysis, the m-dependence is problematic. In
practice, m is fixed during training and does not scale with 7', leaving a constant O(m~%?) error
term that fails to capture the true convergence behavior. Moreover, neural tangent kernel theory (Ja-
cot et al.,2018)) shows that neural networks become increasingly linear as m — oo, thereby degrad-
ing their representational power. Intuitively, the convergence of the algorithm should not hinge on
such m-limiting behavior. The observed dependence on m in prior results is merely a consequence
of analytical technicalities, rather than a fundamental property of the algorithm.

Motivated by these gaps, we provide the first finite-time convergence guarantee for single-timescale
AC in continuous state—action spaces under the time-average reward setting. Our analysis rigorously
incorporates both deep neural network approximation and Markovian sampling for the actor and the
critic. We prove the convergence of the reward error (Eq. (8a)), critic error (Eq. (8b)), and actor error

(Eq. (8d)) at rate o (T’l/ 2), without requiring the network width m to diverge. As summarized
in Table[I] our results compare favorably with prior studies across key dimensions that are critical
for practical applicability.

From a technical perspective, this improvement is enabled by a series of technical innovations. To
sharpen the convergence rate, we show that the smoothness-induced error—arising uniquely from
neural networks and absent in the linear setting—is intertwined with the critic error. Unlike [Tian
et al.| (2024), which conservatively bound the critic error by a constant, we prove that its mean
path diminishes, thereby removing the prior requirement of m — oo (see the mean-path update
analysis in Eq. (26)). To address the challenges of continuous state—action spaces, we introduce
an operator-based framework (see Eq. (I))) capable of handling uncountable domains. To mitigate
error propagation caused by deep neural networks (DNNs) approximation of the value function, we
establish a set of important regularity properties of DNNs in Lemma [l Moreover, the interplay
between DNN approximation error and Markovian sampling noise poses greater challenges than
those encountered in the linear function approximation (Chen & Zhaol 2024) or the i.i.d. sampling
setting (Olshevsky & Gharesifard, 2023} Tian et al.,|2024). To control such complex error dynamics,
we develop refined analyses in Lemma [7/}-Lemma [0 (Markovian noises). A high-level overview of
our proof ideas and newly developed techniques is provided in the Proof Sketch in Appendix [C]

This work is further distinguished by extensive empirical validation that corroborates our theoretical
results (see Section[5)). Although all prior studies listed in Table[T]|attempt to bridge the gap between
theory and practice, none included empirical evaluations. A key reason is that many of their assump-
tions are unrealistic for practical deployment. For instance, the algorithms analyzed in prior works
cannot even be applied to simple tasks such as gymnasium Pendulum—-v1(Towers et al.,|[2024),
since they are restricted to finite action spaces and depend on sampling from the stationary state
distribution. Moreover, AC with linear function approximation is generally incapable of controlling
standard benchmarks. In particular, our experiments show that the linear critic fails to approximate
the value function even for the simple pendulum (Figure [T). These observations highlight the sub-
stantial gap between the simplifying assumptions underlying existing theoretical analyses and the
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complexities inherent in practical RL applications. In contrast, we empirically verify both the con-
vergence and the proven convergence rate of our algorithm on pendulum, and further demonstrate
its effectiveness on more challenging Gym MuJoCo benchmarks, where neural AC consistently out-
performs its linear approximation counterpart. This underscores the importance of analyzing neural
AC algorithms, which are both practically relevant and theoretically more challenging.

Notation. We use san-serif letters to denote scalars and use lower and upper case bold letters to
denote vectors and matrices respectively. For two sequences of real numbers (z,,) and (y, ), we
write x,, = O(y,,) if there exists C' < oo such that |z,,| < Cly,| for all n sufficiently large. We use
@() to further hide logarithmic factors. The total variation distance of two probability measure 1
and v is defined by dpv (p, v) :=1/2 [, |u(dx) — v(dz)|.

2 PRELIMINARIES

Markov Decision Process. We consider the standard Markov Decision Process (MDP) character-
ized by (S, A, P,r), where S is the state space and A is the action space. The spaces S and A are
allowed to be either finite sets or real vector spaces, i.e., S C R% and A C R%. The transition
kernel is denoted by P(s;41]s¢,at) € R>¢ and the reward functionis 7 : & x A — [—u,, u,]. A
policy mg parameterized by 6 € Xg maps a given state to a probability distribution over the action
space, i.e., a; ~ mg(-|s¢). In this work, we consider the time-average reward setting (Sutton et al.,
1999; |Yang et al., 2019; |Wu et al., 2020; |(Chen & Zhao, [2024), which aims to find a policy g that
maximizes the following infinite-horizon time-average reward:

T-1
. 1
J(0) := lim Eg [T Z (8¢, at)} = E(s,a)~(10,70) [r(s, a)}.

T—o0
t=0

In the above equation, the expectation Eg is taken over the states and actions generated by following
the policy g and the transition kernel P. Additionally, pg denotes the stationary state distribution
induced by 7mg and P. The existence of this stationary distribution is guaranteed by the uniform
ergodicity of the underlying MDP, which is a common assumption (See Assumption|[6]in the sequel).
Hereafter, we refer to J(0) as the time-average reward (and exchangeably, performance function),
which can be evaluated by the expected reward over the stationary distribution pg and the policy
mg. The state-value function is used to evaluate the overall rewards starting from a state s, following
policy g and transition kernel P thereafter, which is defined as
S0 = S:| .

Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from
s, taking action a, and following transition kernel P and policy 7g thereafter:

o0

Vo(s) :=Eq {Z (r(se,ar) — J(8))

t=0

oo

Qo(s,a) :=Eg [Z (r(se,ar) — J(6))

t=0

50 = 8,00 = a} =r(s,a) — J(0) +E[V9(S/)L

where the last expectation is taken over s’ ~ P(-|s, a).

To tackle the technical challenges associated with neural network function approximation over con-
tinuous state and action spaces, we introduce two auxiliary operators. Let F := {f | f : S — R}
denote the class of real-valued functions on S. For a policy 7, define the operators Dg : F — F
and Py : F — F as

(Dof)(s) := po(s) F(s).  (Paf)(s / / () P(s' | s.a)mpla | s)dads’. (1)
Here, Dg multiplies a function f by the stationary distribution ug, whereas Py maps f to its one-step

look-ahead under the Markov chain induced by mg and P, i.e., (P f)(s) = Eo[f(st41) | st = $].
The inner product on F is given by
/ f(s 2

and the induced norm of a function f is || f||* = (f, f).
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Actor-Critic. In AC, the actor corresponds to the policy, while the critic typically estimates the
actor’s value function via temporal-difference learning. The actor then updates its policy parame-
ters through stochastic gradient ascent to maximize the performance function. The policy gradient
theorem (Sutton et al, [1999)) offers a closed-form expression for the gradient of the performance
function J(0) with respect to the policy parameters 8, which is given by

VoJ(0) = Esmpg,anme |Qo(s,a) - Vglogme(als)]. 3)
Equivalently, the policy gradient can be written as
VJ(0) = Esnpig,anmo[(Qa(s; a) — b(s)) Ve log me(als)];
where b(s) is called the baseline function, which is employed to reduce the variance of the gradient

estimate. A popular choice of baseline is the state-value function, which leads to the following
so-called advantage-based policy gradient

VoJ(0) = Esnpig.anme [Do(s,a) Vo log mo(als)], C))
where Ag := Qg (s, a) — Vg(s) is known as the advantage function.

In deep RL, the policy (actor) and value functions (critic) are typically parameterized by deep neural
networks due to their strong representation capabilities (Mnih et al., |2015; [Lillicrap et al.| [2015).
However, the convergence of training deep neural networks are less understood, especially in RL.
In this paper, we establish conditions and provide a finite-time analysis for single-timescale AC
algorithms utilizing deep neural network approximations for both the actor and the critic.

3 THE SINGLE-TIMESCALE NEURAL ACTOR-CRITIC ALGORITHM

In this section, we present the single-timescale neural AC algorithm to be analyzed in the sequel,
incorporating key components commonly found in practical implementations.

3.1 PARAMETERIZATION OF THE VALUE FUNCTION AND POLICY

We consider a deep neural network for estimating the true state-value function Vp(s) under a policy
mg. The network V' (w; s) has a general form of a deep neural network with a linear output layer:

sO g s L gm0y 10 K Plwrs) = T ()

) \/m—k (W )7 ) Sy s 4 V( ’ ) \/W ) (5)
where K is the total number of hidden layers, state s € R% is the input to the neural network, o is
an element-wise activation function, b is a fixed coefficient vector for the output layer, and w € Xq
stands for the trainable parameter of the neural network. The latter is a column vector formed by
stacking the weights of different layers, w := {W®) ¢ R™>*mx-11K “\where m; € N is the
width of the k-th layer and my = dj is the input dimension. Without loss of generality, we assume
all the hidden layers have the same width m, i.e., my = m for k € {1,2,---  K}. It is for the
ease of presentation only. As shown in the proof, our analysis also applies to m; > m. Note
that the above definition is general enough to encompass standard multilayer perceptrons (MLPs),
convolutional neural networks (CNNs), and residual networks (ResNets) as special cases (Liu et al.,
2020).

The policy mg is allowed to have a general parameterization, including linear functions (Yang et al.,
2019), deep neural networks (Wang et al.,[2019), and energy-based policies (Fu et al.,2020). For the
deep neural network approximation case, the actor can be parameterized similarly to Eq. (3], where
all the trainable parameters will be stacked into the column vector 8 € Xg.

3.2 ALGORITHM DESIGN

In this subsection, we first aim to update the parameter of the neural network (the critic) w so

that XA/(w; s) can approximate the true value function Vp(s) of a policy 7g. Concretely, at step ¢,
we implement Stochastic Gradient Descent (SGD) methods to adjust the critic in the direction that

would most reduce the mean square value error [V (s;) — V (wy; s¢)]2:
1 = 2
w1 =wi — =BV |V (sy) — V(wy; s
t+1 ¢ 25 [ ( tA (wy t)/]\ ©6)
=w; + B[V(st) — V(wy; st)]VV(wt; St),

4
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Algorithm 1 Single-Timescale Neural Actor-Critic

1: Input initial actor parameter 6, initial critic parameter wy, initial reward estimator 7, stepsizes
« for actor, 3 for critic, and y for reward estimator.

2: Draw sg from some initial distribution

3. fort=0,1,2,--- , T —1do

4:  Take action a; ~ g, (- | S¢)

5:  Observe next state s;4+1 ~ P(-| s, a;) and reward 7, = 7(s¢, ar)

6 5t =T —T]t+V(wt;St+1) —V(wt;st)

7o M =+ (e —me) R

8 w1 =projg, (wi + B VV (wy; 8¢))

9: 0t+1 = Ot + O[(L/Vg IOg 7T9t (at ‘ St)

10: end for

where [ is the stepsize (learning rate). Since V'(s;) is unknown, the semi-gradient TD(0) method
approximates it by replacing V (s;) with the current target . — J(0) + ‘A/(wt; st+1). To further
estimate the unknown time-average reward J(8), we use the following exponential moving average
update of 7,

Ner1 = N + (e —nt)s

where ~y is the stepsize. Hereafter, we will refer to it as the reward estimator. This additional
estimation of the time-average reward J(0) introduces more analysis complexity compared to the
discounted setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). Now, by denoting the TD
error as

8¢ v= e — ne + V(we; Se41) — Viwe: 8e),
we can rewrite the update of the critic in Eq. (6) as
W1 = Wy + ﬁétVIA/(w, St).

For the neural network specified in Section we require its width m to be a large constant such
that the neural network is in the overparameterization regime. In this regime, the optimal solution
typically resides in the neighborhood of the initialization (Du et al.l [2019; |Chen et al.| 2021} [Tian
et al., [2024). Therefore, in Line 8 of Algorithm m we constrain the update of the critic parameter
within a ball of constant radius around its initial condition, which ensures the boundedness without
overlooking the optimal solution. Specifically, proijO stands for the projection onto a ball with a

constant radius around the initial condition of the critic, i.e., By, = {w|||w — wo|| < ey}, where
U, 18 a constant.

