
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINITE-TIME ANALYSIS OF ACTOR-CRITIC METHODS
WITH DEEP NEURAL NETWORK APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Actor–critic (AC) algorithms underpin many of today’s most successful reinforce-
ment learning (RL) applications, yet their finite-time convergence in realistic set-
tings remains largely underexplored. Existing analyses often rely on oversimpli-
fied formulations and are largely confined to linear function approximation. In
practice, however, nonlinear approximations with deep neural networks dominate
AC implementations, leaving a substantial gap between theory and practice. In
this work, we provide the first finite-time analysis of single-timescale AC with
deep neural network approximation in continuous state-action spaces. In partic-
ular, we consider the challenging time-average reward setting, where one needs
to simultaneously control three highly-coupled error terms including the reward
error, the critic error, and the actor error. Our novel analysis is able to establish
convergence to a stationary point at a rate Õ(T−1/2), where T denotes the to-
tal number of iterations, thereby providing theoretical grounding for widely used
deep AC methods. We substantiate these theoretical guarantees with experiments
that confirm the proven convergence rate and further demonstrate strong perfor-
mance on MuJoCo benchmarks.

1 INTRODUCTION

Actor-critic (AC) methods have achieved substantial success in many challenging applications (Sil-
ver et al., 2017; Vinyals et al., 2019; Lazaridis et al., 2020). In particular, it becomes instrumental
in enabling highly robust and agile robot motion control involving continuous state-action spaces,
such as quadruped locomotion control (Miki et al., 2022; Hoeller et al., 2024), humanoid whole-
body control (Radosavovic et al., 2024), drone racing (Kaufmann et al., 2023), etc. These successes
are largely driven by the use of powerful function approximators, such as deep neural networks, to
represent control policies (actors) and value functions (critics).

Despite substantial empirical success, the theoretical understanding of AC methods remains under-
developed, especially in the most practical settings. Existing studies often restrict attention to finite
state–action spaces and adopt simplified algorithmic variants to ease analysis. For instance, double-
loop methods perform multiple critic updates per fixed actor (Yang et al., 2019; Kumar et al., 2023;
Agarwal et al., 2021; Xu et al., 2020b), which improves value estimation and thereby yields a more
accurate policy gradient for that actor. This enables a clean, decoupled analysis of the actor and
critic, but at the cost of impractically high sampling complexity. Similarly, two-timescale meth-
ods (Wu et al., 2020; Xu et al., 2020c; Chen et al., 2023) impose a smaller step size on the actor
than the critic, with their ratio vanishing as iterations grow (i.e., limt→∞ αt/βt = 0). This asymp-
totically decouples the actor and critic, mimicking multiple critic updates per actor. However, this
artificial slowing down of the actor is undesirable and rarely adopted in practice.

In contrast, the canonical form widely used in practice is the single-timescale AC algorithm, where
both actor and critic are updated simultaneously with proportional step sizes at each iteration (i.e.,
αt/βt = c). However, analyzing its convergence is more challenging than for the aforementioned
simplified variants, as the actor and critic updates are strongly coupled. The aforementioned decou-
pled analysis is over-conservative and cannot establish convergence of the single-timescale AC.

Recent efforts to study the convergence of the single-timescale AC algorithm include Chen et al.
(2021), Olshevsky & Gharesifard (2023), Chen & Zhao (2024), and Tian et al. (2024), with their
respective settings summarized in Table 1. Among these works, only Tian et al. (2024) considers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of related works on single-timescale actor-critic algorithm analysis.

Reference
MDP Sampling Approximation Convergence

Continuous

State Space

Continuous

Action Space

Markovian

for Actor

Markovian

for Critic

Neural Network

Function Class

Experiment

Validation

Convergence

Rate

Chen et al. (2021) ✓ ✗ ✗ ✗ ✗ ✗ O(T−0.5)

Olshevsky & Gharesifard (2023) ✗ ✗ ✗ ✗ ✗ ✗ O(T−0.5)

Chen & Zhao (2024) ✓ ✗ ✓ ✓ ✗ ✗ Õ(T−0.5)

Tian et al. (2024) ✗ ✗ ✗ ✓ ✓ ✗ Õ(T−0.5 + m−0.5)

Ours ✓ ✓ ✓ ✓ ✓ ✓ Õ(T−0.5)

single-timescale AC with neural network approximation. Nevertheless, it suffers from two funda-
mental limitations. First, it is restricted to finite state–action spaces, where linear function approx-
imation already suffices. This renders the neural network perspective redundant and undermines
the practical significance of the analysis. In contrast, real-world reinforcement learning problems
typically involve continuous state–action spaces and rely on neural networks for expressive func-
tion approximation. Second, as shown in Table 1, the convergence rate in Tian et al. (2024) is
Õ(T−0.5 + m−0.5), where T denotes the number of iterations and m the neural network width.
While the T -dependence is natural for finite-time analysis, the m-dependence is problematic. In
practice, m is fixed during training and does not scale with T , leaving a constant Õ(m−0.5) error
term that fails to capture the true convergence behavior. Moreover, neural tangent kernel theory (Ja-
cot et al., 2018) shows that neural networks become increasingly linear as m → ∞, thereby degrad-
ing their representational power. Intuitively, the convergence of the algorithm should not hinge on
such m-limiting behavior. The observed dependence on m in prior results is merely a consequence
of analytical technicalities, rather than a fundamental property of the algorithm.

Motivated by these gaps, we provide the first finite-time convergence guarantee for single-timescale
AC in continuous state–action spaces under the time-average reward setting. Our analysis rigorously
incorporates both deep neural network approximation and Markovian sampling for the actor and the
critic. We prove the convergence of the reward error (Eq. (8a)), critic error (Eq. (8b)), and actor error
(Eq. (8c)) at rate Õ(T−1/2), without requiring the network width m to diverge. As summarized
in Table 1, our results compare favorably with prior studies across key dimensions that are critical
for practical applicability.

From a technical perspective, this improvement is enabled by a series of technical innovations. To
sharpen the convergence rate, we show that the smoothness-induced error—arising uniquely from
neural networks and absent in the linear setting—is intertwined with the critic error. Unlike Tian
et al. (2024), which conservatively bound the critic error by a constant, we prove that its mean
path diminishes, thereby removing the prior requirement of m → ∞ (see the mean-path update
analysis in Eq. (26)). To address the challenges of continuous state–action spaces, we introduce
an operator-based framework (see Eq. (1)) capable of handling uncountable domains. To mitigate
error propagation caused by deep neural networks (DNNs) approximation of the value function, we
establish a set of important regularity properties of DNNs in Lemma 1. Moreover, the interplay
between DNN approximation error and Markovian sampling noise poses greater challenges than
those encountered in the linear function approximation (Chen & Zhao, 2024) or the i.i.d. sampling
setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). To control such complex error dynamics,
we develop refined analyses in Lemma 7–Lemma 10 (Markovian noises). A high-level overview of
our proof ideas and newly developed techniques is provided in the Proof Sketch in Appendix C.

This work is further distinguished by extensive empirical validation that corroborates our theoretical
results (see Section 5). Although all prior studies listed in Table 1 attempt to bridge the gap between
theory and practice, none included empirical evaluations. A key reason is that many of their assump-
tions are unrealistic for practical deployment. For instance, the algorithms analyzed in prior works
cannot even be applied to simple tasks such as gymnasium Pendulum-v1(Towers et al., 2024),
since they are restricted to finite action spaces and depend on sampling from the stationary state
distribution. Moreover, AC with linear function approximation is generally incapable of controlling
standard benchmarks. In particular, our experiments show that the linear critic fails to approximate
the value function even for the simple pendulum (Figure 1). These observations highlight the sub-
stantial gap between the simplifying assumptions underlying existing theoretical analyses and the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

complexities inherent in practical RL applications. In contrast, we empirically verify both the con-
vergence and the proven convergence rate of our algorithm on pendulum, and further demonstrate
its effectiveness on more challenging Gym MuJoCo benchmarks, where neural AC consistently out-
performs its linear approximation counterpart. This underscores the importance of analyzing neural
AC algorithms, which are both practically relevant and theoretically more challenging.

Notation. We use san-serif letters to denote scalars and use lower and upper case bold letters to
denote vectors and matrices respectively. For two sequences of real numbers (xn) and (yn), we
write xn = O(yn) if there exists C < ∞ such that |xn| ≤ C|yn| for all n sufficiently large. We use
Õ(·) to further hide logarithmic factors. The total variation distance of two probability measure µ
and ν is defined by dTV (µ, ν) := 1/2

∫
X |µ(dx)− ν(dx)|.

2 PRELIMINARIES

Markov Decision Process. We consider the standard Markov Decision Process (MDP) character-
ized by (S,A,P, r), where S is the state space and A is the action space. The spaces S and A are
allowed to be either finite sets or real vector spaces, i.e., S ⊂ Rds and A ⊂ Rda . The transition
kernel is denoted by P(st+1|st, at) ∈ R≥0 and the reward function is r : S × A → [−ur, ur]. A
policy πθ parameterized by θ ∈ XΘ maps a given state to a probability distribution over the action
space, i.e., at ∼ πθ(·|st). In this work, we consider the time-average reward setting (Sutton et al.,
1999; Yang et al., 2019; Wu et al., 2020; Chen & Zhao, 2024), which aims to find a policy πθ that
maximizes the following infinite-horizon time-average reward:

J(θ) := lim
T→∞

Eθ

[
1

T

T−1∑
t=0

r(st, at)

]
= E(s,a)∼(µθ,πθ)

[
r(s, a)

]
.

In the above equation, the expectation Eθ is taken over the states and actions generated by following
the policy πθ and the transition kernel P . Additionally, µθ denotes the stationary state distribution
induced by πθ and P . The existence of this stationary distribution is guaranteed by the uniform
ergodicity of the underlying MDP, which is a common assumption (See Assumption 6 in the sequel).
Hereafter, we refer to J(θ) as the time-average reward (and exchangeably, performance function),
which can be evaluated by the expected reward over the stationary distribution µθ and the policy
πθ. The state-value function is used to evaluate the overall rewards starting from a state s, following
policy πθ and transition kernel P thereafter, which is defined as

Vθ(s) := Eθ

[∞∑
t=0

(
r(st, at)− J(θ)

)∣∣∣∣s0 = s

]
.

Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from
s, taking action a, and following transition kernel P and policy πθ thereafter:

Qθ(s, a) := Eθ

[∞∑
t=0

(
r(st, at)− J(θ)

)∣∣∣∣s0 = s, a0 = a

]
= r(s, a)− J(θ) + E

[
Vθ(s

′)
]
,

where the last expectation is taken over s′ ∼ P(·|s, a).
To tackle the technical challenges associated with neural network function approximation over con-
tinuous state and action spaces, we introduce two auxiliary operators. Let F := {f | f : S → R}
denote the class of real-valued functions on S. For a policy πθ, define the operators Dθ : F → F
and Pθ : F → F as

(Dθf)(s) := µθ(s) f(s), (Pθf)(s) :=

∫
S

∫
A
f(s′)P(s′ | s, a)πθ(a | s)dads′. (1)

Here, Dθ multiplies a function f by the stationary distribution µθ, whereas Pθ maps f to its one-step
look-ahead under the Markov chain induced by πθ and P , i.e., (Pθf)(s) = Eθ[f(st+1) | st = s].
The inner product on F is given by

⟨f, g⟩ =
∫
S
f(s) g(s) ds, (2)

and the induced norm of a function f is ∥f∥2 = ⟨f, f⟩.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Actor-Critic. In AC, the actor corresponds to the policy, while the critic typically estimates the
actor’s value function via temporal-difference learning. The actor then updates its policy parame-
ters through stochastic gradient ascent to maximize the performance function. The policy gradient
theorem (Sutton et al., 1999) offers a closed-form expression for the gradient of the performance
function J(θ) with respect to the policy parameters θ, which is given by

∇θJ(θ) = Es∼µθ,a∼πθ

[
Qθ(s, a) · ∇θ log πθ(a|s)

]
. (3)

Equivalently, the policy gradient can be written as
∇J(θ) = Es∼µθ,a∼πθ

[(Qθ(s, a)− b(s))∇θ log πθ(a|s)],
where b(s) is called the baseline function, which is employed to reduce the variance of the gradient
estimate. A popular choice of baseline is the state-value function, which leads to the following
so-called advantage-based policy gradient

∇θJ(θ) = Es∼µθ,a∼πθ
[∆θ(s, a)∇θ log πθ(a|s)], (4)

where ∆θ := Qθ(s, a)− Vθ(s) is known as the advantage function.

In deep RL, the policy (actor) and value functions (critic) are typically parameterized by deep neural
networks due to their strong representation capabilities (Mnih et al., 2015; Lillicrap et al., 2015).
However, the convergence of training deep neural networks are less understood, especially in RL.
In this paper, we establish conditions and provide a finite-time analysis for single-timescale AC
algorithms utilizing deep neural network approximations for both the actor and the critic.

3 THE SINGLE-TIMESCALE NEURAL ACTOR-CRITIC ALGORITHM

In this section, we present the single-timescale neural AC algorithm to be analyzed in the sequel,
incorporating key components commonly found in practical implementations.

3.1 PARAMETERIZATION OF THE VALUE FUNCTION AND POLICY

We consider a deep neural network for estimating the true state-value function Vθ(s) under a policy
πθ. The network V̂ (ω; s) has a general form of a deep neural network with a linear output layer:

s(0) = s, s(k) =
1

√
mk

σ(W (k)s(k−1)), k = 1, 2, · · · ,K, V̂ (ω; s) =
1

√
mK

b⊤s(K), (5)

where K is the total number of hidden layers, state s ∈ Rds is the input to the neural network, σ is
an element-wise activation function, b is a fixed coefficient vector for the output layer, and ω ∈ XΩ

stands for the trainable parameter of the neural network. The latter is a column vector formed by
stacking the weights of different layers, ω := {W (k) ∈ Rmk×mk−1}Kk=1, where mk ∈ N is the
width of the k-th layer and m0 = ds is the input dimension. Without loss of generality, we assume
all the hidden layers have the same width m, i.e., mk = m for k ∈ {1, 2, · · · ,K}. It is for the
ease of presentation only. As shown in the proof, our analysis also applies to mk ≥ m. Note
that the above definition is general enough to encompass standard multilayer perceptrons (MLPs),
convolutional neural networks (CNNs), and residual networks (ResNets) as special cases (Liu et al.,
2020).

