
Under review as a conference paper at ICLR 2022

MITIGATING DATASET BIAS USING PER-SAMPLE
GRADIENTS FROM A BIASED CLASSIFIER

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of deep neural networks (DNNs) primarily depends on the con-
figuration of the training set. Specifically, biased training sets can make the trained
model have unintended prejudice, which causes severe errors in the inference.
Although several studies have addressed biased training using human supervision,
few studies have been conducted without human knowledge because biased infor-
mation cannot be easily extracted without human involvement. This study proposes
a simple method to remove prejudice from a biased model without additional
information and reconstruct a balanced training set based on the biased training set.
The novel training method consists of three steps: (1) training biased DNNs, (2)
measuring the contribution to the prejudicial training and generating balanced data
batches to prevent the prejudice, (3) training de-biased DNNs with the balanced
data. We test the training method based on various synthetic and real-world biased
sets and discuss how gradients can efficiently detect minority samples. The experi-
ment demonstrates that the detection method based on the gradients helps erase
prejudice, resulting in improved inference accuracy by up to 19.58% compared to
the other state-of-the-art algorithm.

1 INTRODUCTION

Over the past decade, deep neural networks (DNNs) have been a focus of research owing to human-
like performances in various tasks, e.g., image classification (Krizhevsky et al., 2012), object de-
tection (Girshick, 2015), and image generation (Goodfellow et al., 2014). Despite these impressive
results, deploying DNNs directly in real-world problems remains a significant challenge due to the
difficulties in obtaining well-curated training sets. Specifically, unintendedly biased information in
training sets causes prejudice, resulting in wrong decisions at inference time (Torralba & Efros, 2011;
Shrestha et al., 2021). For instance, most “ski” images contain “skier.” This unintended correlation
can recommend a wrong shortcut for “ski” by examining the person.

Prior studies have employed human supervision (i.e., providing additional labels related to the
bias) (Kim et al., 2019; McDuff et al., 2019; Singh et al., 2020) or giving a specific information
about a biased domain (Lee et al., 2019; Geirhos et al., 2018), which is very expensive, to reduce
the influence of a “skier” on “ski” class images. Recently, studies on replacing human labor with
DNNs have been actively discussed (Li & Vasconcelos, 2019; Nam et al., 2020; Cadene et al., 2019;
Bahng et al., 2020; Clark et al., 2019; Le Bras et al., 2020). Typically, two separate networks have
been used: the biased network and the de-biased network. A biased model learns to replace human
intervention and teaches a de-biased model using the prejudiced knowledge of the biased model.

Previous studies based on the two mentioned networks approaches have had two directions: adjusting
objectives and resampling. Adjusting the objective refers to a method that obtains weighted loss or
additional regularizers for each sample differently, where the weights or regularizers are obtained
from the biased model (Nam et al., 2020; Cadene et al., 2019; Bahng et al., 2020; Clark et al., 2019).
Methods that adjust the objective have been proposed frequently due to their several advantages,
such as the implementational simplicity. However, according to (An et al., 2020), adjusting-objective
approaches suffers instability with stochastic gradient descent (SGD) type optimizers owing to the
high variance of learning weights per sample.

Alternatively, resampling methods could reconstruct balanced sets. Previous research (Le Bras et al.,
2020; Li & Vasconcelos, 2019; Li et al., 2018b; Kim et al., 2021a) has focused on which samples

1

Under review as a conference paper at ICLR 2022

should be oversampled to build a balanced set. However, almost all prior works has focused on
expensive human labor to tune hyperparameters related to the resampling densities of data points. For
instance, it is difficult to set the amount of resampling of each sample without knowing how much
biased the training set is.

The de-biasing methods, belonging to both adjusting-objective and resampling approaches are
designed to emphasize samples that are hard for a model to learn. However, a few noisy labels (i.e.,
mislabeled samples) in the training set could significantly interfere with such de-biasing because it
might be difficult to discriminate between two types of hard samples: noisy samples that the model
should not learn and rare samples that have to learn. Although training sets have noisy labels in
practice (Natarajan et al., 2013), to the best of our knowledge, no study considers the de-biasing
problem under noisy label cases.

Contribution. In this study, we propose a score-based resampling scheme for de-biasing, which
does not require hyperparameters related to training set reconstruction. Instead of hyperparameters,
we construct two types of scores that leverage gradients of the biased model trained on the given
biased set. The proposed scores determine the required proportions for each sample in training set
reconstruction.

