

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FINITE-TIME ANALYSIS OF ACTOR-CRITIC METHODS WITH DEEP NEURAL NETWORK APPROXIMATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Actor-critic (AC) algorithms underpin many of today’s most successful reinforcement learning (RL) applications, yet their finite-time convergence in realistic settings remains largely underexplored. Existing analyses often rely on oversimplified formulations and are largely confined to linear function approximation. In practice, however, nonlinear approximations with deep neural networks dominate AC implementations, leaving a substantial gap between theory and practice. In this work, we provide the first finite-time analysis of single-timescale AC with deep neural network approximation in continuous state-action spaces. In particular, we consider the challenging time-average reward setting, where one needs to simultaneously control three highly-coupled error terms including the reward error, the critic error, and the actor error. Our novel analysis is able to establish convergence to a stationary point at a rate  $\tilde{O}(T^{-1/2})$ , where  $T$  denotes the total number of iterations, thereby providing theoretical grounding for widely used deep AC methods. We substantiate these theoretical guarantees with experiments that confirm the proven convergence rate and further demonstrate strong performance on MuJoCo benchmarks.

## 1 INTRODUCTION

Actor-critic (AC) methods have achieved substantial success in many challenging applications (Silver et al., 2017; Vinyals et al., 2019; Lazaridis et al., 2020). In particular, it becomes instrumental in enabling highly robust and agile robot motion control involving continuous state-action spaces, such as quadruped locomotion control (Miki et al., 2022; Hoeller et al., 2024), humanoid whole-body control (Radosavovic et al., 2024), drone racing (Kaufmann et al., 2023), etc. These successes are largely driven by the use of powerful function approximators, such as deep neural networks, to represent control policies (actors) and value functions (critics).

Despite substantial empirical success, the theoretical understanding of AC methods remains underdeveloped, especially in the most practical settings. Existing studies often restrict attention to finite state-action spaces and adopt simplified algorithmic variants to ease analysis. For instance, *double-loop* methods perform multiple critic updates per fixed actor (Yang et al., 2019; Kumar et al., 2023; Agarwal et al., 2021; Xu et al., 2020b), which improves value estimation and thereby yields a more accurate policy gradient for that actor. This enables a clean, decoupled analysis of the actor and critic, but at the cost of impractically high sampling complexity. Similarly, *two-timescale* methods (Wu et al., 2020; Xu et al., 2020c; Chen et al., 2023) impose a smaller step size on the actor than the critic, with their ratio vanishing as iterations grow (i.e.,  $\lim_{t \rightarrow \infty} \alpha_t / \beta_t = 0$ ). This asymptotically decouples the actor and critic, mimicking multiple critic updates per actor. However, this artificial slowing down of the actor is undesirable and rarely adopted in practice.

In contrast, the canonical form widely used in practice is the *single-timescale* AC algorithm, where both actor and critic are updated simultaneously with proportional step sizes at each iteration (i.e.,  $\alpha_t / \beta_t = c$ ). However, analyzing its convergence is more challenging than for the aforementioned simplified variants, as the actor and critic updates are strongly coupled. The aforementioned decoupled analysis is over-conservative and cannot establish convergence of the single-timescale AC.

Recent efforts to study the convergence of the single-timescale AC algorithm include Chen et al. (2021), Olshevsky & Gharesifard (2023), Chen & Zhao (2024), and Tian et al. (2024), with their respective settings summarized in Table 1. Among these works, only Tian et al. (2024) considers

054  
055  
Table 1: Comparison of related works on single-timescale actor-critic algorithm analysis.  
056

| 057<br>Reference               | 058<br>MDP                       |                                   | 059<br>Sampling               |                                | 060<br>Approximation                    | 061<br>Convergence |                                            |
|--------------------------------|----------------------------------|-----------------------------------|-------------------------------|--------------------------------|-----------------------------------------|--------------------|--------------------------------------------|
|                                | 062<br>Continuous<br>State Space | 063<br>Continuous<br>Action Space | 064<br>Markovian<br>for Actor | 065<br>Markovian<br>for Critic | 066<br>Neural Network<br>Function Class | 067<br>Experiment  | 068<br>Convergence<br>Rate                 |
| Chen et al. (2021)             | ✓                                | ✗                                 | ✗                             | ✗                              | ✗                                       | ✗                  | $\mathcal{O}(T^{-0.5})$                    |
| Olshevsky & Gharesifard (2023) | ✗                                | ✗                                 | ✗                             | ✗                              | ✗                                       | ✗                  | $\mathcal{O}(T^{-0.5})$                    |
| Chen & Zhao (2024)             | ✓                                | ✗                                 | ✓                             | ✓                              | ✗                                       | ✗                  | $\tilde{\mathcal{O}}(T^{-0.5})$            |
| Tian et al. (2024)             | ✗                                | ✗                                 | ✗                             | ✓                              | ✓                                       | ✗                  | $\tilde{\mathcal{O}}(T^{-0.5} + m^{-0.5})$ |
| Ours                           | ✓                                | ✓                                 | ✓                             | ✓                              | ✓                                       | ✓                  | $\tilde{\mathcal{O}}(T^{-0.5})$            |

069  
single-timescale AC with neural network approximation. Nevertheless, it suffers from two fundamental limitations. First, it is restricted to finite state–action spaces, where linear function approximation already suffices. This renders the neural network perspective redundant and undermines the practical significance of the analysis. In contrast, real-world reinforcement learning problems typically involve continuous state–action spaces and rely on neural networks for expressive function approximation. Second, as shown in Table 1, the convergence rate in Tian et al. (2024) is  $\tilde{\mathcal{O}}(T^{-0.5} + m^{-0.5})$ , where  $T$  denotes the number of iterations and  $m$  the neural network width. While the  $T$ -dependence is natural for finite-time analysis, the  $m$ -dependence is problematic. In practice,  $m$  is fixed during training and does not scale with  $T$ , leaving a constant  $\tilde{\mathcal{O}}(m^{-0.5})$  error term that fails to capture the true convergence behavior. Moreover, neural tangent kernel theory (Jacot et al., 2018) shows that neural networks become increasingly linear as  $m \rightarrow \infty$ , thereby degrading their representational power. Intuitively, the convergence of the algorithm should not hinge on such  $m$ -limiting behavior. The observed dependence on  $m$  in prior results is merely a consequence of analytical technicalities, rather than a fundamental property of the algorithm.

079  
Motivated by these gaps, we provide the first finite-time convergence guarantee for single-timescale  
080 AC in continuous state–action spaces under the time-average reward setting. Our analysis rigorously  
081 incorporates both deep neural network approximation and Markovian sampling for the actor and the  
082 critic. We prove the convergence of the reward error (Eq. (8a)), critic error (Eq. (8b)), and actor error  
083 (Eq. (8c)) at rate  $\tilde{\mathcal{O}}(T^{-1/2})$ , without requiring the network width  $m$  to diverge. As summarized  
084 in Table 1, our results compare favorably with prior studies across key dimensions that are critical  
085 for practical applicability.

086 From a technical perspective, this improvement is enabled by a series of technical innovations. To  
087 sharpen the convergence rate, we show that the smoothness-induced error—arising uniquely from  
088 neural networks and absent in the linear setting—is intertwined with the critic error. Unlike Tian  
089 et al. (2024), which conservatively bound the critic error by a constant, we prove that its mean  
090 path diminishes, thereby removing the prior requirement of  $m \rightarrow \infty$  (see the mean-path update  
091 analysis in Eq. (26)). To address the challenges of continuous state–action spaces, we introduce  
092 an operator-based framework (see Eq. (1)) capable of handling uncountable domains. To mitigate  
093 error propagation caused by deep neural networks (DNNs) approximation of the value function, we  
094 establish a set of important regularity properties of DNNs in Lemma 1. Moreover, the interplay  
095 between DNN approximation error and Markovian sampling noise poses greater challenges than  
096 those encountered in the linear function approximation (Chen & Zhao, 2024) or the i.i.d. sampling  
097 setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). To control such complex error dynamics,  
098 we develop refined analyses in Lemma 7–Lemma 10 (Markovian noises). A high-level overview of  
099 our proof ideas and newly developed techniques is provided in the Proof Sketch in Appendix C.

100 This work is further distinguished by extensive empirical validation that corroborates our theoretical  
101 results (see Section 5). Although all prior studies listed in Table 1 attempt to bridge the gap between  
102 theory and practice, none included empirical evaluations. A key reason is that many of their assump-  
103 tions are unrealistic for practical deployment. For instance, the algorithms analyzed in prior works  
104 cannot even be applied to simple tasks such as gymnasium Pendulum-v1 (Towers et al., 2024),  
105 since they are restricted to finite action spaces and depend on sampling from the stationary state  
106 distribution. Moreover, AC with linear function approximation is generally incapable of controlling  
107 standard benchmarks. In particular, our experiments show that the linear critic fails to approximate  
108 the value function even for the simple pendulum (Figure 1). These observations highlight the sub-  
109 stantial gap between the simplifying assumptions underlying existing theoretical analyses and the

108 complexities inherent in practical RL applications. In contrast, we empirically verify both the convergence and the proven convergence rate of our algorithm on pendulum, and further demonstrate 109 its effectiveness on more challenging Gym MuJoCo benchmarks, where neural AC consistently out- 110 performs its linear approximation counterpart. This underscores the importance of analyzing neural 111 AC algorithms, which are both practically relevant and theoretically more challenging. 112

113 **Notation.** We use san-serif letters to denote scalars and use lower and upper case bold letters to 114 denote vectors and matrices respectively. For two sequences of real numbers  $(x_n)$  and  $(y_n)$ , we 115 write  $x_n = O(y_n)$  if there exists  $C < \infty$  such that  $|x_n| \leq C|y_n|$  for all  $n$  sufficiently large. We use 116  $\tilde{O}(\cdot)$  to further hide logarithmic factors. The total variation distance of two probability measure  $\mu$  117 and  $\nu$  is defined by  $d_{TV}(\mu, \nu) := 1/2 \int_{\mathcal{X}} |\mu(dx) - \nu(dx)|$ . 118

## 119 2 PRELIMINARIES

120 **Markov Decision Process.** We consider the standard Markov Decision Process (MDP) characterized by  $(\mathcal{S}, \mathcal{A}, \mathcal{P}, r)$ , where  $\mathcal{S}$  is the state space and  $\mathcal{A}$  is the action space. The spaces  $\mathcal{S}$  and  $\mathcal{A}$  are 121 allowed to be either finite sets or real vector spaces, i.e.,  $\mathcal{S} \subset \mathbb{R}^{d_s}$  and  $\mathcal{A} \subset \mathbb{R}^{d_a}$ . The transition 122 kernel is denoted by  $\mathcal{P}(s_{t+1}|s_t, a_t) \in \mathbb{R}_{\geq 0}$  and the reward function is  $r : \mathcal{S} \times \mathcal{A} \rightarrow [-u_r, u_r]$ . A 123 policy  $\pi_{\theta}$  parameterized by  $\theta \in \mathcal{X}_{\Theta}$  maps a given state to a probability distribution over the action 124 space, i.e.,  $a_t \sim \pi_{\theta}(\cdot|s_t)$ . In this work, we consider the time-average reward setting (Sutton et al., 125 1999; Yang et al., 2019; Wu et al., 2020; Chen & Zhao, 2024), which aims to find a policy  $\pi_{\theta}$  that 126 maximizes the following infinite-horizon time-average reward: 127

$$128 J(\theta) := \lim_{T \rightarrow \infty} \mathbb{E}_{\theta} \left[ \frac{1}{T} \sum_{t=0}^{T-1} r(s_t, a_t) \right] = \mathbb{E}_{(s,a) \sim (\mu_{\theta}, \pi_{\theta})} [r(s, a)].$$

129 In the above equation, the expectation  $\mathbb{E}_{\theta}$  is taken over the states and actions generated by following 130 the policy  $\pi_{\theta}$  and the transition kernel  $\mathcal{P}$ . Additionally,  $\mu_{\theta}$  denotes the stationary state distribution 131 induced by  $\pi_{\theta}$  and  $\mathcal{P}$ . The existence of this stationary distribution is guaranteed by the uniform 132 ergodicity of the underlying MDP, which is a common assumption (See Assumption 6 in the sequel). 133 Hereafter, we refer to  $J(\theta)$  as the time-average reward (and exchangeably, *performance function*), 134 which can be evaluated by the expected reward over the stationary distribution  $\mu_{\theta}$  and the policy 135  $\pi_{\theta}$ . The state-value function is used to evaluate the overall rewards starting from a state  $s$ , following 136 policy  $\pi_{\theta}$  and transition kernel  $\mathcal{P}$  thereafter, which is defined as 137

$$138 V_{\theta}(s) := \mathbb{E}_{\theta} \left[ \sum_{t=0}^{\infty} (r(s_t, a_t) - J(\theta)) \middle| s_0 = s \right].$$

139 Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from 140  $s$ , taking action  $a$ , and following transition kernel  $\mathcal{P}$  and policy  $\pi_{\theta}$  thereafter: 141

$$142 Q_{\theta}(s, a) := \mathbb{E}_{\theta} \left[ \sum_{t=0}^{\infty} (r(s_t, a_t) - J(\theta)) \middle| s_0 = s, a_0 = a \right] = r(s, a) - J(\theta) + \mathbb{E}[V_{\theta}(s')],$$

143 where the last expectation is taken over  $s' \sim \mathcal{P}(\cdot|s, a)$ . 144

145 To tackle the technical challenges associated with neural network function approximation over 146 continuous state and action spaces, we introduce two auxiliary operators. Let  $\mathcal{F} := \{f \mid f : \mathcal{S} \rightarrow \mathbb{R}\}$  147 denote the class of real-valued functions on  $\mathcal{S}$ . For a policy  $\pi_{\theta}$ , define the operators  $D_{\theta} : \mathcal{F} \rightarrow \mathcal{F}$  148 and  $P_{\theta} : \mathcal{F} \rightarrow \mathcal{F}$  as 149

$$150 (D_{\theta}f)(s) := \mu_{\theta}(s) f(s), \quad (P_{\theta}f)(s) := \int_{\mathcal{S}} \int_{\mathcal{A}} f(s') \mathcal{P}(s' \mid s, a) \pi_{\theta}(a \mid s) da ds'. \quad (1)$$

151 Here,  $D_{\theta}$  multiplies a function  $f$  by the stationary distribution  $\mu_{\theta}$ , whereas  $P_{\theta}$  maps  $f$  to its one-step 152 look-ahead under the Markov chain induced by  $\pi_{\theta}$  and  $\mathcal{P}$ , i.e.,  $(P_{\theta}f)(s) = \mathbb{E}_{\theta}[f(s_{t+1}) \mid s_t = s]$ . 153 The inner product on  $\mathcal{F}$  is given by 154

$$155 \langle f, g \rangle = \int_{\mathcal{S}} f(s) g(s) ds, \quad (2)$$

156 and the induced norm of a function  $f$  is  $\|f\|^2 = \langle f, f \rangle$ . 157

**Actor-Critic.** In AC, the actor corresponds to the policy, while the critic typically estimates the actor’s value function via temporal-difference learning. The actor then updates its policy parameters through stochastic gradient ascent to maximize the performance function. The policy gradient theorem (Sutton et al., 1999) offers a closed-form expression for the gradient of the performance function  $J(\theta)$  with respect to the policy parameters  $\theta$ , which is given by

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mu_{\theta}, a \sim \pi_{\theta}} [Q_{\theta}(s, a) \cdot \nabla_{\theta} \log \pi_{\theta}(a|s)]. \quad (3)$$

Equivalently, the policy gradient can be written as

$$\nabla J(\theta) = \mathbb{E}_{s \sim \mu_{\theta}, a \sim \pi_{\theta}} [(Q_{\theta}(s, a) - b(s)) \nabla_{\theta} \log \pi_{\theta}(a|s)],$$

where  $b(s)$  is called the baseline function, which is employed to reduce the variance of the gradient estimate. A popular choice of baseline is the state-value function, which leads to the following so-called advantage-based policy gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mu_{\theta}, a \sim \pi_{\theta}} [\Delta_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)], \quad (4)$$

where  $\Delta_{\theta} := Q_{\theta}(s, a) - V_{\theta}(s)$  is known as the advantage function.

In deep RL, the policy (actor) and value functions (critic) are typically parameterized by deep neural networks due to their strong representation capabilities (Mnih et al., 2015; Lillicrap et al., 2015). However, the convergence of training deep neural networks are less understood, especially in RL. In this paper, we establish conditions and provide a finite-time analysis for single-timescale AC algorithms utilizing deep neural network approximations for both the actor and the critic.

### 3 THE SINGLE-TIMESCALE NEURAL ACTOR-CRITIC ALGORITHM

In this section, we present the single-timescale neural AC algorithm to be analyzed in the sequel, incorporating key components commonly found in practical implementations.

#### 3.1 PARAMETERIZATION OF THE VALUE FUNCTION AND POLICY

We consider a deep neural network for estimating the true state-value function  $V_{\theta}(s)$  under a policy  $\pi_{\theta}$ . The network  $\hat{V}(\omega; s)$  has a general form of a deep neural network with a linear output layer:

$$s^{(0)} = s, \quad s^{(k)} = \frac{1}{\sqrt{m_k}} \sigma(\mathbf{W}^{(k)} s^{(k-1)}), \quad k = 1, 2, \dots, K, \quad \hat{V}(\omega; s) = \frac{1}{\sqrt{m_K}} \mathbf{b}^{\top} s^{(K)}, \quad (5)$$

where  $K$  is the total number of hidden layers, state  $s \in \mathbb{R}^{d_s}$  is the input to the neural network,  $\sigma$  is an element-wise activation function,  $\mathbf{b}$  is a fixed coefficient vector for the output layer, and  $\omega \in \mathcal{X}_{\Omega}$  stands for the trainable parameter of the neural network. The latter is a column vector formed by stacking the weights of different layers,  $\omega := \{\mathbf{W}^{(k)} \in \mathbb{R}^{m_k \times m_{k-1}}\}_{k=1}^K$ , where  $m_k \in \mathbb{N}$  is the width of the  $k$ -th layer and  $m_0 = d_s$  is the input dimension. Without loss of generality, we assume all the hidden layers have the same width  $m$ , i.e.,  $m_k = m$  for  $k \in \{1, 2, \dots, K\}$ . It is for the ease of presentation only. As shown in the proof, our analysis also applies to  $m_k \geq m$ . Note that the above definition is general enough to encompass standard multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and residual networks (ResNets) as special cases (Liu et al., 2020).

The policy  $\pi_{\theta}$  is allowed to have a general parameterization, including linear functions (Yang et al., 2019), deep neural networks (Wang et al., 2019), and energy-based policies (Fu et al., 2020). For the deep neural network approximation case, the actor can be parameterized similarly to Eq. (5), where all the trainable parameters will be stacked into the column vector  $\theta \in \mathcal{X}_{\Theta}$ .

#### 3.2 ALGORITHM DESIGN

In this subsection, we first aim to update the parameter of the neural network (the critic)  $\omega$  so that  $\hat{V}(\omega; s)$  can approximate the true value function  $V_{\theta}(s)$  of a policy  $\pi_{\theta}$ . Concretely, at step  $t$ , we implement Stochastic Gradient Descent (SGD) methods to adjust the critic in the direction that would most reduce the mean square value error  $[V(s_t) - \hat{V}(\omega_t; s_t)]^2$ :

$$\begin{aligned} \omega_{t+1} &= \omega_t - \frac{1}{2} \beta \nabla [V(s_t) - \hat{V}(\omega_t; s_t)]^2 \\ &= \omega_t + \beta [V(s_t) - \hat{V}(\omega_t; s_t)] \nabla \hat{V}(\omega_t; s_t), \end{aligned} \quad (6)$$

---

**Algorithm 1** Single-Timescale Neural Actor-Critic
 

---

```

216 1: Input initial actor parameter  $\theta_0$ , initial critic parameter  $\omega_0$ , initial reward estimator  $\eta_0$ , stepsizes
217 2:  $\alpha$  for actor,  $\beta$  for critic, and  $\gamma$  for reward estimator.
218 3: Draw  $s_0$  from some initial distribution
219 4: for  $t = 0, 1, 2, \dots, T-1$  do
220 5:   Take action  $a_t \sim \pi_{\theta_t}(\cdot | s_t)$ 
221 6:   Observe next state  $s_{t+1} \sim \mathcal{P}(\cdot | s_t, a_t)$  and reward  $r_t = r(s_t, a_t)$ 
222 7:    $\delta_t = r_t - \eta_t + \hat{V}(\omega_t; s_{t+1}) - \hat{V}(\omega_t; s_t)$ 
223 8:    $\eta_{t+1} = \eta_t + \gamma(r_t - \eta_t)$ 
224 9:    $\omega_{t+1} = \text{proj}_{\mathcal{B}_{\omega_0}}(\omega_t + \beta \delta_t \nabla \hat{V}(\omega_t; s_t))$ 
225 10:   $\theta_{t+1} = \theta_t + \alpha \delta_t \nabla_{\theta} \log \pi_{\theta_t}(a_t | s_t)$ 
226 11: end for
227
228
229

```

---

230 where  $\beta$  is the stepsize (learning rate). Since  $V(s_t)$  is unknown, the semi-gradient TD(0) method  
 231 approximates it by replacing  $V(s_t)$  with the current target  $r_t - J(\theta) + \hat{V}(\omega_t; s_{t+1})$ . To further  
 232 estimate the unknown time-average reward  $J(\theta)$ , we use the following exponential moving average  
 233 update of  $\eta_t$ ,

$$\eta_{t+1} = \eta_t + \gamma(r_t - \eta_t),$$

234 where  $\gamma$  is the stepsize. Hereafter, we will refer to it as the *reward estimator*. This additional  
 235 estimation of the time-average reward  $J(\theta)$  introduces more analysis complexity compared to the  
 236 discounted setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). Now, by denoting the TD  
 237 error as

$$\delta_t := r_t - \eta_t + \hat{V}(\omega_t; s_{t+1}) - \hat{V}(\omega_t; s_t),$$

238 we can rewrite the update of the critic in Eq. (6) as

$$\omega_{t+1} = \omega_t + \beta \delta_t \nabla \hat{V}(\omega; s_t).$$

239 For the neural network specified in Section 3.1, we require its width  $m$  to be a large constant such  
 240 that the neural network is in the overparameterization regime. In this regime, the optimal solution  
 241 typically resides in the neighborhood of the initialization (Du et al., 2019; Chen et al., 2021; Tian  
 242 et al., 2024). Therefore, in Line 8 of Algorithm 1, we constrain the update of the critic parameter  
 243 within a ball of constant radius around its initial condition, which ensures the boundedness without  
 244 overlooking the optimal solution. Specifically,  $\text{proj}_{\mathcal{B}_{\omega_0}}$  stands for the projection onto a ball with a  
 245 constant radius around the initial condition of the critic, i.e.,  $\mathcal{B}_{\omega_0} = \{\omega | \|\omega - \omega_0\| \leq u_{\omega}\}$ , where  
 246  $u_{\omega}$  is a constant.

247 For the actor update, it is standard to use the TD error ( $\delta_t$ ) as an approximation of the advantage  
 248 function (Sutton & Barto, 2018). Therefore, based on the policy gradient theorem, the corresponding  
 249 update rule for the actor can be written as

$$\theta_{t+1} = \theta_t + \alpha \delta_t \nabla_{\theta} \log \pi_{\theta_t}(a_t | s_t),$$

250 where  $\delta_t \nabla_{\theta} \log \pi_{\theta_t}(a_t | s_t)$  is an approximation of the policy gradient defined in Eq. (4). The parallel  
 251 updates of the critic and actor in Lines 8 and 9 aim to drive the actor towards the direction that  
 252 increases the time-average reward  $J(\theta)$ .

253 We summarize the above-described AC algorithm in Algorithm 1, which follows the classic AC ar-  
 254 chitecture studied in prior works under various settings, as listed in Table 1. The “single-timescale”  
 255 refers to the fact that the stepsizes  $\alpha, \beta, \gamma$  are only constantly proportional to each other. We consider  
 256 the more challenging neural network approximation for both the actor and the critic, which is re-  
 257 ferred to as the “neural actor-critic”. Moreover, we consider the more practical Markovian sampling,  
 258 starting from an initial state  $s_0$ , with subsequent states and actions generated according to the transi-  
 259 tion kernel and the policy, respectively. The consecutive transition tuples  $(s_0, a_0, s_1, a_1, s_2, \dots)$   
 260 form a single trajectory, thereby circumventing the time-consuming re-sampling procedure (i.i.d.  
 261 sampling) mandated in prior works (Chen et al., 2021; Tian et al., 2024). More importantly, we  
 262 aim to address the challenging settings of continuous state and action spaces that are prevalent in  
 263 applications (see Table 1 for a detailed comparison). The finite-time convergence in such contexts  
 264 is of significant interest to the community but remains unresolved.