For the actor update, it is standard to use the TD error (d;) as an approximation of the advantage
function (Sutton & Bartol2018]). Therefore, based on the policy gradient theorem, the corresponding
update rule for the actor can be written as

0t+1 = 975 =+ Oé(StVQ log 7T9t (at|st),

where 6, Vg log e, (at|s;) is an approximation of the policy gradient defined in Eq. (4)). The parallel
updates of the critic and actor in Lines 8 and 9 aim to drive the actor towards the direction that
increases the time-average reward .J(6).

We summarize the above-described AC algorithm in Algorithm [I] which follows the classic AC ar-
chitecture studied in prior works under various settings, as listed in Table[I} The “single-timescale”
refers to the fact that the stepsizes «, (3, 7y are only constantly proportional to each other. We consider
the more challenging neural network approximation for both the actor and the critic, which is re-
ferred to as the “neural actor-critic”. Moreover, we consider the more practical Markovian sampling,
starting from an initial state sy, with subsequent states and actions generated according to the tran-
sition kernel and the policy, respectively. The consecutive transition tuples (sg, ag, $1, a1, S2, )
form a single trajectory, thereby circumventing the time-consuming re-sampling procedure (i.i.d.
sampling) mandated in prior works (Chen et al.| 2021} Tian et al.l 2024). More importantly, we
aim to address the challenging settings of continuous state and action spaces that are prevalent in
applications (see Table [T] for a detailed comparison). The finite-time convergence in such contexts
is of significant interest to the community but remains unresolved.
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4 ANALYSIS OF SINGLE-TIMESCALE NEURAL ACTOR-CRITIC

In this section, we begin by outlining several standard assumptions and then present our main finite-
time convergence results for the algorithm.

4.1 ASSUMPTIONS

Assumption 1 (Neural architecture and initialization). The neural network defined in Eq. (B)) satis-
fies the following properties:

(a) (Input assumption) Any input to the neural network satisfies ||s©©| < 1.

(b) (Activation assumption) o is l,-Lipschitz and h,-smooth. i.e., Vx1,29 € R, (i) |o(21) —
o(x2)| < lolxy —x2|; (i) |0 (21) — o' (x2)| < ho|x1 — 22| Where o’ is the derivative of o.

(¢) (Initialization assumption) Each entry of the vector b satisfies |b;| < 1,Vi, and the weights

of the neural network Wo(k) are randomly initialized from a normal distribution N'(0,1),
with each entry being independently sampled.

This assumption mainly states the initialization and analytic properties of the neural network. We
note that these assumptions are widely satisfied in various applications. For the input norm con-
straint, we could normalize the state space to guarantee this assumption. Regarding the activation
function, we emphasize that many commonly used activation functions, such as sigmoid and GeLu,
satisfy this condition. The initialization assumption, furthermore, can be easily implemented during
neural network training. We also note that the above assumptions are common in the theoretical
analysis of neural networks (Liu et al.,|2020; |Tian et al.,|2024).

As shown in Lemma F4 of (Liu et al, [2020), with Assumption |1} the following assumption holds
with high probability, which we state as an assumption in our work for ease of presentation.

Assumption 2. The absolute value of each entry of s\¥) (the output of layer k of the neural network)
is O(1) at initialization. The initial weights satisfy ||Wék) | < O(/m) for all k.

For the value function Vy(s) of a given policy 6, its best approximation using the neural network
(Eq. (3)) is defined via

capp (0" (0)) 1= if \/ By [(V (w5 5) — Va(s))2], ™

where w*(0) is referred to as the optimal critic that yields the minimal (optimal) approximation error
€app(w*(0)). In this paper, we assume the optimal approximation errors for all potential policies
are uniformly bounded, that is,

Ve, eapp(‘-"*(e)) < €app;

for some constant €,,, > 0. The error €, is zero if Vg can be exactly approximated by the neural
network (Eq. (3))). Naturally, it is expected that the learning errors of Algorithm [T|depend on €gpp,
which represents the approximation capacity of the critic.

The assumption of a uniformly bounded approximation error is common in the literature (Chen
et al., 2021} |Olshevsky & Gharesifard, 2023; Chen & Zhao| 2024} [Tian et al., [2024). It is more
restrictive for the linear function approximation than for the neural network setting. If the true
value function is not linear, which is typically the case in practice, the approximation error €,py,
can be significantly large. In contrast, the neural network approximation can arbitrarily closely
approximate any continuous function according to the universal Approximation Theorem (Hornik}
1991)), and therefore can potentially keep the approximation error arbitrarily small.

We then make the following assumption for the optimal critic.

Assumption 3 (Smoothness of optimal critic). For any 61,05 € Xgo, we have
[w™(01) — w™(62)[] < L, [[01 — 62|,
[Vw™(61) — Vw™(02)]| < he|[01 — 62|,

where I, and h,, are finite positive constants.
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The above assumption states that the optimal critic is [,,-Lipschitz and h,,-smooth. This assumption
is commonly employed for the single-timescale AC with neural network approximation (Tian et al.,
2024). In the case of linear function approximation, the above assumption is trivially implied by the
linearity of the value function (Olshevsky & Gharesifard, |2023;|/Chen & Zhao, [2024).

Furthermore, we specify the regularity of the neural network.

Assumption 4 (Regularity of the neural network). For the neural network defined in Eq. (3), there
exists some constant A1 > 0 such that

IV(w) = V(@ (@) = Mw - w* ()], V0 € Xo,w € Xq,

where the norm of a function is defined based on the inner product given in Eq. (2), which involves
the product of function values integrated over s. Assumption [4] states the regularity of the neural
network in terms of learning the optimal value. Intuitively, it requires that the perturbation of the
critic parameter around the optimal one will cause a non-zero change of the critic neural network
output. From the point of view of the optimization landscape of the neural network, it merely
assumes that optimal and suboptimal points are distinguished. This is also a standard assumption of
other analysis of AC methods with neural network approximation (Tian et al., 2024).

The next assumption pertains to the exploration of the policy g in continuous settings.

Assumption 5 (Exploration). There exists a constant Ay > 0 such that <1A/(w), Do(I 7P9)‘7(w)> >

Ao HV(w)’ Q,for any 0 € Xe and neural network V (w) € F, where D, Py are operators defined
in Eq. (1), I denotes the identity operator, and the inner product is defined in Eq. (2).

To demonstrate its connection to exploration, we show that if exploration is insufficient, the assump-
tion fails to hold. First note that the operator Dg essentially multiplies the stationary distribution pg
to the function on its left (see the definition in Eq. (I))). If the policy g does not sufficiently explore,
there exists a subset of the state space A C S such that ug(A) = 0. Furthermore, we can choose
V(w) such that V(w;s) = 0,Vs € S\ A and V(w;s) > 0,Vs € A. With this choice, the left-
hand side of the inequality evaluates to 0, while the right-hand side becomes positive. This violates
the condition stated in Assumption [5] Thus, the contrapositive holds: if Assumption [3]is satisfied,
it ensures sufficient exploration of the state space under the policy mg. This sufficient exploration
assumption is standard in the literature of analyzing the convergence of AC algorithms (Wu et al.
2020; |Chen et al.l [2021}; |Chen & Zhao, 2024} Tian et al., [2024).

Assumption 6 (uniform ergodicity). For a Markov chain generated by the policy g and transition
kernel P, let P denote the corresponding state transition probability. Then there exists k > 0 and
p € (0,1) such that the total variation distance between the state distribution at time T and the
stationary distribution g satisfies: dpy (P(s- € -|so = $), no(-)) < kp™, forallT >0, s € S.

Assumption [6] assumes the Markov chain is geometrically mixing, which is implied by the uniform
ergodicity of the chain. It is commonly employed to characterize the noise induced by Markovian
sampling in RL algorithms (Bhandari et al) 2018} [Zou et al.| [2019; Wu et al.l 2020; |Chen et al.,
2021} |Olshevsky & Gharesifard, 2023)).

Assumption 7 (Regularity of the policy). Let wg(a|s) be a bounded policy parameterized by 6 €
Xo. There exists positive constants Uy, hr and l, such that for any 0, s, and a, it holds that: (i)
IV ilogme(als)| < urs (ii)||V1ogme, (als) — Viogme, (a|s)|| < hx||01 — 62||; (iii) |7e, (als) —
7o, (als)| < 1,]|61 — 02 ].

Assumption [/| states the regularity of the policy, which is standard in the literature of actor-critic
methods (Wu et al.l [2020; |Chen et al., [2021; |(Chen & Zhao, 2024; [Tian et al., 2024). These condi-
tions are sufficiently general to be satisfied by a wide range of distributions, including the uniform
distribution, the truncated Gaussian distribution, and the Beta distribution with o, 8 > 1.

4.2 FINITE-TIME ANALYSIS

We define the integer 77 := min{i > 0 | xp*~! < T—1/2}, where T is the total number of iterations,
+ and p are the same constants defined in Assumption[6] The integer 71 represents a certain mixing
time of an ergodic Markov chain, which will be used to control the Markovian noise in the analysis.
In our main results, we require that 7' > 27 to ensure that the Markov chain is well-mixed and the
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Figure 1: (a) Comparison of learned value functions: (left) linear critic, (middle) neural critic,
and (right) optimal V* obtained via time-average reward relative value iteration. Heatmaps are
rendered with the Viridis colormap, where blue indicates low values, green intermediate values, and

yellow high values. (b) Log-log plot of By := —— "7 ! E|v.J(6,)|? (Eq. (Bc)) versus T', with

T—T t=71r
T = 125 (TheoremlIl holds for T" > 27p). Colorgd markers represent five independent runs, and
the dashed line shows their mean with a linear regression fit.

—1
Markovian noise is effectively bounded. We can estimate that 77 = 2% e+ g llgggg_l = O(logT)

i i Tr—1 < 1
which results in xp < Nk
We quantify the learning errors by defining y; := 1, — J(6;), which is the difference between
the reward estimator and the true time-average reward J(6;) at time ¢. For the critic, we define
z; = wy — w; with wy 1= w*(0;) to measure the error between the critic and its target value at
iteration ¢. The following theorem summarizes our main results.

Theorem 1. Consider Algorithm|l|with o = ﬁ, 8= %, vy = % where c is a constant depend-

ing on problem parameters. Suppose Assumption[If7|hold, for T > 27r, we have

1 TZA Ej2 = 0 log? T + Olens) 8a)
T - t=1p yt a \/T eapp ’
T-1 9
1 log“T
E 2 =
T— 17 t:Z‘I'T I O( JT ) + O€app), (8b)
T-1 )
1 5 log” T
= 2 EIVIO =05 ) + Ol (50

Theorem [T] establishes the finite-time convergence of Algorithm [I] Given that the problem is in-
herently non-convex in general, it is common to prove convergence to a stationary point. The error
term O(eqpp) represents the critic approximation error that commonly appears in the analysis of AC
methods (Wu et al} 2020} [Chen & Zhao|, [2024; [Tian et al.| [2024). If the critic approximation error
€app 18 zero, the critic and the actor errors all vanish at a rate of O(T~'/2). The O notation hides
the polynomials of all other problem parameters that do not depend on T" and €,;,;,. The additional
logarithmic term with respect to 7" arises from the mixing time of the Markov chain, which can be
further eliminated if considering the i.i.d. sampling scheme (Chen & Zhao| [2024). As summarized
in Table[T] we establish convergence of single-timescale AC under the most practical settings.

The main challenge of our analysis lies in controlling the coupled reward error (Eq. (8a)), the critic
error (Eq. (8B)), and the actor error (Eq. (8c)). We begin by deriving implicit and coupled bounds
for the time-average reward error, the critic error, and the actor error, respectively. We then view
the propagation of these errors as an interconnected system (Chen & Zhao), 2024) and analyze them
holistically. To better appreciate the merit of our analysis, we sketch the main proof steps of Theo-
rem|T]in the Proof Sketch in Appendix [C]

5 EXPERIMENTS
5.1 APPROXIMATION CAPABILITY OF THE NEURAL CRITIC

We evaluate Algorithm[Tjon the Gymnasium Pendulum-v1 task. This is a canonical control task
with a continuous state space described by s = (cos 6, sin 6, ) (minimal coordinates (6, 6)) and a



Under review as a conference paper at ICLR 2026

Table 2: Final average reward under different configurations (mean =+ std over 5 seeds). Width
sweep uses fixed depth = 2; depth sweep uses fixed width = 128.