Before designing scores, we explain our hypothesis that gradients have remarkable differences
between samples generating prejudice and the others , and check it empirically. The hypothesis is
based on the following observations. First, the gradient magnitudes (especially the Euclidian norm) of
the samples which contributes to the prejudice are relatively smaller than those of the others. Second,
samples that make prejudice and the others do not have significantly different gradient directions,
measured by the estimated likelihood of the von Mises-Fisher (vMF) distribution (Banerjee et al.,
2005; Lee et al., 2018).

Based on these observations, we propose two types of scores and a resampling-based de-biasing
method. The proposed method consists of three steps similar to previous resampling studies (Li
& Vasconcelos, 2019; Le Bras et al., 2020; Kim et al., 2021a). The first step is to train a biased
model based on a biased raw training set. Afterward, the scores are obtained by the biased model.
The mini-batch sampler generates balanced mini-batches using the scores, and it feeds them into an
ultimate model for de-biased training.

In addition, we investigate the side effects of de-biasing methods when incorrectly labeled samples
are in the training set. We observe significant performance degradations of de-biasing methods with a
small portion of noisy data. To alleviate the negative side effects of noisy data, we first de-noise the
training set using loss values from the our observation that noisy label samples have higher losses
than clean samples and then run de-noising algorithms. The de-noising step successfully protects the
de-biasing performance.

Finally, we demonstrate the effectiveness of our method using various biased benchmarks (Col-
ored MNIST (Nam et al., 2020; Kim et al., 2019; Li & Vasconcelos, 2019; Bahng et al., 2020),
Watermarked MNIST, Cartoon (Royer et al., 2020), CelebA (Liu et al., 2015), Biased action recogni-
tion (Nam et al., 2020), and ImageNet / ImageNet-A (Bahng et al., 2020; Deng et al., 2009; Hendrycks
et al., 2019)). In most experiments, the proposed method outperforms the current state-of-the-art
methods. In particular, the proposed method improves the accuracy of the unbiased test by 68.00%
from the baseline with a small performance degradation of the biased test of 0.91%. Moreover, we
compare the proposed method with the previous resampling method, REPAIR (Li & Vasconcelos,
2019). The proposed method improves the average accuracy by 71.04%→ 98.14%.

2 RELATED WORK

Mitigating bias with human supervision. In (Goyal et al., 2017; 2020), generated a de-biased
dataset using human labor. A collection of studies (Alvi et al., 2018; Kim et al., 2019; McDuff
et al., 2019; Singh et al., 2020; Teney et al., 2021; Ramaswamy et al., 2021; Tartaglione et al., 2021;
Geirhos et al., 2018; Wang et al., 2018; Lee et al., 2019) aimed to mitigate bias based on one of two
types of human supervision: explicit bias labels and implicit bias information. Other studies (Alvi
et al., 2018; Kim et al., 2019; McDuff et al., 2019; Singh et al., 2020), have used bias labels for each
sample to reduce the influence of the bias labels when classifying target labels. (Tartaglione et al.,

2

Under review as a conference paper at ICLR 2022

2021) proposed the EnD regularizer, which entangles target correlated features and disentangles
biased features. Several authors (Alvi et al., 2018; Kim et al., 2019; Teney et al., 2021) have designed
DNNs as a shared feature extractor and multiple classifiers. In contrast to the shared feature extractor
methods, (McDuff et al., 2019; Ramaswamy et al., 2021) constructed a classifier and conditional
generative adversarial networks, generating test samples to check whether the classifier is biased.
(Singh et al., 2020) proposed a new overlap loss defined by a class activation map (CAM). The
overlap loss reduces the overlapping parts of the CAM outputs of two bias labels and target labels.
Different approaches (Geirhos et al., 2018; Wang et al., 2018; Lee et al., 2019) have assumed that the
characteristics of bias features are known and prevent learning the implicit bias features. To avoid
the known texture bias of ImageNet (Deng et al., 2009), (Geirhos et al., 2018) generated stylized
ImageNet, and (Lee et al., 2019; Wang et al., 2018) inserted filter in front of the models so that the
influence of the backgrounds and colors of the images can be removed.