---

270 **4 ANALYSIS OF SINGLE-TIMESCALE NEURAL ACTOR-CRITIC**  
271

272 In this section, we begin by outlining several standard assumptions and then present our main finite-  
273 time convergence results for the algorithm.  
274

275 **4.1 ASSUMPTIONS**  
276

277 **Assumption 1** (Neural architecture and initialization). *The neural network defined in Eq. (5) satisfies the following properties:*  
278

- 279 (a)
- (Input assumption) Any input to the neural network satisfies  $\|\mathbf{s}^{(0)}\| \leq 1$ .*
- 
- 280
- 
- 281 (b)
- (Activation assumption)  $\sigma$  is  $l_\sigma$ -Lipschitz and  $h_\sigma$ -smooth. i.e.,  $\forall x_1, x_2 \in \mathbb{R}$ , (i)  $|\sigma(x_1) - \sigma(x_2)| \leq l_\sigma |x_1 - x_2|$ ; (ii)  $|\sigma'(x_1) - \sigma'(x_2)| \leq h_\sigma |x_1 - x_2|$  where  $\sigma'$  is the derivative of  $\sigma$ .*
- 
- 282
- 
- 283 (c)
- (Initialization assumption) Each entry of the vector  $\mathbf{b}$  satisfies  $|b_i| \leq 1, \forall i$ , and the weights  
284 of the neural network  $\mathbf{W}_0^{(k)}$  are randomly initialized from a normal distribution  $\mathcal{N}(0, 1)$ ,  
285 with each entry being independently sampled.*
- 
- 286

287 This assumption mainly states the initialization and analytic properties of the neural network. We  
288 note that these assumptions are widely satisfied in various applications. For the input norm con-  
289 straint, we could normalize the state space to guarantee this assumption. Regarding the activation  
290 function, we emphasize that many commonly used activation functions, such as sigmoid and GeLu,  
291 satisfy this condition. The initialization assumption, furthermore, can be easily implemented during  
292 neural network training. We also note that the above assumptions are common in the theoretical  
293 analysis of neural networks (Liu et al., 2020; Tian et al., 2024).  
294

295 As shown in Lemma F.4 of (Liu et al., 2020), with Assumption 1, the following assumption holds  
296 with high probability, which we state as an assumption in our work for ease of presentation.  
297

298 **Assumption 2.** *The absolute value of each entry of  $\mathbf{s}^{(k)}$  (the output of layer  $k$  of the neural network)  
299 is  $\tilde{O}(1)$  at initialization. The initial weights satisfy  $\|\mathbf{W}_0^{(k)}\| \leq \mathcal{O}(\sqrt{m})$  for all  $k$ .*  
300

301 For the value function  $V_\theta(s)$  of a given policy  $\theta$ , its best approximation using the neural network  
302 (Eq. (5)) is defined via  
303

304 
$$\epsilon_{\text{app}}(\omega^*(\theta)) := \inf_{\omega} \sqrt{\mathbb{E}_{s \sim \mu_\theta} [(\hat{V}(\omega; s) - V_\theta(s))^2]}, \quad (7)$$
  
305

306 where  $\omega^*(\theta)$  is referred to as the *optimal critic* that yields the minimal (optimal) approximation error  
307  $\epsilon_{\text{app}}(\omega^*(\theta))$ . In this paper, we assume the optimal approximation errors for all potential policies  
308 are uniformly bounded, that is,  
309

310 
$$\forall \theta, \epsilon_{\text{app}}(\omega^*(\theta)) \leq \epsilon_{\text{app}},$$
  
311

312 for some constant  $\epsilon_{\text{app}} \geq 0$ . The error  $\epsilon_{\text{app}}$  is zero if  $V_\theta$  can be exactly approximated by the neural  
313 network (Eq. (5)). Naturally, it is expected that the learning errors of Algorithm 1 depend on  $\epsilon_{\text{app}}$ ,  
314 which represents the approximation capacity of the critic.  
315

316 The assumption of a uniformly bounded approximation error is common in the literature (Chen  
317 et al., 2021; Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024; Tian et al., 2024). It is more  
318 restrictive for the linear function approximation than for the neural network setting. If the true  
319 value function is not linear, which is typically the case in practice, the approximation error  $\epsilon_{\text{app}}$   
320 can be significantly large. In contrast, the neural network approximation can arbitrarily closely  
321 approximate any continuous function according to the universal Approximation Theorem (Hornik,  
322 1991), and therefore can potentially keep the approximation error arbitrarily small.  
323

324 We then make the following assumption for the optimal critic.  
325

326 **Assumption 3** (Smoothness of optimal critic). *For any  $\theta_1, \theta_2 \in \mathcal{X}_\Theta$ , we have*  
327

328 
$$\begin{aligned} \|\omega^*(\theta_1) - \omega^*(\theta_2)\| &\leq l_\omega \|\theta_1 - \theta_2\|, \\ \|\nabla \omega^*(\theta_1) - \nabla \omega^*(\theta_2)\| &\leq h_\omega \|\theta_1 - \theta_2\|, \end{aligned}$$
  
329

330 where  $l_\omega$  and  $h_\omega$  are finite positive constants.  
331

The above assumption states that the optimal critic is  $l_\omega$ -Lipschitz and  $h_\omega$ -smooth. This assumption is commonly employed for the single-timescale AC with neural network approximation (Tian et al., 2024). In the case of linear function approximation, the above assumption is trivially implied by the linearity of the value function (Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024).

Furthermore, we specify the regularity of the neural network.

**Assumption 4** (Regularity of the neural network). *For the neural network defined in Eq. (5), there exists some constant  $\lambda_1 > 0$  such that*

$$\|\widehat{V}(\omega) - \widehat{V}(\omega^*(\theta))\| \geq \lambda_1 \|\omega - \omega^*(\theta)\|, \forall \theta \in \mathcal{X}_\Theta, \omega \in \mathcal{X}_\Omega,$$

where the norm of a function is defined based on the inner product given in Eq. (2), which involves the product of function values integrated over  $s$ . Assumption 4 states the regularity of the neural network in terms of learning the optimal value. Intuitively, it requires that the perturbation of the critic parameter around the optimal one will cause a non-zero change of the critic neural network output. From the point of view of the optimization landscape of the neural network, it merely assumes that optimal and suboptimal points are distinguished. This is also a standard assumption of other analysis of AC methods with neural network approximation (Tian et al., 2024).

The next assumption pertains to the exploration of the policy  $\pi_\theta$  in continuous settings.

**Assumption 5** (Exploration). *There exists a constant  $\lambda_2 > 0$  such that  $\langle \widehat{V}(\omega), D_\theta(I - P_\theta) \widehat{V}(\omega) \rangle \geq \lambda_2 \|\widehat{V}(\omega)\|^2$ , for any  $\theta \in \mathcal{X}_\Theta$  and neural network  $\widehat{V}(\omega) \in \mathcal{F}$ , where  $D_\theta, P_\theta$  are operators defined in Eq. (1),  $I$  denotes the identity operator, and the inner product is defined in Eq. (2).*

To demonstrate its connection to exploration, we show that if exploration is insufficient, the assumption fails to hold. First note that the operator  $D_\theta$  essentially multiplies the stationary distribution  $\mu_\theta$  to the function on its left (see the definition in Eq. (1)). If the policy  $\pi_\theta$  does not sufficiently explore, there exists a subset of the state space  $A \subset \mathcal{S}$  such that  $\mu_\theta(A) = 0$ . Furthermore, we can choose  $\widehat{V}(\omega)$  such that  $\widehat{V}(\omega; s) = 0, \forall s \in \mathcal{S} \setminus A$  and  $\widehat{V}(\omega; s) > 0, \forall s \in A$ . With this choice, the left-hand side of the inequality evaluates to 0, while the right-hand side becomes positive. This violates the condition stated in Assumption 5. Thus, the contrapositive holds: if Assumption 5 is satisfied, it ensures sufficient exploration of the state space under the policy  $\pi_\theta$ . This sufficient exploration assumption is standard in the literature of analyzing the convergence of AC algorithms (Wu et al., 2020; Chen et al., 2021; Chen & Zhao, 2024; Tian et al., 2024).

**Assumption 6** (uniform ergodicity). *For a Markov chain generated by the policy  $\pi_\theta$  and transition kernel  $\mathcal{P}$ , let  $\mathbb{P}$  denote the corresponding state transition probability. Then there exists  $\kappa > 0$  and  $\rho \in (0, 1)$  such that the total variation distance between the state distribution at time  $\tau$  and the stationary distribution  $\mu_\theta$  satisfies:  $d_{TV}(\mathbb{P}(s_\tau \in \cdot | s_0 = s), \mu_\theta(\cdot)) \leq \kappa \rho^\tau$ , for all  $\tau \geq 0$ ,  $s \in \mathcal{S}$ .*

Assumption 6 assumes the Markov chain is geometrically mixing, which is implied by the uniform ergodicity of the chain. It is commonly employed to characterize the noise induced by Markovian sampling in RL algorithms (Bhandari et al., 2018; Zou et al., 2019; Wu et al., 2020; Chen et al., 2021; Olshevsky & Gharesifard, 2023).

**Assumption 7** (Regularity of the policy). *Let  $\pi_\theta(a|s)$  be a bounded policy parameterized by  $\theta \in \mathcal{X}_\Theta$ . There exists positive constants  $u_\pi, h_\pi$  and  $l_p$  such that for any  $\theta$ ,  $s$ , and  $a$ , it holds that: (i)  $\|\nabla \log \pi_\theta(a|s)\| \leq u_\pi$ ; (ii)  $\|\nabla \log \pi_{\theta_1}(a|s) - \nabla \log \pi_{\theta_2}(a|s)\| \leq h_\pi \|\theta_1 - \theta_2\|$ ; (iii)  $|\pi_{\theta_1}(a|s) - \pi_{\theta_2}(a|s)| \leq l_p \|\theta_1 - \theta_2\|$ .*

Assumption 7 states the regularity of the policy, which is standard in the literature of actor-critic methods (Wu et al., 2020; Chen et al., 2021; Chen & Zhao, 2024; Tian et al., 2024). These conditions are sufficiently general to be satisfied by a wide range of distributions, including the uniform distribution, the truncated Gaussian distribution, and the Beta distribution with  $\alpha, \beta > 1$ .

## 4.2 FINITE-TIME ANALYSIS

We define the integer  $\tau_T := \min\{i \geq 0 \mid \kappa \rho^{i-1} \leq T^{-1/2}\}$ , where  $T$  is the total number of iterations,  $\kappa$  and  $\rho$  are the same constants defined in Assumption 6. The integer  $\tau_T$  represents a certain mixing time of an ergodic Markov chain, which will be used to control the Markovian noise in the analysis. In our main results, we require that  $T \geq 2\tau_T$  to ensure that the Markov chain is well-mixed and the

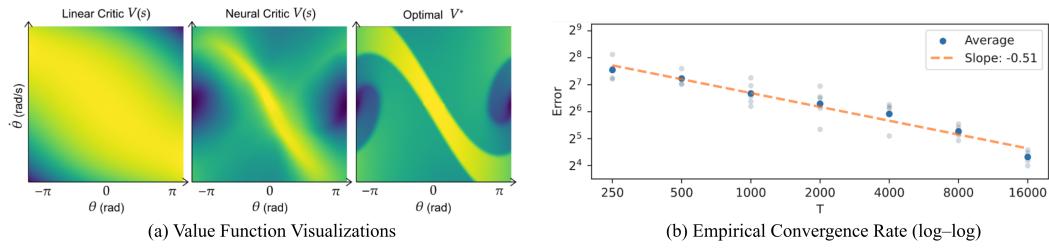


Figure 1: (a) Comparison of learned value functions: (left) linear critic, (middle) neural critic, and (right) optimal  $V^*$  obtained via time-average reward relative value iteration. Heatmaps are rendered with the Viridis colormap, where blue indicates low values, green intermediate values, and yellow high values. (b) Log-log plot of  $E_T := \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\theta_t)\|^2$  (Eq. (8c)) versus  $T$ , with  $\tau_T = 125$  (Theorem 1 holds for  $T \geq 2\tau_T$ ). Colored markers represent five independent runs, and the dashed line shows their mean with a linear regression fit.

Markovian noise is effectively bounded. We can estimate that  $\tau_T = \frac{\log \kappa \rho^{-1}}{\log \rho^{-1}} + \frac{\log T}{2 \log \rho^{-1}} = \mathcal{O}(\log T)$  which results in  $\kappa \rho^{\tau_T - 1} \leq \frac{1}{\sqrt{T}}$ .

We quantify the *learning errors* by defining  $y_t := \eta_t - J(\theta_t)$ , which is the difference between the reward estimator and the true time-average reward  $J(\theta_t)$  at time  $t$ . For the critic, we define  $z_t := \omega_t - \omega_t^*$  with  $\omega_t^* := \omega^*(\theta_t)$  to measure the error between the critic and its target value at iteration  $t$ . The following theorem summarizes our main results.

**Theorem 1.** Consider Algorithm 1 with  $\alpha = \frac{c}{\sqrt{T}}$ ,  $\beta = \frac{1}{\sqrt{T}}$ ,  $\gamma = \frac{1}{\sqrt{T}}$ , where  $c$  is a constant depending on problem parameters. Suppose Assumption 1-7 hold, for  $T \geq 2\tau_T$ , we have

$$\frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}[y_t^2] = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}), \quad (8a)$$

$$\frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}\|z_t\|^2 = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}), \quad (8b)$$

$$\frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}\|\nabla J(\theta_t)\|^2 = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}). \quad (8c)$$

Theorem 1 establishes the finite-time convergence of Algorithm 1. Given that the problem is inherently non-convex in general, it is common to prove convergence to a stationary point. The error term  $\mathcal{O}(\epsilon_{\text{app}})$  represents the critic approximation error that commonly appears in the analysis of AC methods (Wu et al., 2020; Chen & Zhao, 2024; Tian et al., 2024). If the critic approximation error  $\epsilon_{\text{app}}$  is zero, the critic and the actor errors all vanish at a rate of  $\tilde{\mathcal{O}}(T^{-1/2})$ . The  $\tilde{\mathcal{O}}$  notation hides the polynomials of all other problem parameters that do not depend on  $T$  and  $\epsilon_{\text{app}}$ . The additional logarithmic term with respect to  $T$  arises from the mixing time of the Markov chain, which can be further eliminated if considering the i.i.d. sampling scheme (Chen & Zhao, 2024). As summarized in Table 1, we establish convergence of single-timescale AC under the most practical settings.

The main challenge of our analysis lies in controlling the coupled reward error (Eq. (8a)), the critic error (Eq. (8b)), and the actor error (Eq. (8c)). We begin by deriving implicit and coupled bounds for the time-average reward error, the critic error, and the actor error, respectively. We then view the propagation of these errors as an interconnected system (Chen & Zhao, 2024) and analyze them holistically. To better appreciate the merit of our analysis, we sketch the main proof steps of Theorem 1 in the Proof Sketch in Appendix C.

## 5 EXPERIMENTS

### 5.1 APPROXIMATION CAPABILITY OF THE NEURAL CRITIC

We evaluate Algorithm 1 on the Gymnasium Pendulum-v1 task. This is a canonical control task with a continuous state space described by  $s = (\cos \theta, \sin \theta, \dot{\theta})$  (minimal coordinates  $(\theta, \dot{\theta})$ ) and a

432 Table 2: Final average reward under different configurations (mean  $\pm$  std over 5 seeds). Width  
 433 sweep uses fixed depth = 2; depth sweep uses fixed width = 128.  
 434

| 435 <b>Config</b> | 436 <b>Ant</b>                | 437 <b>HalfCheetah</b>        | 438 <b>Hopper</b>            | 439 <b>Humanoid</b>         | 440 <b>Swimmer</b>          | 441 <b>Walker2d</b>           |
|-------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|-------------------------------|
| 436 Linear        | 437 797.1 $\pm$ 66.0          | 438 299.2 $\pm$ 61.9          | 439 61.4 $\pm$ 25.2          | 440 186.9 $\pm$ 14.7        | 441 35.9 $\pm$ 4.7          | 442 810.9 $\pm$ 290.6         |
| 436 Width-64      | 437 1120.0 $\pm$ 140.3        | 438 590.7 $\pm$ 135.6         | 439 108.5 $\pm$ 16.3         | 440 264.0 $\pm$ 56.1        | 441 132.5 $\pm$ 78.4        | 442 1215.3 $\pm$ 192.6        |
| 436 Width-128     | 437 <b>1587.4</b> $\pm$ 183.2 | 438 1425.8 $\pm$ 161.7        | 439 533.8 $\pm$ 64.7         | 440 291.1 $\pm$ 63.9        | 441 220.5 $\pm$ 41.8        | 442 <b>1400.9</b> $\pm$ 461.2 |
| 436 Width-256     | 437 1245.2 $\pm$ 126.7        | 438 <b>2250.1</b> $\pm$ 187.9 | 439 <b>725.3</b> $\pm$ 165.0 | 440 365.2 $\pm$ 64.3        | 441 <b>251.3</b> $\pm$ 8.8  | 442 <b>1390.9</b> $\pm$ 324.9 |
| 436 Width-512     | 437 949.2 $\pm$ 75.4          | 438 1691.6 $\pm$ 245.8        | 439 <b>749.3</b> $\pm$ 304.6 | 440 <b>448.9</b> $\pm$ 48.4 | 441 222.7 $\pm$ 22.7        | 442 996.5 $\pm$ 180.9         |
| 436 Depth-1       | 437 961.2 $\pm$ 8.0           | 438 1205.8 $\pm$ 293.5        | 439 174.6 $\pm$ 34.4         | 440 219.0 $\pm$ 24.3        | 441 173.6 $\pm$ 101.1       | 442 1118.4 $\pm$ 39.5         |
| 436 Depth-2       | 437 1587.4 $\pm$ 183.2        | 438 1425.8 $\pm$ 381.7        | 439 <b>533.8</b> $\pm$ 64.7  | 440 291.1 $\pm$ 63.9        | 441 201.2 $\pm$ 54.2        | 442 <b>1400.9</b> $\pm$ 461.2 |
| 436 Depth-4       | 437 <b>1824.9</b> $\pm$ 147.0 | 438 <b>2144.2</b> $\pm$ 229.6 | 439 465.6 $\pm$ 95.6         | 440 385.0 $\pm$ 50.0        | 441 182.6 $\pm$ 26.8        | 442 865.1 $\pm$ 196.5         |
| 436 Depth-8       | 437 1021.0 $\pm$ 58.3         | 438 1699.2 $\pm$ 285.4        | 439 210.8 $\pm$ 68.2         | 440 <b>546.4</b> $\pm$ 63.7 | 441 <b>230.9</b> $\pm$ 57.7 | 442 1136.9 $\pm$ 45.0         |

445 continuous torque action. The critic is parameterized by a DNN of the form Eq. (5), and the actor is  
 446 a Gaussian policy whose mean and variance are produced by a DNN with the same architecture. For  
 447 comparison, we employ a linear critic parameterized by a fixed 6-term RBF feature map,  $\hat{V}(\mathbf{s}) =$   
 448  $\omega^\top \phi(\mathbf{s})$  with  $\omega \in \mathbb{R}^6$ . The feature vector consists of Gaussian RBFs defined on  $(\cos \theta, \sin \theta, \dot{\theta})$ :  
 449  $\phi_i(\mathbf{s}) = \exp\left(-\frac{\|\mathbf{s} - \mathbf{c}_i\|_2^2}{2\sigma^2}\right)$ ,  $i = 1, \dots, 6$ , where the centers  $\{\mathbf{c}_i \in \mathbb{R}^3\}$  are placed uniformly and  $\sigma$   
 450 is determined by a standard width rule (Konidaris et al., 2011). For visualization, the ground-truth  
 451 baseline is computed via time-average reward relative value iteration (RVI) (Bertsekas, 1998). As  
 452 illustrated in Figure 1(a), the neural critic aligns more closely with the ground-truth value.  
 453

## 455 5.2 EMPIRICAL VALIDATION OF THEORETICAL CONVERGENCE RATE.

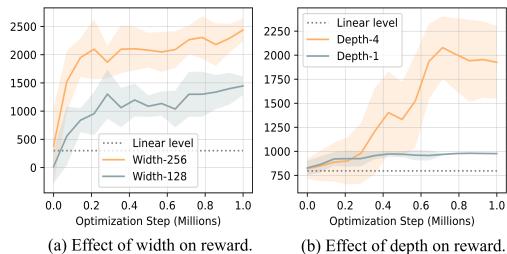
456 In this experiment, we follow the same setting as in Section 5.1. We empirically estimate the  
 457 convergence rate of Algorithm 1 (Eq. (8c)) to examine its consistency with the theoretical rate of  
 458  $\tilde{\mathcal{O}}(T^{-1/2})$ . As shown in Figure 1, after an initial warm-up period of about 250 iterations (recall  
 459 that Theorem 1 applies to  $T \geq 2\tau_T$ ), the curve exhibits a clear linear trend. Fitting a single slope  
 460 to the mean trajectory yields  $-0.51$ , which aligns closely with the theoretical value of  $-0.5$ . This  
 461 agreement provides direct empirical support for our theoretical convergence rate.  
 462

## 463 5.3 ALGORITHM EVALUATION ON MUJOCO BENCHMARKS

464 We further evaluate Algorithm 1 on challenging  
 465 continuous-control benchmarks from Gym Mu-  
 466 JoCo, including *Ant*, *HalfCheetah*, *Hopper*, *Hu-  
 467 manoid*, *Swimmer*, and *Walker2d*. We conduct  
 468 ablations along three axes: (i) linear critic, (ii)  
 469 neural critic with varying depths, and (iii) neu-  
 470 ral critic with varying widths. The linear critic  
 471 is identical to that used in Section 5.1. Table 2  
 472 reports the final average rewards over five seeds,  
 473 while Figure 2 illustrates the learning curves of  
 474 two selected entries from the table. Overall, the  
 475 linear critic underperforms substantially across  
 476 all tasks. These experiments validate the effec-  
 477 tiveness of our considered algorithm on practical  
 478 tasks and also reinforce the importance of analyzing  
 479 realistic neural AC settings.

## 480 6 CONCLUSION AND DISCUSSION

481 In this paper, we provide the first finite-time analysis of single-timescale AC with deep neural net-  
 482 work approximation in continuous state-action spaces under the time-average reward setting. Our  
 483 results surpass those of existing works by effectively addressing continuous state and action spaces,  
 484 utilizing Markovian sampling, and employing deep neural network approximations for both critic  
 485 and actor. We also conduct extensive experiments to validate the convergence guarantees of the  
 486 analyzed algorithm.



487 Figure 2: Reward curves under different capacities:  
 488 *HalfCheetah* (width sweep) and *Ant* (depth  
 489 sweep). Mean  $\pm$  std over 5 seeds; dashed = lin-  
 490 ear baseline.