The policy πθ is allowed to have a general parameterization, including linear functions (Yang et al.,
2019), deep neural networks (Wang et al., 2019), and energy-based policies (Fu et al., 2020). For the
deep neural network approximation case, the actor can be parameterized similarly to Eq. (5), where
all the trainable parameters will be stacked into the column vector θ ∈ XΘ.

3.2 ALGORITHM DESIGN

In this subsection, we first aim to update the parameter of the neural network (the critic) ω so
that V̂ (ω; s) can approximate the true value function Vθ(s) of a policy πθ. Concretely, at step t,
we implement Stochastic Gradient Descent (SGD) methods to adjust the critic in the direction that
would most reduce the mean square value error [V (st)− V̂ (ωt; st)]

2:

ωt+1 =ωt −
1

2
β∇

[
V (st)− V̂ (ωt; st)

]2
=ωt + β

[
V (st)− V̂ (ωt; st)

]
∇V̂ (ωt; st),

(6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Single-Timescale Neural Actor-Critic

1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsizes
α for actor, β for critic, and γ for reward estimator.

2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, · · · , T − 1 do
4: Take action at ∼ πθt(· | st)
5: Observe next state st+1 ∼ P(· | st, at) and reward rt = r(st, at)

6: δt = rt − ηt + V̂ (ωt; st+1)− V̂ (ωt; st)
7: ηt+1 = ηt + γ(rt − ηt)

8: ωt+1 = projBω0
(ωt + βδt∇V̂ (ωt; st))

9: θt+1 = θt + αδt∇θ log πθt(at | st)
10: end for

where β is the stepsize (learning rate). Since V (st) is unknown, the semi-gradient TD(0) method
approximates it by replacing V (st) with the current target rt − J(θ) + V̂ (ωt; st+1). To further
estimate the unknown time-average reward J(θ), we use the following exponential moving average
update of ηt,

ηt+1 = ηt + γ(rt − ηt),

where γ is the stepsize. Hereafter, we will refer to it as the reward estimator. This additional
estimation of the time-average reward J(θ) introduces more analysis complexity compared to the
discounted setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). Now, by denoting the TD
error as

δt := rt − ηt + V̂ (ωt; st+1)− V̂ (ωt; st),

we can rewrite the update of the critic in Eq. (6) as

ωt+1 = ωt + βδt∇V̂ (ω; st).

For the neural network specified in Section 3.1, we require its width m to be a large constant such
that the neural network is in the overparameterization regime. In this regime, the optimal solution
typically resides in the neighborhood of the initialization (Du et al., 2019; Chen et al., 2021; Tian
et al., 2024). Therefore, in Line 8 of Algorithm 1, we constrain the update of the critic parameter
within a ball of constant radius around its initial condition, which ensures the boundedness without
overlooking the optimal solution. Specifically, projBω0

stands for the projection onto a ball with a
constant radius around the initial condition of the critic, i.e., Bω0

= {ω|∥ω − ω0∥ ≤ uω}, where
uω is a constant.

For the actor update, it is standard to use the TD error (δt) as an approximation of the advantage
function (Sutton & Barto, 2018). Therefore, based on the policy gradient theorem, the corresponding
update rule for the actor can be written as

θt+1 = θt + αδt∇θ log πθt(at|st),
where δt∇θ log πθt(at|st) is an approximation of the policy gradient defined in Eq. (4). The parallel
updates of the critic and actor in Lines 8 and 9 aim to drive the actor towards the direction that
increases the time-average reward J(θ).

We summarize the above-described AC algorithm in Algorithm 1, which follows the classic AC ar-
chitecture studied in prior works under various settings, as listed in Table 1. The “single-timescale”
refers to the fact that the stepsizes α, β, γ are only constantly proportional to each other. We consider
the more challenging neural network approximation for both the actor and the critic, which is re-
ferred to as the “neural actor-critic”. Moreover, we consider the more practical Markovian sampling,
starting from an initial state s0, with subsequent states and actions generated according to the tran-
sition kernel and the policy, respectively. The consecutive transition tuples (s0, a0, s1, a1, s2, · · ·)
form a single trajectory, thereby circumventing the time-consuming re-sampling procedure (i.i.d.
sampling) mandated in prior works (Chen et al., 2021; Tian et al., 2024). More importantly, we
aim to address the challenging settings of continuous state and action spaces that are prevalent in
applications (see Table 1 for a detailed comparison). The finite-time convergence in such contexts
is of significant interest to the community but remains unresolved.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 ANALYSIS OF SINGLE-TIMESCALE NEURAL ACTOR-CRITIC

In this section, we begin by outlining several standard assumptions and then present our main finite-
time convergence results for the algorithm.

4.1 ASSUMPTIONS

Assumption 1 (Neural architecture and initialization). The neural network defined in Eq. (5) satis-
fies the following properties:

(a) (Input assumption) Any input to the neural network satisfies ∥s(0)∥ ≤ 1.

(b) (Activation assumption) σ is lσ-Lipschitz and hσ-smooth. i.e., ∀x1, x2 ∈ R, (i) |σ(x1) −
σ(x2)| ≤ lσ|x1−x2|; (ii) |σ′(x1)−σ′(x2)| ≤ hσ|x1−x2| where σ′ is the derivative of σ.

(c) (Initialization assumption) Each entry of the vector b satisfies |bi| ≤ 1,∀i, and the weights
of the neural network W

(k)
0 are randomly initialized from a normal distribution N (0, 1),

with each entry being independently sampled.

This assumption mainly states the initialization and analytic properties of the neural network. We
note that these assumptions are widely satisfied in various applications. For the input norm con-
straint, we could normalize the state space to guarantee this assumption. Regarding the activation
function, we emphasize that many commonly used activation functions, such as sigmoid and GeLu,
satisfy this condition. The initialization assumption, furthermore, can be easily implemented during
neural network training. We also note that the above assumptions are common in the theoretical
analysis of neural networks (Liu et al., 2020; Tian et al., 2024).

As shown in Lemma F.4 of (Liu et al., 2020), with Assumption 1, the following assumption holds
with high probability, which we state as an assumption in our work for ease of presentation.

Assumption 2. The absolute value of each entry of s(k) (the output of layer k of the neural network)
is Õ(1) at initialization. The initial weights satisfy ∥W (k)

0 ∥ ≤ O(
√
m) for all k.

For the value function Vθ(s) of a given policy θ, its best approximation using the neural network
(Eq. (5)) is defined via

ϵapp(ω
∗(θ)) := inf

ω

√
Es∼µθ

[
(V̂ (ω; s)− Vθ(s))2

]
, (7)

where ω∗(θ) is referred to as the optimal critic that yields the minimal (optimal) approximation error
ϵapp(ω

∗(θ)). In this paper, we assume the optimal approximation errors for all potential policies
are uniformly bounded, that is,

∀θ, ϵapp(ω∗(θ)) ≤ ϵapp,

for some constant ϵapp ≥ 0. The error ϵapp is zero if Vθ can be exactly approximated by the neural
network (Eq. (5)). Naturally, it is expected that the learning errors of Algorithm 1 depend on ϵapp,
which represents the approximation capacity of the critic.

The assumption of a uniformly bounded approximation error is common in the literature (Chen
et al., 2021; Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024; Tian et al., 2024). It is more
restrictive for the linear function approximation than for the neural network setting. If the true
value function is not linear, which is typically the case in practice, the approximation error ϵapp
can be significantly large. In contrast, the neural network approximation can arbitrarily closely
approximate any continuous function according to the universal Approximation Theorem (Hornik,
1991), and therefore can potentially keep the approximation error arbitrarily small.

We then make the following assumption for the optimal critic.
Assumption 3 (Smoothness of optimal critic). For any θ1,θ2 ∈ XΘ, we have

∥ω∗(θ1)− ω∗(θ2)∥ ≤ lω∥θ1 − θ2∥,
∥∇ω∗(θ1)−∇ω∗(θ2)∥ ≤ hω∥θ1 − θ2∥,

where lω and hω are finite positive constants.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The above assumption states that the optimal critic is lω-Lipschitz and hω-smooth. This assumption
is commonly employed for the single-timescale AC with neural network approximation (Tian et al.,
2024). In the case of linear function approximation, the above assumption is trivially implied by the
linearity of the value function (Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024).

Furthermore, we specify the regularity of the neural network.
Assumption 4 (Regularity of the neural network). For the neural network defined in Eq. (5), there
exists some constant λ1 > 0 such that

∥V̂ (ω)− V̂ (ω∗(θ))∥ ≥ λ1∥ω − ω∗(θ)∥, ∀θ ∈ XΘ,ω ∈ XΩ,

where the norm of a function is defined based on the inner product given in Eq. (2), which involves
the product of function values integrated over s. Assumption 4 states the regularity of the neural
network in terms of learning the optimal value. Intuitively, it requires that the perturbation of the
critic parameter around the optimal one will cause a non-zero change of the critic neural network
output. From the point of view of the optimization landscape of the neural network, it merely
assumes that optimal and suboptimal points are distinguished. This is also a standard assumption of
other analysis of AC methods with neural network approximation (Tian et al., 2024).

The next assumption pertains to the exploration of the policy πθ in continuous settings.

Assumption 5 (Exploration). There exists a constant λ2 > 0 such that
〈
V̂ (ω), Dθ(I−Pθ)V̂ (ω)

〉
≥

λ2

∥∥V̂ (ω)
∥∥2, for any θ ∈ XΘ and neural network V̂ (ω) ∈ F , where Dθ, Pθ are operators defined

in Eq. (1), I denotes the identity operator, and the inner product is defined in Eq. (2).

To demonstrate its connection to exploration, we show that if exploration is insufficient, the assump-
tion fails to hold. First note that the operator Dθ essentially multiplies the stationary distribution µθ

to the function on its left (see the definition in Eq. (1)). If the policy πθ does not sufficiently explore,
there exists a subset of the state space A ⊂ S such that µθ(A) = 0. Furthermore, we can choose
V̂ (ω) such that V̂ (ω; s) = 0,∀s ∈ S \ A and V̂ (ω; s) > 0,∀s ∈ A. With this choice, the left-
hand side of the inequality evaluates to 0, while the right-hand side becomes positive. This violates
the condition stated in Assumption 5. Thus, the contrapositive holds: if Assumption 5 is satisfied,
it ensures sufficient exploration of the state space under the policy πθ. This sufficient exploration
assumption is standard in the literature of analyzing the convergence of AC algorithms (Wu et al.,
2020; Chen et al., 2021; Chen & Zhao, 2024; Tian et al., 2024).
Assumption 6 (uniform ergodicity). For a Markov chain generated by the policy πθ and transition
kernel P , let P denote the corresponding state transition probability. Then there exists κ > 0 and
ρ ∈ (0, 1) such that the total variation distance between the state distribution at time τ and the
stationary distribution µθ satisfies: dTV (P(sτ ∈ ·|s0 = s), µθ(·)) ≤ κρτ , for all τ ≥ 0, s ∈ S.

Assumption 6 assumes the Markov chain is geometrically mixing, which is implied by the uniform
ergodicity of the chain. It is commonly employed to characterize the noise induced by Markovian
sampling in RL algorithms (Bhandari et al., 2018; Zou et al., 2019; Wu et al., 2020; Chen et al.,
2021; Olshevsky & Gharesifard, 2023).
Assumption 7 (Regularity of the policy). Let πθ(a|s) be a bounded policy parameterized by θ ∈
XΘ. There exists positive constants uπ, hπ and lp such that for any θ, s, and a, it holds that: (i)
∥∇ log πθ(a|s)∥ ≤ uπ; (ii)∥∇ log πθ1(a|s) − ∇ log πθ2(a|s)∥ ≤ hπ∥θ1 − θ2∥; (iii) |πθ1(a|s) −
πθ2(a|s)| ≤ lp∥θ1 − θ2∥.

Assumption 7 states the regularity of the policy, which is standard in the literature of actor-critic
methods (Wu et al., 2020; Chen et al., 2021; Chen & Zhao, 2024; Tian et al., 2024). These condi-
tions are sufficiently general to be satisfied by a wide range of distributions, including the uniform
distribution, the truncated Gaussian distribution, and the Beta distribution with α, β > 1.

4.2 FINITE-TIME ANALYSIS

We define the integer τT := min{i ≥ 0 | κρi−1 ≤ T−1/2}, where T is the total number of iterations,
κ and ρ are the same constants defined in Assumption 6. The integer τT represents a certain mixing
time of an ergodic Markov chain, which will be used to control the Markovian noise in the analysis.
In our main results, we require that T ≥ 2τT to ensure that the Markov chain is well-mixed and the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 1: (a) Comparison of learned value functions: (left) linear critic, (middle) neural critic,
and (right) optimal V ∗ obtained via time-average reward relative value iteration. Heatmaps are
rendered with the Viridis colormap, where blue indicates low values, green intermediate values, and
yellow high values. (b) Log–log plot of ET := 1

T−τT

∑T−1
t=τT

E∥∇J(θt)∥2 (Eq. (8c)) versus T , with
τT = 125 (Theorem 1 holds for T ≥ 2τT). Colored markers represent five independent runs, and
the dashed line shows their mean with a linear regression fit.

Markovian noise is effectively bounded. We can estimate that τT = log κρ−1

log ρ−1 + log T
2 log ρ−1 = O(log T)

which results in κρτT−1 ≤ 1√
T

.