Mitigating bias without human supervision. To reduce human intervention, recent research (Clark
et al., 2019; Cadene et al., 2019; Bahng et al., 2020; Nam et al., 2020; Li & Vasconcelos, 2019; Li
et al., 2018b; Le Bras et al., 2020; Darlow et al., 2020) has used ensemble-based methods, using two
separate networks with different purposes. The biased model learns biased information and even
empowers it. Then, the biased model is used to train the de-biased model as a pathfinder, which
provides information about the bias features.

The ensemble idea has been used as a key component in several studies, (Clark et al., 2019; Cadene
et al., 2019; Bahng et al., 2020; Nam et al., 2020). (Cadene et al., 2019) proposed a method known as
RUBi, which multiplies the sigmoid output of the biased model by the softmax output of the de-biased
model. (Clark et al., 2019) summed the output of the two models to train the de-biased model with
an entropy regularizer. (Bahng et al., 2020) proposed ReBias algorithm using the Hilbert-Schmidt
independence criterion (HSIC) as an objective of the de-biased model, by independent of the biased
model. Learning from failure (LfF) (Nam et al., 2020) used generalized cross-entropy-based training
that emphasizing the usual samples but ignoring unusual samples.

In contrast, biased and de-biased models are trained sequentially (Li & Vasconcelos, 2019; Li et al.,
2018b; Le Bras et al., 2020; Darlow et al., 2020). Researchers computed the weights to reconstruct
the training set from the biased model and trained the de-biased network on the reconstructed training
set. The REPAIR (Li & Vasconcelos, 2019) and RESOUND (Li et al., 2018b) methods proposed
mutual-information-based weights to create a downsampled dataset. In addition, AFLite (Le Bras
et al., 2020) proposed accuracy-based weights from multiple biased models, unlike LAD (Darlow
et al., 2020) and BiaSwap (Kim et al., 2021a), which generated new images using an autoencoder
based on the latent representation of the biased model.

3 BIAS PROBLEM FOR TRAINING A CLASSIFIER

3.1 UNINTENDEDLY BIASED TRAINING

Figure 1: Colored MNIST.

Suppose that a training set D is composed of images x, as
illustrated in Figure 1. Each image can be described by
a set of attributes {a1, ..., ak, ...}, (e.g., {“digit 0”, “digit
1”,... “red”, “green”, ... , “thick”,...}). The goal of the train-
ing classifier is to find a model fθ that correctly predicts the
C target attributes “digits,” y = {at1 , ..., atC} ={“digit
0”, “digit 1”,...}. Remark that target attributes are also interpreted as class. However, we focus on the
case in which another attributes exists, “colors,” where b = {ab1 , ..., abC} = {“red”,“green”, ...} 6= y,
which is highly correlated to the target “digits” (i.e., H(at1 |ab1) ≈ 0). Such an correlated attributes
and training set are denoted as the bias attributes and biased training set, respectively. In addition,
the “color-digit” correlated and uncorrelated samples, in the top two rows and the bottom row in
Figure 1, are called the majority and minority. We use the notations M and m for the majority and
minority sets, respectively. For example, “red-digit 0” image is majority sample, while “orange-digit
0” one is minority sample.

When we train a model based on the biased training set D, the model may infer the bias attributes b,
not target attributes y, which is problematic because the target is y, not b, and we refer to this as an

3

Under review as a conference paper at ICLR 2022

unintended bias problem. For example, if the model trained on the images in Figure 1 suffers from
this problem, this model outputs 4 when orange,0 image is given.

3.2 WHEN DOES THIS PROBLEM HAPPEN AND INTENSIFY?

Major
Minor
Average

Ac
cu

ra
cy

20

40

60

80

100

|m|/|D| (%)
0.5 1 2 5

Figure 2: Accuracy vs. |m|/|D|.

1.01.0 0.90.9 0.70.7 0.80.8 0.90.9 0.90.9 0.40.4 0.50.5 0.50.5 0.80.8
0.90.9 1.01.0 0.80.8 1.01.0 0.90.9 0.90.9 0.90.9 1.01.0 0.80.8 0.80.8
0.90.9 0.20.2 1.01.0 0.20.2 1.01.0 0.90.9 0.80.8 0.30.3 0.70.7 0.90.9
0.90.9 1.01.0 0.80.8 1.01.0 0.80.8 0.20.2 1.01.0 0.40.4 0.50.5 0.20.2
1.01.0 0.80.8 1.01.0 0.80.8 1.01.0 0.80.8 0.60.6 0.80.8 0.90.9 0.10.1
1.01.0 0.40.4 0.90.9 0.30.3 0.90.9 1.01.0 0.40.4 0.90.9 0.40.4 0.50.5
0.60.6 1.01.0 0.80.8 1.01.0 0.60.6 0.60.6 1.01.0 1.01.0 0.70.7 0.70.7
0.80.8 0.60.6 0.10.1 0.50.5 0.70.7 0.90.9 0.90.9 1.01.0 1.01.0 0.0.
0.50.5 0.30.3 0.20.2 0.20.2 0.70.7 0.10.1 0.50.5 0.70.7 1.01.0 0.0.
0.80.8 0.60.6 0.90.9 0.50.5 0.20.2 0.70.7 0.80.8 0.0. 0.20.2 1.01.0