486 REFERENCES  
487

- 488 Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy  
489 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning  
490 Research*, 22(98):1–76, 2021.
- 491 Dimitri P Bertsekas. A new value iteration method for the average cost dynamic programming  
492 problem. *SIAM journal on control and optimization*, 36(2):742–759, 1998.
- 493 Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference  
494 learning with linear function approximation. In *Conference on learning theory*, pp. 1691–1692.  
495 PMLR, 2018.
- 496 Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-  
497 critic algorithms. *Automatica*, 45(11):2471–2482, 2009.
- 498 Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic algorithm. *The  
499 Journal of Machine Learning Research*, 11:367–410, 2010.
- 500 Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized neural natural  
501 actor-critic algorithm. *arXiv preprint arXiv:2206.00833*, 2022.
- 502 Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic  
503 gradient methods for bilevel problems. *Advances in Neural Information Processing Systems*, 34:  
504 25294–25307, 2021.
- 505 Xuyang Chen and Lin Zhao. Finite-time analysis of single-timescale actor-critic. *Advances in  
506 Neural Information Processing Systems*, 36, 2024.
- 507 Xuyang Chen, Jingliang Duan, Yingbin Liang, and Lin Zhao. Global convergence of two-timescale  
508 actor-critic for solving linear quadratic regulator. In *Proceedings of the AAAI Conference on  
509 Artificial Intelligence*, volume 37, pp. 7087–7095, 2023.
- 510 Ziyi Chen, Yi Zhou, Rong-Rong Chen, and Shaofeng Zou. Sample and communication-efficient  
511 decentralized actor-critic algorithms with finite-time analysis. In *International Conference on  
512 Machine Learning*, pp. 3794–3834. PMLR, 2022.
- 513 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global  
514 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–  
515 1685. PMLR, 2019.
- 516 Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally  
517 optimal policy. *arXiv preprint arXiv:2008.00483*, 2020.
- 518 Mudit Gaur, Amrit Singh Bedi, Di Wang, and Vaneet Aggarwal. Closing the gap: Achieving  
519 global convergence (last iterate) of actor-critic under markovian sampling with neural network  
520 parametrization. *arXiv preprint arXiv:2405.01843*, 2024.
- 521 David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. Anymal parkour: Learning ag-  
522 ile navigation for quadrupedal robots. *Science Robotics*, 9(88):eadi7566, 2024. doi: 10.1126/  
523 scirobotics.adl7566.
- 524 Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm  
525 framework for bilevel optimization: Complexity analysis and application to actor-critic. *SIAM  
526 Journal on Optimization*, 33(1):147–180, 2023.
- 527 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural networks*, 4  
528 (2):251–257, 1991.
- 529 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-  
530 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.
- 531 Sham M Kakade. A natural policy gradient. *Advances in neural information processing systems*,  
532 14, 2001.

- 540 Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and  
 541 Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. *Nature*,  
 542 620(7976):982–987, 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06419-4.
- 543
- 544 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. *Advances in neural information processing*  
 545 *systems*, 12, 1999.
- 546 George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-  
 547 forcement learning using the fourier basis. In *Proceedings of the AAAI conference on artificial*  
 548 *intelligence*, volume 25, pp. 380–385, 2011.
- 549
- 550 Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-  
 551 critic method for reinforcement learning with function approximation. *arXiv preprint*  
 552 *arXiv:1910.08412*, 2019.
- 553 Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-critic  
 554 method for reinforcement learning with function approximation. *Machine Learning*, 112(7):  
 555 2433–2467, 2023.
- 556 Aristotelis Lazaridis, Anestis Fachantidis, and Ioannis Vlahavas. Deep reinforcement learning: A  
 557 state-of-the-art walkthrough. *Journal of Artificial Intelligence Research*, 69:1421–1471, 2020.
- 558
- 559 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,  
 560 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*  
 561 *preprint arXiv:1509.02971*, 2015.
- 562 Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when  
 563 and why the tangent kernel is constant. *Advances in Neural Information Processing Systems*, 33:  
 564 15954–15964, 2020.
- 565
- 566 Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutt-  
 567 ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. *Science Robotics*,  
 568 7(62):eabk2822, 2022. doi: 10.1126/scirobotics.abk2822.
- 569 A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. *Journal of*  
 570 *Applied Probability*, 42(4):1003–1014, 2005.
- 571
- 572 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bel-  
 573 lemmare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level  
 574 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
- 575 Alex Olshevsky and Bahman Gharesifard. A small gain analysis of single timescale actor critic.  
 576 *SIAM Journal on Control and Optimization*, 61(2):980–1007, 2023.
- 577
- 578 Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, and Koushil Sreenath.  
 579 Real-world humanoid locomotion with reinforcement learning. *Science Robotics*, 9:ead19579,  
 580 2024. doi: 10.1126/scirobotics.adi9579.
- 581 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,  
 582 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go  
 583 without human knowledge. *nature*, 550(7676):354–359, 2017.
- 584 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- 585
- 586 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-  
 587 ods for reinforcement learning with function approximation. *Advances in neural information*  
 588 *processing systems*, 12, 1999.
- 589 Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer  
 590 neural networks. *Advances in Neural Information Processing Systems*, 36, 2024.
- 591
- 592 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,  
 593 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard  
 594 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

- 594 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-  
 595 oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster  
 596 level in starcraft ii using multi-agent reinforcement learning. *Nature*, 575(7782):350–354, 2019.  
 597
- 598 Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global  
 599 optimality and rates of convergence. *arXiv preprint arXiv:1909.01150*, 2019.
- 600 Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale  
 601 actor-critic methods. *Advances in Neural Information Processing Systems*, 33:17617–17628,  
 602 2020.
- 603 Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-  
 604 reduced policy gradient. In *Uncertainty in Artificial Intelligence*, pp. 541–551. PMLR, 2020a.
- 605 Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-  
 606 critic algorithms. *Advances in Neural Information Processing Systems*, 33:4358–4369, 2020b.
- 607 Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two time-scale  
 608 (natural) actor-critic algorithms. *arXiv preprint arXiv:2005.03557*, 2020c.
- 609 Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of  
 610 actor-critic: A case for linear quadratic regulator with ergodic cost. *Advances in neural informa-  
 611 tion processing systems*, 32, 2019.
- 612 Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient  
 613 methods to (almost) locally optimal policies. *SIAM Journal on Control and Optimization*, 58(6):  
 614 3586–3612, 2020a.
- 615 Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent two-  
 616 timescale off-policy actor-critic with function approximation. In *International Conference on  
 617 Machine Learning*, pp. 11204–11213. PMLR, 2020b.
- 618 Zhiyao Zhang, Myeung Suk Oh, FNU Hairi, Ziyue Luo, Alvaro Velasquez, and Jia Liu. Finite-time  
 619 global optimality convergence in deep neural actor-critic methods for decentralized multi-agent  
 620 reinforcement learning. *arXiv preprint arXiv:2505.18433*, 2025.
- 621 Mo Zhou and Jianfeng Lu. Single timescale actor-critic method to solve the linear quadratic regula-  
 622 tor with convergence guarantees. *Journal of Machine Learning Research*, 24(222):1–34, 2023.
- 623 Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function  
 624 approximation. *Advances in neural information processing systems*, 32, 2019.
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

# 648 649 650 651 652      **Supplementary Material** 653

## 654 655 656      **Table of Contents** 657

---

|                                                                           |    |
|---------------------------------------------------------------------------|----|
| 656 <b>A Related Work</b>                                                 | 13 |
| 657                                                                       |    |
| 658 <b>B Additional Notations</b>                                         | 14 |
| 659                                                                       |    |
| 660 <b>C Proof Sketch</b>                                                 | 15 |
| 661                                                                       |    |
| 662 <b>D Preliminary Lemmas</b>                                           | 16 |
| 663                                                                       |    |
| 664                                                                       |    |
| 665 <b>E Proof of Main Theorem</b>                                        | 17 |
| 666                                                                       |    |
| 667        E.1 Step 1: Reward error analysis . . . . .                    | 17 |
| 668                                                                       |    |
| 669        E.2 Step 2: Critic error analysis . . . . .                    | 19 |
| 670                                                                       |    |
| 671        E.3 Step 3: Actor error analysis . . . . .                     | 25 |
| 672                                                                       |    |
| 673        E.4 Step 4: Interconnected iteration system analysis . . . . . | 26 |
| 674                                                                       |    |
| 675 <b>F Proof of Preliminary Lemmas</b>                                  | 28 |
| 676                                                                       |    |
| 677 <b>G Proof of Markovian noises</b>                                    | 33 |
| 678                                                                       |    |
| 679 <b>H Declaration</b>                                                  | 39 |

---

## 680 681      **A RELATED WORK**

682  
683      **Actor-Critic methods.** The AC algorithm was initially proposed by Konda & Tsitsiklis (1999).  
684 Subsequently, Kakade (2001) extended it to the natural AC algorithm. The asymptotic convergence  
685 of AC algorithms has been well established under various settings, as demonstrated in works by  
686 Kakade (2001), Bhatnagar et al. (2009), Castro & Meir (2010), and Zhang et al. (2020b). More  
687 recently, many studies have focused on the finite-time convergence of AC methods. Under the  
688 double-loop setting, Kumar et al. (2019) investigated the finite-time local convergence of several AC  
689 variants with linear function approximation. Wang et al. (2019) explored the global convergence of  
690 AC methods with both the actor and the critic parameterized by neural networks with single hidden  
691 layers. Cayci et al. (2022) improved upon the work of Wang et al. (2019) by considering Markovian  
692 sampling and reducing sample complexity. Xu et al. (2020a) analyzed natural AC under Markovian  
693 sampling, while Chen et al. (2022) studied decentralized AC and decentralized natural AC in the  
694 same setting. More recently, Gaur et al. (2024) and Zhang et al. (2025) established global optimality  
695 convergence for double-loop AC methods.

696 Under the two-timescale AC setting, Wu et al. (2020) established the finite-time local convergence to  
697 a stationary point at a sample complexity of  $\tilde{\mathcal{O}}(\epsilon^{-2.5})$  under the undiscounted time-average reward  
698 setting. Xu et al. (2020c) studied both local convergence and global convergence for two-timescale  
699 (natural) AC, with  $\tilde{\mathcal{O}}(\epsilon^{-2.5})$  and  $\tilde{\mathcal{O}}(\epsilon^{-4})$  sample complexity, respectively, under the discounted ac-  
700 cumulated reward. The algorithm collects multiple samples to update the critic. Hong et al. (2023)  
701 proposed a two-timescale stochastic approximation algorithm for bilevel optimization and the algo-  
rithm was subsequently employed in the context of two-timescale AC. Chen et al. (2023) established

702 the global convergence of two-timescale AC methods for solving linear quadratic regulator (LQR),  
 703 where only a single sample is used to update the critic in each iteration. However, none of these  
 704 previous results utilized neural network approximation for the value function (the critic).

705 Under the most challenging single-timescale setting, Fu et al. (2020) considered the least-squares  
 706 temporal difference (LSTD) update for the critic and obtained the optimal policy within the energy-  
 707 based policy class for both linear function approximation and neural network approximation. Zhou  
 708 & Lu (2023) studied single-timescale AC on LQR. In addition, Chen et al. (2021); Olshevsky &  
 709 Gharesifard (2023); Chen & Zhao (2024) considered the single-timescale AC in general MDP cases  
 710 with linear function approximation. Recently, Tian et al. (2024) built upon the results of Olshevsky  
 711 & Gharesifard (2023) and improved to neural network approximation. A comprehensive review and  
 712 comparison of all existing results on single-timescale AC in general MDP settings are presented in  
 713 Table 1.

## 715 B ADDITIONAL NOTATIONS

717 We make use of the following auxiliary Markov chain which was introduced in (Zou et al., 2019) to  
 718 deal with the Markovian noise.

### 719 Auxiliary Markov Chain:

$$721 s_{t-\tau} \xrightarrow{\theta_{t-\tau}} a_{t-\tau} \xrightarrow{\mathcal{P}} s_{t-\tau+1} \xrightarrow{\theta_{t-\tau}} \tilde{a}_{t-\tau+1} \xrightarrow{\mathcal{P}} \tilde{s}_{t-\tau+2} \xrightarrow{\theta_{t-\tau}} \tilde{a}_{t-\tau+2} \cdots \xrightarrow{\mathcal{P}} \tilde{s}_t \xrightarrow{\theta_{t-\tau}} \tilde{a}_t \xrightarrow{\mathcal{P}} \tilde{s}_{t+1}. \quad (9)$$

724 For reference, we also show the original Markov chain.

### 725 Original Markov Chain:

$$727 s_{t-\tau} \xrightarrow{\theta_{t-\tau}} a_{t-\tau} \xrightarrow{\mathcal{P}} s_{t-\tau+1} \xrightarrow{\theta_{t-\tau+1}} \tilde{a}_{t-\tau+1} \xrightarrow{\mathcal{P}} s_{t-\tau+2} \xrightarrow{\theta_{t-\tau+2}} a_{t-\tau+2} \cdots \xrightarrow{\mathcal{P}} s_t \xrightarrow{\theta_t} a_t \xrightarrow{\mathcal{P}} s_{t+1}. \quad (10)$$

730 In the sequel, we denote by  $\tilde{O}_t := (\tilde{s}_t, \tilde{a}_t, \tilde{s}_{t+1})$  the tuple generated from the auxiliary Markov chain  
 731 in Eq. (9) while  $O_t := (s_t, a_t, s_{t+1})$  denotes the tuple generated from the original Markov chain in  
 732 Eq. (10).

733 In our work, we use the term **Markovian sampling** to refer to the setting where all samples are drawn  
 734 from a Markov chain. Concretely, the samples follow

$$736 (s_0, a_0) \xrightarrow{(\mathcal{P}, \pi_{\theta_1})} (s_1, a_1) \xrightarrow{(\mathcal{P}, \pi_{\theta_2})} (s_2, a_2) \cdots \xrightarrow{(\mathcal{P}, \pi_{\theta_t})} (s_t, a_t), \quad (11)$$

738 forming one trajectory  $(s_0, a_0, s_1, a_1, \dots, s_t, a_t)$ .

739 **Remark.** Note that in Table 1 we label the actor sampling in Tian et al. (2024) as not Markovian.  
 740 This arises from the fact that Tian et al. (2024) adopts a sampling scheme that is fundamentally  
 741 different from the Markovian sampling in Eq. (11). For each update at timestep  $t$ , the state-action  
 742 pair  $(\hat{s}_t, \hat{a}_t)$  used in the actor update in Tian et al. (2024) is obtained by sampling a random horizon

$$743 T \sim \text{Geom}(1 - \gamma),$$

745 rolling out a trajectory  $(s_0, a_0, s_1, a_1, \dots, s_T, a_T)$ , and using only the terminal pair  $(\hat{s}_t, \hat{a}_t) :=$   
 746  $(s_T, a_T)$ . Each  $(\hat{s}_t, \hat{a}_t)$  therefore arises from an *independent* rollout, and successive samples do not  
 747 satisfy any Markovian dependency:

$$748 (\hat{s}_t, \hat{a}_t) \not\rightarrow (\hat{s}_{t+1}, \hat{a}_{t+1}).$$

750 Because this sampling is based on independent random-horizon rollouts, no Markovian noise arises  
 751 in this part. In practice, this is also less sample-efficient than single-trajectory Markovian sampling.

752 For this reason, although Tian et al. (2024) refer to their scheme as “Markovian sampling”, we  
 753 view it as fundamentally different from the standard usage of the term and label it as to be “not  
 754 Markovian” in Table 1. Notably, this same sampling mechanism has been used in Zhang et al.  
 755 (2020a), who explicitly refer to it as *random-horizon policy gradient*. Following this terminology,  
 we believe “random-horizon sampling” is a more accurate description for this type of sampling.

We define the following functions, which will benefit to decompose the errors and simplify the presentation.

$$\begin{aligned}
\Delta g(O, \eta, \theta) &:= [J(\theta) - \eta] \nabla \hat{V}(\omega; s), \\
g(O, \omega, \theta) &:= [r(s, a) - J(\theta) + \hat{V}(\omega; s') - \hat{V}(\omega; s)] \nabla \hat{V}(\omega; s), \\
\bar{g}(\omega, \theta) &:= \mathbb{E}_{(s, a, s') \sim (\mu_\theta, \pi_\theta, \mathcal{P})} [(r(s, a) - J(\theta) + \hat{V}(\omega; s') - \hat{V}(\omega; s)) \nabla \hat{V}(\omega; s)], \\
\Delta h(O, \eta, \omega, \theta) &:= (J(\theta) - \eta + \hat{V}(\omega; s') - \hat{V}(\omega; s) - \hat{V}(\omega^*(\theta); s') + \hat{V}(\omega^*(\theta); s)) \nabla \log \pi_\theta(a|s), \\
h(O, \theta) &:= (r(s, a) - J(\theta) + \hat{V}(\omega^*(\theta); s') - \hat{V}(\omega^*(\theta); s)) \nabla \log \pi_\theta(a|s), \\
\Delta h'(O, \theta) &:= ((\hat{V}(\omega^*(\theta); s') - V_\theta(s')) - (\hat{V}(\omega^*(\theta); s) - V_\theta(s))) \nabla \log \pi_\theta(a|s).
\end{aligned} \tag{12}$$

We also define the following functions, which characterize the Markovian noise.

$$\begin{aligned}
\Phi(O, \eta, \theta) &:= (\eta - J(\theta))(r(s, a) - J(\theta)), \\
\Psi(O, \omega, \theta) &:= \langle \omega - \omega_\theta^*, g(O, \omega, \theta) - \bar{g}(\omega, \theta) \rangle, \\
\Xi(O, \omega, \theta) &:= \langle \omega - \omega_\theta^*, (\nabla \omega_\theta^*)^\top (\mathbb{E}_{O'_\theta} [h(O'_\theta, \theta)] - h(O, \theta)) \rangle, \\
\Theta(O, \theta) &:= \langle \nabla J(\theta), \mathbb{E}_{O'_\theta} [h(O'_\theta, \theta)] - h(O, \theta) \rangle,
\end{aligned} \tag{13}$$

where  $O'_\theta$  is a shorthand for an independent sample from stationary distribution  $s \sim \mu_\theta, a \sim \pi_\theta, s' \sim \mathcal{P}$ .

To demonstrate the main ideas of the proof of Theorem 1, we use the notations  $Y_T, Z_T$  and  $G_T$  for the three errors that we seek to bound, namely,

$$\mathcal{E}^{(y)} := \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2, \quad \mathcal{E}^{(z)} := \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2, \quad \mathcal{E}^{(\nabla)} := \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\theta_t)\|^2. \tag{14}$$

Here  $\mathcal{E}^{(y)}$ ,  $\mathcal{E}^{(z)}$ , and  $\mathcal{E}^{(\nabla)}$  represent the reward error, critic error, and actor error (policy gradient norm), respectively. Our proof of Theorem 1 primarily involves analyzing and bounding these three errors relative to one another. The difficulty of this work lies in the continuous state and action spaces and the neural network approximation.

To ease the presentation, we define  $u := \max\{u, u_\omega, u_v, u_\pi\}$  as a uniform upper bound for  $\eta, \mathbf{z}, \hat{V}$  and  $\nabla \log \pi_\theta(a|s)$ , where  $u_v$  is defined in Lemma 1. Then we have  $\|\delta \nabla \log \pi_\theta\| \leq 4u^2$ . The norm of  $\omega$  is defined by  $\|\omega\| =: (\sum_{k=1}^K \|\mathbf{W}^{(k)}\|_F^2)^{1/2}$ , where  $\|\cdot\|_F$  is the Frobenius norm of a matrix.

## C PROOF SKETCH

In this section, we outline the error-term analysis of Theorem 1. After bounding each component, the convergence follows by solving the interconnected iteration inequalities (E.4). The key challenges and new techniques developed are correspondingly *emphasized*.

**Reward error analysis.** using the reward estimator update rule (Line 7 of Algorithm 1), we decompose the reward error into:

$$\begin{aligned}
y_{t+1}^2 &\leq (1 - 2\gamma)y_t^2 + 2\gamma y_t(r_t - J(\theta_t)) + 2y_t(J(\theta_t) - J(\theta_{t+1})) \\
&\quad + 2(J(\theta_t) - J(\theta_{t+1}))^2 + 2\gamma^2(r_t - \eta_t)^2.
\end{aligned} \tag{15}$$

The second term on the right-hand side of Eq. (15) corresponds to a bias induced by *Markovian sampling in MDP with continuous state-action spaces under neural network function approximation*, which we addressed in Lemma 7. The third term captures the variation of the moving actor performance targets  $J(\theta_t)$  tracked by the reward error. Leveraging the smoothness of  $J(\theta)$  (see Lemma 6) and the *boundedness of  $\hat{V}$*  (see Lemma 1), we derive an implicit upper bound for this term expressed as a function of  $|y_t|$  and  $\nabla J(\theta_t)$ . The fourth term represents the difference between the moving actor target, which can be controlled due to its Lipschitz continuity shown in Lemma 5. The last term in Eq. (15) reflects the variance in reward estimation, which is bounded by  $\mathcal{O}(\gamma)$ .

810    **Critic error analysis.** using the critic update rule (Line 8 of Algorithm 1), we decompose the  
 811    squared error by:

$$\begin{aligned} 812 \quad \mathbb{E}\|\mathbf{z}_{t+1}\|^2 &\leq \mathbb{E}\|\mathbf{z}_t\|^2 + 2\beta\mathbb{E}\langle\mathbf{z}_t, \bar{g}(\boldsymbol{\omega}_t, \boldsymbol{\theta}_t)\rangle + 2\beta\mathbb{E}\Psi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) + 2\beta\mathbb{E}\langle\mathbf{z}_t, \Delta g(O_t, \eta_t, \boldsymbol{\theta}_t)\rangle \\ 813 \quad &\quad + 2\mathbb{E}\langle\mathbf{z}_t, \boldsymbol{\omega}_t^* - \boldsymbol{\omega}_{t+1}^*\rangle + 2\mathbb{E}\|\boldsymbol{\omega}_t^* - \boldsymbol{\omega}_{t+1}^*\|^2 + 2\mathbb{E}\|\beta(g(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) + \Delta g(O_t, \eta_t, \boldsymbol{\theta}_t))\|^2. \\ 814 \end{aligned} \quad (16)$$

815    The definitions of  $g$ ,  $\bar{g}$ ,  $\Delta g$ ,  $O_t$ , and  $\Psi$  can be found in Appendix B. First of all, the second term  
 816    on the right-hand side of Eq. (16) is the inner product between the critic error  $\mathbf{z}_t$  and the critic's  
 817    mean-path update  $\bar{g}(\boldsymbol{\omega}_t, \boldsymbol{\theta}_t)$ , which serves as the key to the convergence. Our analysis for this term  
 818    is *distinct from all previous results* since considering continuous spaces and deep neural networks  
 819    substantially complicate the bounding process. we employ the *Bellman equation* to manage error  
 820    propagation and control the error by leveraging the *approximation capability of the neural net-*  
 821    *work* (Eq. (7)), the *regularity of neural network* (Lemma 1), and *sufficient policy exploration* (see  
 822    Eq. (27)). It provides an explicit characterization of how sufficient exploration can help the conver-  
 823    gence of learning. The third term is a Markovian noise, which we bounded in Lemma 8. The fourth  
 824    term is caused by inaccurate reward and critic estimations, which can be bounded by the norm of  $y_t$   
 825    and  $\mathbf{z}_t$  after applying *the Lipschitzness of  $\hat{V}$*  as shown in Lemma 1. The fifth term tracks both the  
 826    critic error  $\mathbf{z}_t$  and the difference between the drifting critic targets  $\boldsymbol{\omega}_t^*$ . We establish an implicit upper  
 827    bound for this term as a function of  $y_t$  and  $\mathbf{z}_t$ . The sixth term represents the difference between the  
 828    moving critic target, which can be controlled due to its Lipschitz continuity stated in Assumption 3.  
 829    Finally, the last term reflects the variances of various estimations, which is bounded by  $\mathcal{O}(\beta)$ .

830    **Actor error analysis.** using the actor update rule (Line 9 of Algorithm 1) and the smoothness  
 831    property of  $J(\boldsymbol{\theta})$  (see Lemma 6), we derive

$$\begin{aligned} 832 \quad \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2 &\leq \frac{1}{\alpha}(\mathbb{E}[J(\boldsymbol{\theta}_{t+1}) - J(\boldsymbol{\theta}_t)]) - \mathbb{E}\langle\nabla J(\boldsymbol{\theta}_t), \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t)\rangle + \mathbb{E}[\Theta(O_t, \boldsymbol{\theta}_t)] \\ 833 \quad &\quad - \mathbb{E}\langle\nabla J(\boldsymbol{\theta}_t), \mathbb{E}_{O'_t}[\Delta h'(O'_t, \boldsymbol{\theta}_t)]\rangle + \frac{h_j}{2}\alpha\mathbb{E}\|\delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t | s_t)\|^2. \\ 834 \end{aligned} \quad (17)$$

835    where the definitions of  $\Delta h$ ,  $\Delta h'$ ,  $\Theta$  and  $O'_t$  can be found in Appendix B. The first term on the right-  
 836    hand side of Eq. (17) compares the actor's performances between consecutive updates, which can  
 837    be bounded after summation. The second term is an error introduced by the inaccurate estimations  
 838    of both the time-average reward and the critic. After employing the *Lipschitzness of  $\hat{V}$* , we control  
 839    this term by providing an implicit bound depending on  $y_t$ ,  $\mathbf{z}_t$ , and  $\nabla J(\boldsymbol{\theta}_t)$ . The third term is a noise  
 840    term introduced by Markovian sampling, which we handled in Lemma 10. The fourth term comes  
 841    from the linear function approximation error. The final term represents the variance of the stochastic  
 842    gradient update, which is controlled by  $\mathcal{O}(\alpha)$  due to the *boundedness of  $\hat{V}$* , a result we specifically  
 843    derived in Lemma 1.