Config Ant HalfCheetah Hopper Humanoid  Swimmer Walker2d

Linear 797.1£66.0 299.2461.9 61.44252  186.9+14.7 35.944.7 810.9+£290.6
Width-64  1120.0£140.3  590.7+135.6  108.5£16.3  264.0£56.1  132.5+78.4  1215.3+192.6
Width-128  1587.4+183.2 1425.8+161.7 533.8+64.7 291.1#63.9  220.5+41.8  1400.9+461.2
Width-256  1245.2+126.7 2250.1+£187.9 725.3+165.0 365.2+64.3  251.3+8.8  1390.9+324.9
Width-512 949.2+754  1691.6+245.8 749.3+304.6 448.9+48.4 222742277  996.5+180.9
Depth-1 961.2+8.0 1205.84293.5 174.6+£344  219.0£24.3 173.6x101.1  1118.4+39.5
Depth-2 1587.4+183.2 1425.84381.7 533.8464.7 291.1£63.9 201.2+54.2  1400.9+461.2
Depth-4 1824.9+147.0 2144.2+229.6  465.6+£95.6  385.0+50.0 182.6+26.8  865.1£196.5
Depth-8 1021.0£58.3  1699.2+285.4  210.8+68.2  546.4+63.7  230.9+57.7  1136.9+45.0

continuous torque action. The critic is parameterized by a DNN of the form Eq. (3)), and the actor is
a Gaussian policy whose mean and variance are produced by a DNN with the same architecture. For

~

comparison, we employ a linear critic parameterized by a fixed 6-term RBF feature map, V (s) =
w' ¢(s) with w € RO, The feature vector consists of Gaussian RBFs defined on (cos ,sin 6, 6):
lls—cill3

0i(s) = exp(- 125
is determined by a standard width rule (Konidaris et al.| 2011)). For visualization, the ground-truth
baseline is computed via time-average reward relative value iteration (RVI) (Bertsekas, [1998). As
illustrated in Figure[T|(a), the neural critic aligns more closely with the ground-truth value.

) , i =1,...,6, where the centers {c; € R3} are placed uniformly and &

5.2 EMPIRICAL VALIDATION OF THEORETICAL CONVERGENCE RATE.

In this experiment, we follow the same setting as in Section We empirically estimate the
convergence rate of Algorithm [I] (Eq. (8c)) to examine its consistency with the theoretical rate of
(’)(T‘l/ 2). As shown in Figur after an initial warm-up period of about 250 iterations (recall
that Theorem [I] applies to 7' > 277), the curve exhibits a clear linear trend. Fitting a single slope
to the mean trajectory yields —0.51, which aligns closely with the theoretical value of —0.5. This
agreement provides direct empirical support for our theoretical convergence rate.

5.3 ALGORITHM EVALUATION ON MUJOCO BENCHMARKS

We further evaluate Algorithm [1| on challenging
continuous-control benchmarks from Gym Mu-
JoCo, including Ant, HalfCheetah, Hopper, Hu-
manoid, Swimmer, and Walker2d. We conduct
ablations along three axes: (i) linear critic, (ii)
neural critic with varying depths, and (iii) neu-
ral critic with varying widths. The linear critic
is identical to that used in Section 5.1l Table 2] 00 0z 04 O aoE M0 00 D2 04 06 o8 10
reports the final average rewards over five seeds,

while Figure [2] illustrates the learning curves of
two selected entries from the table. Overall, the
linear critic underperforms substantially across
all tasks. These experiments validate the effec- sweep). Mean =+ std over 5 seeds; dashed = lin-
tiveness of our considered algorithm on practical ~ear baseline.

tasks and also reinforce the importance of analyzing realistic neural AC settings.

Linear level
Depth-4
Depth-1

2500 2250

2000 2000
1750
1500

1250

1500
1000
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Width-256
Width-128 750

1000

(a) Effect of width on reward. (b) Effect of depth on reward.

Figure 2: Reward curves under different capaci-
ties: HalfCheetah (width sweep) and Ant (depth

6 CONCLUSION AND DISCUSSION

In this paper, we provide the first finite-time analysis of single-timescale AC with deep neural net-
work approximation in continuous state—action spaces under the time-average reward setting. Our
results surpass those of existing works by effectively addressing continuous state and action spaces,
utilizing Markovian sampling, and employing deep neural network approximations for both critic
and actor. We also conduct extensive experiments to validate the convergence guarantees of the
analyzed algorithm.
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A RELATED WORK

Actor-Critic methods. The AC algorithm was initially proposed by |Konda & Tsitsiklis| (1999).
Subsequently, extended it to the natural AC algorithm. The asymptotic convergence
of AC algorithms has been well established under various settings, as demonstrated in works by
Kakade| (2001)), Bhatnagar et al.| (2009)), [Castro & Meir| (2010), and [Zhang et al.| (2020b). More
recently, many studies have focused on the finite-time convergence of AC methods. Under the
double-loop setting, Kumar et al.| (2019)) investigated the finite-time local convergence of several AC
variants with linear function approximation. [Wang et al.| (2019) explored the global convergence of
AC methods with both the actor and the critic parameterized by neural networks with single hidden
layers. [Cayci et al.| (2022)) improved upon the work of by considering Markovian
sampling and reducing sample complexity. analyzed natural AC under Markovian
sampling, while (Chen et al.| (2022) studied decentralized AC and decentralized natural AC in the
same setting. More recently, Gaur et al.|(2024) and |Zhang et al.|(2025]) established global optimality
convergence for double-loop AC methods.

Under the two-timescale AC setting, established the finite-time local convergence to
a stationary point at a sample complexity of O(e~2%) under the undiscounted time-average reward
setting. studied both local convergence and global convergence for two-timescale
(natural) AC, with O(e=2-%) and O(e~*) sample complexity, respectively, under the discounted ac-
cumulated reward. The algorithm collects multiple samples to update the critic. [Hong et al.| (2023))

proposed a two-timescale stochastic approximation algorithm for bilevel optimization and the algo-
rithm was subsequently employed in the context of two-timescale AC. (2023)) established

13
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the global convergence of two-timescale AC methods for solving linear quadratic regulator (LQR),
where only a single sample is used to update the critic in each iteration. However, none of these
previous results utilized neural network approximation for the value function (the critic).

Under the most challenging single-timescale setting, [Fu et al.| (2020) considered the least-squares
temporal difference (LSTD) update for the critic and obtained the optimal policy within the energy-
based policy class for both linear function approximation and neural network approximation. Zhou
& Lul (2023) studied single-timescale AC on LQR. In addition, (Chen et al.| (2021)); Olshevsky &
Gharesifard|(2023)); |(Chen & Zhao|(2024) considered the single-timescale AC in general MDP cases
with linear function approximation. Recently, |Tian et al.|(2024) built upon the results of |Olshevsky
& Gharesifard (2023)) and improved to neural network approximation. A comprehensive review and
comparison of all existing results on single-timescale AC in general MDP settings are presented in
Table[l

B ADDITIONAL NOTATIONS

We make use of the following auxiliary Markov chain which was introduced in (Zou et al.,[2019) to
deal with the Markovian noise.

Auxiliary Markov Chain:

0: - P 0: - P ~ 0: - P ~ 60t r . P -
St—r =7 Qt—7 —7 St—g41 — 7 Qp—741 — 7 St—742 — > Qp—742 " —> St — > At —7 St41-

9
For reference, we also show the original Markov chain.
Original Markov Chain:
;- P O rp1 ~ P (22— P 6, P
St—r = Qg —7 St—q41 — 7 Qt—741 7 St—742 — 2 Qt—742 """ —> St —2 A —>(51t(-)§—)1~

In the sequel, we denote by 5t := (8¢, ay, S¢+1) the tuple generated from the auxiliary Markov chain
in Eq. (O) while O; := (s¢, at, s¢+1) denotes the tuple generated from the original Markov chain in

Eq. (10).

In our work, we use the term Markovian sampling to refer to the setting where all samples are drawn
from a Markov chain. Concretely, the samples follow

(P,mo,) (P,me,) (P,me,)
(So?ao) —91> (51,01) —92> (82702) P L (Stvat)7 (11)

forming one trajectory (sg, @g, $1, A1, - - -, St, Q).

Remark. Note that in Table E] we label the actor sampling in [Tian et al.| (2024)) as not Markovian.
This arises from the fact that Tian et al.| (2024) adopts a sampling scheme that is fundamentally
different from the Markovian sampling in Eq. (IT). For each update at timestep ¢, the state—action
pair (5, a;) used in the actor update in|Tian et al. (2024) is obtained by sampling a random horizon

T ~ Geom(1 —7),

rolling out a trajectory (so, ag, $1,01,-..,ST,ar), and using only the terminal pair (8;,d:) =
(s7,ar). Each (8, a;) therefore arises from an independent rollout, and successive samples do not
satisfy any Markovian dependency:

(8¢, a¢) 7 (St41, Geq1)-

Because this sampling is based on independent random-horizon rollouts, no Markovian noise arises
in this part. In practice, this is also less sample-efficient than single-trajectory Markovian sampling.

For this reason, although [Tian et al| (2024) refer to their scheme as “Markovian sampling”, we
view it as fundamentally different from the standard usage of the term and label it as to be “not
Markovian” in Table 1. Notably, this same sampling mechanism has been used in [Zhang et al.
(2020a), who explicitly refer to it as random-horizon policy gradient. Following this terminology,
we believe “random-horizon sampling” is a more accurate description for this type of sampling.

14
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We define the following functions, which will benefit to decompose the errors and simplify the
presentation.

Ag(0,1,0) == [J(0) = mVV (w;s),
9(0,w,0) :=[r(s,a) = J(8) + V(w;s') — V(w; 8)]VV(w; s),
3(w,0) := E(y 0 o)m(omo.) [(1(5,0) = J(0) + V(w; s") — V(w; 5))VV (w5 5)],
(o 0w, 0) (J(8) =+ Viwss') = V(wss) = V(w"(0):8') + V(w’(8):5))VIog mo(als).
,0) = (r(s,a) = J(8) + V(w"(0);s') — V(w"(8); 5))V log me(als)
Ah’(O 0) = ((V(w"(0);8) — Va(s')) — (V(w"(8); s) — Va(s)))V log mo(al ). 1)
We also define the following functions, which characterize the Markovian noise.

®(0,n,0) = (n— J(0))(r(s,a) — J(8)),
¥(O,w,0 w—wp,9(0,w,0) — G(w,0)), 13

)=
2(0,w,0) := (w — wp, (Vw) " (Eo, [1(Og, 8)] — h(0.8))),
©(0,0) :=(VJ(8),Eq, [1(O0p,0)] — 1(0,8)),

where Op is a shorthand for an independent sample from stationary distribution s ~ pg,a ~
9,8 ~ P.

To demonstrate the main ideas of the proof of Theoremm we use the notations Y7, Zr and G for
the three errors that we seek to bound, namely,

) .— L ENV) =

tTT fTT tTT

(14)

Here £, £(*) and £(V) represent the reward error, critic error, and actor error (policy gradient
norm), respectively. Our proof of Theorem [I] primarily involves analyzing and bounding these three
errors relative to one another. The difficulty of this work lies in the continuous state and action
spaces and the neural network approximation.

To ease the presentation, we define u := max{u, g, Uy, u; } as a uniform upper bound for 7, z, v
and V log g (als), where u, is defined in Lemmal(l} Then we have |0V log mg|| < 4u?. The norm

of w is defined by [lw|| =: (i, [|W#)[|2)1/2, where | - ||p is the Frobenius norm of a matrix.

C PROOF SKETCH

In this section, we outline the error-term analysis of Theorem([I] After bounding each component, the
convergence follows by solving the interconnected iteration inequalities (E.4)). The key challenges
and new techniques developed are correspondingly emphasized.

Reward error analysis. using the reward estimator update rule (Line 7 of Algorithm|I)), we decom-
pose the reward error into:

Y < (1 = 29)y7 + 27yt (re — J(6)) + 2y¢(J(6;) — J(6¢41))
+2(J(0:) = J(14+1))% + 27 (re — m)*.