We quantify the learning errors by defining yt := ηt − J(θt), which is the difference between
the reward estimator and the true time-average reward J(θt) at time t. For the critic, we define
zt := ωt − ω∗

t with ω∗
t := ω∗(θt) to measure the error between the critic and its target value at

iteration t. The following theorem summarizes our main results.
Theorem 1. Consider Algorithm 1 with α = c√

T
, β = 1√

T
, γ = 1√

T
, where c is a constant depend-

ing on problem parameters. Suppose Assumption 1-7 hold, for T ≥ 2τT , we have

1

T − τT

T−1∑
t=τT

E[y2t] = O
(
log2 T√

T

)
+O(ϵapp), (8a)

1

T − τT

T−1∑
t=τT

E∥zt∥2 = O
(
log2 T√

T

)
+O(ϵapp), (8b)

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 = O
(
log2 T√

T

)
+O(ϵapp). (8c)

Theorem 1 establishes the finite-time convergence of Algorithm 1. Given that the problem is in-
herently non-convex in general, it is common to prove convergence to a stationary point. The error
term O(ϵapp) represents the critic approximation error that commonly appears in the analysis of AC
methods (Wu et al., 2020; Chen & Zhao, 2024; Tian et al., 2024). If the critic approximation error
ϵapp is zero, the critic and the actor errors all vanish at a rate of Õ(T−1/2). The Õ notation hides
the polynomials of all other problem parameters that do not depend on T and ϵapp. The additional
logarithmic term with respect to T arises from the mixing time of the Markov chain, which can be
further eliminated if considering the i.i.d. sampling scheme (Chen & Zhao, 2024). As summarized
in Table 1, we establish convergence of single-timescale AC under the most practical settings.

The main challenge of our analysis lies in controlling the coupled reward error (Eq. (8a)), the critic
error (Eq. (8b)), and the actor error (Eq. (8c)). We begin by deriving implicit and coupled bounds
for the time-average reward error, the critic error, and the actor error, respectively. We then view
the propagation of these errors as an interconnected system (Chen & Zhao, 2024) and analyze them
holistically. To better appreciate the merit of our analysis, we sketch the main proof steps of Theo-
rem 1 in the Proof Sketch in Appendix C.

5 EXPERIMENTS

5.1 APPROXIMATION CAPABILITY OF THE NEURAL CRITIC

We evaluate Algorithm 1 on the Gymnasium Pendulum-v1 task. This is a canonical control task
with a continuous state space described by s = (cos θ, sin θ, θ̇) (minimal coordinates (θ, θ̇)) and a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Final average reward under different configurations (mean ± std over 5 seeds). Width
sweep uses fixed depth = 2; depth sweep uses fixed width = 128.

Config Ant HalfCheetah Hopper Humanoid Swimmer Walker2d
Linear 797.1±66.0 299.2±61.9 61.4±25.2 186.9±14.7 35.9±4.7 810.9±290.6

Width-64 1120.0±140.3 590.7±135.6 108.5±16.3 264.0±56.1 132.5±78.4 1215.3±192.6
Width-128 1587.4±183.2 1425.8±161.7 533.8±64.7 291.1±63.9 220.5±41.8 1400.9±461.2
Width-256 1245.2±126.7 2250.1±187.9 725.3±165.0 365.2±64.3 251.3±8.8 1390.9±324.9
Width-512 949.2±75.4 1691.6±245.8 749.3±304.6 448.9±48.4 222.7±22.7 996.5±180.9

Depth-1 961.2±8.0 1205.8±293.5 174.6±34.4 219.0±24.3 173.6±101.1 1118.4±39.5
Depth-2 1587.4±183.2 1425.8±381.7 533.8±64.7 291.1±63.9 201.2±54.2 1400.9±461.2
Depth-4 1824.9±147.0 2144.2±229.6 465.6±95.6 385.0±50.0 182.6±26.8 865.1±196.5
Depth-8 1021.0±58.3 1699.2±285.4 210.8±68.2 546.4±63.7 230.9±57.7 1136.9±45.0

continuous torque action. The critic is parameterized by a DNN of the form Eq. (5), and the actor is
a Gaussian policy whose mean and variance are produced by a DNN with the same architecture. For
comparison, we employ a linear critic parameterized by a fixed 6-term RBF feature map, V̂ (s) =

ω⊤ϕ(s) with ω ∈ R6. The feature vector consists of Gaussian RBFs defined on (cos θ, sin θ, θ̇):
ϕi(s) = exp

(
−∥s−ci∥2

2

2σ2

)
, i = 1, . . . , 6, where the centers {ci ∈ R3} are placed uniformly and σ

is determined by a standard width rule (Konidaris et al., 2011). For visualization, the ground-truth
baseline is computed via time-average reward relative value iteration (RVI) (Bertsekas, 1998). As
illustrated in Figure 1(a), the neural critic aligns more closely with the ground-truth value.

5.2 EMPIRICAL VALIDATION OF THEORETICAL CONVERGENCE RATE.

In this experiment, we follow the same setting as in Section 5.1. We empirically estimate the
convergence rate of Algorithm 1 (Eq. (8c)) to examine its consistency with the theoretical rate of
Õ(T−1/2). As shown in Figure 1, after an initial warm-up period of about 250 iterations (recall
that Theorem 1 applies to T ≥ 2τT), the curve exhibits a clear linear trend. Fitting a single slope
to the mean trajectory yields −0.51, which aligns closely with the theoretical value of −0.5. This
agreement provides direct empirical support for our theoretical convergence rate.

5.3 ALGORITHM EVALUATION ON MUJOCO BENCHMARKS

Figure 2: Reward curves under different capaci-
ties: HalfCheetah (width sweep) and Ant (depth
sweep). Mean ± std over 5 seeds; dashed = lin-
ear baseline.

We further evaluate Algorithm 1 on challenging
continuous-control benchmarks from Gym Mu-
JoCo, including Ant, HalfCheetah, Hopper, Hu-
manoid, Swimmer, and Walker2d. We conduct
ablations along three axes: (i) linear critic, (ii)
neural critic with varying depths, and (iii) neu-
ral critic with varying widths. The linear critic
is identical to that used in Section 5.1. Table 2
reports the final average rewards over five seeds,
while Figure 2 illustrates the learning curves of
two selected entries from the table. Overall, the
linear critic underperforms substantially across
all tasks. These experiments validate the effec-
tiveness of our considered algorithm on practical
tasks and also reinforce the importance of analyzing realistic neural AC settings.

6 CONCLUSION AND DISCUSSION

In this paper, we provide the first finite-time analysis of single-timescale AC with deep neural net-
work approximation in continuous state–action spaces under the time-average reward setting. Our
results surpass those of existing works by effectively addressing continuous state and action spaces,
utilizing Markovian sampling, and employing deep neural network approximations for both critic
and actor. We also conduct extensive experiments to validate the convergence guarantees of the
analyzed algorithm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Dimitri P Bertsekas. A new value iteration method for the average cost dynamic programming
problem. SIAM journal on control and optimization, 36(2):742–759, 1998.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pp. 1691–1692.
PMLR, 2018.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor–
critic algorithms. Automatica, 45(11):2471–2482, 2009.

Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic algorithm. The
Journal of Machine Learning Research, 11:367–410, 2010.

Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized neural natural
actor-critic algorithm. arXiv preprint arXiv:2206.00833, 2022.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems, 34:
25294–25307, 2021.

Xuyang Chen and Lin Zhao. Finite-time analysis of single-timescale actor-critic. Advances in
Neural Information Processing Systems, 36, 2024.

Xuyang Chen, Jingliang Duan, Yingbin Liang, and Lin Zhao. Global convergence of two-timescale
actor-critic for solving linear quadratic regulator. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 7087–7095, 2023.

Ziyi Chen, Yi Zhou, Rong-Rong Chen, and Shaofeng Zou. Sample and communication-efficient
decentralized actor-critic algorithms with finite-time analysis. In International Conference on
Machine Learning, pp. 3794–3834. PMLR, 2022.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. arXiv preprint arXiv:2008.00483, 2020.

Mudit Gaur, Amrit Singh Bedi, Di Wang, and Vaneet Aggarwal. Closing the gap: Achieving
global convergence (last iterate) of actor-critic under markovian sampling with neural network
parametrization. arXiv preprint arXiv:2405.01843, 2024.

David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. Anymal parkour: Learning ag-
ile navigation for quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024. doi: 10.1126/
scirobotics.adi7566.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06419-4.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-
forcement learning using the fourier basis. In Proceedings of the AAAI conference on artificial
intelligence, volume 25, pp. 380–385, 2011.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-
critic method for reinforcement learning with function approximation. arXiv preprint
arXiv:1910.08412, 2019.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-critic
method for reinforcement learning with function approximation. Machine Learning, 112(7):
2433–2467, 2023.

Aristotelis Lazaridis, Anestis Fachantidis, and Ioannis Vlahavas. Deep reinforcement learning: A
state-of-the-art walkthrough. Journal of Artificial Intelligence Research, 69:1421–1471, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022. doi: 10.1126/scirobotics.abk2822.

A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. Journal of
Applied Probability, 42(4):1003–1014, 2005.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alex Olshevsky and Bahman Gharesifard. A small gain analysis of single timescale actor critic.
SIAM Journal on Control and Optimization, 61(2):980–1007, 2023.

Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, and Koushil Sreenath.
Real-world humanoid locomotion with reinforcement learning. Science Robotics, 9:eadi9579,
2024. doi: 10.1126/scirobotics.adi9579.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617–17628,
2020.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-
reduced policy gradient. In Uncertainty in Artificial Intelligence, pp. 541–551. PMLR, 2020a.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-
critic algorithms. Advances in Neural Information Processing Systems, 33:4358–4369, 2020b.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two time-scale
(natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020c.

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of
actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural informa-
tion processing systems, 32, 2019.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586–3612, 2020a.

Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent two-
timescale off-policy actor-critic with function approximation. In International Conference on
Machine Learning, pp. 11204–11213. PMLR, 2020b.

Zhiyao Zhang, Myeung Suk Oh, FNU Hairi, Ziyue Luo, Alvaro Velasquez, and Jia Liu. Finite-time
global optimality convergence in deep neural actor-critic methods for decentralized multi-agent
reinforcement learning. arXiv preprint arXiv:2505.18433, 2025.

Mo Zhou and Jianfeng Lu. Single timescale actor-critic method to solve the linear quadratic regula-
tor with convergence guarantees. Journal of Machine Learning Research, 24(222):1–34, 2023.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. Advances in neural information processing systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supplementary Material

Table of Contents

A Related Work 13

B Additional Notations 14

C Proof Sketch 15

D Preliminary Lemmas 16

E Proof of Main Theorem 17

E.1 Step 1: Reward error analysis . 17

E.2 Step 2: Critic error analysis . 19

E.3 Step 3: Actor error analysis . 25

E.4 Step 4: Interconnected iteration system analysis 26

F Proof of Preliminary Lemmas 28

G Proof of Markovian noises 33

H Declaration 39

A RELATED WORK

Actor-Critic methods. The AC algorithm was initially proposed by Konda & Tsitsiklis (1999).
Subsequently, Kakade (2001) extended it to the natural AC algorithm. The asymptotic convergence
of AC algorithms has been well established under various settings, as demonstrated in works by
Kakade (2001), Bhatnagar et al. (2009), Castro & Meir (2010), and Zhang et al. (2020b). More
recently, many studies have focused on the finite-time convergence of AC methods. Under the
double-loop setting, Kumar et al. (2019) investigated the finite-time local convergence of several AC
variants with linear function approximation. Wang et al. (2019) explored the global convergence of
AC methods with both the actor and the critic parameterized by neural networks with single hidden
layers. Cayci et al. (2022) improved upon the work of Wang et al. (2019) by considering Markovian
sampling and reducing sample complexity. Xu et al. (2020a) analyzed natural AC under Markovian
sampling, while Chen et al. (2022) studied decentralized AC and decentralized natural AC in the
same setting. More recently, Gaur et al. (2024) and Zhang et al. (2025) established global optimality
convergence for double-loop AC methods.

Under the two-timescale AC setting, Wu et al. (2020) established the finite-time local convergence to
a stationary point at a sample complexity of Õ(ϵ−2.5) under the undiscounted time-average reward
setting. Xu et al. (2020c) studied both local convergence and global convergence for two-timescale
(natural) AC, with Õ(ϵ−2.5) and Õ(ϵ−4) sample complexity, respectively, under the discounted ac-
cumulated reward. The algorithm collects multiple samples to update the critic. Hong et al. (2023)
proposed a two-timescale stochastic approximation algorithm for bilevel optimization and the algo-
rithm was subsequently employed in the context of two-timescale AC. Chen et al. (2023) established

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the global convergence of two-timescale AC methods for solving linear quadratic regulator (LQR),
where only a single sample is used to update the critic in each iteration. However, none of these
previous results utilized neural network approximation for the value function (the critic).

Under the most challenging single-timescale setting, Fu et al. (2020) considered the least-squares
temporal difference (LSTD) update for the critic and obtained the optimal policy within the energy-
based policy class for both linear function approximation and neural network approximation. Zhou
& Lu (2023) studied single-timescale AC on LQR. In addition, Chen et al. (2021); Olshevsky &
Gharesifard (2023); Chen & Zhao (2024) considered the single-timescale AC in general MDP cases
with linear function approximation. Recently, Tian et al. (2024) built upon the results of Olshevsky
& Gharesifard (2023) and improved to neural network approximation. A comprehensive review and
comparison of all existing results on single-timescale AC in general MDP settings are presented in
Table 1.

B ADDITIONAL NOTATIONS

We make use of the following auxiliary Markov chain which was introduced in (Zou et al., 2019) to
deal with the Markovian noise.

Auxiliary Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1.
(9)

For reference, we also show the original Markov chain.

Original Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ ãt−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2 · · ·

P−→ st
θt−→ at

P−→ st+1.
(10)

In the sequel, we denote by Õt := (s̃t, ãt, s̃t+1) the tuple generated from the auxiliary Markov chain
in Eq. (9) while Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in
Eq. (10).

In our work, we use the term Markovian sampling to refer to the setting where all samples are drawn
from a Markov chain. Concretely, the samples follow

(s0, a0)
(P,πθ1

)
−−−−−→ (s1, a1)

(P,πθ2
)

−−−−−→ (s2, a2) · · ·
(P,πθt)−−−−−→ (st, at), (11)

forming one trajectory (s0, a0, s1, a1, . . . , st, at).

Remark. Note that in Table 1 we label the actor sampling in Tian et al. (2024) as not Markovian.
This arises from the fact that Tian et al. (2024) adopts a sampling scheme that is fundamentally
different from the Markovian sampling in Eq. (11). For each update at timestep t, the state–action
pair (ŝt, ât) used in the actor update in Tian et al. (2024) is obtained by sampling a random horizon

T ∼ Geom(1− γ),

rolling out a trajectory (s0, a0, s1, a1, . . . , sT , aT), and using only the terminal pair (ŝt, ât) :=
(sT , aT). Each (ŝt, ât) therefore arises from an independent rollout, and successive samples do not
satisfy any Markovian dependency:

(ŝt, ât) ̸→ (ŝt+1, ât+1).