## 844    D PRELIMINARY LEMMAS

845    **Lemma 1.** *There exists scalars  $u_v$ ,  $l_v$ , and  $h_v$  such that for any  $s \in \mathcal{S}$  and  $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2 \in \mathcal{X}_\Omega$ ,*

$$\begin{aligned} 846 \quad \|\hat{V}(\boldsymbol{\omega}; s)\| &\leq u_v, \\ 847 \quad \|\hat{V}(\boldsymbol{\omega}_1; s) - \hat{V}(\boldsymbol{\omega}_2; s)\| &\leq l_v\|\boldsymbol{\omega}_1 - \boldsymbol{\omega}_2\|, \\ 848 \quad \|\nabla \hat{V}(\boldsymbol{\omega}_1; s) - \nabla \hat{V}(\boldsymbol{\omega}_2; s)\| &\leq h_v\|\boldsymbol{\omega}_1 - \boldsymbol{\omega}_2\|, \end{aligned}$$

849    where  $u_v = \mathcal{O}(1)$ ,  $l_v = \mathcal{O}(1)$  and  $h_v = \tilde{\mathcal{O}}(\frac{1}{\sqrt{m}})$  with respect to width  $m$ .

850    **Lemma 2.** *There exists a positive constant  $l_\pi$  such that for any  $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \in \mathcal{X}_\Theta$ , it holds that*

$$d_{TV}(\pi_{\boldsymbol{\theta}_1}(\cdot | s), \pi_{\boldsymbol{\theta}_2}(\cdot | s)) \leq l_\pi\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|. \quad (18)$$

851    **Lemma 3** (Distance between stationary distributions). *For any  $\boldsymbol{\theta}_1$  and  $\boldsymbol{\theta}_2$ , it holds that*

$$\begin{aligned} 852 \quad d_{TV}(\mu_{\boldsymbol{\theta}_1}, \mu_{\boldsymbol{\theta}_2}) &\leq l_\pi(\lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho})\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|, \\ 853 \quad d_{TV}(\mu_{\boldsymbol{\theta}_1} \otimes \pi_{\boldsymbol{\theta}_1}, \mu_{\boldsymbol{\theta}_2} \otimes \pi_{\boldsymbol{\theta}_2}) &\leq l_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho})\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|, \\ 854 \quad d_{TV}(\mu_{\boldsymbol{\theta}_1} \otimes \pi_{\boldsymbol{\theta}_1} \otimes \mathcal{P}, \mu_{\boldsymbol{\theta}_2} \otimes \pi_{\boldsymbol{\theta}_2} \otimes \mathcal{P}) &\leq l_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho})\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|. \end{aligned}$$

864    **Lemma 4** (Distance between distributions induced by the original and auxiliary chains). *Given time*  
 865 *indexes  $t$  and  $\tau$  such that  $t \geq \tau > 0$ , consider the auxiliary Markov chain in Eq. (9). Conditioning*  
 866 *on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ , we have*

$$868 \quad d_{TV}(\mathbb{P}(s_{t+1} \in \cdot), \mathbb{P}(\tilde{s}_{t+1} \in \cdot)) \leq d_{TV}(\mathbb{P}(O_t \in \cdot), \mathbb{P}(\tilde{O}_t \in \cdot)),$$

$$869 \quad d_{TV}(\mathbb{P}(O_t \in \cdot), \mathbb{P}(\tilde{O}_t \in \cdot)) = d_{TV}(\mathbb{P}((s_t, a_t) \in \cdot), \mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot)),$$

$$871 \quad d_{TV}(\mathbb{P}((s_t, a_t) \in \cdot), \mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot)) \leq d_{TV}(\mathbb{P}(s_t \in \cdot), \mathbb{P}(\tilde{s}_t \in \cdot)) + \frac{1}{2}l_\pi \mathbb{E}[\|\theta_t - \theta_{t-\tau}\|].$$

872    **Lemma 5** (Wu et al., 2020)). *For any  $\theta_1, \theta_2$ , we have*

$$874 \quad |J(\theta_1) - J(\theta_2)| \leq l_j \|\theta_1 - \theta_2\|,$$

876    *where*

$$877 \quad l_j = 2ul_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho}). \quad (19)$$

880    **Lemma 6** (Zhang et al., 2020a)). *For the performance function  $J(\theta)$ , there exists a constant  $h_j > 0$*   
 881 *such that for all  $\theta_1, \theta_2 \in \mathbb{R}^d$ , it holds that*

$$882 \quad \|\nabla J(\theta_1) - \nabla J(\theta_2)\| \leq h_j \|\theta_1 - \theta_2\|, \quad (20)$$

884    which further implies

$$886 \quad J(\theta_2) \geq J(\theta_1) + \langle \nabla J(\theta_1), \theta_2 - \theta_1 \rangle - \frac{h_j}{2} \|\theta_1 - \theta_2\|^2, \quad (21)$$

$$888 \quad J(\theta_2) \leq J(\theta_1) + \langle \nabla J(\theta_1), \theta_2 - \theta_1 \rangle + \frac{h_j}{2} \|\theta_1 - \theta_2\|^2. \quad (22)$$

## 891    E PROOF OF MAIN THEOREM

893    In this section, we aim to show the proof of Theorem 1.

894    We decompose the whole proof into four steps.

### 896    E.1 STEP 1: REWARD ERROR ANALYSIS

898    In this subsection, we will establish an implicit bound for estimator.

899    **Lemma 7** (Markovian noise). *From any  $t \geq \tau > 0$ , we have*

$$901 \quad \mathbb{E}[\Phi(O_t, \eta_t, \theta_t)] \leq 16u^2\tau\alpha l_j + 4u^2\tau\gamma + 4u^2\tau(\tau+1)\alpha l_\pi + 4u^2\kappa\rho^{\tau-1}.$$

903    **Theorem 2.** *Choose  $\alpha = \frac{c}{\sqrt{T}}$ ,  $\beta = \gamma = \frac{1}{\sqrt{T}}$ , we have*

$$905 \quad \mathcal{E}^{(y)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + 4cu\sqrt{\mathcal{E}^{(y)}\mathcal{E}^{(\nabla)}}. \quad (23)$$

908    *Proof.* From the update rule of reward estimator in Line 7 of Algorithm 1, we have

$$909 \quad \eta_{t+1} - J(\theta_{t+1}) = \eta_t - J(\theta_t) + J(\theta_t) - J(\theta_{t+1}) + \gamma(r_t - \eta_t),$$

911    which implies

$$912 \quad \begin{aligned} y_{t+1}^2 &= (y_t + J(\theta_t) - J(\theta_{t+1}) + \gamma(r_t - \eta_t))^2 \\ 913 &\leq y_t^2 + 2y_t(J(\theta_t) - J(\theta_{t+1})) + 2\gamma y_t(r_t - \eta_t) \\ 914 &\quad + 2(J(\theta_t) - J(\theta_{t+1}))^2 + 2\gamma^2(r_t - \eta_t)^2 \\ 915 &= (1 - 2\gamma)y_t^2 + 2\gamma y_t(r_t - J(\theta_t)) + 2y_t(J(\theta_t) - J(\theta_{t+1})) \\ 916 &\quad + 2(J(\theta_t) - J(\theta_{t+1}))^2 + 2\gamma^2(r_t - \eta_t)^2. \end{aligned} \quad (24)$$

918 Taking expectation up to  $s_{t+1}$  (the whole trajectory), rearranging and summing from  $\tau_T$  to  $T-1$ ,  
 919 we have

$$\begin{aligned}
 920 \sum_{t=\tau_T}^{T-1} \mathbb{E}[y_t^2] &\leq \underbrace{\sum_{t=\tau_T}^{T-1} \frac{1}{2\gamma} \mathbb{E}(y_t^2 - y_{t+1}^2)}_{I_1} + \underbrace{\sum_{t=\tau_T}^{T-1} \mathbb{E}[y_t(r_t - J(\boldsymbol{\theta}_t))] + \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} \mathbb{E}[y_t(J(\boldsymbol{\theta}_t) - J(\boldsymbol{\theta}_{t+1}))]}_{I_3} \\
 921 &+ \underbrace{\sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} \mathbb{E}[(J(\boldsymbol{\theta}_t) - J(\boldsymbol{\theta}_{t+1}))^2]}_{I_4} + \underbrace{\sum_{t=\tau_T}^{T-1} \gamma \mathbb{E}[(r_t - \eta_t)^2]}_{I_5}.
 922 \\
 923 \\
 924 \\
 925 \\
 926 \\
 927 \\
 928
 \end{aligned}$$

929 For term  $I_1$ , by direct computation, we have

$$\begin{aligned}
 930 I_1 &= \sum_{t=\tau_T}^{T-1} \frac{1}{2\gamma} \mathbb{E}(y_t^2 - y_{t+1}^2) \\
 931 &\leq \frac{2u^2}{\gamma} \\
 932 &= 2u^2\sqrt{T}.
 933 \\
 934 \\
 935
 \end{aligned}$$

936 For term  $I_2$ , from Lemma 7, we have

$$937 \mathbb{E}[y_t(r_t - J(\boldsymbol{\theta}_t))] \leq 16u^2\tau\alpha l_j + 4u^2\tau\gamma + 4u^2\tau(\tau+1)\alpha l_\pi + 4u^2\kappa\rho^{\tau-1}. \\ 938$$

939 Choose  $\tau = \tau_T$ , we have

$$\begin{aligned}
 940 I_2 &= \sum_{t=\tau_T}^{T-1} \mathbb{E}[y_t(r_t - J(\boldsymbol{\theta}_t))] \\
 941 &\leq (16u^2l_j\tau_T + 4u^2l_\pi\tau_T(\tau_T+1)) \sum_{t=\tau_T}^{T-1} \alpha \\
 942 &+ 4u^2\tau_T \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} + 4u^2 \sum_{t=\tau_T}^{T-1} \frac{1}{\sqrt{T}} \\
 943 &= (16cu^2l_j\tau_T + 4cu^2l_\pi\tau_T(\tau_T+1) + 4u^2\tau_T + 4u^2) \frac{T - \tau_T}{\sqrt{T}}. \\
 944 \\
 945 \\
 946 \\
 947 \\
 948 \\
 949 \\
 950
 \end{aligned}$$

951 For  $I_3$ , if  $y_t > 0$ , from Eq. (21), we have

$$\begin{aligned}
 952 y_t(J(\boldsymbol{\theta}_t) - J(\boldsymbol{\theta}_{t+1})) &\leq y_t\left(\frac{h_j}{2}\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 + \langle \nabla J(\boldsymbol{\theta}_t), \boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1} \rangle\right) \\
 953 &\leq uh_j\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 + |y_t|\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|\|\nabla J(\boldsymbol{\theta}_t)\|.
 954 \\
 955
 \end{aligned}$$

956 If  $y_t \leq 0$ , from Eq. (22), we have

$$\begin{aligned}
 957 y_t(J(\boldsymbol{\theta}_t) - J(\boldsymbol{\theta}_{t+1})) &\leq y_t\left(-\frac{h_j}{2}\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 + \langle \nabla J(\boldsymbol{\theta}_t), \boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1} \rangle\right) \\
 958 &\leq uh_j\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 + |y_t|\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|\|\nabla J(\boldsymbol{\theta}_t)\|.
 959
 \end{aligned}$$

960 Overall, we get

$$\begin{aligned}
 961 I_3 &= \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} \mathbb{E}[y_t(J(\boldsymbol{\theta}_t) - J(\boldsymbol{\theta}_{t+1}))] \\
 962 &\leq \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} \mathbb{E}[uh_j\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 + |y_t|\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|\|\nabla J(\boldsymbol{\theta}_t)\|] \\
 963 &\leq \sum_{t=\tau_T}^{T-1} \mathbb{E}[16cu^3h_j\alpha + 16cu^2|y_t|\|\nabla J(\boldsymbol{\theta}_t)\|] \\
 964 &\leq 16c^2u^3h_j \frac{T - \tau_T}{\sqrt{T}} + 16cu^2 \left(\sum_{t=\tau_T}^{T-1} \mathbb{E}y_t^2\right)^{\frac{1}{2}} \left(\sum_{t=\tau_T}^{T-1} \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2\right)^{\frac{1}{2}}.
 965 \\
 966 \\
 967 \\
 968 \\
 969 \\
 970 \\
 971
 \end{aligned}$$

972 For term  $I_4$ , we have  
 973

$$\begin{aligned}
 974 \quad I_4 &= \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} \mathbb{E}[(J(\boldsymbol{\theta}_t) - J(\boldsymbol{\theta}_{t+1}))^2] \\
 975 &\leq \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} l_j^2 \mathbb{E}\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 \\
 976 &\leq \sum_{t=\tau_T}^{T-1} \frac{1}{\gamma} 16l_j^2 u^2 \alpha^2 \\
 977 &= 16c^2 u^2 l_j^2 \frac{T - \tau_T}{\sqrt{T}}.
 978 \\
 979 \\
 980 \\
 981 \\
 982 \\
 983 \\
 984
 \end{aligned}$$

985 For term  $I_5$ , we have  
 986

$$\begin{aligned}
 987 \quad I_5 &= \sum_{t=\tau_T}^{T-1} \gamma \mathbb{E}[(r_t - J(\boldsymbol{\theta}_t))^2] \\
 988 &\leq \sum_{t=\tau_T}^{T-1} 4u^2 \gamma \\
 989 &= 4u^2 \frac{T - \tau_T}{\sqrt{T}}.
 990 \\
 991 \\
 992 \\
 993 \\
 994
 \end{aligned}$$

995 Therefore, we get  
 996

$$\begin{aligned}
 997 \quad \sum_{t=\tau_T}^{T-1} \mathbb{E}[y_t^2] &\leq I_1 + I_2 + I_3 + I_4 + I_5 \\
 998 &\leq (16cu^2 l_j \tau_T + 4cu^2 l_\pi \tau_T (\tau_T + 1) \\
 999 &\quad + 4u^2 (\tau_T + 2) + 16c^2 u^2 (uh_j + l_j^2)) \frac{T - \tau_T}{\sqrt{T}} \\
 1000 &\quad + 2u^2 \sqrt{T} + 4cu \left( \sum_{t=\tau_T}^{T-1} \mathbb{E}y_t^2 \right)^{\frac{1}{2}} \left( \sum_{t=\tau_T}^{T-1} \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2 \right)^{\frac{1}{2}}.
 1001 \\
 1002 \\
 1003 \\
 1004 \\
 1005
 \end{aligned}$$

1006 Since  $\tau_T = \mathcal{O}(\log T)$ , we have  $\frac{\sqrt{T}}{T - \tau_T} \leq \frac{2}{\sqrt{T}}$  for large  $T$ . Then we get  
 1007

$$\begin{aligned}
 1008 \quad \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}[y_t^2] &\leq (16cu^2 l_j \tau_T + 4cu^2 l_\pi \tau_T (\tau_T + 1) \\
 1009 &\quad + 4u^2 (\tau_T + 3) + 16c^2 u^2 (uh_j + l_j^2)) \frac{1}{\sqrt{T}} \\
 1010 &\quad + 4cu \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}y_t^2 \right)^{\frac{1}{2}} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2 \right)^{\frac{1}{2}} \\
 1011 &= \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + 4cu \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}y_t^2 \right)^{\frac{1}{2}} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2 \right)^{\frac{1}{2}}.
 1012 \\
 1013 \\
 1014 \\
 1015 \\
 1016 \\
 1017 \\
 1018
 \end{aligned}$$

1019 Thus we finish the proof. □  
 1020

## 1021 E.2 STEP 2: CRITIC ERROR ANALYSIS

1022 In this subsection, we will establish an implicit upper bound for critic.  
 1023

1024 **Lemma 8** (Markovian noise). *For any  $t \geq \tau > 0$ , we have*

$$1025 \quad \mathbb{E}[\Psi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t)] \leq 4c_1 u^2 \tau \alpha + 4c_2 u^2 l_v \tau \beta + 16u^4 l_v l_\pi \tau (\tau + 1) \alpha + 8u^2 l_v \kappa \rho^{\tau-1},$$

1026 where

$$1028 \quad c_1 = 4u^2l_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho}) + 2ul_jl_v + 4ul_\omega l_v, \\ 1029 \quad c_2 = 2u(8uh_v + 4l_v^2 + 2l_v).$$

1031 **Lemma 9** (Markovian noise). *For any  $t \geq \tau > 0$ , we have*

$$1032 \quad \mathbb{E}[\Xi(O_t, \omega_t, \theta_t)] \leq 4c_3u^2\tau\alpha + 4u^3l_\omega\tau\beta + 8u^5l_\omega l_\pi\tau(\tau+1)\alpha + 8u^3l_\omega\kappa\rho^{\tau-1}.$$

1034 where  $c_3 := 8u^2l_\omega^2 + 8u^3h_\omega + 6ul_\omega(2uh_\pi + ul_j + ul_vl_\omega)$ .

1035 **Theorem 3.** *Choose  $\alpha = \frac{c}{\sqrt{T}}$ ,  $\beta = \gamma = \frac{1}{\sqrt{T}}$ , we have*

$$1037 \quad \mathcal{E}^{(z)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \frac{2u}{\lambda}\sqrt{\mathcal{E}^{(y)}\mathcal{E}^{(z)}} + \frac{2cl_\omega}{\lambda}\sqrt{\mathcal{E}^{(z)}(2\mathcal{E}^{(y)} + 8l_v^2\mathcal{E}^{(z)})} + \frac{2cl_\omega}{\lambda}\sqrt{\mathcal{E}^{(z)}\mathcal{E}^{(\nabla)}} + \mathcal{O}(\epsilon_{\text{app}}). \\ 1038 \quad (25)$$

1041 *Proof.* From the update rule of critic in Line 8 of Algorithm 1, we have

$$1042 \quad \|\omega_{t+1} - \omega_{t+1}^*\| = \|proj_{\mathcal{B}_{\omega_0}}(\omega_t + \beta\delta_t\nabla\hat{V}(\omega_t; s_t)) - \omega_{t+1}^*\| \\ 1043 \quad = \|proj_{\mathcal{B}_{\omega_0}}(\omega_t + \beta\delta_t\nabla\hat{V}(\omega_t; s_t)) - proj_{\mathcal{B}_{\omega_0}}(\omega_{t+1}^*)\| \\ 1044 \quad \leq \|\omega_t + \beta\delta_t\nabla\hat{V}(\omega_t; s_t) - \omega_{t+1}^*\| \\ 1045 \quad = \|\omega_t - \omega_t^* + \omega_t^* - \omega_{t+1}^* + \beta\delta_t\nabla\hat{V}(\omega_t; s_t)\|$$

1046 Therefore, we have

$$1050 \quad \|z_{t+1}\|^2 = \|z_t + \beta(g(O_t, \omega_t, \theta_t) + \Delta g(O_t, \eta_t, \theta_t)) + \omega_t^* - \omega_{t+1}^*\|^2 \\ 1051 \quad = \|z_t\|^2 + 2\beta\langle z_t, g(O_t, \omega_t, \theta_t) \rangle + 2\beta\langle z_t, \Delta g(O_t, \eta_t, \theta_t) \rangle \\ 1052 \quad + 2\langle z_t, \omega_t^* - \omega_{t+1}^* \rangle + \|\beta(g(O_t, \omega_t, \theta_t) + \Delta g(O_t, \eta_t, \theta_t)) + \omega_t^* - \omega_{t+1}^*\|^2 \\ 1053 \quad = \|z_t\|^2 + 2\beta\langle z_t, \bar{g}(\omega_t, \theta_t) \rangle + 2\beta\Psi(O_t, \omega_t, \theta_t) + 2\beta\langle z_t, \Delta g(O_t, \eta_t, \theta_t) \rangle \\ 1054 \quad + 2\langle z_t, \omega_t^* - \omega_{t+1}^* \rangle + \|\beta(g(O_t, \omega_t, \theta_t) + \Delta g(O_t, \eta_t, \theta_t)) + \omega_t^* - \omega_{t+1}^*\|^2 \\ 1055 \quad \leq \|z_t\|^2 + 2\beta\langle z_t, \bar{g}(\omega_t, \theta_t) \rangle + 2\beta\Psi(O_t, \omega_t, \theta_t) + 2\beta\langle z_t, \Delta g(O_t, \eta_t, \theta_t) \rangle \\ 1056 \quad + 2\langle z_t, \omega_t^* - \omega_{t+1}^* \rangle + 2\|\omega_t^* - \omega_{t+1}^*\|^2 + 2\|\beta(g(O_t, \omega_t, \theta_t) + \Delta g(O_t, \eta_t, \theta_t))\|^2.$$

1059 Taking expectation up to  $s_{t+1}$ , we have

$$1060 \quad \mathbb{E}\|z_{t+1}\|^2 \leq \mathbb{E}\|z_t\|^2 + 2\beta\underbrace{\mathbb{E}\langle z_t, \bar{g}(\omega_t, \theta_t) \rangle}_{I_1} + 2\beta\underbrace{\mathbb{E}\Psi(O_t, \omega_t, \theta_t)}_{I_2} + 2\beta\underbrace{\mathbb{E}\langle z_t, \Delta g(O_t, \eta_t, \theta_t) \rangle}_{I_3} \\ 1061 \quad + 2\underbrace{\mathbb{E}\langle z_t, \omega_t^* - \omega_{t+1}^* \rangle}_{I_4} + 2\underbrace{\mathbb{E}\|\omega_t^* - \omega_{t+1}^*\|^2}_{I_5} + 2\underbrace{\mathbb{E}\|\beta(g(O_t, \omega_t, \theta_t) + \Delta g(O_t, \eta_t, \theta_t))\|^2}_{I_6}. \\ 1062 \quad (26)$$

1066 For term  $I_1$ , we first analyse the mean-path update  $\bar{g}(\omega_t, \theta_t)$ . From the definition in Eq. (12), we  
1067 have

$$1068 \quad \bar{g}(\omega_t, \theta_t) := \mathbb{E}_{s_t, a_t, s_{t+1}}[(r(s_t, a_t) - J(\theta_t) + \hat{V}(\omega_t; s_{t+1}) - \hat{V}(\omega_t; s_t))\nabla\hat{V}(\omega_t; s_t)] \\ 1069 \quad \stackrel{(1)}{=} \mathbb{E}_{s_t, a_t, s_{t+1}}[(V(s_t) - V(s_{t+1}) + \hat{V}(\omega_t; s_{t+1}) - \hat{V}(\omega_t; s_t))\nabla\hat{V}(\omega_t; s_t)] \\ 1070 \quad = \mathbb{E}_{s_t}[(V(s_t) - \hat{V}(\omega_t, s_t) - \mathbb{E}_{s_{t+1}, a_t}[V(s_{t+1}) - \hat{V}(\omega_t, s_{t+1})|s_t])\nabla\hat{V}(\omega_t; s_t)]$$

1073 where (1) comes from the Bellman equation. For  $\mathbb{E}_{s_{t+1}, a_t}[V(s_{t+1}) - \hat{V}(\omega_t, s_{t+1})|s_t]$ , it can be  
1074 shown that

$$1075 \quad \mathbb{E}_{s_{t+1}, a_t}[V(s_{t+1}) - \hat{V}(\omega_t, s_{t+1})|s_t] \\ 1076 \quad = \int_{\mathcal{S}} \int_{\mathcal{A}} \pi_{\theta_t}(a_t|s_t) \mathcal{P}(s_{t+1}|s_t, a_t) (V(s_{t+1}) - \hat{V}(\omega_t, s_{t+1})) da_t ds_{t+1} \\ 1077 \quad \stackrel{(1)}{=} P_{\theta}(V(s) - \hat{V}(\omega, s)),$$

1080 where (1) follows from the definition of  $P_{\theta}$  in Eq. (2).  
1081

1082 Then for  $\bar{g}(\omega_t, \theta_t)$ , it follows that  
1083

$$\bar{g}(\omega_t, \theta_t) = \mathbb{E}_{s_t}[(I - P_{\theta_t})(V(s_t) - \hat{V}(\omega_t, s_t))\nabla\hat{V}(\omega_t; s_t)],$$