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 a

ttr
ib

ut
es

 y
0

1
2

3
4

5
6

7
8

9

Bias attributes b

RedGreen
Yellow

Turquoise

Orange
Purple

Cyan
Beige

Lime
Brown

|m|/|D| = 0.01

1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 0.80.8 1.01.0 0.90.9 1.01.0
1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0
1.01.0 0.90.9 1.01.0 0.80.8 1.01.0 1.01.0 1.01.0 0.70.7 1.01.0 1.01.0
1.01.0 1.01.0 0.90.9 1.01.0 0.90.9 0.90.9 1.01.0 0.90.9 1.01.0 1.01.0
1.01.0 0.90.9 1.01.0 0.90.9 1.01.0 1.01.0 0.90.9 0.90.9 1.01.0 0.80.8
1.01.0 0.90.9 0.90.9 0.80.8 1.01.0 1.01.0 0.90.9 1.01.0 0.90.9 0.90.9
0.90.9 1.01.0 1.01.0 1.01.0 1.01.0 0.90.9 1.01.0 1.01.0 0.90.9 1.01.0
0.90.9 0.80.8 0.80.8 0.80.8 0.80.8 1.01.0 1.01.0 1.01.0 1.01.0 0.80.8
0.90.9 0.90.9 0.80.8 0.80.8 0.90.9 0.90.9 0.70.7 0.90.9 1.01.0 0.60.6
1.01.0 0.90.9 0.90.9 0.90.9 0.70.7 0.90.9 0.90.9 0.90.9 0.80.8 1.01.0

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 a

ttr
ib

ut
es

 y
0

1
2

3
4

5
6

7
8

9

Bias attributes b

RedGreen
Yellow

Turquoise

Orange
Purple

Cyan
Beige

Lime
Brown

|m|/|D| = 0.05

Figure 3: Confusion matrices for |M |/|D| = 99% and 95%.

(Nam et al., 2020) argued that this problem arises when two conditions are met simultaneously:
(C1) bias attributes b is easier to learn than target y, and (C2) highly correlated b to y. We focus
on observing the effect of (C2) on the unintended bias problem among the two conditions when
(C1) holds. To understand (C2) precisely, we check the effect of the minority ratio |m|/|D| on the
accuracy. A detailed description of the training setting is provided in Appendix A.2.

We investigate the test accuracy of the samples in the majority and minority sets. As in Figure 2,
the average performance drop of the minority samples intensifies when the minority ratio |m|/|D|
decreases. On the other hand, the accuracy of the majority samples for all cases are not dropped.
More precisely, we plot the confusion matrix to see how poor the performance is when the bias
attributes b and the target attributes y are not aligned according to the minority ratio |m|/|D|. As in
Figure 3, the increments of the minority ratio does not make the performance change of the aligned
samples located in the diagonal, but other entries change a lot. These results can be interpreted as
when the ratio |m|/|D| becomes small, the model highly likely infer the bias attributes b rather than
target attributes y.

4 DE-BIASING USING PER-SAMPLE GRADIENT INFORMATION

When a given training set is biased, the model learns b over the intended target y, and it is strengthened
when |m|/|D| approaches zero. If this is the case, it is desirable to modify the training set to a
larger |m|/|D| so that the model learns the target y rather than the biased attribute b. To do so, we
considered constructing a new training set D′ = {(x′i, y′i)}Ni=1 such that |m′|/|D′| increases.