Because this sampling is based on independent random-horizon rollouts, no Markovian noise arises
in this part. In practice, this is also less sample-efficient than single-trajectory Markovian sampling.

For this reason, although Tian et al. (2024) refer to their scheme as “Markovian sampling”, we
view it as fundamentally different from the standard usage of the term and label it as to be “not
Markovian” in Table 1. Notably, this same sampling mechanism has been used in Zhang et al.
(2020a), who explicitly refer to it as random-horizon policy gradient. Following this terminology,
we believe “random-horizon sampling” is a more accurate description for this type of sampling.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We define the following functions, which will benefit to decompose the errors and simplify the
presentation.

∆g(O, η,θ) := [J(θ)− η]∇V̂ (ω; s),

g(O,ω,θ) := [r(s, a)− J(θ) + V̂ (ω; s′)− V̂ (ω; s)]∇V̂ (ω; s),

ḡ(ω,θ) := E(s,a,s′)∼(µθ,πθ,P)[(r(s, a)− J(θ) + V̂ (ω; s′)− V̂ (ω; s))∇V̂ (ω; s)],

∆h(O, η,ω,θ) := (J(θ)− η + V̂ (ω; s′)− V̂ (ω; s)− V̂ (ω∗(θ); s′) + V̂ (ω∗(θ); s))∇ log πθ(a|s),
h(O,θ) := (r(s, a)− J(θ) + V̂ (ω∗(θ); s′)− V̂ (ω∗(θ); s))∇ log πθ(a|s),

∆h′(O,θ) := ((V̂ (ω∗(θ); s′)− Vθ(s
′))− (V̂ (ω∗(θ); s)− Vθ(s)))∇ log πθ(a|s).

(12)
We also define the following functions, which characterize the Markovian noise.

Φ(O, η,θ) := (η − J(θ))(r(s, a)− J(θ)),

Ψ(O,ω,θ) := ⟨ω − ω∗
θ, g(O,ω,θ)− ḡ(ω,θ)⟩,

Ξ(O,ω,θ) := ⟨ω − ω∗
θ, (∇ω∗

θ)
⊤(EO′

θ
[h(O′

θ,θ)]− h(O,θ))⟩,
Θ(O,θ) := ⟨∇J(θ),EO′

θ
[h(O′

θ,θ)]− h(O,θ)⟩,

(13)

where O′
θ is a shorthand for an independent sample from stationary distribution s ∼ µθ, a ∼

πθ, s
′ ∼ P .

To demonstrate the main ideas of the proof of Theorem 1, we use the notations YT , ZT and GT for
the three errors that we seek to bound, namely,

E(y) :=
1

T − τT

T−1∑
t=τT

Ey2t , E(z) :=
1

T − τT

T−1∑
t=τT

E∥zt∥2, E(∇) :=
1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2.

(14)

Here E(y), E(z), and E(∇) represent the reward error, critic error, and actor error (policy gradient
norm), respectively. Our proof of Theorem 1 primarily involves analyzing and bounding these three
errors relative to one another. The difficulty of this work lies in the continuous state and action
spaces and the neural network approximation.

To ease the presentation, we define u := max{u, uω, uv, uπ} as a uniform upper bound for η, z, V̂
and ∇ log πθ(a|s), where uv is defined in Lemma 1. Then we have ∥δ∇ log πθ∥ ≤ 4u2. The norm
of ω is defined by ∥ω∥ =: (

∑K
k=1 ∥W (k)∥2F)1/2, where ∥ · ∥F is the Frobenius norm of a matrix.

C PROOF SKETCH

In this section, we outline the error-term analysis of Theorem 1. After bounding each component, the
convergence follows by solving the interconnected iteration inequalities (E.4). The key challenges
and new techniques developed are correspondingly emphasized.

Reward error analysis. using the reward estimator update rule (Line 7 of Algorithm 1), we decom-
pose the reward error into:

y2t+1 ≤ (1− 2γ)y2t + 2γyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1))

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2.
(15)

The second term on the right-hand side of Eq. (15) corresponds to a bias induced by Markovian
sampling in MDP with continuous state–action spaces under neural network function approxima-
tion, which we addressed in Lemma 7. The third term captures the variation of the moving actor
performance targets J(θt) tracked by the reward error. Leveraging the smoothness of J(θ) (see
Lemma 6) and the boundedness of V̂ (see Lemma 1), we derive an implicit upper bound for this
term expressed as a function of |yt| and ∇J(θt). The fourth term represents the difference between
the moving actor target, which can be controlled due to its Lipschitz continuity shown in Lemma 5.
The last term in Eq. (15) reflects the variance in reward estimation, which is bounded by O(γ).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Critic error analysis. using the critic update rule (Line 8 of Algorithm 1), we decompose the
squared error by:
E∥zt+1∥2 ≤ E∥zt∥2 + 2βE⟨zt, ḡ(ωt,θt)⟩+ 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩

+ 2E⟨zt,ω∗
t − ω∗

t+1⟩+ 2E∥ω∗
t − ω∗

t+1∥2 + 2E∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))∥2.
(16)

The definitions of g, ḡ,∆g,Ot, and Ψ can be found in Appendix B. First of all, the second term
on the right-hand side of Eq. (16) is the inner product between the critic error zt and the critic’s
mean-path update ḡ(ωt,θt), which serves as the key to the convergence. Our analysis for this term
is distinct from all previous results since considering continuous spaces and deep neural networks
substantially complicate the bounding process. we employ the Bellman equation to manage error
propagation and control the error by leveraging the approximation capability of the neural net-
work (Eq. (7)), the regularity of neural network (Lemma 1), and sufficient policy exploration (see
Eq. (27)). It provides an explicit characterization of how sufficient exploration can help the conver-
gence of learning. The third term is a Markovian noise, which we bounded in Lemma 8. The fourth
term is caused by inaccurate reward and critic estimations, which can be bounded by the norm of yt
and zt after applying the Lipschitzness of V̂ as shown in Lemma 1. The fifth term tracks both the
critic error zt and the difference between the drifting critic targets ω∗

t . We establish an implicit upper
bound for this term as a function of yt and zt. The sixth term represents the difference between the
moving critic target, which can be controlled due to its Lipschitz continuity stated in Assumption 3.
Finally, the last term reflects the variances of various estimations, which is bounded by O(β).

Actor error analysis. using the actor update rule (Line 9 of Algorithm 1) and the smoothness
property of J(θ) (see Lemma 6), we derive

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)])− E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ E[Θ(Ot,θt)]

− E⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+
hj

2
αE∥δt∇ log πθt(at|st)∥2.

(17)

where the definitions of ∆h,∆h′,Θ and O′
t can be found in Appendix B. The first term on the right-

hand side of Eq. (17) compares the actor’s performances between consecutive updates, which can
be bounded after summation. The second term is an error introduced by the inaccurate estimations
of both the time-average reward and the critic. After employing the Lipschitzness of V̂ , we control
this term by providing an implicit bound depending on yt, zt, and ∇J(θt). The third term is a noise
term introduced by Markovian sampling, which we handled in Lemma 10. The fourth term comes
from the linear function approximation error. The final term represents the variance of the stochastic
gradient update, which is controlled by O(α) due to the boundedness of V̂ , a result we specifically
derived in Lemma 1.

D PRELIMINARY LEMMAS

Lemma 1. There exists scalars uv, lv, and hv such that for any s ∈ S and ω1,ω2 ∈ XΩ,

∥V̂ (ω; s)∥ ≤ uv,

∥V̂ (ω1; s)− V̂ (ω2; s)∥ ≤ lv∥ω1 − ω2∥,
∥∇V̂ (ω1; s)−∇V̂ (ω2; s)∥ ≤ hv∥ω1 − ω2∥,

where uv = O(1), lv = O(1) and hv = Õ(1√
m
) with respect to width m.

Lemma 2. There exists a positive constant lπ such that for any θ1,θ2 ∈ XΘ, it holds that
dTV (πθ1

(· | s), πθ2
(· | s)) ≤ lπ∥θ1 − θ2∥. (18)

Lemma 3 (Distance between stationary distributions). For any θ1 and θ2, it holds that

dTV (µθ1
, µθ2

) ≤ lπ(⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ lπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P) ≤ lπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 4 (Distance between distributions induced by the original and auxiliary chains). Given time
indexes t and τ such that t ≥ τ > 0, consider the auxiliary Markov chain in Eq. (9). Conditioning
on st−τ+1 and θt−τ , we have

dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·)) ≤ dTV (P(Ot ∈ ·),P(Õt ∈ ·)),
dTV (P(Ot ∈ ·),P(Õt ∈ ·)) = dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)),

dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)) ≤ dTV (P(st ∈ ·),P(s̃t ∈ ·)) + 1

2
lπE[∥θt − θt−τ∥].

Lemma 5 ((Wu et al., 2020)). For any θ1,θ2, we have

|J(θ1)− J(θ2)| ≤ lj∥θ1 − θ2∥,

where

lj = 2ulπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
). (19)

Lemma 6 ((Zhang et al., 2020a)). For the performance function J(θ), there exists a constant hj > 0
such that for all θ1,θ2 ∈ Rd, it holds that

∥∇J(θ1)−∇J(θ2)∥ ≤ hj∥θ1 − θ2∥, (20)

which further implies

J(θ2) ≥ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩ −
hj

2
∥θ1 − θ2∥2, (21)

J(θ2) ≤ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩+
hj

2
∥θ1 − θ2∥2. (22)

E PROOF OF MAIN THEOREM

In this section, we aim to show the proof of Theorem 1.

We decompose the whole proof into four steps.

E.1 STEP 1: REWARD ERROR ANALYSIS

In this subsection, we will establish an implicit bound for estimator.

Lemma 7 (Markovian noise). From any t ≥ τ > 0, we have

E[Φ(Ot, ηt,θt)] ≤ 16u2ταlj + 4u2τγ + 4u2τ(τ + 1)αlπ + 4u2κρτ−1.

Theorem 2. Choose α = c√
T
, β = γ = 1√

T
, we have

E(y) ≤ O(
log2 T√

T
) + 4cu

√
E(y)E(∇). (23)

Proof. From the update rule of reward estimator in Line 7 of Algorithm 1, we have

ηt+1 − J(θt+1) = ηt − J(θt) + J(θt)− J(θt+1) + γ(rt − ηt),

which implies

y2t+1 = (yt + J(θt)− J(θt+1) + γ(rt − ηt))
2

≤ y2t + 2yt(J(θt)− J(θt+1)) + 2γyt(rt − ηt)

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2

= (1− 2γ)y2t + 2γyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1))

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2.

(24)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Taking expectation up to st+1 (the whole trajectory), rearranging and summing from τT to T − 1,
we have

T−1∑
t=τT

E[y2t] ≤
T−1∑
t=τT

1

2γ
E(y2t − y2t+1)︸ ︷︷ ︸

I1

+

T−1∑
t=τT

E[yt(rt − J(θt))]︸ ︷︷ ︸
I2

+

T−1∑
t=τT

1

γ
E[yt(J(θt)− J(θt+1)]︸ ︷︷ ︸

I3

+

T−1∑
t=τT

1

γ
E[(J(θt)− J(θt+1))

2]︸ ︷︷ ︸
I4

+

T−1∑
t=τT

γE[(rt − ηt)
2]︸ ︷︷ ︸

I5

.

For term I1, by direct computation, we have

I1 =

T−1∑
t=τT

1

2γ
E(y2t − y2t+1)

≤ 2u2

γ

= 2u2
√
T .

For term I2, from Lemma 7, we have
E[yt(rt − J(θt))] ≤ 16u2ταlj + 4u2τγ + 4u2τ(τ + 1)αlπ + 4u2κρτ−1.

Choose τ = τT , we have

I2 =

T−1∑
t=τT

E[yt(rt − J(θt))]

≤ (16u2ljτT + 4u2lπτT (τT + 1))

T−1∑
t=τT

α

+ 4u2τT

T−1∑
t=τT

γ + 4u2
T−1∑
t=τT

1√
T

= (16cu2ljτT + 4cu2lπτT (τT + 1) + 4u2τT + 4u2)
T − τT√

T
.

For I3, if yt > 0, from Eq. (21), we have

yt(J(θt)− J(θt+1)) ≤ yt(
hj

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ uhj∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
If yt ≤ 0, from Eq. (22), we have

yt(J(θt)− J(θt+1)) ≤ yt(−
hj

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ uhj∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
Overall, we get

I3 =

T−1∑
t=τT

1

γ
E[yt(J(θt)− J(θt+1))]

≤
T−1∑
t=τT

1

γ
E[uhj∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥]

≤
T−1∑
t=τT

E[16cu3hjα+ 16cu2|yt|∥∇J(θt)∥]

≤ 16c2u3hj
T − τT√

T
+ 16cu2(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For term I4, we have

I4 =

T−1∑
t=τT

1

γ
E[(J(θt)− J(θt+1))

2]

≤
T−1∑
t=τT

1

γ
l2jE∥θt − θt+1∥2

≤
T−1∑
t=τT

1

γ
16l2ju

2α2

= 16c2u2l2j
T − τT√

T
.

For term I5, we have

I5 =

T−1∑
t=τT

γE[(rt − J(θt))
2]

≤
T−1∑
t=τT

4u2γ

= 4u2T − τT√
T

.

Therefore, we get
T−1∑
t=τT

E[y2t] ≤ I1 + I2 + I3 + I4 + I5

≤ (16cu2ljτT + 4cu2lπτT (τT + 1)

+ 4u2(τT + 2) + 16c2u2(uhj + l2j))
T − τT√

T

+ 2u2
√
T + 4cu(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Since τT = O(log T), we have
√
T

T−τT
≤ 2√

T
for large T . Then we get

1

T − τT

T−1∑
t=τT

E[y2t] ≤ (16cu2ljτT + 4cu2lπτT (τT + 1)

+ 4u2(τT + 3) + 16c2u2(uhj + l2j))
1√
T

+ 4cu(
1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2

= O(
log2 T√

T
) + 4cu(

1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Thus we finish the proof.