1085 where  $I$  is the identity operator. Therefore, we have  
1086

$$\begin{aligned} \langle z_t, \bar{g}(\omega_t, \theta_t) \rangle &= \mathbb{E}\langle z_t, (I - P_{\theta_t})(V(s_t) - \hat{V}(\omega_t, s_t))\nabla\hat{V}(\omega_t; s_t) \rangle \\ &= \mathbb{E}\langle z_t, (I - P_{\theta_t})(V(s_t) - \hat{V}(\omega_t^*; s_t) + \hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t; s_t))\nabla\hat{V}(\omega_t; s_t) \rangle \\ &= \mathbb{E}\langle z_t, (I - P_{\theta_t})(V(s_t) - \hat{V}(\omega_t^*; s_t))\nabla\hat{V}(\omega_t; s_t) \rangle \\ &\quad + \mathbb{E}\langle z_t, (I - P_{\theta_t})(\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t; s_t))\nabla\hat{V}(\omega_t; s_t) \rangle \\ &= 2ul_v\epsilon_{\text{app}} + \mathbb{E}[(z_t^\top \nabla\hat{V}(\omega_t; s_t)(I - P_{\theta_t})(\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t; s_t)))] \\ &= \underbrace{\mathbb{E}[(z_t^\top \nabla\hat{V}(\omega_t; s_t) + (\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t, s_t)))(I - P_{\theta_t})(\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t; s_t))]}_{J_1} \\ &\quad - \underbrace{\mathbb{E}[(\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t, s_t))(I - P_{\theta_t})(\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t; s_t))]}_{J_2} + 2ul_v\epsilon_{\text{app}}. \end{aligned} \tag{27}$$

1099 For term  $J_1$ , from mean-value theorem, we get  
1100

$$\begin{aligned} J_1 &= \mathbb{E}[z_t^\top (\nabla\hat{V}(\omega_t; s_t) - \nabla\hat{V}(\omega_{\text{mid}}; s_t))(I - P_{\theta_t})(\hat{V}(\omega_t^*; s_t) - \hat{V}(\omega_t; s_t))] \\ &\leq 4uh_v\|z_t\|^2, \end{aligned}$$

1104 where  $\omega_{\text{mid}} = \mu_1\omega_t + (1 - \mu_1)\omega_t^*$  with  $\mu_1 \in [0, 1]$  and the inequality follows from Lemma 1.  
1105

1106 For term  $J_2$ , it can be shown that  
1107

$$\begin{aligned} J_2 &= -\langle \hat{V}(\omega_t^*) - \hat{V}(\omega_t), D_{\theta}(I - P_{\theta_t})(\hat{V}(\omega_t^*) - \hat{V}(\omega_t)) \rangle \\ &\stackrel{(1)}{\leq} -\lambda_2\|(\hat{V}(\omega_t^*) - \hat{V}(\omega_t))\|^2 \\ &\stackrel{(2)}{\leq} -\lambda_1^2\lambda_2\|z_t\|^2 \\ &\stackrel{(3)}{=} -\lambda\|z_t\|^2, \end{aligned}$$

1114 where (1) comes from Assumption 4, (2) is due to Assumption 5, (3) holds since we define  
1115

$$\lambda := \lambda_1^2\lambda_2.$$

1117 Overall, we obtain  
1118

$$I_1 \leq 4uh_v\mathbb{E}\|z_t\|^2 - \lambda\mathbb{E}\|z_t\|^2 + 2ul_v\epsilon_{\text{app}}. \tag{28}$$

1120 From Lemma 1, we know that  $h_v = \tilde{\mathcal{O}}(1/\sqrt{m})$ . Therefore, choosing  $m$  as a large constant such  
1121 that  
1122

$$4uh_v \leq \frac{\lambda}{2}, \tag{29}$$

1125 it follows that  
1126

$$I_1 \leq -\frac{\lambda}{2}\mathbb{E}\|z_t\|^2 + 2ul_v\epsilon_{\text{app}}.$$

1129 For term  $I_2$ , it can be analyzed by Lemma 8.  
1130

1131 For term  $I_3$ , it follows that  
1132

$$\begin{aligned} I_3 &= \mathbb{E}\langle z_t, \Delta g(O_t, \eta_t, \theta_t) \rangle \\ &\leq u\mathbb{E}|y_t|\|z_t\|. \end{aligned}$$

1134 For term  $I_4$ , we have  
 1135

$$\begin{aligned} I_4 &= \mathbb{E}\langle \mathbf{z}_t, \boldsymbol{\omega}_t^* - \boldsymbol{\omega}_{t+1}^* \rangle \\ &= \underbrace{\mathbb{E}\langle \mathbf{z}_t, \boldsymbol{\omega}_t^* - \boldsymbol{\omega}_{t+1}^* + (\nabla \boldsymbol{\omega}_t^*)^\top (\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t) \rangle}_{J_3} \\ &\quad + \underbrace{\mathbb{E}\langle \mathbf{z}_t, -(\nabla \boldsymbol{\omega}_t^*)^\top (\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t) \rangle}_{J_4}. \end{aligned}$$

1142 For  $J_3$ , from the  $h_\omega$ -smoothness of  $\boldsymbol{\omega}^*$  in Assumption 3, we obtain  
 1143

$$J_3 \leq h_\omega \|\mathbf{z}_t\| \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t\|^2.$$

1144 For  $J_4$ , it follows that  
 1145

$$\begin{aligned} \frac{J_4}{\alpha} &= \mathbb{E}\langle \mathbf{z}_t, -(\nabla \boldsymbol{\omega}_t^*)^\top \delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t | s_t) \rangle \\ &= \mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top (-\Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) - h(O_t, \boldsymbol{\theta}_t)) \rangle \\ &= -\mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle \\ &\quad + \mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top (\mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t)] - h(O_t, \boldsymbol{\theta}_t) - \mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t)]) \rangle \\ &= \mathbb{E}[\Xi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t)] - \mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t)] \rangle \\ &\quad - \mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle \end{aligned} \tag{30}$$

1146 Note that from Cauchy-Schwartz inequality and  $l_\omega$  is the Lipschitz constant of  $\boldsymbol{\omega}^*$  in Assumption 3,  
 1147 we have  
 1148

$$-\mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle \leq u l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{2\mathbb{E}y_t^2 + 8l_v^2\mathbb{E}\|\mathbf{z}_t\|^2}. \tag{31}$$

1149 From the fact that  
 1150

$$\begin{aligned} \mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t) - \Delta h'(O'_t, \boldsymbol{\theta}_t)] &= \mathbb{E}_{O'_t}[(r(s_t, a_t) - J(\boldsymbol{\theta}_t) + V_{\boldsymbol{\theta}_t}(s'_t) - V_{\boldsymbol{\theta}_t}(s_t)) \nabla \log \pi_{\boldsymbol{\theta}_t}(a | s)] \\ &= \nabla J(\boldsymbol{\theta}_t), \end{aligned}$$

1151 we obtain  
 1152

$$\mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t)] \rangle = \mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \nabla J(\boldsymbol{\theta}_t) \rangle + \mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \mathbb{E}_{O'_t}[\Delta h'(O'_t, \boldsymbol{\theta}_t)] \rangle.$$

1153 It follows that  
 1154

$$-\mathbb{E}\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \nabla J(\boldsymbol{\theta}_t) \rangle \leq l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2}.$$

1155 Furthermore, it holds that  
 1156

$$\begin{aligned} \mathbb{E}_{O'}\|\Delta h'(O, \boldsymbol{\theta})\|^2 &= \mathbb{E}_{O'}\|((\widehat{V}(\boldsymbol{\omega}^*(\boldsymbol{\theta}); s') - V_{\boldsymbol{\theta}}(s')) - (\widehat{V}(\boldsymbol{\omega}^*(\boldsymbol{\theta}); s) - V_{\boldsymbol{\theta}}(s))) \nabla \log \pi_{\boldsymbol{\theta}}(a | s)\|^2 \\ &\leq \mathbb{E}_{O'}[2u^2((\widehat{V}(\boldsymbol{\omega}^*(\boldsymbol{\theta}); s') - V_{\boldsymbol{\theta}}(s'))^2 + (\widehat{V}(\boldsymbol{\omega}^*(\boldsymbol{\theta}); s) - V_{\boldsymbol{\theta}}(s))^2)] \\ &= 4u^2\mathbb{E}_{O'}[(\widehat{V}(\boldsymbol{\omega}^*(\boldsymbol{\theta}); s) - V_{\boldsymbol{\theta}}(s))^2] \\ &= 4u^2\epsilon_{\text{app}}^2. \end{aligned} \tag{32}$$

1157 Therefore, we have  
 1158

$$\begin{aligned} -\langle \mathbf{z}_t, (\nabla \boldsymbol{\omega}_t^*)^\top \mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t)] \rangle &\leq u l_\omega \sqrt{\|\mathbb{E}_{O'}[\Delta h'(O_t, \boldsymbol{\theta}_t)]\|^2} + l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2} \\ &\leq u l_\omega \sqrt{\mathbb{E}_{O'}\|\Delta h'(O_t, \boldsymbol{\theta}_t)\|^2} + l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2} \\ &\leq 2u^2 l_\omega \epsilon_{\text{app}} + l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2}. \end{aligned} \tag{33}$$

1159 Substituting Eq. (31) and Eq. (33) into Eq. (30) yields  
 1160

$$\begin{aligned} J_4 &\leq \alpha \mathbb{E}\Xi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) + 2\alpha B u l_\omega \epsilon_{\text{app}} \\ &\quad + \alpha u l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{2\mathbb{E}y_t^2 + 8l_v^2\mathbb{E}\|\mathbf{z}_t\|^2} \\ &\quad + \alpha l_\omega \sqrt{\mathbb{E}\|\mathbf{z}_t\|^2} \sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2}. \end{aligned} \tag{34}$$

1188 Overall, we obtain  
1189

$$\begin{aligned} I_4 = J_3 + J_4 &\leq h_\omega \|\mathbf{z}_t\| \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t\|^2 + \alpha \mathbb{E} \Xi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \\ &\quad + \alpha u l_\omega \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2} \sqrt{2\mathbb{E} y_t^2 + 8l_v^2 \mathbb{E} \|\mathbf{z}_t\|^2} \\ &\quad + \alpha l_\omega \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2} \sqrt{\mathbb{E} \|\nabla J(\boldsymbol{\theta}_t)\|^2} + 2\alpha u^2 l_\omega \epsilon_{\text{app}}. \end{aligned}$$

1194 For term  $I_5$ , it holds that  
1195

$$\begin{aligned} I_5 &= \mathbb{E} \|\boldsymbol{\omega}_t^* - \boldsymbol{\omega}_{t+1}^*\|^2 \\ &\leq l_\omega^2 \mathbb{E} \|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 \\ &\leq 16u^2 l_\omega^2 \alpha^2. \end{aligned}$$

1200 For term  $I_6$ , it follows that  
1201

$$\begin{aligned} I_6 &= \mathbb{E} \|\beta(g(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) + \Delta g(O_t, \eta_t, \boldsymbol{\theta}_t))\|^2 \\ &\leq u^2 l_v^2 \beta^2. \end{aligned}$$

1204 Plugging  $I_1 - I_6$  into Eq. (26), we obtain  
1205

$$\begin{aligned} \mathbb{E} \|\mathbf{z}_{t+1}\|^2 &\leq \mathbb{E} \|\mathbf{z}_t\|^2 - \lambda \beta \mathbb{E} \|\mathbf{z}_t\|^2 + 2\beta \mathbb{E} \Psi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) + 2\beta u \mathbb{E} |y_t| \|\mathbf{z}_t\| + 2h_\omega \|\mathbf{z}_t\| \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t\|^2 \\ &\quad + 2\alpha \mathbb{E} \Xi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) + 2\alpha u l_\omega \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2} \sqrt{2\mathbb{E} y_t^2 + 8l_v^2 \mathbb{E} \|\mathbf{z}_t\|^2} \\ &\quad + 2\alpha l_\omega \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2} \sqrt{\mathbb{E} \|\nabla J(\boldsymbol{\theta}_t)\|^2} + 4\alpha u^2 l_\omega \epsilon_{\text{app}} + 4u\beta l_v \epsilon_{\text{app}} + 32l_\omega^2 u^2 \alpha^2 + 2u^2 l_v^2 \beta^2. \end{aligned}$$

1211 Rearranging and summing from  $\tau_T$  to  $T-1$  gives  
1212

$$\begin{aligned} \lambda \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 &\leq \underbrace{\sum_{t=\tau_T}^{T-1} \frac{1}{\beta} (\mathbb{E} \|\mathbf{z}_t\|^2 - \mathbb{E} \|\mathbf{z}_{t+1}\|^2)}_{K_1} + \underbrace{\sum_{t=\tau_T}^{T-1} \mathbb{E} \Psi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t)}_{K_2} + \underbrace{\sum_{t=\tau_T}^{T-1} \mathbb{E} \Xi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t)}_{K_3} \\ &\quad + \underbrace{2u \sum_{t=\tau_T}^{T-1} \sqrt{\mathbb{E} y_t^2} \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2}}_{K_4} + \underbrace{2c u l_\omega \sum_{t=\tau_T}^{T-1} \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2} \sqrt{2\mathbb{E} y_t^2 + 8l_v^2 \mathbb{E} \|\mathbf{z}_t\|^2}}_{K_5} \\ &\quad + \underbrace{2c l_\omega \sum_{t=\tau_T}^{T-1} \sqrt{\mathbb{E} \|\mathbf{z}_t\|^2} \sqrt{\mathbb{E} \|\nabla J(\boldsymbol{\theta}_t)\|^2}}_{K_6} \\ &\quad + \sum_{t=\tau_T}^{T-1} (2u^2 l_v^2 \beta + 32c u^2 l_\omega^2 \alpha + (4c u^2 l_\omega + 4u l_v) \epsilon_{\text{app}}). \end{aligned}$$

1228 In the sequel, we will tackle  $K_1, K_2, K_3, K_4, K_5, K_6$  respectively.  
1229

1230 For term  $K_1$ , we have  
1231

$$I_1 = \sum_{t=\tau_T}^{T-1} \frac{1}{\beta} (\mathbb{E} \|\mathbf{z}_t\|^2 - \mathbb{E} \|\mathbf{z}_{t+1}\|^2) \leq u^2 \sqrt{T}.$$

1235 For term  $K_2$ , from Lemma 8, choose  $\tau = \tau_T$ , we have  
1236

$$\mathbb{E} \Psi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \leq 4c_1 u^2 \tau_T \alpha + 4c_2 u^2 l_v \tau_T \beta + 16u^4 l_v l_\pi \tau_T (\tau_T + 1) \alpha + \frac{8u^2 l_v}{\sqrt{T}}.$$

1238 Then we get  
1239

$$K_2 = 2 \sum_{T=\tau_T}^{T-1} \mathbb{E} \Psi(O_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \leq 2 \sum_{T=\tau_T}^{T-1} (4c_1 u^2 \tau_T \alpha + 4c_2 u^2 l_v \tau_T \beta + 16u^4 l_v l_\pi \tau_T (\tau_T + 1) \alpha + \frac{8u^2 l_v}{\sqrt{T}}).$$

1242 For term  $K_3$ , from Lemma 9, choose  $\tau = \tau_T$ , we have  
1243

$$1244 \mathbb{E}[\Xi(O_t, \omega_t, \theta_t)] \leq 4c_3 u^2 \tau_T \alpha + 8u^5 l_\omega l_\pi \tau_T (\tau_T + 1) \alpha + 4u^3 l_\omega \tau_T \beta + \frac{8u^3 l_\omega}{\sqrt{T}}.$$

1246 Therefore, we have  
1247

$$1248 K_3 = 2c \sum_{t=\tau_T}^{T-1} \mathbb{E} \Xi(O_t, \omega_t, \theta_t) \\ 1249 \leq 2c \sum_{t=\tau_T}^{T-1} (4c_3 u^2 \tau_T \alpha + 8u^5 l_\omega l_\pi \tau_T (\tau_T + 1) \alpha + 4u^3 l_\omega \tau_T \beta + \frac{8u^3 l_\omega}{\sqrt{T}}).$$

1253 For term  $K_4, K_5$ , and  $K_6$ , from Cauchy-Schwartz inequality, we have  
1254

$$1255 K_4 \leq 2u \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 \right)^{\frac{1}{2}} \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}}, \\ 1256 K_5 \leq 2c u l_\omega \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \left( 2 \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 + 8l_v^2 \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}}, \\ 1257 K_6 \leq 2c l_\omega \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\theta_t)\| \right)^{\frac{1}{2}}.$$

1262 Overall, we get  
1263

$$1264 \lambda \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \leq 2u \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 \right)^{\frac{1}{2}} \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \\ 1265 + 2c u l_\omega \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \left( 2 \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 + 8l_v^2 \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \\ 1266 + 2c l_\omega \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\theta_t)\| \right)^{\frac{1}{2}} \\ 1267 + u^2 \sqrt{T} + 2 \sum_{T=\tau_T}^{T-1} (4c_1 u^2 \tau_T \alpha + 4c_2 u^2 l_v \tau_T \beta + 16u^4 l_v l_\pi \tau_T (\tau_T + 1) \alpha + \frac{8u^2 l_v}{\sqrt{T}}) \\ 1268 + 2c \sum_{t=\tau_T}^{T-1} (4c_3 u^2 \tau_T \alpha + 8u^5 l_\omega l_\pi \tau_T (\tau_T + 1) \alpha + 4u^3 l_\omega \tau_T \beta + \frac{8u^3 l_\omega}{\sqrt{T}}) \\ 1269 + \sum_{t=\tau_T}^{T-1} (2u^2 l_v^2 \beta + 32c u^2 l_\omega^2 \alpha + (4c u^2 l_\omega + 4u l_v) \epsilon_{\text{app}}).$$

1270 Therefore, we have  
1271

$$1272 \mathcal{E}^{(z)} \stackrel{(1)}{\leq} \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{2u}{\lambda} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 \right)^{\frac{1}{2}} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \\ 1273 + \frac{2c u l_\omega}{\lambda} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \left( 2 \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 + 8l_v^2 \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \\ 1274 + \frac{2c l_\omega}{\lambda} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\mathbf{z}_t\|^2 \right)^{\frac{1}{2}} \left( \frac{1}{T - \tau_T} \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\theta_t)\| \right)^{\frac{1}{2}},$$

1275 where (1) follows from  $\tau_T = \mathcal{O}(\log T)$  so that  $T - \tau_T \geq \frac{1}{2}T$  for large  $T$ . Therefore, we have  
1276

$$1277 \mathcal{E}^{(z)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \frac{2u}{\lambda} \sqrt{\mathcal{E}^{(y)} \mathcal{E}^{(z)}} + \frac{2c u l_\omega}{\lambda} \sqrt{\mathcal{E}^{(z)} (2\mathcal{E}^{(y)} + 8l_v^2 \mathcal{E}^{(z)})} + \frac{2c l_\omega}{\lambda} \sqrt{\mathcal{E}^{(z)} \mathcal{E}^{(\nabla)}} + \mathcal{O}(\epsilon_{\text{app}}),$$

1278 which completes the proof.  $\square$   
1279

1296 E.3 STEP 3: ACTOR ERROR ANALYSIS  
1297

1298 In this subsection, we will establish an implicit upper bound for actor error (policy gradient norm).

1299 **Lemma 10** (Markovian noise). *For any  $t \geq \tau > 0$ , it holds that*

$$1300 \quad \mathbb{E}[\Theta(O_t, \boldsymbol{\theta}_t)] \leq 4u^2(8u^2h_j + 3l_jl_h)\tau\alpha + 8u^4l_jl_\pi\tau(\tau + 1)\alpha + 4u^2l_j\kappa\rho^{\tau-1}. \\ 1301$$

1302 **Theorem 4.** *We have*

$$1303 \quad \mathcal{E}^{(\nabla)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + u\sqrt{\mathcal{E}^{(\nabla)}(2\mathcal{E}^{(y)} + 8l_v^2\mathcal{E}^{(z)})}. \quad (35) \\ 1304 \\ 1305$$

1306 *Proof.* From the update rule of actor in Line 9 of Algorithm 1 and Eq. (21), we have

$$1307 \quad \begin{aligned} J(\boldsymbol{\theta}_{t+1}) &\geq J(\boldsymbol{\theta}_t) + \langle \nabla J(\boldsymbol{\theta}_t), \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t \rangle - \frac{h_j}{2} \|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t+1}\|^2 \\ 1308 &= J(\boldsymbol{\theta}_t) + \alpha \langle \nabla J(\boldsymbol{\theta}_t), \delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t|s_t) \rangle - \frac{h_j}{2} \alpha^2 \|\delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t|s_t)\|^2 \\ 1309 &= J(\boldsymbol{\theta}_t) + \alpha \langle \nabla J(\boldsymbol{\theta}_t), \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle \\ 1310 &\quad + \alpha \langle \nabla J(\boldsymbol{\theta}_t), h(O_t, \boldsymbol{\theta}_t) \rangle - \frac{h_j}{2} \alpha^2 \|\delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t|s_t)\|^2 \\ 1311 &= J(\boldsymbol{\theta}_t) + \alpha \langle \nabla J(\boldsymbol{\theta}_t), \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle - \alpha \Theta(O_t, \boldsymbol{\theta}_t) \\ 1312 &\quad + \alpha \langle \nabla J(\boldsymbol{\theta}_t), \mathbb{E}_{O'_t}[h(O'_t, \boldsymbol{\theta}_t)] \rangle - \frac{h_j}{2} \alpha^2 \|\delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t|s_t)\|^2 \\ 1313 &= J(\boldsymbol{\theta}_t) + \alpha \langle \nabla J(\boldsymbol{\theta}_t), \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle - \alpha \Theta(O_t, \boldsymbol{\theta}_t) + \alpha \|\nabla J(\boldsymbol{\theta}_t)\|^2 \\ 1314 &\quad + \alpha \langle \nabla J(\boldsymbol{\theta}_t), \mathbb{E}_{O'_t}[\Delta h'(O'_t, \boldsymbol{\theta}_t)] \rangle - \frac{h_j}{2} \alpha^2 \|\delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t|s_t)\|^2, \\ 1315 & \end{aligned} \\ 1316 \\ 1317 \\ 1318 \\ 1319 \\ 1320 \\ 1321$$

1322 where the last equality is due to the fact

$$1323 \quad \mathbb{E}_{O'}[h(O', \boldsymbol{\theta}) - \Delta h'(O', \boldsymbol{\theta})] = \mathbb{E}_{O'}[(r(s, a) - J(\boldsymbol{\theta}) + V_{\boldsymbol{\theta}}(s') - V_{\boldsymbol{\theta}}(s)) \nabla \log \pi_{\boldsymbol{\theta}}(a|s)] = \nabla J(\boldsymbol{\theta}). \\ 1324$$

1325 Rearranging the above inequality and taking expectation, we have

$$1326 \quad \begin{aligned} \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2 &\leq \frac{1}{\alpha}(\mathbb{E}[J(\boldsymbol{\theta}_{t+1}) - J(\boldsymbol{\theta}_t)]) - \mathbb{E}\langle \nabla J(\boldsymbol{\theta}_t), \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle + \mathbb{E}[\Theta(O_t, \boldsymbol{\theta}_t)] \\ 1327 &\quad - \mathbb{E}\langle \nabla J(\boldsymbol{\theta}_t), \mathbb{E}_{O'_t}[\Delta h'(O'_t, \boldsymbol{\theta}_t)] \rangle + \frac{h_j}{2} \alpha \mathbb{E}\|\delta_t \nabla \log \pi_{\boldsymbol{\theta}_t}(a_t|s_t)\|^2. \\ 1328 \\ 1329 \end{aligned} \quad (36)$$

1330 Note that from Cauchy-Schwartz inequality, we have

$$1331 \quad -\mathbb{E}\langle \nabla J(\boldsymbol{\theta}_t), \Delta h(O_t, \eta_t, \boldsymbol{\omega}_t, \boldsymbol{\theta}_t) \rangle \leq u\sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2} \sqrt{2\mathbb{E}y_t^2 + 8l_v^2\mathbb{E}\|\boldsymbol{z}_t\|^2}. \\ 1332$$

1333 From Lemma 10 and choosing  $\tau = \tau_T$ , we have

$$1334 \quad \mathbb{E}[\Theta(O_t, \boldsymbol{\theta}_t)] \leq 4u^2(8u^2h_j + 3l_jl_h)\tau_T\alpha + 8u^4l_jl_\pi\tau_T(\tau_T + 1)\alpha + \frac{4u^2l_j}{\sqrt{T}}. \\ 1335 \\ 1336$$

1337 From Eq. (32), it has been shown that

$$1338 \quad \mathbb{E}_{O'}\|\Delta h'(O, \boldsymbol{\theta})\|^2 \leq 4u^2\epsilon_{\text{app}}^2. \\ 1339$$