The second term on the right-hand side of Eq. corresponds to a bias induced by Markovian
sampling in MDP with continuous state—action spaces under neural network function approxima-
tion, which we addressed in Lemma[7} The third term captures the variation of the moving actor
performance targets J(6;) tracked by the reward error. Leveraging the smoothness of J(0) (see

Lemma @) and the boundedness of 1% (see Lemma |1}), we derive an implicit upper bound for this
term expressed as a function of |y;| and V.J(6;). The fourth term represents the difference between
the moving actor target, which can be controlled due to its Lipschitz continuity shown in Lemma [5]
The last term in Eq. reflects the variance in reward estimation, which is bounded by O(~).

15)
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Critic error analysis. using the critic update rule (Line 8 of Algorithm [I)), we decompose the
squared error by:

Ellzes1]]® < El|zel|” + 28E(z¢, §(wy, 0,)) + 2BEW(Oy, wy, 6;) + 2BE(z¢, Ag(Oy,m1, 6,))
+ 2B (z¢, w; — wyiy ) + 2E|wf — wi |12+ 2E[B(g(Or, wy, 0;) + Ag(Or, e, 61))]>.
(16)

The definitions of g, g, Ag, O, and ¥ can be found in Appendix [B] First of all, the second term
on the right-hand side of Eq. (I6) is the inner product between the critic error z; and the critic’s
mean-path update g(w;, 8;), which serves as the key to the convergence. Our analysis for this term
is distinct from all previous results since considering continuous spaces and deep neural networks
substantially complicate the bounding process. we employ the Bellman equation to manage error
propagation and control the error by leveraging the approximation capability of the neural net-
work (Eq. (7)), the regularity of neural network (Lemma[I), and sufficient policy exploration (see
Eq. 27)). It provides an explicit characterization of how sufficient exploration can help the conver-
gence of learning. The third term is a Markovian noise, which we bounded in Lemmal[g] The fourth
term is caused by inaccurate reward and cri/t\ic estimations, which can be bounded by the norm of y,
and z; after applying the Lipschitzness of V as shown in Lemma (I} The fifth term tracks both the
critic error z; and the difference between the drifting critic targets w;. We establish an implicit upper
bound for this term as a function of y; and 2z;. The sixth term represents the difference between the
moving critic target, which can be controlled due to its Lipschitz continuity stated in Assumption [3]
Finally, the last term reflects the variances of various estimations, which is bounded by O(f3).

Actor error analysis. using the actor update rule (Line 9 of Algorithm [I)) and the smoothness
property of J(6) (see Lemmal6)), we derive

1
E|[VJ(8,)* < - (E[J(e41) = J(8:)]) — E(VJ(0), AR(Or, e, wi, 0:)) + E[O(Or, 0 )]
a7
h.
—E(VJ(6:), Eo;[AN (O}, 61)]) + = aE||0,V log ma, (a| 1) |-
where the definitions of Ah, AR/, © and O} can be found in Appendix [B] The first term on the right-

hand side of Eq. (17) compares the actor’s performances between consecutive updates, which can
be bounded after summation. The second term is an error introduced by the inaccurate estimations

of both the time-average reward and the critic. After employing the Lipschitzness of V, we control
this term by providing an implicit bound depending on y;, z;, and V.J(0;). The third term is a noise
term introduced by Markovian sampling, which we handled in Lemma [I0] The fourth term comes
from the linear function approximation error. The final term represents the variance of the stochastic

gradient update, which is controlled by O(«) due to the boundedness of V, aresult we specifically
derived in Lemmal[ll

D PRELIMINARY LEMMAS

Lemma 1. There exists scalars u,,l,,, and h,, such that for any s € S and w1, ws € Xq,
IV (w3 )] < wa,
1V wiss) = V(wsi )] < Lollwr — wsll,
IVV (w13 ) = VV (wa; 8)|| < hyflwr = ws,
where u,, = O(1),1l, = O(1) and h,, = é(ﬁ) with respect to width m.

Lemma 2. There exists a positive constant l; such that for any 01,05 € Xg, it holds that

drv (7o, (-] 5), e, (| 5)) < lx[61 — 62]|. (18)
Lemma 3 (Distance between stationary distributions). For any 61 and 0, it holds that
1
drv (pe,, pe,) < lx([log, k'] + ﬁ)”el — 0,

1
dTV(Mel @ oy, [lo, ®7T92> < lﬂ'(l + |_1ng K_1—| + E)Hal - 92”7

1
drv (1o, ® To, @ P, tig, © T, @ P) < Ir(1 + [log, k] + T ler el

16
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Lemma 4 (Distance between distributions induced by the original and auxiliary chains). Given time
indexes t and T such that t > 7 > 0, consider the auxiliary Markov chain in Eq. (9). Conditioning
on sy_r41 and 0,_ ., we have

dry (P(si41 € ), P(Bis1 € ) < dpv (P(O; € ), P(O; € ),
drv (P(O € ), P(O; € ) = drv (P((st,ar) € ), P((3¢, @) € ),
dry (P((st,ar) € -),P((30,a) € ) < dpv(P(se € -),P(3; € ) + %szmet — 0.

Lemma 5 ((Wu et al., 2020)). For any 61, 05, we have
|J(61) — J(62)] < 1;61 — 2],

where

_ 1
l; = 2ul(1+ [log, s '] +fp) (19)
Lemma 6 ((Zhang et al., 2020a)). For the performance function J(0), there exists a constant h; > 0
such that for all 01,05 € RY, it holds that

[VJ(01) = VJ(0:)] < h;]|61 — 62, (20)

which further implies
7(6:) 2 J(8:) + (VI(6:),0: - 61) — 2 |0, — 6, e
T(6:) < T(0:) + (VI(6:),0: - 01) + 2 [0, — . @

E PROOF OF MAIN THEOREM

In this section, we aim to show the proof of Theorem|[I}

We decompose the whole proof into four steps.

E.1 STEP 1: REWARD ERROR ANALYSIS

In this subsection, we will establish an implicit bound for estimator.

Lemma 7 (Markovian noise). From anyt > 1 > 0, we have
E[®(Oy,mt, 0:)] < 16u*Tal; + du 77y + 4u1(1 + 1)ad, + 4u’kp™ L.

Theorem 2. Choose o = =, f = = ﬁ, we have

log? T
£W < o( Ogﬁ ) + deuV/EWEM). (23)

Proof. From the update rule of reward estimator in Line 7 of Algorithm|l| we have

N1 — J(Or1) = me — J(0r) + J(01) — J(Op11) + (1t — me)s

which implies

Yirr = (e + J(0:) = J(Org1) +(re — mi))”
< yp 4 20 (J(0y) — J(Be41)) + 2vye(re — me)
+2(J(0r) = J(8:11))* + 29 (re — me)? (24)
= (1= 27)y7 + 2yye(re — J(01)) + 2u(J (6:) — J(6¢41))
+2(J(8:) = J(0:41))* + 293 (re — m0)*.

17
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Taking expectation up to s;4; (the whole trajectory), rearranging and summing from 7o to 7' — 1,
we have

T-1 T-1 4 T-1 T-14
Z E[y;] < Z ?E(y? —Yi) + Z Ely:(re — J(0¢))] + Z —E[y(J(6:) — J(01+1)]
t=17p t=1p g t=7p t=77 v
I I I3
T-14 T-1
+ Y —E[(J(0:) = T(8:41))*]+ > VE[(re — m)*].
t=1p v t=77p
I4 15
For term I7, by direct computation, we have
-1
L = Z 27]E(yt2 — Y1)
gl
t:TT
2
8l

= 2u*VT.
For term I, from Lemmal[7] we have
Elye(re — J(6;))] < 16uTal; + 4ury + 4uP7 (7 + 1)al, + dukp” L.

Choose 7 = 7, we have
T—1

L= Ely(r — J(61))]

t=1r
T-1

< (16u2leT + 4’LL2ZWTT(7'T +1)) Z o

t=7r

T-1 T-1
e Sy Y =
t=1r t=1r \/T

T—TT

vT

= (160u2leT + 4cu217TTT(TT +1)+ AT + 4u2)
For I, if y; > 0, from Eq. 2I)), we have
B
Ye(J(0r) — J(0141)) < yt(§J||9t — O 1]> +(VI(6,),0, — 0,41))

< uh; |0 — 0u |1 + [yel16: — 01 [V T (8,)]].
If y; <0, from Eq. (22)), we have

h,
Ye(J(60r) — J(0141)) < yt(—?jH@t — 61 |]” + (VJ(6:),0; — 6,41))
< uh;l|6; — 01| + [y [10r — B [V T (6,)]).

Overall, we get

T-1
1
=Y ;E[yt(J(Gt) — J(0141))]
t=1p
T-1 1
< 3 ZEluhy 8, — 0uis | + 1|6, — 0117 (6)]
t=1p
T-1
< Z E[16cu®hja + 16cu?|y| ||V I (0:)|]
t=1r
T - T-1 T-1
- 1 1
< 16¢%u°h, L+ 16cu?( D Eyd)= (Y EVI(0)]?)2.
\/T t=11 t=1r

18
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For term 14, we have

T—1
1
L= Y —E[(J(6:) — J(0:141))7]
t=71r v
T—l1
> EE6; — 0 |?
t=T1r v !
Tfl1
2,2 2
< Z ;16lju o

t=71

IN

T —
— 162?12

VT

For term I5, we have

T—1
I = 3 AE[(r — J(6,))

t:TT
T—1
ST
t=1r1
_ g2l
VT
Therefore, we get
T-1
SEWI<h+L+Is+Ii+1;
t=1p

< (16cu®lymr + dew?lerr(Tr + 1)
Tt—TT

\/T
T-1 L T-1 N
+20*VT +deu( Yy Byf)* (D E[VI(6,)])2.

t=71 t=7r

+ 4 (71 + 2) + 16¢2u* (uh; + lf))

Since 7 = O(log T'), we have VT < % for large T'. Then we get

T*TT

T-1
1
e Z E[y?] < (160u2leT + 4ev?lerp(tr + 1)
t=71r
1
+ 4u” (17 + 3) + 1620 (uh; + 1)) —=
VT
;T ;T
+ deu Ey2)z E||VJ(8,)?)?
7 L B g, BV

log? T 1 = 1 =
= O )+ deulr—rr 3 Bl 3 EIVI 001
t:TT

t=1r

Thus we finish the proof.

E.2 STEP 2: CRITIC ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for critic.

Lemma 8 (Markovian noise). For anyt > 7 > 0, we have
E[U(Oy, ws, 0;)] < deruta + deou®l,mB + 160 Lyl (7 + 1) + 8ulykp”

19
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where
1
c1 = 4Pl (14 [log, k] + 1—) + 2uljl, + dulyly,
—p

co = 2u(8uh, + 412 + 21,).
Lemma 9 (Markovian noise). Foranyt > 7 > 0, we have
E[Z(Oy, wy, 0;)] < desu’ta 4 4ul, 78 + 8ulyle (T + V) + 8ulrmp” L.
where c3 := 8u?l2 + 8u3hy, + 6uly, (2uhy + ulj + ulyly).
Theorem 3. Choose o = \F’ B=v= \F we have

1
£® <o O\g/TT) i cwe 2““ \/5<z> 26 W) 4 8126(2)) +£\/5<z>5<v ) + O€app)-
(25)

Proof. From the update rule of critic in Line 8 of Algorithm|[I] we have
lwepr — wipll = ||P”0J'BwO (wi + ﬂétVf/(wt; 5t)) — wipll
— llprojs,, (we + B3,VV (wis 1)) — projis, (@i
< Jlwe + B VV (w3 5¢) — wi |
= wt — wf +wf —wiy + BEVV (Wi st
Therefore, we have
ze1]1* = [lz¢ + B(g(Or, wt, 0:) + Ag(Or, 114, 64)) + wi — wiy4 |
= [|z¢]1* + 28(z1, 9(Or, w1, 64)) + 28(21, Ag(Or, 11, 0:))
+2(z0, wf — wity) + [B(9(Or, w1, 0:) + Ag(Or, i, 64)) + wi — wiy |
= llzel” + 28(zt, §(wi, 01)) + 289(Oy, wi, 0;) + 28(z1, Ag(Or, 1, 61))
+ 2(zp, wi — wiq) + [|B(9(O0r, wi, 0:) + Ag(Oyp, s, 04)) + wi — w4 |
<lzel? + 28(zt, g(wr, 01)) + 2BY(Oy, wy, 0;) + 26(2t, Ag(Or, 1, 61))
+2(z, w; —wip) + 2l|wf = wi|* 4 20B(g(0r, we, 0:) + Ag(Or,11e, 0))||*.
Taking expectation up to sy, we have