E.2 STEP 2: CRITIC ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for critic.
Lemma 8 (Markovian noise). For any t ≥ τ > 0, we have

E[Ψ(Ot,ωt,θt)] ≤ 4c1u
2τα+ 4c2u

2lvτβ + 16u4lvlπτ(τ + 1)α+ 8u2lvκρ
τ−1,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where

c1 = 4u2lπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
) + 2ulj lv + 4ulωlv,

c2 = 2u(8uhv + 4l2v + 2lv).

Lemma 9 (Markovian noise). For any t ≥ τ > 0, we have

E[Ξ(Ot,ωt,θt)] ≤ 4c3u
2τα+ 4u3lωτβ + 8u5lωlπτ(τ + 1)α+ 8u3lωκρ

τ−1.

where c3 := 8u2l2ω + 8u3hω + 6ulω(2uhπ + ulj + ulvlω).

Theorem 3. Choose α = c√
T
, β = γ = 1√

T
, we have

E(z) ≤ O(
log2 T√

T
) +

2u

λ

√
E(y)E(z) +

2culω
λ

√
E(z)(2E(y) + 8l2vE(z)) +

2clω
λ

√
E(z)E(∇) +O(ϵapp).

(25)

Proof. From the update rule of critic in Line 8 of Algorithm 1, we have

∥ωt+1 − ω∗
t+1∥ = ∥projBω0

(ωt + βδt∇V̂ (ωt; st))− ω∗
t+1∥

= ∥projBω0
(ωt + βδt∇V̂ (ωt; st))− projBω0

(ω∗
t+1)∥

≤ ∥ωt + βδt∇V̂ (ωt; st)− ω∗
t+1∥

= ∥ωt − ω∗
t + ω∗

t − ω∗
t+1 + βδt∇V̂ (ωt; st)∥

Therefore, we have

∥zt+1∥2 = ∥zt + β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗
t − ω∗

t+1∥2

= ∥zt∥2 + 2β⟨zt, g(Ot,ωt,θt)⟩+ 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

= ∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

≤ ∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ 2∥ω∗

t − ω∗
t+1∥2 + 2∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))∥2.

Taking expectation up to st+1, we have

E∥zt+1∥2 ≤ E∥zt∥2 + 2β E⟨zt, ḡ(ωt,θt)⟩︸ ︷︷ ︸
I1

+2β EΨ(Ot,ωt,θt)︸ ︷︷ ︸
I2

+2β E⟨zt,∆g(Ot, ηt,θt)⟩︸ ︷︷ ︸
I3

+ 2E⟨zt,ω∗
t − ω∗

t+1⟩︸ ︷︷ ︸
I4

+2E∥ω∗
t − ω∗

t+1∥2︸ ︷︷ ︸
I5

+2E∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))∥2︸ ︷︷ ︸
I6

.

(26)
For term I1, we first analyse the mean-path update ḡ(ωt,θt). From the definition in Eq. (12), we
have

ḡ(ωt,θt) := Est,at,st+1
[(r(st, at)− J(θt) + V̂ (ωt; st+1)− V̂ (ωt; st))∇V̂ (ωt; st)]

(1)
= Est,at,st+1

[(V (st)− V (st+1) + V̂ (ωt; st+1)− V̂ (ωt; st))∇V̂ (ωt; st)]

= Est [(V (st)− V̂ (ωt, st)− Est+1,at [V (st+1)− V̂ (ωt, st+1)|st])∇V̂ (ωt; st)]

where (1) comes from the Bellman equation. For Est+1,at
[V (st+1) − V̂ (ωt, st+1)|st], it can be

shown that

Est+1,at
[V (st+1)− V̂ (ωt, st+1)|st]

=

∫
S

∫
A
πθt(at|st)P(st+1|st, at)(V (st+1)− V̂ (ωt; st+1))datdst+1

(1)
= Pθ(V (s)− V̂ (ω, s)),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where (1) follows from the definition of Pθ in Eq. (2).

Then for ḡ(ωt,θt), it follows that

ḡ(ωt,θt) = Est [(I − Pθt
)(V (st)− V̂ (ωt, st))∇V̂ (ωt; st)],

where I is the identity operator. Therefore, we have

⟨zt, ḡ(ωt,θt)⟩ =E⟨zt, (I − Pθt
)(V (st)− V̂ (ωt; st))∇V̂ (ωt; st)⟩

=E⟨zt, (I − Pθt
)(V (st)− V̂ (ω∗

t ; st) + V̂ (ω∗
t ; st)− V̂ (ωt; st))∇V̂ (ωt; st)⟩

=E⟨zt, (I − Pθt)(V (st)− V̂ (ω∗
t ; st))∇V̂ (ωt; st)⟩

+ E⟨zt, (I − Pθt
)(V̂ (ω∗

t ; st)− V̂ (ωt; st))∇V̂ (ωt; st)⟩
=2ulvϵapp + E[(z⊤

t ∇V̂ (ωt; st)(I − Pθt
)(V̂ (ω∗

t ; st)− V̂ (ωt; st)))]

=E[(z⊤
t ∇V̂ (ωt; st) + (V̂ (ω∗

t ; st)− V̂ (ωt, st)))(I − Pθt)(V̂ (ω∗
t ; st)− V̂ (ωt; st))]︸ ︷︷ ︸

J1

−E[((V̂ (ω∗
t ; st)− V̂ (ωt, st)))(I − Pθt

)(V̂ (ω∗
t ; st)− V̂ (ωt; st))]︸ ︷︷ ︸

J2

+2ulvϵapp.

(27)
For term J1, from mean-value theorem, we get

J1 = E[z⊤
t (∇V̂ (ωt; st)−∇V̂ (ωmid; st))(I − Pθt)(V̂ (ω∗

t ; st)− V̂ (ωt; st))]

≤ 4uhv∥zt∥2,

where ωmid = µ1ωt + (1− µ1)ω
∗
t with µ1 ∈ [0, 1] and the inequality follows from Lemma 1.

For term J2, it can be shown that

J2 = − ⟨V̂ (ω∗
t)− V̂ (ωt), Dθ(I − Pθt

)(V̂ (ω∗
t)− V̂ (ωt))⟩

(1)

≤ − λ2∥(V̂ (ω∗
t)− V̂ (ωt))∥2

(2)

≤ − λ2
1λ2∥zt∥2

(3)
= − λ∥zt∥2,

where (1) comes from Assumption 4, (2) is due to Assumption 5, (3) holds since we define

λ := λ2
1λ2.

Overall, we obtain

I1 ≤ 4uhvE∥zt∥2 − λE∥zt∥2 + 2ulvϵapp. (28)

From Lemma 1, we know that hv = Õ(1/
√
m). Therefore, choosing m as a large constant such

that

4uhv ≤ λ

2
, (29)

it follows that

I1 ≤ −λ

2
E∥zt∥2 + 2ulvϵapp.

For term I2, it can be analyzed by Lemma 8.

For term I3, it follows that

I3 = E⟨zt,∆g(Ot, ηt,θt)⟩
≤ uE|yt|∥zt∥.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For term I4, we have

I4 = E⟨zt,ω∗
t − ω∗

t+1⟩
= E⟨zt,ω∗

t − ω∗
t+1 + (∇ω∗

t)
⊤(θt+1 − θt)⟩︸ ︷︷ ︸

J3

+ E⟨zt,−(∇ω∗
t)

⊤(θt+1 − θt)⟩︸ ︷︷ ︸
J4

.

For J3, from the hω-smoothness of ω∗ in Assumption 3, we obtain

J3 ≤ hω∥zt∥∥θt+1 − θt∥2.
For J4, it follows that

J4
α

= E⟨zt,−(∇ω∗
t)

⊤δt∇ log πθt
(at|st)⟩

= E⟨zt, (∇ω∗
t)

⊤(−∆h(Ot, ηt,ωt,θt)− h(Ot,θt))⟩
= −E⟨zt, (∇ω∗

t)
⊤∆h(Ot, ηt,ωt,θt)⟩

+ E⟨zt, (∇ω∗
t)

⊤(EO′
t
[h(O′

t,θt)]− h(Ot,θt)− EO′
t
[h(O′

t,θt)])⟩
= E[Ξ(Ot,ωt,θt)]− E⟨zt, (∇ω∗

t)
⊤EO′

t
[h(O′

t,θt)]⟩
− E⟨zt, (∇ω∗

t)
⊤∆h(Ot, ηt,ωt,θt)⟩

(30)

Note that from Cauchy-Schwartz inequality and lω is the Lipschitz constant of ω∗ in Assumption 3,
we have

−E⟨zt, (∇ω∗
t)

⊤∆h(Ot, ηt,ωt,θt)⟩ ≤ ulω
√

E∥zt∥2
√
2Ey2t + 8l2vE∥zt∥2. (31)

From the fact that

EO′
t
[h(O′

t,θt)−∆h′(O′
t,θt)] = EO′

t
[(r(st, at)− J(θt) + Vθt(s

′
t)− Vθt(st))∇ log πθt(a|s)]

= ∇J(θt),

we obtain

E⟨zt, (∇ω∗
t)

⊤EO′
t
[h(O′

t,θt)]⟩ = E⟨zt, (∇ω∗
t)

⊤∇J(θt)⟩+ E⟨zt, (∇ω∗
t)

⊤EO′
t
[∆h′(O′

t,θt)]⟩.
It follows that

−E⟨zt, (∇ω∗
t)

⊤∇J(θt)⟩ ≤ lω
√

E∥zt∥2
√

E∥∇J(θt)∥2.
Furthermore, it holds that

EO′∥∆h′(O,θ)∥2 = EO′∥((V̂ (ω∗(θ); s′)− Vθ(s
′))− (V̂ (ω∗(θ); s)− Vθ(s)))∇ log πθ(a|s)∥2

≤ EO′ [2u2((V̂ (ω∗(θ); s′)− Vθ(s
′))2 + (V̂ (ω∗(θ); s)− Vθ(s))

2)]

= 4u2EO′ [(V̂ (ω∗(θ); s)− Vθ(s))
2]

= 4u2ϵ2app.
(32)

Therefore, we have

−⟨zt, (∇ω∗
t)

⊤EO′
t
[h(O′

t,θt)]⟩ ≤ ulω
√
∥EO′ [∆h′(Ot,θt)]∥2 + lω

√
E∥zt∥2

√
E∥∇J(θt)∥2

≤ ulω
√

EO′∥∆h′(Ot,θt)∥2 + lω
√
E∥zt∥2

√
E∥∇J(θt)∥2

≤ 2u2lωϵapp + lω
√

E∥zt∥2
√

E∥∇J(θt)∥2. (33)

Substituting Eq. (31) and Eq. (33) into Eq. (30) yields

J4 ≤ αEΞ(Ot,ωt,θt) + 2αBulωϵapp

+ αulω
√
E∥zt∥2

√
2Ey2t + 8l2vE∥zt∥2

+ αlω
√

E∥zt∥2
√
E∥∇J(θt)∥2.

(34)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Overall, we obtain

I4 = J3 + J4 ≤ hω∥zt∥∥θt+1 − θt∥2 + αEΞ(Ot,ωt,θt)

+ αulω
√
E∥zt∥2

√
2Ey2t + 8l2vE∥zt∥2

+ αlω
√
E∥zt∥2

√
E∥∇J(θt)∥2 + 2αu2lωϵapp.

For term I5, it holds that

I5 = E∥ω∗
t − ω∗

t+1∥2

≤ l2ωE∥θt − θt+1∥2

≤ 16u2l2ωα
2.

For term I6, it follows that

I6 = E∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))∥2

≤ u2l2vβ
2.

Plugging I1 − I6 into Eq. (26), we obtain

E∥zt+1∥2 ≤ E∥zt∥2 − λβE∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βuE|yt|∥zt∥+ 2hω∥zt∥∥θt+1 − θt∥2

+ 2αEΞ(Ot,ωt,θt) + 2αulω
√

E∥zt∥2
√

2Ey2t + 8l2vE∥zt∥2

+ 2αlω
√

E∥zt∥2
√
E∥∇J(θt)∥2 + 4αu2lωϵapp + 4uβlvϵapp + 32l2ωu

2α2 + 2u2l2vβ
2.

Rearranging and summing from τT to T − 1 gives

λ

T−1∑
τT

E∥zt∥2 ≤
T−1∑
t=τT

1

β
(E∥zt∥2 − E∥zt+1∥2)︸ ︷︷ ︸

K1

+2

T−1∑
t=τT

EΨ(Ot,ωt,θt)︸ ︷︷ ︸
K2

+2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)︸ ︷︷ ︸
K3

+ 2u

T−1∑
t=τT

√
Ey2t

√
E∥zt∥2︸ ︷︷ ︸

K4

+2culω

T−1∑
t=τT

√
E∥zt∥2

√
2Ey2t + 8l2vE∥zt∥2︸ ︷︷ ︸

K5

+ 2clω

T−1∑
t=τT

√
E∥zt∥2

√
E∥∇J(θt)∥2︸ ︷︷ ︸

K6

+
T−1∑
t=τT

(2u2l2vβ + 32cu2l2ωα+ (4cu2lω + 4ulv)ϵapp).

In the sequel, we will tackle K1,K2,K3,K4,K5,K6 respectively.

For term K1, we have

I1 =

T−1∑
t=τT

1

β
(E∥zt∥2 − E∥zt+1∥2) ≤ u2

√
T .

For term K2, from Lemma 8, choose τ = τT , we have

EΨ(Ot,ωt,θt) ≤ 4c1u
2τTα+ 4c2u

2lvτTβ + 16u4lvlπτT (τT + 1)α+
8u2lv√

T
.

Then we get

K2 = 2

T−1∑
T=τT

EΨ(Ot,ωt,θt) ≤ 2

T−1∑
T=τT

(4c1u
2τTα+ 4c2u

2lvτTβ + 16u4lvlπτT (τT + 1)α+
8u2lv√

T
).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For term K3, from Lemma 9, choose τ = τT , we have

E[Ξ(Ot,ωt,θt)] ≤ 4c3u
2τTα+ 8u5lωlπτT (τT + 1)α+ 4u3lωτTβ +

8u3lω√
T

.

Therefore, we have

K3 = 2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)

≤ 2c

T−1∑
t=τT

(4c3u
2τTα+ 8u5lωlπτT (τT + 1)α+ 4u3lωτTβ +

8u3lω√
T

).