1340 Therefore, we have

$$1341 \quad \begin{aligned} -\langle \nabla J(\boldsymbol{\theta}_t), \mathbb{E}_{O'_t}[\Delta h'(O'_t, \boldsymbol{\theta}_t)] \rangle &\leq l_j \sqrt{\|\mathbb{E}_{O'}[\Delta h'(O'_t, \boldsymbol{\theta}_t)]\|^2} \\ 1342 &\leq l_j \sqrt{\mathbb{E}_{O'}\|\Delta h'(O'_t, \boldsymbol{\theta}_t)\|^2} \\ 1343 &\leq 2ul_j\epsilon_{\text{app}}, \\ 1344 \end{aligned}$$

1345 where we use  $\|\nabla J(\boldsymbol{\theta})\| \leq l_j$  which comes from Lemma 5. Plugging the three terms yields

$$1346 \quad \begin{aligned} \mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2 &\leq \frac{1}{\alpha}(\mathbb{E}[J(\boldsymbol{\theta}_{t+1})] - \mathbb{E}[J(\boldsymbol{\theta}_t)]) + u\sqrt{\mathbb{E}\|\nabla J(\boldsymbol{\theta}_t)\|^2} \sqrt{2\mathbb{E}y_t^2 + 8l_v^2\mathbb{E}\|\boldsymbol{z}_t\|^2} \\ 1347 &\quad + 4u^2(8u^2h_j + 3l_jl_h)\tau_T\alpha + 8u^4l_jl_\pi\tau_T(\tau_T + 1)\alpha + \frac{4u^2l_j}{\sqrt{T}} + 8u^4h_j\alpha + 2ul_j\epsilon_{\text{app}}. \\ 1348 \\ 1349 \end{aligned}$$

1350 Summing over  $t$  from  $\tau_T$  to  $T - 1$  gives  
 1351

$$\begin{aligned}
 1352 \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\boldsymbol{\theta}_t)\|^2 &\leq \sum_{t=\tau_T}^{T-1} \frac{1}{\alpha} (\mathbb{E}[J(\boldsymbol{\theta}_{t+1})] - \mathbb{E}[J(\boldsymbol{\theta}_t)]) + u \sum_{t=\tau_T}^{T-1} \sqrt{\mathbb{E} \|\nabla J(\boldsymbol{\theta}_t)\|^2} \sqrt{2\mathbb{E} y_t^2 + 8l_v^2 \mathbb{E} \|\boldsymbol{z}_t\|^2} \\
 1353 &\quad + \mathcal{O}(\log^2 T) \frac{T - \tau_T}{\sqrt{T}} + 2ul_j \epsilon_{\text{app}}(T - \tau_T) \\
 1354 &\leq \frac{2u}{c} \sqrt{T} + u \left( \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\nabla J(\boldsymbol{\theta}_t)\|^2 \right)^{\frac{1}{2}} \left( 2 \sum_{t=\tau_T}^{T-1} \mathbb{E} y_t^2 + 8l_v^2 \sum_{t=\tau_T}^{T-1} \mathbb{E} \|\boldsymbol{z}_t\|^2 \right)^{\frac{1}{2}} \\
 1355 &\quad + \mathcal{O}(\log^2 T) \frac{T - \tau_T}{\sqrt{T}} + 2ul_j \epsilon_{\text{app}}(T - \tau_T).
 \end{aligned}$$

1362 Therefore, we get  
 1363

$$\begin{aligned}
 1364 \mathcal{E}^{(\nabla)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + 2ul_j \epsilon_{\text{app}} + u \sqrt{\mathcal{E}^{(\nabla)}(2\mathcal{E}^{(y)} + 8l_v^2 \mathcal{E}^{(z)})} \\
 1365 &= \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + u \sqrt{\mathcal{E}^{(\nabla)}(2\mathcal{E}^{(y)} + 8l_v^2 \mathcal{E}^{(z)})},
 \end{aligned}$$

1369 which concludes the proof.  $\square$   
 1370

#### 1371 E.4 STEP 4: INTERCONNECTED ITERATION SYSTEM ANALYSIS

1372 In this subsection, we perform an interconnected iteration system analysis to prove Theorem 1.  
 1373

##### 1374 Proof of Theorem 1.

1375 *Proof.* Combining Eq. (23), Eq. (25), and Eq. (35), we have

$$\begin{aligned}
 1376 \mathcal{E}^{(y)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + 4cu \sqrt{\mathcal{E}^{(y)} \mathcal{E}^{(\nabla)}}, \\
 1377 \mathcal{E}^{(z)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{2u}{\lambda} \sqrt{\mathcal{E}^{(y)} \mathcal{E}^{(z)}} + \frac{2cul_\omega}{\lambda} \sqrt{\mathcal{E}^{(z)}(2\mathcal{E}^{(y)} + 8l_v^2 \mathcal{E}^{(z)})} + \frac{2cl_\omega}{\lambda} \sqrt{\mathcal{E}^{(z)} \mathcal{E}^{(\nabla)}}, \\
 1378 \mathcal{E}^{(\nabla)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + u \sqrt{\mathcal{E}^{(\nabla)}(2\mathcal{E}^{(y)} + 8l_v^2 \mathcal{E}^{(z)})}.
 \end{aligned}$$

1384 Denote

$$l_1 := 4cu, l_2 := \frac{2u}{\lambda}, l_3 := \frac{2cul_\omega}{\lambda}, l_4 := 8l_v^2, l_5 := \frac{2cl_\omega}{\lambda}, l_6 := u. \quad (37)$$

1388 Then we have

$$\begin{aligned}
 1389 \mathcal{E}^{(y)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + l_1 \sqrt{\mathcal{E}^{(y)} \mathcal{E}^{(\nabla)}}, \\
 1390 \mathcal{E}^{(z)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + l_2 \sqrt{\mathcal{E}^{(y)} \mathcal{E}^{(z)}} + l_3 \sqrt{\mathcal{E}^{(z)}(2\mathcal{E}^{(y)} + l_4 \mathcal{E}^{(z)})} + l_5 \sqrt{\mathcal{E}^{(z)} \mathcal{E}^{(\nabla)}}, \\
 1391 \mathcal{E}^{(\nabla)} &\leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + l_6 \sqrt{\mathcal{E}^{(\nabla)}(2\mathcal{E}^{(y)} + l_4 \mathcal{E}^{(z)})}.
 \end{aligned}$$

1397 For  $\mathcal{E}^{(\nabla)}$ , we get

$$1398 \mathcal{E}^{(\nabla)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{1}{2} \mathcal{E}^{(\nabla)} + l_6^2 (\mathcal{E}^{(y)} + \frac{1}{2} l_4 \mathcal{E}^{(z)})$$

1401 It follows that

$$1402 \mathcal{E}^{(\nabla)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + l_6^2 (2\mathcal{E}^{(y)} + l_4 \mathcal{E}^{(z)}). \quad (38)$$

1404 For  $\mathcal{E}^{(z)}$ , we have  
 1405

$$1406 \mathcal{E}^{(z)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{1}{4}\mathcal{E}^{(z)} + l_2^2\mathcal{E}^{(y)} + \left(\frac{1}{2} + \frac{1}{2}l_4\right)l_3\mathcal{E}^{(z)} + l_3\mathcal{E}^{(y)} + \frac{1}{4}\mathcal{E}^{(z)} + l_5^2\mathcal{E}^{(\nabla)}.$$

1408 If it satisfies  $(\frac{1}{2} + \frac{1}{2}l_4)l_3 \leq \frac{1}{4}$ , we further have  
 1409

$$1410 \mathcal{E}^{(z)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + (2l_2^2 + 2l_3)\mathcal{E}^{(y)} + 2l_5^2\mathcal{E}^{(\nabla)}. \quad (39)$$

1412 Plugging Eq. (38) into Eq. (39), it holds that  
 1413

$$1414 \mathcal{E}^{(z)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + (2l_2^2 + 2l_3 + 4l_5^2l_6^2)\mathcal{E}^{(y)} + 2l_4l_5^2l_6^2\mathcal{E}^{(z)}.$$

1417 If it satisfies  $2l_4l_5^2l_6^2 \leq \frac{1}{2}$ , we have  
 1418

$$1419 \mathcal{E}^{(z)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + 4(l_2^2 + l_3 + 2l_5^2l_6^2)\mathcal{E}^{(y)}. \quad (40)$$

1421 For  $\mathcal{E}^{(y)}$ , we get  
 1422

$$1423 \mathcal{E}^{(y)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \frac{l_1}{2}(\mathcal{E}^{(y)} + \mathcal{E}^{(\nabla)}). \quad (41)$$

1425 Plugging Eq. (38) and Eq. (40) into Eq. (41) gives  
 1426

$$1427 \mathcal{E}^{(y)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{l_1}{2}(\mathcal{E}^{(y)} + 2l_6^2\mathcal{E}^{(y)} + l_4l_6^2\mathcal{E}^{(z)}) \\ 1428 \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{l_1}{2}(\mathcal{E}^{(y)} + 2l_6^2\mathcal{E}^{(y)} + 4l_4l_6^2(l_2^2 + l_3 + 2l_5^2l_6^2)\mathcal{E}^{(y)}) \\ 1430 = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}) + \frac{l_1}{2}(1 + 2l_6^2 + 4l_4l_6^2(l_2^2 + l_3 + 2l_5^2l_6^2))\mathcal{E}^{(y)}.$$

1434 Therefore, if  $l_1(1 + 2l_6^2 + 4l_4l_6^2(l_2^2 + l_3 + 2l_5^2l_6^2)) \leq \frac{1}{2}$ , we have  
 1435

$$1436 \mathcal{E}^{(y)} \leq \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}).$$

1438 Overall, we require  
 1439

$$1440 \left(\frac{1}{2} + \frac{1}{2}l_4\right)l_3 \leq \frac{1}{4}, \quad 2l_4l_5^2l_6^2 \leq \frac{1}{2}, \quad l_1(1 + 2l_6^2 + 4l_4l_6^2(l_2^2 + l_3 + 2l_5^2l_6^2)) \leq \frac{1}{2}.$$

1442 According to the definition of  $l_1, l_2, l_3, l_4, l_5, l_6$ , it can be shown that  
 1443

$$1444 \left(\frac{1}{2} + 4l_v^2\right)\frac{2cul_\omega}{\lambda} \leq \frac{1}{4} \implies c \leq \frac{\lambda}{4ul_\omega(1 + 8l_v^2)}, \\ 1445 \frac{64c^2u^2l_v^2l_\omega^2}{\lambda^2} \leq \frac{1}{2} \implies c \leq \frac{\lambda}{8\sqrt{2}ul_vl_\omega}, \quad (42) \\ 1447 4cu(1 + 2u^2 + 32l_v^2u^2(\frac{4u^2}{\lambda^2} + \frac{2cul_\omega}{\lambda} + \frac{8c^2u^2l_\omega^2}{\lambda^2})) \leq \frac{1}{2} \implies c \leq \frac{1}{8u(1 + 6u^2 + \frac{128l_v^2u^4}{\lambda^2})}.$$

1451 From the fact that for positive constants  $t_i$ , we have  
 1452

$$1453 \frac{1}{\sum_i 1/t_i} \leq \min_i t_i.$$

1455 Thus we choose  
 1456

$$1457 c \leq \left[8u\left(1 + 6u^2 + \frac{128l_v^2u^4}{\lambda^2}\right) + \frac{l_\omega}{\lambda}\left(\frac{1}{2} + 4l_v^2 + \sqrt{2}l_v\right)\right]^{-1} \quad (43)$$

1458 which satisfies the three inequalities of  $c$  shown in Eq. (42). Therefore, we have  
 1459

$$1460 \quad \mathcal{E}^{(y)} = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}),$$

1462 and consequently,  
 1463

$$1464 \quad \mathcal{E}^{(z)} = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}),$$

$$1467 \quad \mathcal{E}^{(\nabla)} = \mathcal{O}\left(\frac{\log^2 T}{\sqrt{T}}\right) + \mathcal{O}(\epsilon_{\text{app}}).$$

1469 Thus we conclude our proof. □  
 1470

## 1471 F PROOF OF PRELIMINARY LEMMAS

### 1473 Proof of Lemma 1.

1475 *Proof.* We will divide the proof of this lemma into four steps.  
 1476

1477 **Step 1:** show that for all  $k \in \{1, 2, \dots, K\}$ , we have  
 1478

$$1479 \quad \|\mathbf{W}^{(k)}\| \leq \mathcal{O}(\sqrt{m}). \quad (44)$$

1480 It can be shown that  
 1481

$$1482 \quad \|\mathbf{W}^{(k)}\| \leq \|\mathbf{W}^{(k)} - \mathbf{W}_0^{(k)}\| + \|\mathbf{W}_0^{(K)}\|$$

$$1483 \leq u_{\omega} + \|\mathbf{W}_0^{(k)}\|$$

$$1485 \leq \mathcal{O}(\sqrt{m}),$$

1486 where the last inequality is due to Assumption 2 and the fact that  $u_{\omega}$  is constant to  $m$ .  
 1487

1488 **Step 2:** show that for all  $k \in \{1, 2, \dots, K\}$ , we have  
 1489

$$1490 \quad \|s^{(k)}\| \leq \mathcal{O}(\sqrt{m}). \quad (45)$$

1491 From Assumption 1, we have  $\|s^{(0)}\| \leq 1$ . From Eq. (44), it holds that  
 1492

$$1493 \quad \|s^{(1)}\| = \left\| \frac{1}{\sqrt{m}} \sigma(\mathbf{W}^{(1)} s^{(0)}) \right\|$$

$$1495 \leq \frac{1}{m} L_a^2 \|\mathbf{W}^{(1)}\|^2 \|s^{(0)}\|^2 + \|\sigma(0)\|^2$$

$$1497 \leq \mathcal{O}(m).$$

1498 By induction, suppose  $\|s^{(k)}\|^2 \leq \mathcal{O}(m)$ . We have  
 1499

$$1500 \quad \|s^{(k+1)}\|^2 = \left\| \frac{1}{\sqrt{m}} \sigma(\mathbf{W}^{(k+1)} s^{(k)}) \right\|^2$$

$$1502 \leq \frac{1}{m} L_a^2 \|\mathbf{W}^{(k+1)}\|^2 \|s^{(k)}\|^2 + \|\sigma(0)\|^2$$

$$1504 \leq \mathcal{O}(m),$$

1505 which concludes the proof. Therefore, from Eq. (45), it can be shown that  
 1506

$$1507 \quad \|\widehat{V}(\omega; s)\| = \left\| \frac{1}{\sqrt{m}} \mathbf{b}^\top s^{(K)} \right\| \leq \mathcal{O}(1).$$

1509 **Step 3:** show that for all  $k \in \{1, 2, \dots, K\}$ , we have  
 1510

$$1511 \quad \|\nabla_{s^{(k-1)}} s^{(k)}\| \leq \mathcal{O}(1). \quad (46)$$

1512 From the chain rule, we have  
 1513

$$1514 \nabla_{s^{(k-1)}} s^{(k)}(i, j) = \frac{1}{\sqrt{m}} \sigma' \left( \sum_j \mathbf{W}^{(k)}(i, j) s^{(k-1)}(j) \right) \mathbf{W}^{(k)}(i, j).$$

1516 Therefore, we get  
 1517

$$\begin{aligned} 1518 \|\nabla_{s^{(k-1)}} s^{(k)}\|^2 &= \sup_{\|v\|=1} \sum_{i=1}^m \left( \sum_j \nabla_{s^{(k-1)}} s^{(k)}(i, j) v_j \right)^2 \\ 1519 &= \sup_{\|v\|=1} \frac{1}{m} \|\Sigma' \mathbf{W}^{(k)} v\|^2 \\ 1520 &\leq \frac{1}{m} \|\Sigma'\|^2 \cdot \|\mathbf{W}^{(k)}\|^2 \\ 1521 &\leq \mathcal{O}(1), \\ 1522 & \\ 1523 & \\ 1524 & \\ 1525 & \end{aligned}$$

1526 where  $\Sigma'$  is a diagonal matrix with  $\Sigma'(i, i) = \sigma'(\Sigma_j \mathbf{W}^{(k)}(i, j) s^{(k-1)}(j)) := \xi(i)$ .  
 1527

1528 **Step 4:** show that for all  $k \in \{1, 2, \dots, K\}$ , we have  
 1529

$$\|\nabla_{\mathbf{W}^{(k)}} s^{(k)}\| \leq \mathcal{O}(1), \quad (47)$$

1530 where  $\nabla_{\mathbf{W}^{(k)}} s^{(k)}$  is defined to be a matrix whose  $(I, (j-i)m+h)$ 'th entry  $\nabla_{\mathbf{W}^{(k)}} s^{(k)}(i, j, h)$  is  
 1531 given by  
 1532

$$\nabla_{\mathbf{W}^{(k)}} s^{(k)}(i, j, h) = \frac{\partial s^{(k)}(i)}{\partial \mathbf{W}^{(k)}(j, h)}.$$

1533 It holds that  
 1534

$$\nabla_{\mathbf{W}^{(k)}} s^{(k)}(i, j, j') = \frac{1}{\sqrt{m}} \mathbf{1}\{i=j\} \sigma' \left( \sum_h \mathbf{W}^{(k)}(i, h) s^{(k-1)}(h) \right) s^{(k-1)}(j'),$$

1535 which can be written as  
 1536

$$\nabla_{\mathbf{W}^{(k)}} s^{(k)}(i, j, j') = \frac{1}{\sqrt{m}} \mathbf{1}\{i=j\} \xi(i) s^{(k-1)}(j').$$

1537 Therefore, we get  
 1538

$$\begin{aligned} 1539 \|\nabla_{\mathbf{W}^{(k)}} s^{(k)}\|^2 &= \sup_{\|V\|_F=1} \sum_{i=1}^m \left( \sum_{j, j'} \nabla_{\mathbf{W}^{(k)}} s^{(k)}(i, j, j') V_{j, j'} \right)^2 \\ 1540 &= \frac{1}{m} \sup_{\|V\|_F=1} \sum_{i=1}^m \left( \sum_{j, j'} \mathbf{1}\{i=j\} \xi(i) s^{(k-1)}(j') V_{j, j'} \right)^2 \\ 1541 &= \frac{1}{m} \sup_{\|V\|_F=1} \sum_{i=1}^m \left( \sum_{j, j'} \mathbf{1}\{i=j\} \xi(i) [V s^{(k-1)}]_j \right)^2 \\ 1542 &= \frac{1}{m} \sup_{\|V\|_F=1} \sum_{i=1}^m \xi(i)^2 [V s^{(k-1)}]_i^2 \\ 1543 &= \sup_{\|V\|_F=1} \frac{1}{m} \|\Sigma' V s^{(k-1)}\|^2 \\ 1544 &\leq \frac{1}{m} \|\Sigma'\|^2 \cdot \|s^{(k-1)}\|^2 \\ 1545 &\leq \mathcal{O}(1), \\ 1546 & \\ 1547 & \\ 1548 & \\ 1549 & \\ 1550 & \\ 1551 & \\ 1552 & \\ 1553 & \\ 1554 & \\ 1555 & \\ 1556 & \\ 1557 & \\ 1558 & \\ 1559 & \\ 1560 & \end{aligned}$$

1561 where the last inequality follows Eq. (45).  
 1562

1563 We then show the Lipschitzness of the neural network. Since each entry of  $b$  satisfies  $|b_i| \leq 1$ , it is  
 1564 easy to see that  
 1565

$$\|\nabla_{s^{(K)}} \widehat{V}(\boldsymbol{\omega}; s)\| = \frac{1}{\sqrt{m}} \|\mathbf{b}\| \leq 1.$$

1566 By Eq. (46), Eq. (47), and the chain rule, we have  
 1567

$$1568 \|\nabla_{\mathbf{W}^{(k)}} V(\boldsymbol{\omega}; s) = \|\nabla_{\mathbf{W}^{(K)}} V(\boldsymbol{\omega}; s) \nabla_{\mathbf{W}^{(K-1)}} s^{(K)} \cdots \nabla_{s^{(k)}} s^{(k+1)} \nabla_{\mathbf{W}^{(k)}} s^{(k)}\| \leq \mathcal{O}(1).$$

1569 It can be shown that  
 1570

$$1571 \|\nabla \widehat{V}(\boldsymbol{\omega}; s)\|^2 = \sup_{\|V\|_F=1} \sum_{k=1}^K (\nabla_{\mathbf{W}^{(k)}} \widehat{V}(\boldsymbol{\omega}; s) V_k)^2 \leq \mathcal{O}(1),$$

1574 which concludes the proof of Lipschitzness.  
 1575

1576 The proof of smoothness property has been shown in (Liu et al., 2020).  $\square$   
 1577

## 1578 Proof of Lemma 2.

1579 *Proof.* From the definition of the total variation distance, we have  
 1580

$$1581 d_{\text{TV}}(\pi_{\boldsymbol{\theta}_1}(\cdot | s) - \pi_{\boldsymbol{\theta}_2}(\cdot | s)) = \frac{1}{2} \int_{\mathcal{A}} |\pi_{\boldsymbol{\theta}_1}(a | s) - \pi_{\boldsymbol{\theta}_2}(a | s)| da \\ 1582 = \frac{1}{2} \int_{\bar{\mathcal{A}}} |\pi_{\boldsymbol{\theta}_1}(a | s) - \pi_{\boldsymbol{\theta}_2}(a | s)| da \\ 1583 \leq \frac{1}{2} \int_{\bar{\mathcal{A}}} l_p \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\| da \\ 1584 \leq \frac{1}{2} \bar{A} l_p \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|,$$

1585 where  $\bar{\mathcal{A}}$  is the bounded support of  $\pi_{\boldsymbol{\theta}}(a | s)$  which satisfies  $\int_{\bar{\mathcal{A}}} da = \bar{\mathcal{A}}$ . Define  $l_{\pi} := 1/2\bar{A}l_p$ ,  
 1586 which completes the proof.  $\square$   
 1587

## 1588 Proof of Lemma 3.

1589 *Proof.* For any  $\theta_1$  and  $\theta_2$ , define the transition kernels respectively as follows:  
 1590

$$1596 P_i(s, ds') = \int_{\mathcal{A}} \mathcal{P}(ds' | s, a) \pi_{\theta_i}(a | s), \quad i = 1, 2$$

1597 Following from Theorem 3.1 in (Mitrophanov, 2005), we obtain  
 1598

$$1600 d_{\text{TV}}(\mu_{\theta_1}, \mu_{\theta_2}) \leq (\lceil \log_{\rho} \kappa^{-1} \rceil + \frac{1}{1 - \rho}) \|P_1 - P_2\|_{\text{op}},$$

1601 where  $\|\cdot\|_{\text{op}}$  is the operator norm defined in (Mitrophanov, 2005):  $\|A\| := \sup_{\|q\|_{\text{TV}}=1} \|qA\|_{\text{TV}}$ ,  
 1602 and  $\|\cdot\|_{\text{TV}}$  denotes the total-variation norm. Then we have  
 1603

$$1604 \|P_1 - P_2\|_{\text{op}} = \sup_{\|q\|_{\text{TV}}=1} \left\| \int_{\mathcal{S}} q(ds) (P_1 - P_2)(s, \cdot) \right\|_{\text{TV}} \\ 1605 = \sup_{\|q\|_{\text{TV}}=1} \int_{\mathcal{S}} \left| \int_{\mathcal{S}} q(ds) (P_1 - P_2)(s, ds') \right| \\ 1606 \leq \sup_{\|q\|_{\text{TV}}=1} \int_{\mathcal{S}} \int_{\mathcal{S}} q(ds) |(P_1 - P_2)(s, ds')| \\ 1607 = \sup_{\|q\|_{\text{TV}}=1} \int_{\mathcal{S}} \int_{\mathcal{S}} q(ds) \left| \int_{\mathcal{A}} \mathcal{P}(ds' | s, a) (\pi_{\theta_1}(da | s) - \pi_{\theta_2}(da | s)) \right| \\ 1608 = \sup_{\|q\|_{\text{TV}}=1} \int_{\mathcal{S}} \int_{\mathcal{S}} q(ds) \int_{\mathcal{A}} \mathcal{P}(ds' | s, a) |(\pi_{\theta_1}(da | s) - \pi_{\theta_2}(da | s))| \\ 1609 = \sup_{\|q\|_{\text{TV}}=1} \int_{\mathcal{S}} q(ds) \int_{\mathcal{A}} |(\pi_{\theta_1}(da | s) - \pi_{\theta_2}(da | s))| \\ 1610 \leq l_{\pi} \|\theta_1 - \theta_2\|.$$