Similar to prior resampling-based work (Li & Vasconcelos, 2019), we sequentially train two separated
networks: biased model fθb and de-biased model fθd . The biased model, fθb is trained based on the
raw training set D. After sufficiently converging to point θb → θ̂b, the model computes gradients
∇θi = ∇θLCE(xi, yi; θ) of all the samples (xi, yi) ∈ D. Then, we compute the sampling probability
(ps(i)) of the ith sample using the per-sample gradient ∇θi, to break (C2) by balancing between M
and m. Finally, we train the de-biased model fθd using a rejection sampler that creates a balanced
training set D′ based on the sampling probability ps(i).

4.1 PER-SAMPLE GRADIENT-BASED SCORES

As the first step of de-biasing, we train the biased model without modifying training set D. The
converged model fθ̂b(·) contains in-depth information about the distribution of the training set in its
model (especially, through the per-sample gradient). Therefore, we leverage the per-sample gradient,
∇θi = ∂LCE(x,y;θ̂b)

∂θ |xi,yi of (xi, yi), which is dissolved in the biased model.

Why the per-sample gradient? The majority and minority samples exhibit a clear difference in the
per-sample gradient for the model fθ̂b owing to the following reasons. (R1) Each sample has its own
loss landscape, and similar representation samples have similar loss landscapes (see Figure 4(a)).
In other words, the minority samples have different loss landscapes from those of the majorities,
which implies that a local minimum cluster is composed of similar representation samples. (R2)