For term K4, K5, and K6, from Cauchy-Schwartz inequality, we have

K4 ≤ 2u(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2 ,

K5 ≤ 2culω(

T−1∑
t=τT

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8l2v

T−1∑
t=τT

E∥zt∥2)
1
2 ,

K6 ≤ 2clω(

T−1∑
t=τT

E∥zt∥2)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥)
1
2 .

Overall, we get

λ

T−1∑
t=τT

E∥zt∥2 ≤ 2u(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2culω(

T−1∑
t=τt

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8l2v

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2clω(

T−1∑
t=τT

E∥zt∥2)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥)
1
2

+ u2
√
T + 2

T−1∑
T=τT

(4c1u
2τTα+ 4c2u

2lvτTβ + 16u4lvlπτT (τT + 1)α+
8u2lv√

T
)

+ 2c

T−1∑
t=τT

(4c3u
2τTα+ 8u5lωlπτT (τT + 1)α+ 4u3lωτTβ +

8u3lω√
T

)

+

T−1∑
t=τT

(2u2l2vβ + 32cu2l2ωα+ (4cu2lω + 4ulv)ϵapp).

Therefore, we have

E(z)
(1)

≤ O(
log2 T√

T
) +O(ϵapp) +

2u

λ
(

1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2culω
λ

(
1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8l2v
1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2clω
λ

(
1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥)
1
2 ,

where (1) follows from τT = O(log T) so that T − τT ≥ 1
2T for large T . Therefore, we have

E(z) ≤ O(
log2 T√

T
) +

2u

λ

√
E(y)E(z) +

2culω
λ

√
E(z)(2E(y) + 8l2vE(z)) +

2clω
λ

√
E(z)E(∇) +O(ϵapp),

which completes the proof.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.3 STEP 3: ACTOR ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for actor error (policy gradient norm).
Lemma 10 (Markovian noise). For any t ≥ τ > 0, it holds that

E[Θ(Ot,θt)] ≤ 4u2(8u2hj + 3lj lh)τα+ 8u4lj lπτ(τ + 1)α+ 4u2ljκρ
τ−1.

Theorem 4. We have

E(∇) ≤ O(
log2 T√

T
) +O(ϵapp) + u

√
E(∇)(2E(y) + 8l2vE(z)). (35)

Proof. From the update rule of actor in Line 9 of Algorithm 1 and Eq. (21), we have

J(θt+1) ≥ J(θt) + ⟨∇J(θt),θt+1 − θt⟩ −
hj

2
∥θt − θt+1∥2

= J(θt) + α⟨∇J(θt), δt∇ log πθt
(at|st)⟩ −

hj

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩

+ α⟨∇J(θt), h(Ot,θt)⟩ −
hj

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αΘ(Ot,θt)

+ α⟨∇J(θt),EO′
t
[h(O′

t,θt)]⟩ −
hj

2
α2∥δt∇ log πθt(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αΘ(Ot,θt) + α∥∇J(θt)∥2

+ α⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩ −
hj

2
α2∥δt∇ log πθt

(at|st)∥2,

where the last equality is due to the fact

EO′ [h(O′,θ)−∆h′(O′,θ)] = EO′ [(r(s, a)− J(θ) + Vθ(s
′)− Vθ(s))∇ log πθ(a|s)] = ∇J(θ).

Rearranging the above inequality and taking expectation, we have

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)])− E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ E[Θ(Ot,θt)]

− E⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+
hj

2
αE∥δt∇ log πθt

(at|st)∥2.
(36)

Note that from Cauchy-Schwartz inequality, we have

−E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ ≤ u
√

E∥∇J(θt)∥2
√

2Ey2t + 8l2vE∥zt∥2.

From Lemma 10 and choosing τ = τT , we have

E[Θ(Ot,θt)] ≤ 4u2(8u2hj + 3lj lh)τTα+ 8u4lj lπτT (τT + 1)α+
4u2lj√

T
.

From Eq. (32), it has been shown that

EO′∥∆h′(O,θ)∥2 ≤ 4u2ϵ2app.

Therefore, we have

−⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩ ≤ lj
√

∥EO′ [∆h′(O′
t,θt)]∥2

≤ lj
√

EO′∥∆h′(O′
t,θt)∥2

≤ 2uljϵapp,

where we use ∥∇J(θ)∥ ≤ lj which comes from Lemma 5. Plugging the three terms yields

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)]− E[J(θt)]) + u

√
E∥∇J(θt)∥2

√
2Ey2t + 8l2vE∥zt∥2

+ 4u2(8u2hj + 3lj lh)τTα+ 8u4lj lπτT (τT + 1)α+
4u2lj√

T
+ 8u4hjα+ 2uljϵapp.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Summing over t from τT to T − 1 gives
T−1∑
t=τT

E∥∇J(θt)∥2 ≤
T−1∑
t=τT

1

α
(E[J(θt+1)− E[J(θt)]) + u

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8l2vE∥zt∥2

+O(log2 T)
T − τT√

T
+ 2uljϵapp(T − τT)

≤ 2u

c

√
T + u(

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8l2v

T−1∑
t=τT

E∥zt∥2)
1
2

+O(log2 T)
T − τT√

T
+ 2uljϵapp(T − τT).

Therefore, we get

E(∇) ≤ O(
log2 T√

T
) + 2uljϵapp + u

√
E(∇)(2E(y) + 8l2vE(z))

= O(
log2 T√

T
) +O(ϵapp) + u

√
E(∇)(2E(y) + 8l2vE(z)),

which concludes the proof.

E.4 STEP 4: INTERCONNECTED ITERATION SYSTEM ANALYSIS

In this subsection, we perform an interconnected iteration system analysis to prove Theorem 1.

Proof of Theorem 1.

Proof. Combining Eq. (23), Eq. (25), and Eq. (35), we have

E(y) ≤ O(
log2 T√

T
) + 4cu

√
E(y)E(∇),

E(z) ≤ O(
log2 T√

T
) +O(ϵapp) +

2u

λ

√
E(y)E(z) +

2culω
λ

√
E(z)(2E(y) + 8l2vE(z)) +

2clω
λ

√
E(z)E(∇),

E(∇) ≤ O(
log2 T√

T
) +O(ϵapp) + u

√
E(∇)(2E(y) + 8l2vE(z)).

Denote

l1 := 4cu, l2 :=
2u

λ
, l3 :=

2culω
λ

, l4 := 8l2v, l5 :=
2clω
λ

, l6 := u. (37)

Then we have

E(y) ≤ O(
log2 T√

T
) + l1

√
E(y)E(∇),

E(z) ≤ O(
log2 T√

T
) +O(ϵapp) + l2

√
E(y)E(z) + l3

√
E(z)(2E(y) + l4E(z)) + l5

√
E(z)E(∇),

E(∇) ≤ O(
log2 T√

T
) +O(ϵapp) + l6

√
E(∇)(2E(y) + l4E(z)).

For E(∇), we get

E(∇) ≤ O(
log2 T√

T
) +O(ϵapp) +

1

2
E(∇) + l26(E(y) +

1

2
l4E(z))

It follows that

E(∇) ≤ O(
log2 T√

T
) +O(ϵapp) + l26(2E(y) + l4E(z)). (38)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

For E(z), we have

E(z) ≤ O(
log2 T√

T
) +O(ϵapp) +

1

4
E(z) + l22E(y) + (

1

2
+

1

2
l4)l3E(z) + l3E(y) +

1

4
E(z) + l25E(∇).

If it satisfies (12 + 1
2 l4)l3 ≤ 1

4 , we further have

E(z) ≤ O(
log2 T√

T
) +O(ϵapp) + (2l22 + 2l3)E(y) + 2l25E(∇). (39)

Plugging Eq. (38) into Eq. (39), it holds that

E(z) ≤ O(
log2 T√

T
) +O(ϵapp) + (2l22 + 2l3 + 4l25l

2
6)E(y) + 2l4l

2
5l

2
6E(z).

If it satisfies 2l4l25l
2
6 ≤ 1

2 , we have

E(z) ≤ O(
log2 T√

T
) +O(ϵapp) + 4(l22 + l3 + 2l25l

2
6)E(y). (40)

For E(y), we get

E(y) ≤ O(
log2 T√

T
) +

l1
2
(E(y) + E(∇)). (41)

Plugging Eq. (38) and Eq. (40) into Eq. (41) gives

E(y) ≤ O(
log2 T√

T
) +O(ϵapp) +

l1
2
(E(y) + 2l26E(y) + l4l

2
6E(z))

≤ O(
log2 T√

T
) +O(ϵapp) +

l1
2
(E(y) + 2l26E(y) + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6)E(y))

= O(
log2 T√

T
) +O(ϵapp) +

l1
2
(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6))E(y).

Therefore, if l1(1 + 2l26 + 4l4l
2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1

2 , we have

E(y) ≤ O(
log2 T√

T
) +O(ϵapp).

Overall, we require

(
1

2
+

1

2
l4)l3 ≤ 1

4
, 2l4l

2
5l

2
6 ≤ 1

2
, l1(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6)) ≤

1

2
.

According to the definition of l1, l2, l3, l4, l5, l6, it can be shown that

(
1

2
+ 4l2v)

2culω
λ

≤ 1

4
=⇒ c ≤ λ

4ulω(1 + 8l2v)
,

64c2u2l2vl
2
ω

λ2
≤ 1

2
=⇒ c ≤ λ

8
√
2ulvlω

,

4cu(1 + 2u2 + 32l2vu
2(
4u2

λ2
+

2culω
λ

+
8c2u2l2ω

λ2
)) ≤ 1

2
=⇒ c ≤ 1

8u(1 + 6u2 +
128l2vu

4

λ2)
.

(42)

From the fact that for positive constants ti, we have

1∑
i 1/ti

≤ min
i

ti.

Thus we choose

c ≤
[
8u

(
1 + 6u2 +

128 l2vu
4

λ2

)
+

lω
λ

(
1
2 + 4l2v +

√
2 lv

)]−1

(43)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

which satisfies the three inequalities of c shown in Eq. (42). Therefore, we have

E(y) = O(
log2 T√

T
) +O(ϵapp),

and consequently,

E(z) = O(
log2 T√

T
) +O(ϵapp),

E(∇) = O(
log2 T√

T
) +O(ϵapp).

Thus we conclude our proof.

F PROOF OF PRELIMINARY LEMMAS

Proof of Lemma 1.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for all k ∈ {1, 2, · · · ,K}, we have

∥W (k)∥ ≤ O(
√
m). (44)

It can be shown that

∥W (k)∥ ≤ ∥W (k) −W
(k)
0 ∥+ ∥W (K)

0 ∥

≤ uω + ∥W (k)
0 ∥

≤ O(
√
m),

where the last inequality id due to Assumption 2 and the fact that uω is constant to m.

Step 2: show that for all k ∈ {1, 2, · · · ,K}, we have

∥s(k)∥ ≤ O(
√
m). (45)

From Assumption 1, we have ∥s(0)∥ ≤ 1. From Eq. (44), it holds that

∥s(1)∥ = ∥ 1√
m
σ(W (1)s(0))∥

≤ 1

m
L2
a∥W (1)∥2∥s(0)∥2 + ∥σ(0)∥2

≤ O(m).

By induction, suppose ∥s(k)∥2 ≤ O(m). We have

∥s(k+1)∥2 = ∥ 1√
m
σ(W (k+1)s(k))∥2

≤ 1

m
L2
a∥W (k+1)∥2∥s(k)∥2 + ∥σ(0)∥2

≤ O(m),

which concludes the proof. Therefore, from Eq. (45), it can be shown that

∥V̂ (ω; s)∥ = ∥ 1√
m
b⊤s(K)∥ ≤ O(1).

Step 3: show that for all k ∈ {1, 2, · · · ,K}, we have

∥∇s(k−1)s(k)∥ ≤ O(1). (46)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

From the chain rule, we have

∇s(k−1)s(k)(i, j) =
1√
m
σ′(

∑
j

W (k)(i, j)s(k−1)(j))W (k)(i, j).

Therefore, we get

∥∇s(k−1)s(k)∥2 = sup
∥v∥=1

m∑
i=1

(
∑
j

∇s(k−1)s(k)(i, j)vj)
2

= sup
∥v∥=1

1

m
∥Σ′W (k)v∥2

≤ 1

m
∥Σ′∥2 · ∥W (k)∥2

≤ O(1),

where Σ′ is a diagonal matrix with Σ′(i, i) = σ′(ΣjW
(k)(i, j)s(k−1)(j)) := ξ(i).

Step 4: show that for all k ∈ {1, 2, · · · ,K}, we have

∥∇W (k)s(k)∥ ≤ O(1), (47)

where ∇W (k)s(k) is defined to be a matrix whose (I, (j − i)m + h)’th entry ∇W (k)s(k)(i, j, h) is
given by

∇W (k)s(k)(i, j, h) =
∂s(k)(i)

∂W (k)(j, h)
.

It holds that

∇W (k)s(k)(i, j, j′) =
1√
m
1{i− j}σ′(

∑
h

W (k)(i, h)s(k−1)(h))s(k−1)(j′),

which can be written as

∇W (k)s(k)(i, j, j′) =
1√
m
1{i = j}ξ(i)s(k−1)(j′).

Therefore, we get

∥∇W (k)s(k)∥2 = sup
∥V ∥F=1

m∑
i=1

(
∑
j,j′

∇W (k)s(k)(i, j, j′)Vj,j′)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

(
∑
j,j′

1{i = j}ξ(i)s(k−1)(j′)Vj,j′)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

(
∑
j,j′

1{i = j}ξ(i)[V s(k−1)]j)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

ξ(i)2[V s(k−1)]2i

= sup
∥V ∥F=1

1

m
∥Σ′V s(k−1)∥2

≤ 1

m
∥Σ′∥2 · ∥s(k−1)∥2

≤ O(1),

where the last inequality follows Eq. (45).

We then show the Lipschitzness of the neural network. Since each entry of b satisfies |bi| ≤ 1, it is
easy to see that

∥∇s(K) V̂ (ω; s)∥ =
1√
m
∥b∥ ≤ 1.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

By Eq. (46),Eq. (47), and the chain rule, we have

∥∇W (k)V (ω; s) = ∥∇W (K)V (ω; s)∇W (K−1)s(K) · · · ∇s(k)s(k+1)∇W (k)s(k)∥ ≤ O(1).