1620 The first equation results from the definition of the operation norm, the second equation results from  
 1621 the definition of total variation. Therefore, we have  
 1622

$$1623 d_{TV}(\mu_{\theta_1}, \mu_{\theta_2}) \leq l_{\pi}(\lceil \log_{\rho} \kappa^{-1} \rceil + \frac{1}{1-\rho}) \|\theta_1 - \theta_2\|. \\ 1624$$

1625 For the second inequality, we have  
 1626

$$1627 d_{TV}(\mu_{\theta_1} \otimes \pi_{\theta_1}, \mu_{\theta_2} \otimes \pi_{\theta_2}) = \int_{\mathcal{S}} \int_{\mathcal{A}} |\mu_{\theta_1}(ds) \pi_{\theta_1}(a|s) - \mu_{\theta_2}(ds) \pi_{\theta_2}(a|s)| \\ 1628 \\ 1629 \leq \int_{\mathcal{S}} \int_{\mathcal{A}} |\mu_{\theta_1}(ds) (\pi_{\theta_1}(a|s) - \pi_{\theta_2}(a|s))| \\ 1630 \\ 1631 + \int_{\mathcal{S}} \int_{\mathcal{A}} |(\mu_{\theta_1}(ds) - \mu_{\theta_2}(ds)) \pi_{\theta_2}(a|s)| \\ 1632 \\ 1633 = d_{TV}(\pi_{\theta_1}, \pi_{\theta_2}) + d_{TV}(\mu_{\theta_1}, \mu_{\theta_2}) \\ 1634 \\ 1635 \leq l_{\pi} \|\theta_1 - \theta_2\| + C(\lceil \log_{\rho} \kappa^{-1} \rceil + \frac{1}{1-\rho}) \|\theta_1 - \theta_2\| \\ 1636 \\ 1637 = l_{\pi} (1 + \lceil \log_{\rho} \kappa^{-1} \rceil + \frac{1}{1-\rho}) \|\theta_1 - \theta_2\|. \\ 1638 \\ 1639$$

1640 For the third inequality, we have  
 1641

$$1642 d_{TV}(\mu_{\theta_1} \otimes \pi_{\theta_1} \otimes \mathcal{P}, \mu_{\theta_2} \otimes \pi_{\theta_2} \otimes \mathcal{P}) \\ 1643 \\ 1644 = \frac{1}{2} \int_{\mathcal{S}} \int_{\mathcal{A}} \int_{\mathcal{S}} |\mu_{\theta_1}(ds) \pi_{\theta_1}(a|s) \mathcal{P}(ds'|s, a) - \mu_{\theta_2}(ds) \pi_{\theta_2}(a|s) \mathcal{P}(ds'|s, a)| \\ 1645 \\ 1646 = \frac{1}{2} \int_{\mathcal{S}} \int_{\mathcal{A}} |\mu_{\theta_1}(ds) \pi_{\theta_1}(a|s) - \mu_{\theta_2}(ds) \pi_{\theta_2}(a|s)| \\ 1647 \\ 1648 = d_{TV}(\mu_{\theta_1} \otimes \pi_{\theta_1}, \mu_{\theta_2} \otimes \pi_{\theta_2}), \\ 1649$$

1650 which concludes the proof.  $\square$   
 1651

1652 **Proof of Lemma 4.**

1656 *Proof.* From the fact that  
 1657

$$1658 \mathbb{P}(s_{t+1} \in \cdot) = \int_{\mathcal{S}} \int_{\mathcal{A}} \mathbb{P}(s_t = ds, a_t = da, s_{t+1} \in \cdot), \\ 1659 \\ 1660$$

1661 we have

$$1663 2d_{TV}(\mathbb{P}(s_{t+1} \in \cdot), \mathbb{P}(\tilde{s}_{t+1} \in \cdot)) \\ 1664 \\ 1665 = \int_{\mathcal{S}} \left| \int_{\mathcal{S}} \int_{\mathcal{A}} \mathbb{P}(s_t = ds, a_t = da, s_{t+1} = ds') - \int_{\mathcal{S}} \int_{\mathcal{A}} \mathbb{P}(\tilde{s}_t = ds, \tilde{a}_t = da, \tilde{s}_{t+1} = ds') \right| \\ 1666 \\ 1667 \leq \int_{\mathcal{S}} \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(s_t = ds, a_t = da, s_{t+1} = ds') - \mathbb{P}(\tilde{s}_t = ds, \tilde{a}_t = da, \tilde{s}_{t+1} = ds')| \\ 1668 \\ 1669 = \int_{\mathcal{S}} \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(O_t = (ds, da, ds')) - \mathbb{P}(\tilde{O}_t = (ds, da, ds'))| \\ 1670 \\ 1671 = 2d_{TV}(\mathbb{P}(O_t \in \cdot), \mathbb{P}(\tilde{O} \in \cdot)), \\ 1672$$

1673 where the last equality requires the exchange of integral which is guaranteed by Fubini's theorem  
 since  $\mathbb{P}$  is an absolute integrable function.

1674 For the second equality, we have  
 1675

$$\begin{aligned}
 1676 \quad & 2d_{TV}(\mathbb{P}(O_t \in \cdot), \mathbb{P}(\tilde{O}_t \in \cdot)) \\
 1677 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} \int_{\mathcal{S}} |\mathbb{P}(O_t = (ds, da, ds')) - \mathbb{P}(\tilde{O}_t = (ds, da, ds'))| \\
 1678 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} \int_{\mathcal{S}} |\mathcal{P}(ds'|s, a) \mathbb{P}((s_t, a_t) = (ds, da)) - \mathcal{P}(ds'|s, a) \mathbb{P}((\tilde{s}_t, \tilde{a}_t) = (ds, da))| \\
 1679 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} \int_{\mathcal{S}} \mathcal{P}(ds'|s, a) |\mathbb{P}((s_t, a_t) = (ds, da)) - \mathbb{P}((\tilde{s}_t, \tilde{a}_t) = (ds, da))| \\
 1680 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}((s_t, a_t) = (ds, da)) - \mathbb{P}((\tilde{s}_t, \tilde{a}_t) = (ds, da))| \\
 1681 \quad &= 2d_{TV}(\mathbb{P}((s_t, a_t) \in \cdot), \mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot)).
 \end{aligned}$$

1682 For the third inequality, since  $\theta_t$  is dependent on  $s_t$  as shown in Eq. (10), it holds that  
 1683

$$\begin{aligned}
 1684 \quad & 2d_{TV}(\mathbb{P}((s_t, a_t) \in \cdot), \mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot)) \\
 1685 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(s_t = ds, a_t = da) - \mathbb{P}(\tilde{s}_t = ds, \tilde{a}_t = da)| \\
 1686 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} \left| \int_{\boldsymbol{\theta}} \mathbb{P}(s_t = ds) \mathbb{P}(\boldsymbol{\theta}_t = d\boldsymbol{\theta} | s_t = s) \mathbb{P}(a_t = da | s_t = s, \boldsymbol{\theta}_t = \boldsymbol{\theta}) - \mathbb{P}(\tilde{s}_t = ds, \tilde{a}_t = da) \right| \\
 1687 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(s_t = ds) \int_{\boldsymbol{\theta}} \mathbb{P}(\boldsymbol{\theta}_t = d\boldsymbol{\theta} | s_t = s) \pi_{\boldsymbol{\theta}_t}(da | s) - \mathbb{P}(\tilde{s}_t = ds) \pi_{\boldsymbol{\theta}_{t-\tau}}(da | s)| \\
 1688 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(s_t = ds) \mathbb{E}[\pi_{\boldsymbol{\theta}_t}(da | s) | s_t = s] - \mathbb{P}(\tilde{s}_t = ds) \pi_{\boldsymbol{\theta}_{t-\tau}}(da | s)| \\
 1689 \quad &= \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(s_t = ds) \mathbb{E}[\pi_{\boldsymbol{\theta}_t}(da | s) | s_t = s] - \mathbb{P}(s_t = ds) \pi_{\boldsymbol{\theta}_{t-\tau}}(da | s)| \\
 1690 \quad &+ \int_{\mathcal{S}} \int_{\mathcal{A}} |\mathbb{P}(s_t = ds) \pi_{\boldsymbol{\theta}_{t-\tau}}(da | s) - \mathbb{P}(\tilde{s}_t = ds) \pi_{\boldsymbol{\theta}_{t-\tau}}(da | s)| \\
 1691 \quad &= \int_{\mathcal{S}} \mathbb{P}(s_t = ds) \int_{\mathcal{A}} |\mathbb{E}[\pi_{\boldsymbol{\theta}_t}(da | s) | s_t = s] - \pi_{\boldsymbol{\theta}_{t-\tau}}(da | s)| \\
 1692 \quad &+ 2d_{TV}(\mathbb{P}(s_t \in \cdot), \mathbb{P}(\tilde{s}_t \in \cdot)) \\
 1693 \quad &\leq l_{\pi} \mathbb{E} \|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-\tau}\| + 2d_{TV}(\mathbb{P}(s_t \in \cdot), \mathbb{P}(\tilde{s}_t \in \cdot)),
 \end{aligned}$$

1694 where the last inequality holds due to the Lipschitz continuity of policy made in Assumption 7.  $\square$   
 1695

### 1696 Proof of Lemma 5.

1697 *Proof.* By definition, we have  
 1698

$$J(\boldsymbol{\theta}_1) - J(\boldsymbol{\theta}_2) = \mathbb{E}[r(s^1, a^1) - r(s^2, a^2)],$$

1699 where  $s^i \sim \mu_{\boldsymbol{\theta}_i}$ ,  $a^i \sim \pi_{\boldsymbol{\theta}_i}$ . Therefore, it holds that  
 1700

$$\begin{aligned}
 1701 \quad & J(\boldsymbol{\theta}_1) - J(\boldsymbol{\theta}_2) = \mathbb{E}[r(s^1, a^1) - r(s^1, a^1)] \\
 1702 \quad &\leq 2ud_{TV}(\mu_{\boldsymbol{\theta}_1} \otimes \pi_{\boldsymbol{\theta}_1}, \mu_{\boldsymbol{\theta}_2} \otimes \pi_{\boldsymbol{\theta}_2}) \\
 1703 \quad &\leq 2ul_{\pi}(1 + \lceil \log_{\rho} \kappa^{-1} \rceil + \frac{1}{1-\rho}) \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\| \\
 1704 \quad &= l_j \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|.
 \end{aligned}$$

$\square$

### 1705 Proof of Lemma 6.

1706 *Proof.* The proof of this lemma can be found in Lemma 3.2 of (Zhang et al., 2020a).  $\square$   
 1707

1728 **G PROOF OF MARKOVIAN NOISES**  
 1729

1730 The following four lemmas deal with the Markovian noise.  
 1731

1732 **Proof of Lemma 7.**

1733 *Proof.* We will divide the proof of this lemma into four steps.  
 1734

1735 **Step 1:** show that for any  $\theta_1, \theta_2, \eta, O = (s, a, s')$ , we have  
 1736

$$|\Phi(O, \eta, \theta_1) - \Phi(O, \eta, \theta_2)| \leq 4ul_j \|\theta_1 - \theta_2\|. \quad (48)$$

1738 By the definition of  $\Phi(O, \eta, \theta)$  in Eq. (13), we have  
 1739

$$\begin{aligned} |\Phi(O, \eta, \theta_1) - \Phi(O, \eta, \theta_2)| &= |(\eta - J(\theta_1))(r - J(\theta_1)) - (\eta - J(\theta_2))(r - J(\theta_2))| \\ &\leq |(\eta - J(\theta_1))(r - J(\theta_1)) - (\eta - J(\theta_1))(r - J(\theta_2))| \\ &\quad + |(\eta - J(\theta_1))(r - J(\theta_2)) - (\eta - J(\theta_2))(r - J(\theta_2))| \\ &\leq 4u|J(\theta_1) - J(\theta_2)| \\ &\leq 4ul_j \|\theta_1 - \theta_2\|. \end{aligned}$$

1746 **Step 2:** show that for any  $\theta, \eta_1, \eta_2, O$ , we have  
 1747

$$|\Phi(O, \eta_1, \theta) - \Phi(O, \eta_2, \theta)| \leq 2u|\eta_1 - \eta_2|. \quad (49)$$

1749 By definition, we have  
 1750

$$\begin{aligned} |\Phi(O, \eta_1, \theta) - \Phi(O, \eta_2, \theta)| &= |(\eta_1 - J(\theta))(r - J(\theta)) - (\eta_2 - J(\theta))(r - J(\theta))| \\ &\leq 2u|\eta_1 - \eta_2|. \end{aligned}$$

1753 **Step 3:** show that for original tuple  $O_t$  and the auxiliary tuple  $\tilde{O}_t$ , conditioned on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ ,  
 1754 we have  
 1755

$$|\mathbb{E}[\Phi(O_t, \eta_{t-\tau}, \theta_{t-\tau})] - \mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})]| \leq ul_\pi \sum_{k=t-\tau}^t \mathbb{E}\|\theta_k - \theta_{t-\tau}\|. \quad (50)$$

1758 By definition, we have  
 1759

$$\mathbb{E}[\Phi(O_t, \eta_{t-\tau}, \theta_{t-\tau})] - \mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})] = (\eta_{t-\tau} - J(\theta_{t-\tau}))\mathbb{E}[r(s_t, a_t) - r(\tilde{s}_t, \tilde{a}_t)].$$

1762 By definition of total variation norm, we have  
 1763

$$\mathbb{E}[r(s_t, a_t) - r(\tilde{s}_t, \tilde{a}_t)] \leq 2ud_{TV}(\mathbb{P}(O_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})). \quad (51)$$

1765 By Lemma 4, we get  
 1766

$$\begin{aligned} d_{TV}(\mathbb{P}(O_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})) \\ &= d_{TV}(\mathbb{P}((s_t, a_t) \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})) \\ &\leq d_{TV}(\mathbb{P}(s_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{s}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})) + \frac{1}{2}l_\pi \mathbb{E}\|\theta_t - \theta_{t-\tau}\| \\ &\leq d_{TV}(\mathbb{P}(O_{t-1} \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_{t-1} \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})) + \frac{1}{2}l_\pi \mathbb{E}\|\theta_t - \theta_{t-\tau}\|. \end{aligned}$$

1773 Repeat the above argument from  $t$  to  $t - \tau$ , we have  
 1774

$$d_{TV}(\mathbb{P}(O_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})) \leq \frac{1}{2}l_\pi \sum_{k=t-\tau}^t \mathbb{E}\|\theta_k - \theta_{t-\tau}\|. \quad (52)$$

1778 Plugging Eq. (52) into Eq. (51), we have  
 1779

$$|\mathbb{E}[\Phi(O_t, \eta_{t-\tau}, \theta_{t-\tau})] - \mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})]| \leq ul_\pi \sum_{k=t-\tau}^t \mathbb{E}\|\theta_k - \theta_{t-\tau}\|.$$

1782 **Step 4:** show that conditioned on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ , we have  
 1783

$$\mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})] \leq 4u^2\kappa\rho^{\tau-1}. \quad (53)$$

1785 Note that according to definition, we have  
 1786

$$\mathbb{E}[\Phi(O'_{t-\tau}, \eta_{t-\tau}, \theta_{t-\tau})|\theta_{t-\tau}] = 0,$$

1788 where  $O'_{t-\tau} = (s'_{t-\tau}, a'_{t-\tau}, s'_{t-\tau+1})$  is the tuple generated by  $s'_{t-\tau} \sim \mu_{\theta_{t-\tau}}, a'_{t-\tau} \sim \pi_{\theta_{t-\tau}}, s'_{t-\tau+1} \sim \mathcal{P}$ . From the uniform ergodicity in Assumption 6, it shows that  
 1789

$$d_{TV}(\mathbb{P}(\tilde{s}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}}) \leq \kappa\rho^{\tau-1}.$$

1792 Then we have  
 1793

$$\begin{aligned} \mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})] &= \mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau}) - \Phi(O'_{t-\tau}, \eta_{t-\tau}, \theta_{t-\tau})] \\ &= \mathbb{E}[(\eta_{t-\tau} - J(\theta_{t-\tau}))(r(\tilde{s}_t, \tilde{a}_t) - r(s'_{t-\tau}, a'_{t-\tau}))] \\ &\leq 4u^2 d_{TV}(\mathbb{P}(\tilde{O}_{t-\tau} = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}} \otimes \mathcal{P}) \\ &\leq 4u^2\kappa\rho^{\tau-1}. \end{aligned}$$

1799 Combining Eq. (48), Eq. (49), Eq. (50), and Eq. (53), we have  
 1800

$$\begin{aligned} \mathbb{E}[\Phi(O_t, \eta_t, \theta_t)] &= \mathbb{E}[\Phi(O_t, \eta_t, \theta_t) - \Phi(O_t, \eta_t, \theta_{t-\tau})] + \mathbb{E}[\Phi(O_t, \eta_t, \theta_{t-\tau}) - \Phi(O_t, \eta_{t-\tau}, \theta_{t-\tau})] \\ &\quad + \mathbb{E}[\Phi(O_t, \eta_{t-\tau}, \theta_{t-\tau}) - \Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})] + \mathbb{E}[\Phi(\tilde{O}_t, \eta_{t-\tau}, \theta_{t-\tau})] \\ &\leq 4ul_j\mathbb{E}\|\theta_t - \theta_{t-\tau}\| + 2u\mathbb{E}|\eta_t - \eta_{t-\tau}| + ul_\pi \sum_{i=t-\tau}^t \mathbb{E}\|\theta_i - \theta_{t-\tau}\| + 4u^2\kappa\rho^{\tau-1} \\ &\leq 16u^2\tau\alpha l_j + 4u^2\tau\gamma + 4u^2\tau(\tau+1)\alpha l_\pi + 4u^2\kappa\rho^{\tau-1}. \end{aligned}$$

1807 which concludes the proof.  $\square$

### 1810 Proof of Lemma 8.

1811 *Proof.* We will divide the proof of this lemma into four steps.

1813 **Step 1:** show that for any  $\theta_1, \theta_2, \omega$  and tuple  $O = (s, a, s')$ , we have  
 1814

$$|\Psi(O, \omega, \theta_1) - \Psi(O, \omega, \theta_2)| \leq c_1\|\theta_1 - \theta_2\|, \quad (54)$$

1816 where  $c_1 = 4u^2l_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho}) + 2ul_jl_v + 4ul_\omega l_v$ .  
 1817

1818 By definition of  $\Psi(O, \omega, \theta)$  in Eq. (13), we have  
 1819

$$\begin{aligned} &|\Psi(O, \omega, \theta_1) - \Psi(O, \omega, \theta_2)| \\ &= |\langle \omega - \omega_1^*, g(O, \omega, \theta_1) - \bar{g}(\omega, \theta_1) \rangle - \langle \omega - \omega_2^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle| \\ &\leq \underbrace{|\langle \omega - \omega_1^*, g(O, \omega, \theta_1) - \bar{g}(\omega, \theta_1) \rangle - \langle \omega - \omega_1^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle|}_{I_1} \\ &\quad + \underbrace{|\langle \omega - \omega_1^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle - \langle \omega - \omega_2^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle|}_{I_2}. \end{aligned}$$

1827 For term  $I_1$ , we have

$$\begin{aligned} I_1 &= |\langle \omega - \omega_1^*, g(O, \omega, \theta_1) - \bar{g}(\omega, \theta_1) \rangle - \langle \omega - \omega_1^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle| \\ &= |\langle \omega - \omega_1^*, g(O, \omega, \theta_1) - g(O, \omega, \theta_2) \rangle| + |\langle \omega - \omega_1^*, \bar{g}(\omega, \theta_1) - \bar{g}(\omega, \theta_2) \rangle| \\ &= |\langle \omega - \omega_1^*, (J(\theta_1) - J(\theta_2))\nabla\hat{V}(\omega; s) \rangle| + |\langle \omega - \omega_1^*, \bar{g}(\omega, \theta_1) - \bar{g}(\omega, \theta_2) \rangle| \\ &\leq 2ul_jl_v\|\theta_1 - \theta_2\| + 2u\|\bar{g}(\omega, \theta_1) - \bar{g}(\omega, \theta_2)\| \\ &\leq 2ul_jl_v\|\theta_1 - \theta_2\| + 4u^2d_{TV}(\mu_{\theta_1} \otimes \pi_{\theta_1} \otimes \mathcal{P}, \mu_{\theta_2} \otimes \pi_{\theta_2} \otimes \mathcal{P}) \\ &\leq (2ul_jl_v + 4u^2l_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho}))\|\theta_1 - \theta_2\|. \end{aligned}$$

1836 For term  $I_2$ , from Cauchy-Schwartz inequality, we have  
 1837  
 1838  
 1839  
 1840  
 1841

$$\begin{aligned} I_2 &= |\langle \omega - \omega_1^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle - \langle \omega - \omega_2^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle| \\ &= |\langle \omega_1^* - \omega_2^*, g(O, \omega, \theta_2) - \bar{g}(\omega, \theta_2) \rangle| \\ &\leq 4ul_v \|\omega_1^* - \omega_2^*\| \\ &\leq 4ul_v l_\omega \|\theta_1 - \theta_2\|. \end{aligned}$$

1842 Combining the results from  $I_1$  and  $I_2$ , we get  
 1843  
 1844  
 1845

1846 **Step 2:** show that for any  $\theta, \omega_1, \omega_2$  and tuple  $O(s, a, s')$ , we have  
 1847  
 1848

$$|\Psi(O, \omega_1, \theta) - \Psi(O, \omega_2, \theta)| \leq c_2 \|\omega_1 - \omega_2\|, \quad (55)$$

1849 where  $c_2 = 2u(8uh_v + 4l_v^2 + 2l_v)$ .  
 1850

By definition, we have  
 1851

$$\begin{aligned} &|\Psi(O, \omega_1, \theta) - \Psi(O, \omega_2, \theta)| \\ &= |\langle \omega_1 - \omega^*, g(O, \omega_1, \theta) - \bar{g}(\omega_1, \theta) \rangle - \langle \omega_2 - \omega^*, g(O, \omega_2, \theta) - \bar{g}(\omega_2, \theta) \rangle| \\ &\leq |\langle \omega_1 - \omega^*, g(O, \omega_1, \theta) - \bar{g}(\omega_1, \theta) \rangle - \langle \omega_1 - \omega^*, g(O, \omega_2, \theta) - \bar{g}(\omega_2, \theta) \rangle| \\ &\quad + |\langle \omega_1 - \omega^*, g(O, \omega_2, \theta) - \bar{g}(\omega_2, \theta) \rangle - \langle \omega_2 - \omega^*, g(O, \omega_2, \theta) - \bar{g}(\omega_2, \theta) \rangle| \\ &\leq 2u \|(g(O, \omega_1, \theta) - g(O, \omega_2, \theta)) - (\bar{g}(\omega_1, \theta) - \bar{g}(\omega_2, \theta))\| + 4ul_v \|\omega_1 - \omega_2\|. \end{aligned}$$

1857 It holds that  
 1858

$$\begin{aligned} \|(g(O, \omega_1, \theta) - g(O, \omega_2, \theta))\| &= \|(r(s, a) - J(\theta))(\nabla \hat{V}(\omega_1; s) - \nabla \hat{V}(\omega_2; s)) \\ &\quad + \hat{V}(\omega_1; s') \nabla \hat{V}(\omega_1; s) - \hat{V}(\omega_2; s') \nabla \hat{V}(\omega_2; s) \\ &\quad + \hat{V}(\omega_2; s) \nabla \hat{V}(\omega_2; s) - \hat{V}(\omega_1; s) \nabla \hat{V}(\omega_1; s)\| \\ &\leq \|\hat{V}(\omega_1; s') \nabla \hat{V}(\omega_1; s) - \hat{V}(\omega_1; s') \nabla \hat{V}(\omega_2; s)\| \\ &\quad + \|\hat{V}(\omega_1; s) \nabla \hat{V}(\omega_2; s) - \hat{V}(\omega_2; s) \nabla \hat{V}(\omega_2; s)\| \\ &\quad + \|\hat{V}(\omega_2; s) \nabla \hat{V}(\omega_2; s) - \hat{V}(\omega_1; s) \nabla \hat{V}(\omega_1; s)\| \\ &\quad + 2uh_v \|\omega_1 - \omega_2\| \\ &\leq 2uh_v \|\omega_1 - \omega_2\| + 2l_v^2 \|\omega_1 - \omega_2\| + 2uh_v \|\omega_1 - \omega_2\| \\ &= (4uh_v + 2l_v^2) \|\omega_1 - \omega_2\|. \end{aligned}$$