Ellzes1 ]| < Ellze]|® + 28 E(2s, g(wy, 04)) +2BEV(Oy, wy, 0;) +2BE(z¢, Ag(Oy, e, 0))

Iy I I3
+2E (2, wp — wiiy) +2El|w; — wi || +2E[B(g(Or, wi, 8) + Ag(Or. e, 00))|.
Iy Is Is

(26)
For term I, we first analyse the mean-path update g(wy, 6;). From the definition in Eq. (I2)), we
have

(@1, 00) =By a5 [(r(s1,a0) = (1) + V(wis se41) = V(wi; 50)) YV (wy; 50)]

1 ~ ~ ~
9 Es, ar,5000 [(V(5t) = V(si41) + Vi(wy; seq1) — V(wes s)) VV (wy; 4]
=Es, [(V(st) = V(we, 8t) = gy an [V (s041) = Viwe, se11)|5e)) VV (wys 5¢)]

where (1) comes from the Bellman equation. For E,, | 4, [V (s141) — V(wy, se41)|5¢], it can be
shown that

Es,y00[V (s641) — V(wy, set1)|se]
//Wet (aelse)P(st1l5¢, ac)(V(se41) — V(wt§5t+1))datd5t+1

D Py(V(s) = V(w, 5)),

20
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where (1) follows from the definition of Py in Eq. (2).
Then for g(wy, 0;), it follows that

~

G(wi, 0r) = Ey, [(T = Po,)(V(se) = V(we, 50))VV (wi; 51

where [ is the identity operator. Therefore, we have

(21, 9(wr, 01)) =Bz, (I — Po,)(V(s1) = V(wii 1)) VV (wis 1))
=E(z,(I — Pp,)(V(st) — V(w;", s¢) + ?(wf, St) — ‘A/(wt, 5t))VV (wy; 8¢))
=E(z;, (I — Po,)(V(st) — V(w3 5:))VV (wy; 5¢))
+ Bz, (I — Po,)(V(wis 1) — V(we:; 50))VV (wys 5¢))

) —
=2ulyeapp + E[(2] VV (Wi 5:)(I — Po,)(V(w]; ) — V(we; 50)))]
=E[(2] VV(wy; s) + (V(wf86) = V(we, 50))) (I — Po,)(V(wiss¢) — V(wy; se))]
Ji
~E[((V(w}; 56) = V(we, 50))) (I = Pa,)(V(wy's 8¢) — V(we; 5¢))] +2ulyapp.

J2

27
For term J;, from mean-value theorem, we get

Ty =Bz (VV(wis80) = VV (@mias 1)) (I = Pa,)(V(w]381) = V(wi; 50))]
< duhy ||z,

where wmiq = piw; + (1 — py)wy with gy € [0, 1] and the inequality follows from Lemma

For term Js, it can be shown that

Jo = — (V(w]) = V(w), De(I — Po,)(V(w;) — V(wr)))

%) —a||(V(w)) = V(w)|?

(2 9 9
< = Az
2 = Az
where (1) comes from Assumption ] (2) is due to Assumption[5} (3) holds since we define
A=A\,
Overall, we obtain
I < 4uh,E| z]|? — AE||z¢]|* + 2uly€app- (28)

From Lemma we know that h, = O(1/,/m). Therefore, choosing m as a large constant such
that

>

duh, < 3 (29)

it follows that
A 2
L < —§E||th + 2uly€app-

For term I5, it can be analyzed by Lemma|g]

For term I3, it follows that

13 - E(Zt, Ag(0t7 Mt 0t)>
< ulE[yy|[| 2]

21
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For term 14, we have
Iy = E(z,wi — wiyq)
= Bz, 0 —wipy + (Vo) (041 — 6,))
A
+E(z, — (VW) " (8141 — 6,)) .

Ja

For J3, from the h,,-smoothness of w* in Assumption@ we obtain
Js < byl ze[10:41 — 64,
For Jy, it follows that

J. .
o? =E(z, — (th)TétVInget (at|st))

= Bz, (Vw;) T (=AR(Oy, mt, @i, 0:) — h(Oy, 1))

= —E(z;, (Vw;) T AR(Oy, 1, wy, 0:)) (30)
+ E(zt, (V‘-":)T(]EOQ [h(O}, 8:)] — h(Oy,0,) — Eo [1(O}, 0,)]))

= E[E(O¢, wt, 0)] — Bz, (Vw;) "Eo; [1(0}, 64)])
—E(z;, (Vw;) " AWOs, i, wi, 0;))

Note that from Cauchy-Schwartz inequality and [, is the Lipschitz constant of w* in Assumption [3]
we have

~E(z1, (Vo) T AR(Or my i, 00)) < ul/El[zi 2y 2Ey? + 82E]| 2. 31)
From the fact that
Eo; [h(Oy, 0:) — AR (O}, 8:)] = Eo[(r(se, ar) — J(8:) + Ve, (s;) — Ve, (5¢))V log e, (als)]
=VJ(6,),
we obtain
E(z;, (Vw;) "Eo; [1(0}, 0,)]) = E(z1, (Vw;) VI (0,)) + E(zi, (Vw;) "Eo [AR(Of, 6,)]).
It follows that

—E(z;, (Vw;) TV I(0:)) < Lo VE[2:[PVE[VI(6:)]]2.
Furthermore, it holds that
Eo/ AN (0,0)[* = Eo[|((V(w*(8); 8') — Va(s') = (V(w"(8);5) — Va(s)))V log ma(als)||?
< Eor[2u*(V(w"(8);5') — Va(s)* + (V(w"(8); 5) — Va(s))?)]
= 4u’Eo/[(V (w"(8); 5) — Va(s))?]
= 4y 2e?

app*

(32)
Therefore, we have
(21, (Vo) By [1(0}, 0,))) < /Ty [AR(Or, BIIE + L ET e EIV T @2
< ulyV/Eor | AN (O, 0,) |12 + Lo VE| 2|2 VE[ VI (6, )|
< 20l eapp + Lo VE| 2P VEIVI(8,)]2. (33)
Substituting Eq. (31)) and Eq. (33) into Eq. (30) yields
J1 < aEE(O, wy, 0;) + 2aBul,€app
+ aul,v/Ez0P\/2Ey? + SEE] 22 (34)

+ ol VE| 2|2 VEIV (8]

22
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Overall, we obtain

Iy = J3+ Ja < ho| 2041 — 6:]|* + aEZ(Oy, wy, 6;)

+ aul, V/Elz 2/ 2Ey? + S2E] 22

+ alu VETz P VEIV TGP + 200 ucapp.

For term I5, it holds that
Is = Eflw; — wi|?
< ISE||0; — Opra?
< 16u2l3a2.
For term I, it follows that
Is = E[|3(g(Or,wy, 0;) + Ag(Oy, 1, 0,)) ||
<22
Plugging I1 — I¢ into Eq. (26)), we obtain
Ellze11]* < Ellz]|* — ABE||2]|* + 28E® (Oy, wy, 8;) + 2BuElys|[|z¢ ]| + 2k || 2¢[[|0s11 — 6]
+ 20EZ(Oy, wy, 0;) + 2cwl(,ﬂ/IE||z,§H2\/ZIEyt2 + 8I2E || 2|2
+ 20l /E| ¢ |2VEV I () ||2 + dau®l, €app + 4uBlyeapp + 321200 + 2021252

Rearranging and summing from 77 to T' — 1 gives

T-1 T-1

T—1 T-1
1 _
AY Bz < Y B(EII%II2 —Ellze|?)+2 ) EU(Oy,wi,0:) +2¢ Y EE(Oy,wy, 6;)
TT

t=77 t=7r t=771

K1 K2 K3

T-1 T—1
+2u Y \ERVETZIE + 2cul, Y VETz(P\ 282 + SZE| 22

t=771 t=77

K4 K5

T-1
+2cy Yy VE[zPVE[VIE,)]?

t=77

Ks
T-1
+ Z (20?128 + 32cu?12 o + (deu®ly, + duly)eapp)-

t=77
In the sequel, we will tackle K7, Ko, K3, K4, K5, K¢ respectively.

For term K, we have

T-1

1
Li=7Y" B(EIIZtII2 —El|z|*) < w*VT.

For term K>, from Lemmalg] choose 7 = 77, we have

t=1r

8u?l,

Nk

EV(Oy, wy, 0;) < dcyutpa+ degulymr B + 160l Lerr (T + 1)a +

Then we get

T-1 T—1
Ky =2 BU(0yw,0;) <2 Y (deyu’rra+ degulyrr B + 16utlyLerr (rr + 1)a +
T:TT

T:TT

8u?l,

VT

).

23
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For term K3, from LemmaE[, choose 7 = 7, we have

8u3l,
E[Z(Oy, ws, 0:)] < desurpa + 8ullylerr (tp + Vo + 4wl 7B + %
Therefore, we have
T—1
Kg =2c Z EE(Ot,wt,Bt)
t=1r1
= 8u3l
< 2ct:ZTT(403u27Ta + 8u5lwlﬁTT(TT +a+ 4Bl + \/Tw ).
For term K4, K5, and Kg, from Cauchy—Schwartz inequality, we have
K1 < 2u( Z Ey2)? ( Z Ellz?)?,
t=17 t=7p
T—1 T—1
1 1
K5 < 2culy (Y Elz%)( Z Ey; + 812 Y Elz?)?,
t=1r t=1r t=1r
T—1
Ko < 2cl,( Y El|z]?)? Z E|VJ(6,)])=.
t=71r t=71r
Overall, we get
T—1
1 1
A Z E[lz]* < 2u( Z Ey?)2 () E|z)?
t=1r t=1r t=1p
+ 2cul,, Z]E||zt|| 7 (2 Z Ey? + 812 Z Ellz?)?
t=T1¢ t=1r t=1r
T—1 T-—1
1 1
+2c,( > Ellz)?)z (Y] EIVI(6,)])?
t=1r t=11
— 8u2l
+ VT +2 Z (401u27'Ta + deoulyTr 8 + 16U4lvlﬂ-7'T(TT +Da+ %)
T:TT \/T
= 8u’l
+2c (4esumpa+ 8uly L (Tr + o+ 4udl, 703 + =
T—1
+ Z (20?123 + 32cu?12 o + (deu®ly, + duly)eapp)-
t:TT
Therefore, we have
SO 1og?T - 1 = s
€@ < O(E=) + Ofeapy) + Z D= Y El=l?)?
T = T t=1p
T—1
QCUZ 1 1 1
+— Z El|z]*) ( Z DEAISE:
t TT t:TT
T—1 T—1
20l 1 1 1 1
Tw E 2\3 EIVJ(O 3
Sy 2 Bl fZ I970)I)*
L TT TT

where (1) follows from 7 = O(log T) so that T — 71 > + 51 for large T'. Therefore, we have

log? T 2cul,, 2 l
£B) <028 1) 4 2 ewgh) 4 2 \/5<z> 26W) 4 8I26()) 1+ 29 \/EDET) 4 Ofeann),
VT /\
which completes the proof. O
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E.3 STEP 3: ACTOR ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for actor error (policy gradient norm).
Lemma 10 (Markovian noise). For anyt > 7 > 0, it holds that

E[O(O, 6,)] < 4u*(8u®h; + 31;l)Ta + 8u ;Lo 7(T + Vo + du?ljrp™ L.
Theorem 4. We have

log® T
£V < O(%) + Olcapp) + 1y [ED(2EW + 826()). (35)

Proof. From the update rule of actor in Line 9 of Algorithm[I]and Eq. 21), we have
ha
J(Or11) = J(6:) + (VJ(6:), 0141 — 0r) — EJH@t — 0 |?