It can be shown that

∥∇V̂ (ω; s)∥2 = sup
∥V ∥F=1

K∑
k=1

(∇W (k) V̂ (ω; s)Vk)
2 ≤ O(1),

which concludes the proof of Lipschitzness.

The proof of smoothness property has been shown in (Liu et al., 2020).

Proof of Lemma 2.

Proof. From the definition of the total variation distance, we have

dTV(πθ1
(· | s)− πθ2

(· | s)) = 1

2

∫
A
|πθ1

(a | s)− πθ2
(a | s)| da

=
1

2

∫
Ā
|πθ1(a | s)− πθ2(a | s)| da

≤ 1

2

∫
Ā
lp∥θ1 − θ2∥ da

≤ 1

2
Ālp∥θ1 − θ2∥,

where Ā is the bounded support of πθ(a | s) which satisfies
∫
Ā da = Ā. Define lπ := 1/2Ālp,

which completes the proof.

Proof of Lemma 3.

Proof. For any θ1 and θ2, define the transition kernels respectively as follows:

Pi(s, ds
′) =

∫
A
P(ds′|s, a)πθi(a|s), i = 1, 2

Following from Theorem 3.1 in (Mitrophanov, 2005), we obtain

dTV (µθ1 , µθ2) ≤ (⌈logρ κ−1⌉+ 1

1− ρ
)∥P1 − P2∥op,

where ∥ · ∥op is the operator norm defined in (Mitrophanov, 2005): ∥A∥ := sup∥q∥TV=1∥qA∥TV,
and ∥ · ∥TV denotes the total-variation norm. Then we have

∥P1 − P2∥op = sup
∥q∥TV=1

∥
∫
S
q(ds)(P1 − P2)(s, ·)∥TV

= sup
∥q∥TV=1

∫
S
|
∫
S
q(ds)(P1 − P2)(s, ds

′)|

≤ sup
∥q∥TV=1

∫
S

∫
S
q(ds)|(P1 − P2)(s, ds

′)|

= sup
∥q∥TV=1

∫
S

∫
S
q(ds)|

∫
A
P(ds′|s, a)(πθ1(da|s)− πθ2(da|s))|

= sup
∥q∥TV=1

∫
S

∫
S
q(ds)

∫
A
P(ds′|s, a)|(πθ1(da|s)− πθ2(da|s))|

= sup
∥q∥TV=1

∫
S
q(ds)

∫
A
|(πθ1(da|s)− πθ2(da|s))|

≤ lπ∥θ1 − θ2∥.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

The first equation results from the definition of the operation norm, the second equation results from
the definition of total variation. Therefore, we have

dTV (µθ1
, µθ2

) ≤ lπ(⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the second inequality, we have

dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

) =

∫
S

∫
A
|µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)|

≤
∫
S

∫
A
|µθ1(ds)(πθ1(a|s)− πθ2(a|s))|

+

∫
S

∫
A
|(µθ1(ds)− µθ2(ds))πθ2(a|s))|

= dTV (πθ1 , πθ2) + dTV (µθ1 , µθ2)

≤ lπ∥θ1 − θ2∥+ C(⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= lπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the third inequality, we have

dTV (µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P)

=
1

2

∫
S

∫
A

∫
S
|µθ1(ds)πθ1(a|s)P(ds′|s, a)− µθ2(ds)πθ2(a|s)P(ds′|s, a)|

=
1

2

∫
S

∫
A
|µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)|

= dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

),

which concludes the proof.

Proof of Lemma 4.

Proof. From the fact that

P(st+1 ∈ ·) =
∫
S

∫
A
P(st = ds, at = da, st+1 ∈ ·),

we have

2dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·))

=

∫
S
|
∫
S

∫
A
P(st = ds, at = da, st+1 = ds′)−

∫
S

∫
A
P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

≤
∫
S

∫
S

∫
A
|P(st = ds, at = da, st+1 = ds′)− P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

=

∫
S

∫
S

∫
A
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

= 2dTV (P(Ot ∈ ·),P(Õ ∈ ·)),

where the last equality requires the exchange of integral which is guaranteed by Fubini’s theorem
since P is an absolute integrable function.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

For the second equality, we have

2dTV (P(Ot ∈ ·),P(Õt ∈ ·))

=

∫
S

∫
A

∫
S
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

=

∫
S

∫
A

∫
S
|P(ds′|s, a)P((st, at) = (ds, da))− P(ds′|s, a)P((s̃t, ãt) = (ds, da))|

=

∫
S

∫
A

∫
S
P(ds′|s, a)|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

=

∫
S

∫
A
|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

= 2dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)).

For the third inequality, since θt is dependent on st as shown in Eq. (10), it holds that

2dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·))

=

∫
S

∫
A
|P(st = ds, at = da)− P(s̃t = ds, ãt = da)|

=

∫
S

∫
A
|
∫
θ

P(st = ds)P(θt = dθ|st = s)P(at = da|st = s,θt = θ)− P(s̃t = ds, ãt = da)|

=

∫
S

∫
A
|P(st = ds)

∫
θ

P(θt = dθ|st = s)πθt
(da|s)− P(s̃t = ds)πθt−τ

(da|s)|

=

∫
S

∫
A
|P(st = ds)E[πθt(da|s)|st = s]− P(s̃t = ds)πθt−τ (da|s)|

=

∫
S

∫
A
|P(st = ds)E[πθt

(da|s)|st = s]− P(st = ds)πθt−τ
(da|s)|

+

∫
S

∫
A
|P(st = ds)πθt−τ

(da|s)− P(s̃t = ds)πθt−τ
(da|s)|

=

∫
S
P(st = ds)

∫
A
|E[πθt(da|s)|st = s]− πθt−τ (da|s)|

+ 2dTV (P(st ∈ ·),P(s̃t ∈ ·))
≤ lπE∥θt − θt−τ∥+ 2dTV (P(st ∈ ·),P(s̃t ∈ ·)),

where the last inequality holds due to the Lipschitz continuity of policy made in Assumption 7.

Proof of Lemma 5.

Proof. By definition, we have

J(θ1)− J(θ2) = E[r(s1, a1)− r(s2, a2)],

where si ∼ µθi
, ai ∼ πθi

. Therefore, it holds that

J(θ1)− J(θ2) = E[r(s1, a1)− r(s1, a1)]

≤ 2udTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2ulπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= lj∥θ1 − θ2∥.

Proof of Lemma 6.

Proof. The proof of this lemma can be found in Lemma 3.2 of (Zhang et al., 2020a).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G PROOF OF MARKOVIAN NOISES

The following four lemmas deal with the Markovian noise.

Proof of Lemma 7.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2, η, O = (s, a, s′), we have

|Φ(O, η,θ1)− Φ(O, η,θ2)| ≤ 4ulj∥θ1 − θ2∥. (48)

By the definition of Φ(O, η,θ) in Eq. (13), we have

|Φ(O, η,θ1)− Φ(O,θ,θ2)| = |(η − J(θ1))(r − J(θ1))− (η − J(θ2))(r − J(θ2))|
≤ |(η − J(θ1))(r − J(θ1))− (η − J(θ1))(r − J(θ2))|

+ |(η − J(θ1))(r − J(θ2))− (η − J(θ2))(r − J(θ2))|
≤ 4u|J(θ1)− J(θ2)|
≤ 4ulj∥θ1 − θ2∥.

Step 2: show that for any θ, η1, η2, O, we have

|Φ(O, η1,θ)− Φ(O, η2,θ) ≤ 2u|η1 − η2|. (49)

By definition, we have

|Φ(O, η1,θ)− Φ(O, η2,θ)| = |(η1 − J(θ))(r − J(θ))− (η2 − J(θ))(r − J(θ))|
≤ 2u|η1 − η2|.

Step 3: show that for original tuple Ot and the auxiliary tuple Õt, conditioned on st−τ+1 and θt−τ ,
we have

|E[Φ(Ot, ηt−τ ,θt−τ)− E[Φ(Õt, ηt−τ ,θt−τ)]| ≤ ulπ

t∑
k=t−τ

E∥θk − θt−τ∥. (50)

By definition, we have

E[Φ(Ot, ηt−τ ,θt−τ)− E[Φ(Õt, ηt−τ ,θt−τ)] = (ηt−τ − J(θt−τ))E[r(st, at)− r(s̃t, ãt)].

By definition of total variation norm, we have

E[r(st, at)− r(s̃t, ãt)] ≤ 2udTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)). (51)

By Lemma 4, we get

dTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ))

= dTV (P((st, at) ∈ ·|st−τ+1,θt−τ),P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ))

≤ dTV (P(st ∈ ·|st−τ+1,θt−τ),P(s̃t ∈ ·|st−τ+1,θt−τ)) +
1

2
lπE∥θt − θt−τ∥

≤ dTV (P(Ot−1 ∈ ·|st−τ+1,θt−τ),P(Õt−1 ∈ ·|st−τ+1,θt−τ)) +
1

2
lπE∥θt − θt−τ∥.

Repeat the above argument from t to t− τ , we have

dTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)) ≤
1

2
lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (52)

Plugging Eq. (52) into Eq. (51), we have

|E[Φ(Ot, ηt−τ ,θt−τ)− E[Φ(Õt, ηt−τ ,θt−τ)]| ≤ ulπ

t∑
k=t−τ

E∥θk − θt−τ∥.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Step 4: show that conditioned on st−τ+1 and θt−τ , we have

E[Φ(Õt, ηt−τ ,θt−τ)] ≤ 4u2κρτ−1. (53)

Note that according to definition, we have

E[Φ(O′
t−τ , ηt−τ ,θt−τ)|θt−τ] = 0,

where O′
t−τ = (s′t−τ , a

′
t−τ , s

′
t−τ+1) is the tuple generated by s′t−τ ∼ µθt−τ

, a′t−τ ∼
πθt−τ

, s′t−τ+1 ∼ P . From the uniform ergodicity in Assumption 6, it shows that

dTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ
) ≤ κρτ−1.

Then we have

E[Φ(Õt, ηt−τ ,θt−τ)] = E[Φ(Õt, ηt−τ ,θt−τ)− Φ(O′
t−τ , ηt−τ ,θt−τ)]

= E[(ηt−τ − J(θt−τ))(r(s̃t, ãt)− r(s′t−τ , a
′
t−τ))]

≤ 4u2dTV (P(Õt−τ = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

≤ 4u2κρτ−1.

Combining Eq. (48), Eq. (49), Eq. (50), and Eq. (53), we have

E[Φ(Ot, ηt,θt)] = E[Φ(Ot, ηt,θt)− Φ(Ot, ηt,θt−τ)] + E[Φ(Ot, ηt,θt−τ)− Φ(Ot, ηt−τ ,θt−τ)]

+ E[Φ(Ot, ηt−τ ,θt−τ)− Φ(Õt, ηt−τ ,θt−τ)] + E[Φ(Õt, ηt−τ ,θt−τ)]

≤ 4uljE∥θt − θt−τ∥+ 2uE|ηt − ηt−τ |+ ulπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4u2κρτ−1

≤ 16u2ταlj + 4u2τγ + 4u2τ(τ + 1)αlπ + 4u2κρτ−1.

which concludes the proof.

Proof of Lemma 8.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2,ω and tuple O = (s, a, s′), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ c1∥θ1 − θ2∥, (54)

where c1 = 4u2lπ(1 + ⌈logρ κ−1⌉+ 1
1−ρ) + 2ulj lv + 4ulωlv .

By definition of Ψ(O,ω,θ) in Eq. (13), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2)|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I1

+ |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I2

.

For term I1, we have

I1 = |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− g(O,ω,θ2)⟩|+ |⟨ω − ω∗
1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|

= |⟨ω − ω∗
1 , (J(θ1)− J(θ2))∇V̂ (ω; s)⟩|+ |⟨ω − ω∗

1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|
≤ 2ulj lv∥θ1 − θ2∥+ 2u∥ḡ(ω,θ1)− ḡ(ω,θ2)∥
≤ 2ulj lv∥θ1 − θ2∥+ 4u2dTV (µθ1

⊗ πθ1
⊗ P, µθ2

⊗ πθ2
⊗ P)

≤ (2ulj lv + 4u2lπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
))∥θ1 − θ2∥.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

For term I2, from Cauchy-Schwartz inequality, we have
I2 = |⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

= |⟨ω∗
1 − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
≤ 4ulv∥ω∗

1 − ω∗
2∥

≤ 4ulvlω∥θ1 − θ2∥.
Combining the results from I1 and I2, we get

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ c1∥θ1 − θ2∥,
where c1 = 4u2lπ(1 + ⌈logρ κ−1⌉+ 1

1−ρ) + 2ulj lv + 4ulωlv .

Step 2: show that for any θ,ω1,ω2 and tuple O(s, a, s′), we have
|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ c2∥ω1 − ω2∥, (55)

where c2 = 2u(8uhv + 4l2v + 2lv).

By definition, we have
|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)|

= |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|

+ |⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ 2u∥(g(O,ω1,θ)− g(O,ω2,θ))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥+ 4ulv∥ω1 − ω2∥.

It holds that
∥(g(O,ω1,θ)− g(O,ω2,θ))∥ =∥(r(s, a)− J(θ))(∇V̂ (ω1; s)−∇V̂ (ω2; s))

+ V̂ (ω1; s
′)∇V̂ (ω1; s)− V̂ (ω2; s

′)∇V̂ (ω2; s)

+ V̂ (ω2; s)∇V̂ (ω2; s)− V̂ (ω1; s)∇V̂ (ω1; s)∥
≤∥V̂ (ω1; s

′)∇V̂ (ω1; s)− V̂ (ω1; s
′)∇V̂ (ω2; s)

+ V̂ (ω1; s
′)∇V̂ (ω2; s)− V̂ (ω2; s

′)∇V̂ (ω2; s)∥
+ ∥V̂ (ω2; s)∇V̂ (ω2; s)− V̂ (ω1; s)∇V̂ (ω2; s)

+ V̂ (ω1; s)∇V̂ (ω2; s)− V̂ (ω1; s)∇V̂ (ω1; s)∥
+ 2uhv∥ω1 − ω2∥

≤2uhv∥ω1 − ω2∥+ 2l2v∥ω1 − ω2∥+ 2uhv∥ω1 − ω2∥
=(4uhv + 2l2v)∥ω1 − ω2∥.