1871 It follows that  
 1872

$$\mathbb{E} \|(g(O, \omega_1, \theta) - g(O, \omega_2, \theta)) - (\bar{g}(\omega_1, \theta) - \bar{g}(\omega_2, \theta))\| \leq (8uh_v + 4l_v^2) \mathbb{E} \|\omega_1 - \omega_2\|.$$

1873 Therefore, we obtain  
 1874

$$\mathbb{E} |\Psi(O, \omega_1, \theta) - \Psi(O, \omega_2, \theta)| \leq c_2 \|\omega_1 - \omega_2\|,$$

1876 where  $c_2 = 2u(8uh_v + 4l_v^2 + 2l_v)$ .  
 1877

1878 **Step 3:** show that for tuples  $O_t = (s_t, a_t, s_{t+1})$  and  $\tilde{O}_t = (\tilde{s}_t, \tilde{a}_t, \tilde{s}_{t+1})$ . Conditioning on  $s_{t-\tau+1}$   
 1879 and  $\theta_{t-\tau}$ , we have  
 1880

$$\mathbb{E} [\Psi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] \leq 16u^4 l_v l_\pi \tau (\tau + 1) \alpha. \quad (56)$$

1881 By the definition of total variation norm, we have  
 1882

$$\begin{aligned} &\mathbb{E} [\Psi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] \\ &= \mathbb{E} [\langle \omega_{t-\tau} - \omega_{t-\tau}^*, g(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - g(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau}) \rangle] \\ &\leq 8u^2 l_v d_{TV} (\mathbb{P}(O_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})) \\ &\stackrel{(1)}{\leq} 4u^2 l_v l_\pi \sum_{k=t-\tau}^t \mathbb{E} \|\theta_k - \theta_{t-\tau}\| \\ &\leq 16u^4 l_v l_\pi \tau (\tau + 1) \alpha, \end{aligned}$$

1890 where (1) follows from Eq. (52).  
1891

1892 **Step 4:** show that conditioning on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ ,

$$1893 \quad \mathbb{E}[\Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] \leq 8u^2 l_v \kappa \rho^{\tau-1} \quad (57)$$

1894 From the definition of  $\Psi(O, \omega, \theta)$ , we have  
1895

$$1896 \quad \mathbb{E}[\Psi(O'_{t-\tau}, \omega_{t-\tau}, \theta_{t-\tau})|s_{t-\tau+1}, \theta_{t-\tau}] = 0,$$

1897 where  $O'_{t-\tau}$  is the tuple generated by  $s'_{t-\tau} \sim \mu_{\theta_{t-\tau}}$ ,  $a'_{t-\tau} \sim \pi_{\theta_{t-\tau}}$ ,  $s'_{t-\tau+1} \sim \mathcal{P}$ . From Assumption  
1898 6, we have  
1899

$$1900 \quad d_{TV}(\mathbb{P}(\tilde{s}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}}) \leq \kappa \rho^{\tau-1}.$$

1901 Then, it holds that  
1902

$$\begin{aligned} 1903 \quad \mathbb{E}[\Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] &= \mathbb{E}[\Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Psi(O'_{t-\tau}, \omega_{t-\tau}, \theta_{t-\tau})] \\ 1904 &= \mathbb{E}\langle \omega_{t-\tau} - \omega_{t-\tau}^*, g(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau}) - g(O'_{t-\tau}, \omega_{t-\tau}, \theta_{t-\tau}) \rangle \\ 1905 &\leq 8u^2 l_v d_{TV}(\mathbb{P}(\tilde{O}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}} \otimes \mathcal{P}) \\ 1906 &= 8u^2 l_v d_{TV}(\mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}}) \\ 1907 &= 8u^2 l_v d_{TV}(\mathbb{P}(\tilde{s}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}}) \\ 1908 &\leq 8u^2 l_v \kappa \rho^{\tau-1}. \\ 1909 \end{aligned}$$

1910 Combining Eq. (54), Eq. (55), Eq. (56), and Eq. (57), we have  
1911

$$\begin{aligned} 1912 \quad \mathbb{E}[\Psi(O_t, \omega_t, \theta_t)] &= \mathbb{E}[\Psi(O_t, \omega_t, \theta_t) - \Psi(O_t, \omega_t, \theta_{t-\tau})] + \mathbb{E}[\Psi(O_t, \omega_t, \theta_{t-\tau}) - \Psi(O_t, \omega_{t-\tau}, \theta_{t-\tau})] \\ 1913 &\quad + \mathbb{E}[\Psi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] + \mathbb{E}[\Psi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] \\ 1914 &\leq c_1 \mathbb{E}\|\theta_t - \theta_{t-\tau}\| + c_2 \mathbb{E}\|\omega_t - \omega_{t-\tau}\| + 16u^4 l_v l_\pi \tau(\tau+1)\alpha + 8u^2 l_v \kappa \rho^{\tau-1} \\ 1915 &\leq 4c_1 u^2 \tau \alpha + 4c_2 u^2 l_v \tau \beta + 16u^4 l_v l_\pi \tau(\tau+1)\alpha + 8u^2 l_v \kappa \rho^{\tau-1} \\ 1916 \end{aligned}$$

1917 where  $c_1 = 4u^2 l_\pi (1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho}) + 2u l_j l_v + 4u l_\omega l_v$  and  $c_2 = 2u(8u h_v + 4l_v^2 + 2l_v)$ .  $\square$   
1918

## 1919 Proof of Lemma 9.

1920 *Proof.* We will divide the proof of this lemma into four steps.  
1921

1922 **Step 1:** show that for any  $O, \omega, \theta_1, \theta_2$ , we have  
1923

$$1924 \quad \|\Xi(O, \omega, \theta_1) - \Xi(O, \omega, \theta_2)\| \leq c_3 \|\theta_1 - \theta_2\|, \quad (58)$$

1925 where  $c_3 := 8u^2 l_\omega^2 + 8u^3 h_\omega + 6u l_\omega (2u h_\pi + u l_j + u l_v l_\omega)$ .  
1926

1927 Since  $\Xi(O, \omega, \theta) = \langle \omega - \omega^*, (\nabla \omega_\theta^*)^\top (\mathbb{E}_{O'}[h(O', \theta)] - h(O, \theta)) \rangle$ , we define  $\mathbb{E}_\theta[h(O', \theta)] :=$   
1928  $\mathbb{E}_{O'}[h(O', \theta)]$ , where  $\mathbb{E}_\theta$  is the shorthand of  $\mathbb{E}_{O' \sim (\mu_\theta, \pi_\theta, \mathcal{P})}$ . In the following, we will show that  
1929 each term in  $\Xi(O, \omega, \theta)$  is Lipschitz with respect to  $\theta$ .  
1930

1931 Term  $\omega$  is not related to  $\theta$ , term  $\omega^* := \omega^*(\theta)$  is  $l_\omega$ -Lipschitz, and term  $\nabla \omega_\theta^*$  is  $h_\omega$ -Lipschitz.  
1932

1933 For term  $h(O, \theta)$ , denote  $\delta(O, \theta) := r(s, a) - J(\theta) + \hat{V}(\omega^*(\theta); s') - \hat{V}(\omega^*(\theta); s)$ , we have  
1934

$$\begin{aligned} 1935 \quad &\|h(O, \theta_1) - h(O, \theta_2)\| \\ 1936 &= \|\delta(O, \theta_1) \nabla \log \pi_{\theta_1}(a|s) - \delta(O, \theta_2) \nabla \log \pi_{\theta_2}(a|s)\| \\ 1937 &\leq \|\delta(O, \theta_1) \nabla \log \pi_{\theta_1}(a|s) - \delta(O, \theta_1) \nabla \log \pi_{\theta_2}(a|s)\| \\ 1938 &\quad + \|\delta(O, \theta_1) \nabla \log \pi_{\theta_2}(a|s) - \delta(O, \theta_2) \nabla \log \pi_{\theta_2}(a|s)\| \\ 1939 &\leq 4u h_\pi \|\theta_1 - \theta_2\| + u |\delta(O, \theta_1) - \delta(O, \theta_2)| \\ 1940 &\leq 4u h_\pi \|\theta_1 - \theta_2\| + u (|J(\theta_1) - J(\theta_2)| + \|\hat{V}(\omega^*(\theta_1); s') - \hat{V}(\omega^*(\theta_2); s')\| \\ 1941 &\quad + \|\hat{V}(\omega^*(\theta_1); s) - \hat{V}(\omega^*(\theta_2); s)\|) \\ 1942 &\leq (4u h_\pi + 2u l_j) \|\theta_1 - \theta_2\| + 2u l_v \|\omega^*(\theta_1) - \omega^*(\theta_2)\| \\ 1943 &\leq l_h \|\theta_1 - \theta_2\|. \end{aligned}$$

1944 Hence we have  $h(O, \theta)$  is  $l_h$ -Lipschitz, where

$$1945 \quad l_h = 4uh_\pi + 2ul_j + 2ul_vl_\omega. \quad (59)$$

1946 For term  $\mathbb{E}_\theta[h(O', \theta)]$ , we have

$$\begin{aligned} 1947 \quad & \|\mathbb{E}_{\theta_1}[h(O', \theta_1)] - \mathbb{E}_{\theta_2}[h(O', \theta_2)]\| \\ 1948 \quad & \leq \|\mathbb{E}_{\theta_1}[h(O', \theta_1)] - \mathbb{E}_{\theta_1}[h(O', \theta_2)]\| + \|\mathbb{E}_{\theta_1}[h(O', \theta_2)] - \mathbb{E}_{\theta_2}[h(O', \theta_2)]\| \\ 1949 \quad & \leq \|\mathbb{E}_{\theta_1}[h(O', \theta_1) - h(O', \theta_2)]\| + \|\mathbb{E}_{\theta_1}[h(O', \theta_2)] - \mathbb{E}_{\theta_2}[h(O', \theta_2)]\| \\ 1950 \quad & \leq l_h\|\theta_1 - \theta_2\| + \|\mathbb{E}_{\theta_1}[h(O', \theta_2)] - \mathbb{E}_{\theta_2}[h(O', \theta_2)]\| \\ 1951 \quad & \leq l_h\|\theta_1 - \theta_2\| + 4u^2d_{TV}(\mu_{\theta_1} \otimes \pi_{\theta_1}, \mu_{\theta_2} \otimes \pi_{\theta_2}) \\ 1952 \quad & \leq (l_h + 4u^2l_\pi(1 + \lceil \log_\rho \kappa^{-1} \rceil + \frac{1}{1-\rho}))\|\theta_1 - \theta_2\| \\ 1953 \quad & \stackrel{(1)}{\leq} (l_h + 2ul_j)\|\theta_1 - \theta_2\| \\ 1954 \quad & \stackrel{(2)}{\leq} 2l_h\|\theta_1 - \theta_2\|, \end{aligned}$$

1955 where (1) follows from Eq. (19) and (2) comes from the definition of  $l_h$  in Eq. (59).

1956 Then we have  $\omega - \omega_\theta^*$  is  $u$ -bounded and  $l_\omega$ -Lipschitz;  $\nabla\omega_\theta^*$  is  $l_\omega$ -bounded and  $h_\omega$ -Lipschitz;  $\mathbb{E}_\theta[h(O', \theta)] - h(O, \theta)$  is  $8u^2$ -bounded and  $3l_h$ -Lipschitz. By the triangle inequality, we have

$$1957 \quad \|\Xi(O, \omega, \theta_1) - \Xi(O, \omega, \theta_2)\| \leq (8u^2l_\omega^2 + 8u^3h_\omega + 3ul_\omega l_h)\|\theta_1 - \theta_2\| \leq c_3\|\theta_1 - \theta_2\|,$$

1958 where  $c_3 := 8u^2l_\omega^2 + 8u^3h_\omega + 6ul_\omega(2uh_\pi + ul_j + ul_vl_\omega)$ .

1959 **Step 2:** show that

$$1960 \quad \|\Xi(O, \omega_1, \theta) - \Xi(O, \omega_2, \theta)\| \leq 4u^2l_\omega\|\omega_1 - \omega_2\|. \quad (60)$$

1961 Actually, we have

$$\begin{aligned} 1962 \quad & \|\Xi(O, \omega_1, \theta) - \Xi(O, \omega_2, \theta)\| = \|\langle \omega_1 - \omega_2, (\nabla\omega_\theta^*)^\top \mathbb{E}_{O'}[h(O', \theta)] - h(O, \theta) \rangle\| \\ 1963 \quad & \leq 4u^2l_\omega\|\omega_1 - \omega_2\|. \end{aligned}$$

1964 **Step 3:** show that for tuples  $O_t = (s_t, a_t, s_{t+1})$  and  $\tilde{O}_t = (\tilde{s}_t, \tilde{a}_t, \tilde{s}_{t+1})$ . Conditioning on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ , we have

$$1965 \quad \mathbb{E}[\Xi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] \leq 8u^5l_\omega l_\pi \tau(\tau+1)\alpha. \quad (61)$$

1966 By definition of  $\Xi(O, \omega, \theta)$ , we have

$$\begin{aligned} 1967 \quad & \|\mathbb{E}[\Xi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})]\| \\ 1968 \quad & = \|\mathbb{E}[\langle \omega_{t-\tau} - \omega_{t-\tau}^*, (\nabla\omega_{t-\tau}^*)^\top (h(\tilde{O}_t, \theta_{t-\tau}) - h(O_t, \theta_{t-\tau})) \rangle]\| \\ 1969 \quad & \leq 4u^3l_\omega d_{TV}(\mathbb{P}(O_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})), \end{aligned} \quad (62)$$

1970 where the inequality comes from the definition of total variation distance. The total variation norm  
1971 between  $O_t$  and  $\tilde{O}_t$  has been computed in Eq. (52). Plugging Eq. (52) into Eq. (62), we get

$$\begin{aligned} 1972 \quad & \|\mathbb{E}[\Xi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})]\| \leq 2u^3l_\omega l_\pi \sum_{k=t-\tau}^t \mathbb{E}\|\theta_k - \theta_{t-\tau}\| \\ 1973 \quad & \leq 8u^5l_\omega l_\pi \tau(\tau+1)\alpha. \end{aligned}$$

1974 **Step 4:** Show that conditioning on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ , we have

$$1975 \quad \|\mathbb{E}[\Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})]\| \leq 8u^3l_\omega \kappa \rho^{\tau-1}. \quad (63)$$

1976 It can be shown that

$$\begin{aligned} 1977 \quad & \|\mathbb{E}[\Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})]\| \stackrel{(1)}{=} \|\mathbb{E}[\Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Xi(O'_{t-\tau}, \omega_{t-\tau}, \theta_{t-\tau})]\| \\ 1978 \quad & \stackrel{(2)}{\leq} 8u^3l_\omega d_{TV}(\mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}} \otimes \mathcal{P}), \end{aligned}$$

1998 where (1) is due to the fact that  $O'_t$  is from the stationary distribution which satisfies  
 1999  $\mathbb{E}[\Xi(O'_{t-\tau}, \omega_{t-\tau}, \theta_{t-\tau}) | \theta_{t-\tau}, s_{t-\tau+1}] = 0$  and (2) follows from the definition of total variation  
 2000 distance. From Assumption 6, we know that

$$d_{TV}(\mathbb{P}(\tilde{s}_t \in \cdot), \mu_{\theta_{t-\tau}}) \leq \kappa \rho^{\tau-1}.$$

2003 Therefore, we have

$$\begin{aligned} \|\mathbb{E}[\Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})]\| &\leq 8u^3 l_\omega d_{TV}(\mathbb{P}(\tilde{O}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}} \otimes \mathcal{P}) \\ &= 8u^3 l_\omega d_{TV}(\mathbb{P}(\tilde{s}_t, \tilde{a}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}}) \\ &= 8u^3 l_\omega d_{TV}(\mathbb{P}(\tilde{s}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}}) \\ &\leq 8u^3 l_\omega \kappa \rho^{\tau-1}. \end{aligned}$$

2010 Combining Eq. (58)-Eq. (63), we can decompose the Markovian bias as

$$\begin{aligned} \mathbb{E}[\Xi(O_t, \omega_t, \theta_t)] &= \mathbb{E}[\Xi(O_t, \omega_t, \theta_t) - \Xi(O_t, \omega_t, \theta_{t-\tau})] + \mathbb{E}[\Xi(O_t, \omega_t, \theta_{t-\tau}) - \Xi(O_t, \omega_{t-\tau}, \theta_{t-\tau})] \\ &\quad + \mathbb{E}[\Xi(O_t, \omega_{t-\tau}, \theta_{t-\tau}) - \Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] + \mathbb{E}[\Xi(\tilde{O}_t, \omega_{t-\tau}, \theta_{t-\tau})] \\ &\leq c_3 \mathbb{E}\|\theta_t - \theta_{t-\tau}\| + 4u^2 l_\omega \mathbb{E}\|\omega_t - \omega_{t-\tau}\| + 8u^5 l_\omega l_\pi \tau(\tau+1)\alpha + 8u^3 l_\omega \kappa \rho^{\tau-1} \\ &\leq 4c_3 u^2 \tau \alpha + 4u^3 l_\omega \tau \beta + 8u^5 l_\omega l_\pi \tau(\tau+1)\alpha + 8u^3 l_\omega \kappa \rho^{\tau-1}. \end{aligned}$$

2017 Thus we conclude our proof.  $\square$

## 2019 Proof of Lemma 10.

2021 *Proof.* We will divide the proof of this lemma into three steps.

2022 **Step 1:** show that

$$|\Theta(O, \theta_1) - \Theta(O, \theta_2)| \leq (2uBh_j + 3l_j l_h) \|\theta_1 - \theta_2\|, \quad (64)$$

2025 where  $l_h = 4uh_\pi + 2ul_j + 2ul_v l_\omega$  is defined in the proof of Lemma 9.

2026 Since  $\Theta(O, \theta) = \langle \nabla J(\theta), \mathbb{E}_{O'_\theta}[h(O'_\theta, \theta)] - h(O, \theta) \rangle$ , we will show that each term in  $\Theta(O, \theta)$  is  
 2027 Lipschitz.

2029 For the term  $\nabla J(\theta)$ , we know it's  $l_j$ -bounded and  $h_j$ -Lipschitz. For term  $\mathbb{E}_\theta[h(O', \theta)] - h(O, \theta)$ , we have shown in the proof of Lemma 9 that it's  $8u^2$ -bounded and  $3l_h$ -Lipschitz. By the triangle  
 2030 inequality, we have

$$|\Theta(O, \theta_1) - \Theta(O, \theta_2)| \leq (8u^2 h_j + 3l_j l_h) \|\theta_1 - \theta_2\|$$

2034 **Step 2:** show that conditioning on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ , we have

$$\mathbb{E}[\Theta(O_t, \theta_{t-\tau}) - \Theta(\tilde{O}_t, \theta_{t-\tau})] \leq 2u^2 l_j l_\pi \sum_{k=t-\tau}^t \|\theta_k - \theta_{t-\tau}\| \quad (65)$$

2038 By definition of  $\Theta(O, \theta)$ , we have

$$\begin{aligned} &|\mathbb{E}[\Theta(O_t, \theta_{t-\tau}) - \Theta(\tilde{O}_t, \theta_{t-\tau})]| \\ &= |\mathbb{E}[\langle \nabla J(\theta_{t-\tau}), h(\tilde{O}_t, \theta_{t-\tau}) - h(O_t, \theta_{t-\tau}) \rangle]| \\ &\leq 4u^2 l_j d_{TV}(\mathbb{P}(O_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau})), \end{aligned} \quad (66)$$

2044 where the inequality comes from the definition of total variation distance. The total variation dis-  
 2045 tance between  $O_t$  and  $\tilde{O}_t$  has been computed in Eq. (52). Plugging Eq. (52) into Eq. (66), we get

$$|\mathbb{E}[\Theta(O_t, \theta_{t-\tau}) - \Theta(\tilde{O}_t, \theta_{t-\tau})]| \leq 2u^2 l_j l_\pi \sum_{k=t-\tau}^t \|\theta_k - \theta_{t-\tau}\|.$$

2050 **Step 3:** show that conditioning on  $s_{t-\tau+1}$  and  $\theta_{t-\tau}$ , we have

$$|\mathbb{E}[\Theta(\tilde{O}_t, \theta_{t-\tau}) - \Theta(O'_{t-\tau}, \theta_{t-\tau})]| \leq 4u^2 l_j \kappa \rho^{\tau-1}. \quad (67)$$

2052 From the definition of  $\Theta(O, \theta)$ , we have  
 2053

$$\begin{aligned}
 2054 \quad & |\mathbb{E}[\Theta(\tilde{O}_t, \theta_{t-\tau}) - \Theta(O'_{t-\tau}, \theta_{t-\tau})]| = |\mathbb{E}[\langle \nabla J(\theta_{t-\tau}), h(O'_t, \theta_{t-\tau}) \rangle - \langle \nabla J(\theta_{t-\tau}), h(\tilde{O}_t, \theta_{t-\tau}) \rangle]| \\
 2055 \quad & \leq 4u^2 l_j d_{TV}(\mathbb{P}(\tilde{O}_t \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}} \otimes \mathcal{P}) \\
 2056 \quad & = 4u^2 l_j d_{TV}(\mathbb{P}((\tilde{s}_t, \tilde{a}_t) \in \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}} \otimes \pi_{\theta_{t-\tau}}) \\
 2057 \quad & = 4u^2 l_j d_{TV}(\mathbb{P}(\tilde{s}_t = \cdot | s_{t-\tau+1}, \theta_{t-\tau}), \mu_{\theta_{t-\tau}}) \\
 2058 \quad & \leq 4u^2 l_j \kappa \rho^{\tau-1}, \\
 2059 \\
 2060
 \end{aligned}$$

2061 where the last inequality follows from Assumption 6. Therefore, we have  
 2062

$$2063 \quad |\mathbb{E}[\Theta(\tilde{O}_t, \theta_{t-\tau}) - \Theta(O'_{t-\tau}, \theta_{t-\tau})]| \leq 4u^2 l_j \kappa \rho^{\tau-1}.$$

2064 Combining Eq. (64), Eq. (65), and Eq. (67), we can decompose the Markovian bias as  
 2065

$$\begin{aligned}
 2066 \quad & \mathbb{E}[\Theta(O_t, \theta_t)] = \mathbb{E}[\Theta(O_t, \theta_t) - \Theta(O_t, \theta_{t-\tau})] \\
 2067 \quad & + \mathbb{E}[\Theta(O_t, \theta_{t-\tau}) - \Theta(\tilde{O}_t, \theta_{t-\tau})] \\
 2068 \quad & + \mathbb{E}[\Theta(\tilde{O}_t, \theta_{t-\tau}) - \Theta(O'_{t-\tau}, \theta_{t-\tau})] \\
 2069 \quad & + \mathbb{E}[\Theta(O'_{t-\tau}, \theta_{t-\tau})], \\
 2070
 \end{aligned}$$

2071 where  $\tilde{O}_t$  is from the auxiliary Markovian chain defined in Eq. (9) and  $O'_{t-\tau}$  is from the stationary  
 2072 distribution which satisfies  $\mathbb{E}[\Theta(O'_{t-\tau}, \theta_{t-\tau}) | \theta_{t-\tau}] = 0$ .  
 2073

2074 Then we have

$$\begin{aligned}
 2075 \quad & \mathbb{E}[\Theta(O_t, \theta_t)] \leq (8u^2 h_j + 3l_j l_h) \mathbb{E}\|\theta_t - \theta_{t-\tau}\| + 2u^2 l_j l_\pi \sum_{k=t-\tau}^t \mathbb{E}\|\theta_k - \theta_{t-\tau}\| + 4u^2 l_j \kappa \rho^{\tau-1} \\
 2076 \quad & \leq 4u^2 (8u^2 h_j + 3l_j l_h) \tau \alpha + 8u^4 l_j l_\pi \tau (\tau+1) \alpha + 4u^2 l_j \kappa \rho^{\tau-1}. \\
 2077 \\
 2078
 \end{aligned}$$

2079 Therefore, we conclude the proof.  $\square$   
 2080

## 2081 H DECLARATION

2082 I declare that Large Language Models (LLMs) were used solely for language polishing in this paper.  
 2083 No other usage of LLMs was involved.

2084  
 2085  
 2086  
 2087  
 2088  
 2089  
 2090  
 2091  
 2092  
 2093  
 2094  
 2095  
 2096  
 2097  
 2098  
 2099  
 2100  
 2101  
 2102  
 2103  
 2104  
 2105