J (6,
J (6,

Iy
)+ a(VJ(0:),0:V log me, (at|st)) — ?](XQH(StVIOgTrgt(CLHSt)‘P
) +a(VJ(6:), Ah(Oy, ns, we, 04))
B
a(VJ(0:), h(Oy,6:)) — gja2||5tV10g7Tet(at\8t)||2
( i) + a(VJ(0:), Ah(O¢, np, wy, 0)) — a©(Oy, 6y)
h.
a(VJ(0:),Eo;[h(O}, 8,)]) — gja2\|5tV10g7Tot(at|St)||2
J(0:) + a(VJ(8y), Ah(Og, e, wy, 0;)) — aO(Oy, ;) + | VI (6,) |
h.
a(VJ(6:),Eo[AN (01, 6,)]) — Qj042||5tV10g7T9t(at\5t)||2,

where the last equality is due to the fact
Eo/ [h(O',8) — AW (0',0)] = Eo/[(r(s,a) — J(0) + Vo (s') — Ve(s))V1ogme(als)] = VJ(8).

Rearranging the above inequality and taking expectation, we have

E[VJ(8:)]* < é(]E[J(9t+1) — J(64)]) —E(VJ(0:), Ah(Oy, 1, wi, 01)) + E[O(Oy, 6;)] 6
—E(VJ(6:), Eo; [AN (O}, 6,)]) + %a]Ell&Vlogm (arlse)|>.

Note that from Cauchy-Schwartz inequality, we have

“E(VJ(0,), Ah(Oy, i, i, 8,)) < un/E[VI(0)[2/2Ey? + 8I2E |-

From Lemma[I0]and choosing 7 = 77, we have

4u?l;
E[@(Ot, 0t)] < 4u2(8u2hj + 3ljlh)TTOé + 8U4ljl7rTT(TT + 1)0& + %

From Eq. (32), it has been shown that
Eo AN (0, 0)|? < 4u?e?

app”
Therefore, we have

—(VJ(6:),Eo;[AR (0}, 8,)]) < 151/ [Eor[AR(O;, 6,)][|2

<VEo |[AN (0}, 6:)]12
S QUljeapp»

where we use || V.J(8)|| < I; which comes from Lemma5] Plugging the three terms yields

E|[VJ(8)|* < é(E[J(Gm)] —E[J(6:)]) + U\/EHVJ(Ot)IIQ\/QEy? + 8IE[|z[?

u4hja + 2ulj€app-

+ 4u*(8uhj + 31l rra + Sutljlmr(tr 4+ 1)a +

4u2lj
vT
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Summing over ¢t from 77 to T — 1 gives

T—1 T—1 T—1
1
D E[VI6))* < Z J(8u41) —E[J(0,)]) +u Y \/EHVJ(Ot)||2\/2Eyt2 + 8IZE| 2.
t=11 t=711 t=1r
T —
+ O(log? T) \/TTT + 2uljeqpp(T — 77)
o T—1 ) T-1 )
< NT +u(Y  EVI(0)])2( Z Ey; + 812 > E|lz?)?
¢ t=77 t=77 t=11
T —
+O(log? T) ﬁTT + 2ulqpp(T — 71).
Therefore, we get
log®> T
£ < o O+ 2l uy[E) (260) 1 8136())
log? T
= O + Olcagy) + u £ (2EW) +8262),
which concludes the proof. O

E.4 STEP 4: INTERCONNECTED ITERATION SYSTEM ANALYSIS

In this subsection, we perform an interconnected iteration system analysis to prove Theorem I}

Proof of Theorem
Proof. Combining Eq. (23), Eq. (23)), and Eq. (33), we have

2
£ <08 T | 4eu/Ewe®),

log?T 2 2 2
£&) < 0 OgT ) + Oeapp) + 7“\/5<y)g<z> + Lzlw \/g(z)(gg(y) + 8126()) + C; VEDEW),

3

3

log® T
£V < of Ojf ) + Oleapp) + uy/ED(EW® 4 826)).
Denote
2 2cul, 2cl,,
Iy = 4deu,ly := —u,lg =2 g =812, 15 := < g = u. (37)
A A
Then we have
2
e <o Ly L Vewe™),

<} 3
0 0
w3

£ < O( L) 4+ Ofeum) +1 EWED +15y/[£C) 260 + 1,ED)) + 15VEDE),
log? T
£ < O(E2) + Oleany) + 15 [ED(QEW 4+ 1,EG)).

For £V), we get

log? T

1 1
eV <o(—= =)+ Olcapp) + §5<V> +12(EW + §l4g<z>)

It follows that
log”> T
VT

£V <O( ) 4 Oleapp) + 12(2EW) + 1,3, (38)
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For £*), we have

1 1 1 1
P <o )+ Oleapp) + 1€ +BEW + (5 + 5Ll ) +1:6W) 4 €0 + B,

If it satisfies (1 + 114)l3 < 1, we further have

*) log* T 2 W) 4 92¢(%)
£ < O(ZE) 4 Oleapy) + (23 + 203)E) 4287, (39)
Plugging Eq. (38) into Eq. (39), it holds that
() log® T 2 212\ o (y) 272 o(2)
EX < O( /T )+ Oleapp) + (205 + 2[3 + 4I515)EYY + 2141515E".
If it satisfies 2040212 < 1, we have
(2) log? T 2 212y o (y)
£&) < o )+ Oeapp) + 4(12 + I3 + 222)EW). (40)
VT
For EW), we get
I T
£W < O OgT )+ %(5@ + &V, 1)

Plugging Eq. (38) and Eq. (#0) into Eq. @I) gives

2
£W < O(IOg r

) + O(€app) + %(8@ +2126W) 41,1263

l
) + O(€app) + 51(5@) +202EW) AL 12(12 + 13 + 2212)EW))

log? T l
JT ) + Of€app) + 51(

Therefore, if I1(1 + 202 + 41402(13 + 13 + 2121%)) <

=0O( 14 202 + 441212 + 15 + 21212))EW).

< 2, we have

ogT

EW < o(—== - )+ Oleapp)-

Overall, we require

1 1 1 1
(5 714)1 L 2141212 < 3 I (1202 + 41402313 + 13 + 21212)) < 3
According to the definition of ll, ls,13,14,15, lg, it can be shown that
1 2cul 1 A
— 472 C<- =< ———o
Qi) s1= S pratsn)
64c2ui21? < 1 o< A
A2 2 o 8\/§Ul1;lw’ “2)
du®  2cul 8c2u?l? 1 1
deu(1 + 2u? 4 320202 (— + —2 + “)) < = c< :
\? A A2 2 8u(l + 6u? + 25
From the fact that for positive constants ¢;, we have
! < ti.
HllIl
S/t
Thus we choose
128 2ut\ 1 -t
c< [8u<1+6u2+ A; )+;(;+413+\/§lv)] (43)
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which satisfies the three inequalities of ¢ shown in Eq. @#2)). Therefore, we have

. log? T
g(J) = O( \/T ) + O(eapp)a
and consequently,
. log? T
8( ) :O( \/T )+O(€app)7
log? T
ENV) = T ) 4+ O(€app)-
Thus we conclude our proof. [

F PROOF OF PRELIMINARY LEMMAS
Proof of Lemma 1l
Proof. We will divide the proof of this lemma into four steps.
Step 1: show that forall k € {1,2,--- , K}, we have
W ®| < o(vm). (44)
It can be shown that
k K
WS < W — Wi+ wg|
k
<ug+ WY
< O(vVm),

where the last inequality id due to Assumption [2|and the fact that u,, is constant to m.

Step 2: show that forall k € {1,2,--- , K}, we have
Is®] < O(/m). (45)
From Assumption we have ||s(?)|| < 1. From Eq. (@), it holds that
IV = = (W)
< %Lillw(l)\\zlls(o)||2 + o (0)I?
< O(m).
By induction, suppose ||s(¥)||2 < O(m). We have

1
[sFHV)? = || = (WD ()2
Jm

IA

%Li\IW(’““)||2||8('“)||2 +lo(0)]
< O(m),
which concludes the proof. Therefore, from Eq. @]), it can be shown that
Vi) = | Z=b"s] < O(0)
Step 3: show that forall k € {1,2,--- | K}, we have
IV s 5™ < O(1). (46)
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From the chain rule, we have

1 )
Vu-ns® (i, j) = ==’ O WP (i, j)s* D () Wr(, j).

m ,
J
Therefore, we get
IV se— b st ||2 = sup Z sz(k s (i j)vj)2
loll=1=7

— sup | W2
lofl=1 ™

1
< — )P w®)?
m
< 0(),
where Y’ is a diagonal matrix with ¥/ (4,7) = o/ (S;W®H) (4, 5) s~V (5)) = £(3).
Step 4: show that forall k € {1,2,--- , K}, we have
IVwws®|l < 0), 47)

where Vyy o)) is defined to be a matrix whose (I, (j — 4)m -+ h)’th entry Va5 (i, 4, h) is
given by

25 (i)
(k) N 7
VwesTL 30 = Gy
It holds that
VW(k)s(k)(iajvj/) = L 1{Z —j}OJ(E W(k)(ivh)s(kil)(h))s(kil)(j/)a

vm h

which can be written as
1
VW(k)S(k)(i7j7j/) = \/ml{z :]}g(z)s(k_l)(.jl)

Therefore, we get

Voo |I* = o Z vams i3, 3" )WVig0)*

Vir= 11 155
- % H\Eﬁlp Z(Z 1{i = j}e(i)s* D (1)V; 41)?
P=list g
- % HVbll\lp 123(231{Z = jF(i )[Vs (k— 1)] )

= Zg 2y sk—1))2

mHVHF 11 1

sup ||V
IVie=1m

< P st
m
= 0Q),
where the last inequality follows Eq. (45).

We then show the Lipschitzness of the neural network. Since each entry of b satisfies |b;| < 1, it is
easy to see that

-~ 1
IVswoViws )l = —=lbll < 1.
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By Eq. {#6).Eq. (#7), and the chain rule, we have
IV V(w;s) = [IViao V(w; s)Vipac-n s - Vw sETD Vg0 s | < O(1).

It can be shown that

K
[VV(w;s)||* = sup Z Voo V(w: s)Vi)? < O(1),
IVIle=17,-4
which concludes the proof of Lipschitzness.
The proof of smoothness property has been shown in (Liu et al., [2020). [

Proof of Lemma

Proof. From the definition of the total variation distance, we have
v (0, (-19) = 70,1 5)) = 5 [ [7o,(a]3) =0, (a] )] da

/ oy (a| ) — 7o, (a )| da

<1 / 1,]16: — 0y da

< §Alp||91 — 02|,
where A is the bounded support of mg(a | s) which satisfies [;da = A. Define I, := 1/2Al,,
which completes the proof. O
Proof of Lemma

Proof. For any 6; and 65, define the transition kernels respectively as follows:
Pi(s,ds") = / P(ds'|s,a)mg, (als), i=1,2
A
Following from Theorem 3.1 in (Mitrophanov} 2005), we obtain

_ 1
drv (po,, ho,) < ([log, k™" + m)”Pl = Pallop,

where || - ||op is the operator norm defined in (Mitrophanov, 2005): [|A[| := supyy..,=1ll¢A[ v,
and || - || v denotes the total-variation norm. Then we have

IPi— Pl = sup | /S 4(ds)(P, — Pa)(s. ) v

llgllrv=1

|q||sff—1//q(ds)(P1P2)(5,d5’)|
sup // (ds)|(Py — Py)(s,ds")|

HQHTV 1

~ / /S a(ds)| /,4 P(ds'|s, a)(m, (dals) — o, (da]s))|

llgllrv=1

— sup / / a(ds) /A P(ds'|s,a)|(mo, (dals) — o, (dals))

lgllrv=1J8 /S

— s / a(ds) /A (o, (dals) — s, (dals))|

lallrv=1/s

<lx||01 — Oo]|.
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The first equation results from the definition of the operation norm, the second equation results from
the definition of total variation. Therefore, we have

1
drv (1o, 116,) < lx([log, k™" + 7,161~ 8l

For the second inequality, we have

%M%®MM%®MQ54AMMMMMQ—%MW%Mﬂ

<LAWM%MMWWM“W

+/S/A(ugl(ds)—u92(d8))7702(a|3))|

= dpv (7, , ™e,) + drv (e, s 1t6,)
1
<l |61 — Oa] + C(Tlog, v~ + 17_/))\\91 2l

1
=1.(1+ flogp /171‘| + ip)nel — 0.