It follows that
E∥(g(O,ω1,θ)− g(O,ω2,θ))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥ ≤ (8uhv + 4l2v)E∥ω1 − ω2∥.

Therefore, we obtain
E|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ c2∥ω1 − ω2∥,

where c2 = 2u(8uhv + 4l2v + 2lv).

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ψ(Ot,ωt−τ ,θt−τ)−Ψ(Õt,ωt−τ ,θt−τ)] ≤ 16u4lvlπτ(τ + 1)α. (56)
By the definition of total variation norm, we have

E[Ψ(Ot,ωt−τ ,θt−τ)−Ψ(Õt,ωt−τ ,θt−τ)]

= E[⟨ωt−τ − ω∗
t−τ , g(Ot,ωt−τ ,θt−τ)− g(Õt,ωt−τ ,θt−τ))]

≤ 8u2lvdTV (P(Ot ∈ ·|st−τ+1,θ−τ),P(Õt ∈ ·|st−τ+1,θt−τ))

(1)

≤ 4u2lvlπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ 16u4lvlπτ(τ + 1)α,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

where (1) follows from Eq. (52).

Step 4: show that conditioning on st−τ+1 and θt−τ ,

E[Ψ(Õt,ωt−τ ,θt−τ)] ≤ 8u2lvκρ
τ−1 (57)

From the definition of Ψ(O,ω,θ), we have

E[Ψ(O′
t−τ ,ωt−τ ,θt−τ)|st−τ+1,θt−τ] = 0,

where O′
t−τ is the tuple generated by s′t−τ ∼ µθt−τ

, a′t−τ ∼ πθt−τ
, s′t−τ+1 ∼ P . From Assumption

6, we have

dTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ
) ≤ κρτ−1.

Then, it holds that

E[Ψ(Õt,ωt−τ ,θt−τ)] = E[Ψ(Õt,ωt−τ ,θt−τ)−Ψ(O′
t−τ ,ωt−τ ,θt−τ)]

= E⟨ωt−τ − ω∗
t−τ , g(Õt,ωt−τ ,θt−τ)− g(O′

t−τ ,ωt−τ ,θt−τ)⟩
≤ 8u2lvdTV (P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

= 8u2lvdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ), µθt−τ
⊗ πθt−τ

)

= 8u2lvdTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ
)

≤ 8u2lvκρ
τ−1.

Combining Eq. (54), Eq. (55), Eq. (56), and Eq. (57), we have

E[Ψ(Ot,ωt,θt)] = E[Ψ(Ot,ωt,θt)−Ψ(Ot,ωt,θt−τ)] + E[Ψ(Ot,ωt,θt−τ)−Ψ(Ot,ωt−τ ,θt−τ)]

+ E[Ψ(Ot,ωt−τ ,θt−τ)−Ψ(Õt,ωt−τ ,θt−τ)] + E[Ψ(Õt,ωt−τ ,θt−τ)]

≤ c1E∥θt − θt−τ∥+ c2E∥ωt − ωt−τ∥+ 16u4lvlπτ(τ + 1)α+ 8u2lvκρ
τ−1

≤ 4c1u
2τα+ 4c2u

2lvτβ + 16u4lvlπτ(τ + 1)α+ 8u2lvκρ
τ−1

where c1 = 4u2lπ(1 + ⌈logρ κ−1⌉+ 1
1−ρ) + 2ulj lv + 4ulωlv and c2 = 2u(8uhv + 4l2v + 2lv).

Proof of Lemma 9.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any O,ω,θ1,θ2, we have

∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ c3∥θ1 − θ2∥, (58)

where c3 := 8u2l2ω + 8u3hω + 6ulω(2uhπ + ulj + ulvlω).

Since Ξ(O,ω,θ) = ⟨ω − ω∗, (∇ω∗
θ)

⊤(EO′ [h(O′,θ)] − h(O,θ))⟩, we define Eθ[h(O
′,θ)] :=

EO′ [h(O′,θ)], where Eθ is the shorthand of EO′∼(µθ,πθ,P). In the following, we will show that
each term in Ξ(O,ω,θ) is Lipschitz with respect to θ.

Term ω is not related to θ, term ω∗ := ω∗(θ) is lω-Lipschitz, and term ∇ω∗
θ is hω-Lipschitz.

For term h(O,θ), denote δ(O,θ) := r(s, a)− J(θ) + V̂ (ω∗(θ); s′)− V̂ (ω∗(θ); s), we have

∥h(O,θ1)− h(O,θ2)∥
= ∥δ(O,θ1)∇ log πθ1(a|s)− δ(O,θ2)∇ log πθ2(a|s)∥
≤ ∥δ(O,θ1)∇ log πθ1(a|s)− δ(O,θ1)∇ log πθ2(a|s)∥

+ ∥δ(O,θ1)∇ log πθ2
(a|s)− δ(O,θ2)∇ log πθ2

(a|s)∥
≤ 4uhπ∥θ1 − θ2∥+ u|δ(O,θ1)− δ(O,θ2)|
≤ 4uhπ∥θ1 − θ2∥+ u(|J(θ1)− J(θ2)|+ ∥V̂ (ω∗(θ1); s

′)− V̂ (ω∗(θ2); s
′)∥

+ ∥V̂ (ω∗(θ1); s)− V̂ (ω∗(θ2); s)∥)
≤ (4uhπ + 2ulj)∥θ1 − θ2∥+ 2ulv∥ω∗(θ1)− ω∗(θ2)∥
≤ lh∥θ1 − θ2∥.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Hence we have h(O,θ) is lh-Lipschitz, where

lh = 4uhπ + 2ulj + 2ulvlω. (59)

For term Eθ[h(O
′,θ)], we have

∥Eθ1 [h(O
′,θ1)]− Eθ2 [h(O

′,θ2)]∥
≤ ∥Eθ1

[h(O′,θ1)]− Eθ1
[h(O′,θ2)]∥+ ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Eθ1
[∥h(O′,θ1)− h(O′,θ2)∥] + ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ lh∥θ1 − θ2∥+ ∥Eθ1 [h(O
′,θ2)]− Eθ2 [h(O

′,θ2)]∥
≤ lh∥θ1 − θ2∥+ 4u2dTV (µθ1

⊗ πθ1
, µθ2

⊗ πθ2
)

≤ (lh + 4u2lπ(1 + ⌈logρ κ−1⌉+ 1

1− ρ
))∥θ1 − θ2∥

(1)

≤ (lh + 2ulj)∥θ1 − θ2∥
(2)

≤ 2lh∥θ1 − θ2∥,
where (1) follows from Eq. (19) and (2) comes from the definition of lh in Eq. (59).

Then we have ω − ω∗
θ is u-bounded and lω-Lipschitz; ∇ω∗

θ is lω-bounded and hω-Lipschitz;
Eθ[h(O

′,θ)]− h(O,θ) is 8u2-bounded and 3lh-Lipschitz. By the triangle inequality, we have

∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (8u2l2ω + 8u3hω + 3ulωlh)∥θ1 − θ2∥ ≤ c3∥θ1 − θ2∥,

where c3 := 8u2l2ω + 8u3hω + 6ulω(2uhπ + ulj + ulvlω).

Step 2: show that

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ ≤ 4u2lω∥ω1 − ω2∥. (60)

Actually, we have

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ = ∥⟨ω1 − ω2, (∇ω∗
θ)

⊤EO′ [h(O′,θ)]− h(O,θ)⟩∥
≤ 4u2lω∥ω1 − ω2∥.

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)] ≤ 8u5lωlπτ(τ + 1)α. (61)

By definition of Ξ(O,ω,θ), we have

∥E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)]∥
= ∥E[⟨ωt−τ − ω∗

t−τ , (∇ω∗
t−τ)

⊤(h(Õt,θt−τ)− h(Ot,θt−τ))]∥
≤ 4u3lωdTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)), (62)

where the inequality comes from the definition of total variation distance. The total variation norm
between Ot and Õt has been computed in Eq. (52). Plugging Eq. (52) into Eq. (62), we get

∥E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)]∥ ≤ 2u3lωlπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ 8u5lωlπτ(τ + 1)α.

Step 4: Show that conditioning on st−τ+1 and θt−τ , we have

∥E[Ξ(Õt,ωt−τ ,θt−τ)]∥ ≤ 8u3lωκρ
τ−1. (63)

It can be shown that

∥E[Ξ(Õt,ωt−τ ,θt−τ)]∥
(1)
= ∥E[Ξ(Õt,ωt−τ ,θt−τ)− Ξ(O′

t−τ ,ωt−τ ,θt−τ)]∥
(2)

≤ 8u3lωdTV (P(Õt ∈ ·|st−τ+1,θt−τ), µθt−τ
⊗ πθt−τ

⊗ P),

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

where (1) is due to the fact that O′
t is from the stationary distribution which satisfies

E[Ξ(O′
t−τ ,ωt−τ ,θt−τ)|θt−τ , st−τ+1] = 0 and (2) follows from the definition of total variation

distance. From Assumption 6, we know that

dTV (P(s̃t ∈ ·), µθt−τ
) ≤ κρτ−1.

Therefore, we have

∥E[Ξ(Õt,ωt−τ ,θt−τ)∥ ≤ 8u3lωdTV (P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

= 8u3lωdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ), µθt−τ
⊗ πθt−τ

)

= 8u3lωdTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ
)

≤ 8u3lωκρ
τ−1.

Combining Eq. (58)-Eq. (63), we can decompose the Markovian bias as

E[Ξ(Ot,ωt,θt)] = E[Ξ(Ot,ωt,θt)− Ξ(Ot,ωt,θt−τ)] + E[Ξ(Ot,ωt,θt−τ)− Ξ(Ot,ωt−τ ,θt−τ)]

+ E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)] + E[Ξ(Õt,ωt−τ ,θt−τ)]

≤ c3E∥θt − θt−τ∥+ 4u2lωE∥ωt − ωt−τ∥+ 8u5lωlπτ(τ + 1)α+ 8u3lωκρ
τ−1

≤ 4c3u
2τα+ 4u3lωτβ + 8u5lωlπτ(τ + 1)α+ 8u3lωκρ

τ−1.

Thus we conclude our proof.

Proof of Lemma 10.

Proof. We will divide the proof of this lemma into three steps.

Step 1: show that

|Θ(O,θ1)−Θ(O,θ2)| ≤ (2uBhj + 3lj lh)∥θ1 − θ2∥, (64)

where lh = 4uhπ + 2ulj + 2ulvlω is defined in the proof of Lemma 9.

Since Θ(O,θ) = ⟨∇J(θ),EO′
θ
[h(O′

θ,θ)] − h(O,θ)⟩, we will show that each term in Θ(O,θ) is
Lipschitz.

For the term ∇J(θ), we know it’s lj-bounded and hj-Lipschitz. For term Eθ[h(O
′,θ)] − h(O,θ),

we have shown in the proof of Lemma 9 that it’s 8u2-bounded and 3lh-Lipschitz. By the triangle
inequality, we have

|Θ(O,θ1)−Θ(O, θ2)| ≤ (8u2hj + 3lj lh)∥θ1 − θ2∥

Step 2: show that conditioning on st−τ+1 and θt−τ , we have

|E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]| ≤ 2u2lj lπ

t∑
k=t−τ

∥θk − θt−τ∥ (65)

By definition of Θ(O,θ), we have

|E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]|
= |E[⟨∇J(θt−τ), h(Õt,θt−τ)− h(Ot,θt−τ)⟩]|
≤ 4u2ljdTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)), (66)

where the inequality comes from the definition of total variation distance. The total variation dis-
tance between Ot and Õt has been computed in Eq. (52). Plugging Eq. (52) into Eq. (66), we get

|E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]| ≤ 2u2lj lπ

t∑
k=t−τ

∥θk − θt−τ∥.

Step 3: show that conditioning on st−τ+1 and θt−τ , we have

|E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]| ≤ 4u2ljκρ

τ−1. (67)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

From the definition of Θ(O,θ), we have

|E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]| = |E[⟨∇J(θt−τ), h(O

′
t,θt−τ)⟩ − ⟨∇J(θt−τ), h(Õt,θt−τ)⟩]|

≤ 4u2ljdTV (P(Õt ∈ ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

= 4u2ljdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ), µθt−τ
⊗ πθt−τ

)

= 4u2ljdTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ
)

≤ 4u2ljκρ
τ−1,

where the last inequality follows from Assumption 6. Therefore, we have

|E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]| ≤ 4u2ljκρ

τ−1.

Combining Eq. (64), Eq. (65), and Eq. (67), we can decompose the Markovian bias as

E[Θ(Ot,θt)] = E[Θ(Ot,θt)−Θ(Ot,θt−τ)]

+ E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]

+ E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]

+ E[Θ(O′
t−τ ,θt−τ)],

where Õt is from the auxiliary Markovian chain defined in Eq. (9) and O′
t−τ is from the stationary

distribution which satisfies E[Θ(O′
t−τ ,θt−τ)|θt−τ] = 0.

Then we have

E[Θ(Ot,θt)] ≤ (8u2hj + 3lj lh)E∥θt − θt−τ∥+ 2u2lj lπ

t∑
k=t−τ

E∥θk − θt−τ∥+ 4u2ljκρ
τ−1

≤ 4u2(8u2hj + 3lj lh)τα+ 8u4lj lπτ(τ + 1)α+ 4u2ljκρ
τ−1.

Therefore, we conclude the proof.

H DECLARATION

I declare that Large Language Models (LLMs) were used solely for language polishing in this paper.
No other usage of LLMs was involved.

39

	Introduction
	Preliminaries
	The Single-Timescale Neural Actor-Critic Algorithm
	Parameterization of the Value function and Policy
	Algorithm Design

	Analysis of Single-Timescale Neural Actor-Critic
	Assumptions
	Finite-Time Analysis

	Experiments
	Approximation Capability of the Neural Critic
	Empirical Validation of Theoretical Convergence Rate.
	Algorithm Evaluation on MuJoCo Benchmarks

	Conclusion and Discussion
	Related Work
	Additional Notations
	Proof Sketch
	Preliminary Lemmas
	Proof of Main Theorem
	Step 1: Reward error analysis
	Step 2: Critic error analysis
	Step 3: Actor error analysis
	Step 4: Interconnected iteration system analysis

	Proof of Preliminary Lemmas
	Proof of Markovian Noises
	Declaration