For the third inequality, we have
dTV /1'91 ®me, ® P, Ho, & T, @ P)
=5 | [ 1 sy, (el)P (a1 5.0) oy ()7, als) P 5,0

=5 | [ Vo), al) (@), ()
SJA
= dTV (NJGl & 70,5 1O, Y 7(_92)7

which concludes the proof. O
Proof of Lemma

Proof. From the fact that

St+1 S / / St =ds ,ar = dCL St+1 € )

2dry (P(s¢41 € -), P(5i41 € 7))

/// (s = ds,a; = da, sy 1 = ds’) // (8¢ = ds,a; = da, 5141 = ds')|

S/// |P(s¢ = ds,a; = da, s41 = ds’) — P(5; = ds,a; = da, 5,11 = ds')|
sts/a

- / / / P(O, = (ds, da, ds')) — B(Oy = (ds, da, ds"))|
SJSJA
= 2dry (PO, € ),P(O € 1)),

we have

where the last equality requires the exchange of integral which is guaranteed by Fubini’s theorem
since PP is an absolute integrable function.
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For the second equality, we have
2d7y (P ), POy € -))
// / |P(O; = (ds,da,ds’)) — P(O; = (ds, da,ds"))|
= / / / |P(ds'|s,a)P((s¢,a¢) = (ds,da)) — P(ds’|s,a)P((3¢,ar) = (ds,da))|
sJals
= / / / P(ds'|s,a)|P((s¢, ar) = (ds,da)) — P((5¢,a¢) = (ds,da))|
/ / (s, ar) = (ds, da)) — P((3e,@r) = (ds, da))
- 2dTV(]P)((3taat) € ')vP((gtvat) € ))
For the third inequality, since 6, is dependent on s; as shown in Eq. (T0), it holds that
2drv (P((st; at) € ), P((5¢, ar) € -))
// |P(s; = ds,a; = da) — P(8; = ds, a; = da)|

_ / / |/P(st — ds)P(6, = dBls, — 5)P(ay = dals; = 5,0, — 0) — (3, = ds, @ — da)|
SJA ]
- / / IP(s; = ds) / P(8, = df]s, = 5)mo, (dals) — P(5: = ds)ro, _(da]s)]
SJA 7]
- / / IP(s: = ds)E[ma, (dals)|s: = 5] — P(3, = ds)ma, _ (da]s)|
SJA
= / / [P(s; = ds)E[me, (da|s)|st = s] — P(s; = ds)me,__(dals)]
SJA
+ /s /A |P(s; = ds)me,_.(dals) — P(5; = ds)me,__ (da|s)|

= /SIF’(st =ds) /A |E[rg, (dals)|ss = s] — me,__(dals)]|

+ 2dTv(]P)(8t S ),P(gt S ))
< LE|6: — 0 || + 2drv (P(s: € -),P(8: € +)),

where the last inequality holds due to the Lipschitz continuity of policy made in Assumption[7] [
Proof of Lemma

Proof. By definition, we have
J(01) — J(62) = E[r(s',a') — r(s?, a?)],

where s° ~ p1g,,a’ ~ mg,. Therefore, it holds that

J(6,) — J(02) =E[r(s',a') — r(s',a")]
< 2udry (e, ® Te,, Lo, @ To,)

1
< 2uly (1 + [log, 1+ m)HBl — 65

=1;(161 — 62|
O
Proof of Lemma
Proof. The proof of this lemma can be found in Lemma 3.2 of (Zhang et al., [2020a)). O
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G PROOF OF MARKOVIAN NOISES

The following four lemmas deal with the Markovian noise.

Proof of Lemmaf(7l

Proof. We will divide the proof of this lemma into four steps.
Step 1: show that for any 01, 05,7,0 = (s,a,s’), we have
By the definition of ®(O, 7, 0) in Eq. (13), we have
[©(0,n,61) — 2(0,0,6)| = [(n— J(61))(r — J(61)) —
<|(n—J(61))(r — J(61) -
+1(n—J(61))(r — J(62)) — ( J(62))(r — J(62))]
<4ulJ(61) — J(62)|
< 4ulj||91 — 02”

— —
|

A/—\
|

A/—\
> D
=N
~— —
— —

Step 2: show that for any 6,11, 72, O, we have
|(b(0777176) - (I)(O>n2a0) < 2U|771 _"72‘ (49)
By definition, we have

|2(0,m,0) — 2(0,n2,0)| = |(m — J(0))(r — J(0)) — (n2 — J(8))(r — J(9))]
< 2ulm —n2|.

Step 3: show that for original tuple O; and the auxiliary tuple O, conditioned on S¢—r+1 and @y,
we have

t

|E[®(Ot77’t—‘r7 et—T) - E[q)(ata Nt—7,5 at—T)” S Ulﬂ— Z E”ak - ot—T”' (50)

k=t—r
By definition, we have
E[®(O, t—7,0t—+) — E[¢(6t7nt—77 0i—7)] = (i—r — J(O1—7))E[r(se, ar) — (5, ar)].
By definition of total variation norm, we have
E[T(St,at) - T(gtaat)] < 2UdTV(]P)(Ot € '|5t—r+179t—‘r)7p(6t € '|5t—7'+179t—7—))~ (51
By Lemmafd] we get

drv(P(Oy € '|5t—r+1,9t—7),P(6t € |8t—741,0i—7))
= dTV(P((Sta at) € '|St—7'+1’ ot—T)a ]P)((gtaat) € '|5t—7'+1a ot—T))

- 1
<dry(P(st € -[st—r41,0i—7),P(5: € -[8t—r41,0t—7)) + ilﬂEHat -0,
~ 1
<dry(P(Os—1 € -[8t—r41,0t—7),P(Or—1 € “|S—741,0: 1)) + ileHGt -0,

Repeat the above argument from ¢ to ¢ — 7, we have

t
~ 1
dry (P(Oy € |s—r41,01—7), POy € |51-r41,01-7) < 5lx D Ell6s 01| (52)
t—

k=t—T1

Plugging Eq. (52) into Eq. (51)), we have

t
|E[®(Ot7nt77‘7 atf'r) - E[@(Ot, Nt—r, 0t7’r)]| < uly Z IE3||9k - 0t77—||~

k=t—71
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Step 4: show that conditioned on s;_11 and 8;_,, we have

E[@(ét, Nz, 0r_7)] < 4ulkp™ L. (53)
Note that according to definition, we have

E[®(O;_; M, 0:—7)|01—] = 0,

where O;_, = (s;_,,a;_,,8;_,4,) is the tuple generated by s; . ~ g, . ,a;_, ~
79, .,5t_r41 ~ P. From the uniform ergodicity in Assumpnon@ it shows that

dTV(P(St = "3t77—+1a0t77)>/‘9t,T) < Kkp T

Then we have
E[‘I)(én M—r, ot—f)] = E[(I)(ét; M—r, 9t—r) - ‘I’(Oé_ﬂ M—r, Ot—r)]
=E[(—r — J(01—7))(r(5¢,a¢) — r(si_r, a;_.))]
< 4u2dTV(P(5t77 =|8¢—741,6i—1), 1o, ®To,_, ®P)
< dulkp L.
Combining Eq. (48), Eq. (9), Eq. (50), and Eq. (53)), we have
E[(I)(Otmt,gtﬂ = E[‘I)(Ot, N, 6:) — (I)(Ou??t,etfr)] + E[<I>(0t,77t, etf'r) - (I)(Ot; Nt—r, 97577)]

E[®(Os, t—r,0s—7) — P(Ot, -7, 0:—)] + E[®(Oy, 11— 7, 05— )]
t
< 4ul;E|0; — 0| + 2uE|n; — ne—r| + ulx Z E|6; — ;.|| + 4ukp™ "
i=t—T

< 16ural; + 4ty + 40T (1 + Dal, + 4uPkp” L
which concludes the proof. O

Proof of Lemma

Proof. We will divide the proof of this lemma into four steps.
Step 1: show that for any 61, 05, w and tuple O = (s, a, s’), we have
[P(0,w,01) — ¥(0O,w,0:) < 101 — 2, 54
where ¢; = 4u?l (1 + ﬂogp K1+ ﬁ—p) + 2ul;l, + duly,ly.
By definition of ¥(O, w, 0) in Eq. (13)), we have
[P(0,w,0,) —¥(0O,w,0:)]
= [(w - wi,9(0,w,61) — g(w,61)) — (w — w3, 9(0,w,0) — G(w, B2))]
< [(w—wi,9(0,w,01) — g(w,01)) — (w — wi,g(0,w, 02) — g(w, 62))]
Iy
+ [{w —w,9(0,w,0;) — §(w,0,)) — (w —w3,9(0,w,02) — g(w,6))].

Iz

For term I, we have

:‘<w wik’g(o w 91) (w791)>_<w_wT7g(O>w702)_g(w702)>|
= [{w —wi,9(0,w,01) —g(0,w, 0:))| + [(w — wi, g(w, 01) — g(w, 02))]|
= [(w — @}, (J(01) = J(02)VV (w3 9))| + | {w — w], §(w, 01) — §(w, 02))]

2ul;l, H01 0 +2u||g(w, 01) — g(w, B:) ||
2ul;l, |61 — 6| + 4u’dry (pe, ®7T91 ®P, o, @ 7o, @ P)

IN N

< (2uljly, + 4u?l. (1 + [log, K N+ 7))”91 0.
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For term I, from Cauchy-Schwartz inequality, we have
I, = ‘<w - ""’Tag(vav 02) - g(wv 02)> - <w - w;vg(O’wa 02) - g(w702)>‘

= [{w] —w3,9(0,w,6:) — §(w, 02))]

< dul, o} — w3

< Adul,ly,[|01 — 02].
Combining the results from /; and -, we get

[T(0,w,01) — ¥(O,w,0:) < c1]61 — 2,

where ¢; = 4u?l(1 + [log, k'] + i—p) + 2uljl, + 4ulyl,.

Step 2: show that for any 0, w1, ws and tuple O(s, a, ), we have
|\If(0,w1,0) — \I/(O,w2,9)| < CQHUJl - ng,
where ¢y = 2u(8uh,, + 412 + 21,,).

By definition, we have
[P(0,w1,0) — ¥ (0, ws,0)|
= (w1 —w", 9(0,w1,0) — g(w1,0)) — (w2 — w",9(0, w2, 0) — (w2, 0))|
§|<w1_W*7g(va17 ) ( Wi, >> < - *,g(O,w2,0)—g(w2,6)>\
+ [(w1 — ", 9(0,w2,0) — §(ws,0)) — (w2 — w", 9(0, w3, 0) — g(w2,0))]
< 2ul[(9(0,w1,0) — 9(0,w2,0)) — (5(w1,0) — g(wa, 0))]| + duly[|wr — wal|.
It holds that
1(9(0,w1,6) — g(O,ws,))]

=[|(r(s,a) = J(O)(VV (wis8) = VV (w3; 5))
v

+ V(w13 8)VV (w13 s) — V(ws; s ‘7(0-’27 )
+ V(w2 5)VV (wa; 8) — A( $5)VV (wiss)
<[V (w3 8)VV (wiss) = V(wn; 8 )VV (wo; s)

+ V(w138 VV (wais) — V(wa; s )VV (wa; s
+ |V (w23 5)VV (wa; 5) — V(wr;s)V ‘7( )
+ V(wi;8)VV (wn;5) = V(wss s)VV (wiss)]
+ 2uhy||wy — wa|
<L2uhy||lwr — wa| + 2[ “|lwr — wa|| + 2uhy ||wi — wal]

=(4uh, + 2l3)||w1 — wal|.
It follows that

Ell(9(0, w1,8) = g(0,w2,0)) — (g(w1,0) — G(w2,0))|| < (Suhy + 4I7)Eljwr — wal|.

Therefore, we obtain
E|\Ij(07w1a0) - \II(O’W270)| < 62”“"1 - f-l-’QH,
where c3 = 2u(8uh, + 412 + 21,).

(55)

Step 3: show that for tuples O; = (s¢, at, s¢+1) and 5,5 = (8¢, at, St+1). Conditioning on s;— 41

and 0;_,, we have
E[¥(Op, wi—7,0;—7) — W (O, wy—7,0;_7)] < 16Ul L7 (T + 1)ev.
By the definition of total variation norm, we have
E[‘I’(Ot, Wi, atf'r) - ‘I’(ét, Wi, ath)]
=E[{wt—r —wi_;,9(Or,wi—7,0;—1) — g(au Wi—r,017))]
< 802l dry (P(Or € [s1-711,07), P(O; € “[s1—r41,0,+))

€y t

< wllyle > E6p - 6,
k=t—T1

< 16Ul L 7(1 + 1a,
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where (1) follows from Eq. (32).
Step 4: show that conditioning on s;_,1 and 0;_,
E[\Il(at,wt,f, 0;_.)] < 8ulyrp” (57)
From the definition of ¥(O, w, 0), we have
E[¥(0;_,,wi—7,0t—7)|St—r41,0:—+] =0,
where O;__ is the tuple generated by s;__ ~ pg,_ ,a;_. ~ mg,_ ,8;_ .1 ~ P.From Assumption
[6l we have
drv (P = *|St—rt1,0t—r), o, ) < kp" L.
Then, it holds that
E[‘I’(étywt—ﬁat—f)] = E[\I’(auwt—net—r) - (OQ Tawt—ﬁet—f)]
=E{wi 7 —w ., 9(0n,wir,0, ) = g(O}_,, @i 7,0 ;)
< 862l dry (P(Or = |8i—r11,0;—1), pto,_, ® To,_, @ P)
= 8u’lydry (P((5;,Gt) € |st—r41,0¢—7), pto,_, @ To,_)
= 8u’lydry (P(5; = “[St—r41,01—1), 1o, )
< 8u21v/{p771.
Combining Eq. (54), Eq. (53), Eq. (56), and Eq. (57), we have
E[U(Oy, wy, 0;)] = E[¥ (O, wi, 0;) — ¥(Op, wi, 0;— )] + B[P (O, wy, 01 —7) — U(Op, wi—r, 01— )]
+E[U (O, wi—r,0i—r) — U(Op, wi—r, 04_r)] + E[W (04, wi—r, 0;_,)]
< aE||0; — 0 .|| + coFl|w; — wi o || + 160l Lo 7(T + 1)a + 8u?l,ip™ !
< 4yt + depuPlyf + 16Ul L7 (1 + o+ 8ull,kp™ !

where ¢; = 4u?l, (1 + ﬂogp K1+ ﬁ) + 2uljl, + 4ul,l, and co = 2u(8uh, + 412 +21,). O
Proof of Lemma [9]

Proof. We will divide the proof of this lemma into four steps.
Step 1: show that for any O, w, 61, 0, we have

12(0,w,61) — Z(0,w, 0:)|| < c3]|01 — 02, (58)
where c3 := 8u?l2 + 8u3hy, + 6ul, (2uh, + uly + ulyly,).

Since Z(0,w,0) = (w — w*, (Vwy) " (Eo/[R(O',0)] — h(O,0))), we define Eg[h(O’,0)] :=
Eo/[h(0’, 8)], where Eg is the shorthand of Eo/(,g,xe,7). In the following, we will show that
each term in (O, w, ) is Lipschitz with respect to 6.

Term w is not related to 8, term w* := w*(8) is l,,-Lipschitz, and term Vwy is hy,-Lipschitz.

For term h(O, ), denote 6(0, 0) := r(s,a) — J(8) + V(w*(0); s') — V(w*(6); s), we have
[7(O,61) — h(O,0:)]
= [16(0,601)V log g, (als) — (O, 82)V log mg, (als)]|
< 1|6(0, 01)V log g, (als) — 6(0, 61)V log me, (a|s)]]
+1|6(0, 0,1)V log 7, (als) — 6(0, 02)V log me, (als)||
< duh |0y — 65 + ul6(0,61) — §(0, 6,)]
< duhe[|0y — O +u(|J(81) — J(82)| + |V (w*(81):8') — V(w* (82); 8')]|
+ [[V(w*(01); 5) = V(w"(62); 5)|])
(Auhy + 2ul;)||01 — 02 + 2ul, ||w*(61) — w* (62)]|
l

<
< 1n]|01 — 02]|.
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Hence we have h(O, 0) is I,-Lipschitz, where
Ip = 4uhy + 2ul; 4 2ulyl,. (59)
For term Eg[h(O’, 8)], we have
o, [A(O", 61)] — Eo,[1(O', 8]

< |[Ee, [1(O', 61)] — B, [1(O', 82)]|| + [[Ee, [1(O', 82)] — B, [1(O', 62)]|

< Eo, [[In(O",61) = h(O', 6)|] + [[Ee, [1(O', 82)] — Eag, [1(O', 62)]]|

< 1n[|61 — 02| + [[Ee, [1(O', 02)] — Ea, [1(O', 62)]|

< 11|01 — 02| + 4uPdry (1o, © Ta,, Ho, @ Ta,)

1
< (In + 40?1 (1 + [log,, kU + ﬂ))nel — 6,

1
S (lh + 2Ul])||01 — 02”

2
< 21|61 — 62,

where (1) follows from Eq. (TI9) and (2) comes from the definition of {;, in Eq. (39).

—~
~—

—
—

Then we have w — wy is u-bounded and [,-Lipschitz; Vwy is l,-bounded and h,,-Lipschitz;
Eg[h(O',0)] — h(O, ) is 8u?-bounded and 3[},-Lipschitz. By the triangle inequality, we have

I2(0,w, 8;) —Z(0,w,0)| < (8u?12 + 8uhy, + 3ul,ly)|01 — 02| < c3]|0; — 6],
where c3 := 8u?l2 + 8u3hy, + 6ul, (2uh, + ul; + ulyly,).
Step 2: show that
I12(0,w1,0) — Z(0,ws,0)| < 4u’l,||w; — wa. (60)
Actually, we have
I2(0,w1,8) — E(0, w2, 0)[| = [[{w1 — ws, (Vwy) "Eor [A(O',8)] — h(O, 0))|
< 4Pl ||wy — wa.

Step 3: show that for tuples O; = (8¢, az, ¢41) and O; = (8¢, at, St+1). Conditioning on $;— ;11
and 0;_ ., we have

E[E(O,wi—r,01+) — E(Op,wi—r, 0y _1)] < 8USllo7 (T + 1) (61)
By definition of £(0, w, 8), we have
IE[E(Or, wi—r, 01 —7) — E(Or, @y, 0, )]|
= |E[(wi—r — wi_r, (Vwi_,) " (A(Os, 8;—r) = D(Oy, 0,—r))]|
< 4Blydry (P(Or € |8t—741,0t—1),P(O4 € |s¢—r11,0;1)), (62)

where the inequality comes from the definition of total variation distance. The total variation norm
between O; and O, has been computed in Eq. (52). Plugging Eq. (52) into Eq. (62), we get

t
||E[E(Ot,wt77, ath) - E(Otawtha 0,577—)]” S 2uglwlw Z ]E”Bk - 0t77'H

k=t—r1
< 8u5lwl7r7'(7' + 1a.
Step 4: Show that conditioning on s;_,41 and 8;_., we have
|E[E(0¢, wi—r, 01 )]|| < Sulrp™ . (63)
It can be shown that
—_ 1 —_ —_
IE[E(Op, wi—r, 00| 2 [EEOs, wir, 00 r) — Z(O)_, @i, 0]

(2) ~
< 8uPlydry (P(Or € “|St—r4+1,01—7), Ho, . @ T, , @P),
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where (1) is due to the fact that O; is from the stationary distribution which satisfies

E[Z(0;_,,wt—r,0:—7)|0:—r,5t—74+1] = 0 and (2) follows from the definition of total variation

distance. From Assumption[6] we know that

dry (P(5; € ), e, ) < kp” L

Therefore, we have
IEE(Os, wi—r, 0:—r)|| < 8ULdry (B(Or = |$1—r41,0—r) o, . © T, . O P)
= 8u®l,dry (P((5¢,a¢) € -|St—r41,0t—7), 1o, ., @ Ta,_.)
= 8ul,drv (P(5; = *|St—r41, 0=+ ), 1o, )
< 8u3lw/<ap7_1.
Combining Eq. (58)-Eq. (63), we can decompose the Markovian bias as
E[Z2(0,wt, 0;)] = E[E(Oy, wy, 0;) — Z(Oy, wy, O )] + E[Z(Oy, wy, 0:—+) — Z(O, wi—r, 01 —+)]
+ E[E(0s, wi—r,0;—7) — E(Of, wi—r,0;1)] + E[Z(O, wi—r,0; )]
< c3E|0; — 0, .|| + 4Pl E|w; — wir|| + 8Pl L7 (T + 1o+ 8ull,kp™ !
<Adegu’ta + 4Bl Th + 8uslwl,r7'(7' +la+ 8udl,kp™ L.

Thus we conclude our proof. O
Proof of Lemma

Proof. We will divide the proof of this lemma into three steps.
Step 1: show that

|©(0,0:) — 6(0,02)| < (2uBh; + 3L;1,)||6: — 6], (64)
where I}, = 4uh, + 2ul; + 2ul,l,, is defined in the proof of Lemma@}

Since ©(0,0) = (VJ(8),Eo, [h(Og, 0)] — h(O,0)), we will show that each term in ©(0, ) is
Lipschitz.

For the term V.J(@), we know it’s [;-bounded and h;-Lipschitz. For term Eg[h(O’,0)] — h(O, 8),
we have shown in the proof of Lemma@] that it’s S8u?-bounded and 3[,-Lipschitz. By the triangle
inequality, we have

|©(0,8,) — 0(0,60,)| < (8u*hj + 31;1,)||01 — 65

Step 2: show that conditioning on s;_,1 and 6;_,, we have

t
[E[O(O4,0:—-) — O(Oy, 011 )]| < 20%Lilx Y [0 — 6, (65)

k=t—71
By definition of ©(0, ), we have
[E[©(Os,8;—r) — ©(0y, 0, )|
= [E[(VJ (), h(O1,0:—) = h(O1,6:—,))]|
< du*lidry (P(Oy € “[81—r11,01—7), P(O1 € “[st—r11,01—7)), (66)

where the inequality comes from the definition of total variation distance. The total variation dis-
tance between O; and O, has been computed in Eq. (52). Plugging Eq. (52) into Eq. (66), we get

t
E[O(Oy,0;—+) — O(Oy, 0, 1)]| < 2u’lile > [0k — 0;].

k=t—r1

Step 3: show that conditioning on s;_ .41 and 8;_,, we have

E[©(O;,0;_.) — ©(0s__,0,_,)]| < 4u?likp™ L. (67)
t—1 J
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From the definition of ©(0, ), we have
[E[©(Or, 8:—r) = O(0;_, 00—l = [E{V I (8i—r), (O}, 8:—r)) — (VI (81—r), 1(Or, 6,—r))]|
< 4U2ldeV(P(5t € |st—r41,0t—1), 1o, ., @mo, . @ P)
= 4uPljdry (P((34,at) € “|St—rt1,0—1), o, . @ Ta, )
= 4U2ldeV(P(gt = "St—r—&-laet—T);,uOt,,-)
< 4u2ljl’€p7—_1,
where the last inequality follows from Assumption[6] Therefore, we have
EI0(01,0,7) — O(0}_,, 0, < 4ulmp™ L.
Combining Eq. (64), Eq. (63), and Eq. (67), we can decompose the Markovian bias as
E[O(O¢,6:)] = E[O(O¢,0;) — ©(0, 0;—7)]
+E[O(01,6;—;) — O(0r, 6, )]
+E[O(01,0;—) — 6(0]_,,0:_,)]
+E[O(0;_,,0:—7)],

where O, is from the auxiliary Markovian chain defined in Eq. (9) and O;_ . is from the stationary
distribution which satisfies E[©(O;_.,0;_,)|60:—-] = 0.

Then we have

t
E[O(Oy,0:)] < (8u”h; + 3110 E||0; — O || + 201l Y B[Ok — O [| + 4u’Linp™"
k=t—T1

< 4u*(8u?hy + 3lilp) T + Sutlil (T + )a + 4uPljrp™ L.

Therefore, we conclude the proof. O

H DECLARATION

I declare that Large Language Models (LLMs) were used solely for language polishing in this paper.
No other usage of LLMs was involved.
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