4

Under review as a conference paper at ICLR 2022

0.005

0.005

0.0050.005

0.005

0.005 0.01

0.01

0.01
0.01

0.0
1

0.01

0.01

0.02

0.02
0.02

0.0
2

0.02

0.02 0.02
0.02

0.04

0.04
0.04

0.
04

0.04

0.04
0.04 0.04

0.08

0.08
0.08

0.
08

0.08

0.08
0.08 0.08

0.16

0.16
0.16

0.
16

0.16

0.16
0.16 0.16

0.32

0.32
0.32

0.32

0.32

0.32

0.32
0.32 0.32

0.64

0.
64

0.64

0.64
0.64 0.64

0.64

0.64

1.3

1.3
1.3 1.3

1.3

1.3

2.6

2.6
2.6 2.6

5.1
5.1

||∇θ|| = 0.2744

0

2

4

6

8

10

0.005

0.005

0.0050.005

0.005

0.005

0.01

0.010.01

0.01

0.01
0.01 0.01

0.02

0.020.02

0.02

0.02
0.02 0.02

0.04
0.040.04

0.04

0.04
0.04 0.04

0.08
0.08

0.08

0.
08

0.08

0.08
0.08 0.08

0.16
0.160.16

0.
16

0.16

0.16
0.16 0.16

0.32
0.320.32

0.
32

0.32

0.32
0.32 0.32

0.64
0.640.64

0.6
4

0.64
0.64

0.64
0.64 0.64

1.3

1.
3

1.3

1.3
1.3 1.3

1.3
1.3

2.6

2.6
2.6 2.6

2.6
2.6

5.1

5.1

||∇θ|| = 0.5516

0

2

4

6

8

10

0.005

0.005

0.005

0.
00

5
0.005 0.01

0.01

0.01
0.01

0.01

0.01 0.02

0.02

0.02
0.02

0.02

0.02 0.04

0.
04

0.04

0.04

0.0
4

0.04

0.04 0.08

0.
08

0.08

0.08

0.08

0.
08

0.08 0.1
6

0.16

0.160.16

0.1
6

0.16 0.3
2

0.32

0.32
0.32

0.32

0.6
4

0.64

0.64
0.64

0.64

1.3

1.3

1.3
1.3

1.3

2.
6

2.6

2.6
2.6

2.6

5.
1

5.1

5.1

5.1
5.1

10

10

10

10
1010

||∇θ|| = 1.3011

0

2

4

6

8

10

0.0
05

0.005

0.0
05

0.005 0.01

0.01

0.01

0.
01

0.01 0.02

0.02

0.02
0.02

0.02

0.02 0.04

0.04

0.04

0.04

0.04

0.04 0.08

0.
08

0.08
0.08

0.0
8

0.08

0.08 0.16

0.
16

0.16

0.16

0.16

0.
16

0.16 0.32

0.32

0.320.32

0.
32

0.32

0.6
4

0.64

0.640.64

0.6
4

1.3

1.3

1.31.3

1.3

2.6

2.6

2.6
2.6

2.6

5.
1

5.1

5.1
5.1

5.1

10

10

10
10

10

||∇θ|| = 2.3756

0

2

4

6

8

10

(a) Sample images and the per-sample loss landscape

0.0
05

0.005
0.005

0.005

0.005 0.01

0.01

0.01
0.01

0.
01

0.01

0.01

0.02

0.020.02

0.02

0.02
0.02 0.02

0.04

0.04
0.04

0.0
4

0.04

0.04
0.04 0.04

0.08

0.08
0.08

0.
08

0.08

0.08
0.08 0.08

0.16

0.16
0.16

0.
16

0.16

0.16
0.16 0.16

0.32
0.32

0.32

0.32

0.32

0.32

0.32
0.32 0.32

0.64

0.
64

0.64

0.64
0.64 0.64

0.64

0.64

1.3

1.3
1.3 1.3

1.3

2.6

2.6

||∇θ|| = 4.5770

0

2

4

6

8

10

0.32
0.32

0.64

0.64

0.64

0.64

0.641.3
1.3

1.3

1.3

1.3

1.3

1.3

2.6

2.6

2.6

2.6
2.6

5.
1

5.1

5.1

5.15.1

0

2

4

6

8

10

||∇θ|| = 297.69

(b) 1
|D|

∑
i LCE

Majority Minority

N
or

m

0

100

vM
F

0

100

Bin index
0 5 10

Portion (CM |M|/|D|=99%)

Majority Minority

N
or

m

0

100

vM
F

0

100

Bin index
0 5 10

Portion (CM |M|/|D|=99.5%)

(c) Histogram

Figure 4: Loss landscapes of the model trained on the biased training set. (a) and (b) represents the
per-sample and aggregated loss landscapes. Top and bottom row depict the results of the case. The
red arrows are the convergence point and minimal point. We draw the loss landscapes based on ‖∇θ‖.
The values are gradient direction and loss difference (Li et al., 2018a). See Appendix A.2 for the
detailed experiment setting. (c) represents the ratio of majority and minority samples at each bin
respect to the directional and magnitude.
From the averaging property of the batch-based optimization methods, the influence of the minority
samples is diluted of according to their ratio. Thus, the model trained on the biased training set
converges to a proximity point of the minimum point of the majorities and it is reflected in the gradient
of each sample. The red arrows in Figure 4(a) and 4(b) indicate that the majority samples (top)
have shorter gradients than the minorities (bottom) for both per-sample and aggregated cases.
Similarly, the direction of both cases is significantly different. Additionally, as seen in Figure 4(c),
the portion of minority samples in the lower directional likelihood and higher magnitude bins is much
larger than the majority samples.

Gradient-based score. Based on the intuition of per-sample gradient and empirical results, we
design a gradient-based score S(i) = S

(
(xi, yi); θ̂b

)
, which is computed for each class separately.

The score is computed using two base scores, the magnitude score M(i) and direction score D(i),
which are defined as follows:

M(i) =

(
(1/‖∇θi‖2)∑N
j=1(1/‖∇θj‖2)

)
, D(i) =

(
pdir(i)∑N
j=1 pdir(j)

)
. (1)

(1) Magnitude score M(i): The contribution to prejudicial training is inversely proportional to the
magnitude of its gradient (∝ 1/‖∇θi‖). We used Euclidian distance to measure the magnitude.

(2) Direction scoreD(i): The contribution to prejudicial training is also proportional to the directional
likelihood (∝ pdir(i)). For the directional likelihood, the estimated von Mises-Fisher (vMF) distribu-
tion is used to understand the concentration of the directional distribution. The vMF distribution is
defined as follows:
Definition 4.1 (von Mises-Fisher Distribution). The pdf of the vMF(u, κ) is given by

fd(v;u, κ) = Cd(κ)e(κu>v),

on the hypersphere Sd−1 ⊂ Rd, where κ determines how much samples are concentrated based on
the distribution along the mean direction u, and Cd(κ) is a normalization constant determined by
dimension d and the concentration parameter κ.

To estimates the parameters of the assumed vMF distribution, we use approximated maximum
likelihood estimates (MLE) solutions û and κ̂. For normalized gradient vectors ∇θi = ∇θi

‖∇θi‖ ,

the MLE solutions û and κ̂ can be obtained from û =
∑N

i=1∇θi
‖
∑N

i=1∇θi‖
and κ̂ ≈ r̄(d−r̄2)

(1−r̄2) , where

r̄ =
‖
∑N

i=1∇θi‖
N (see Appendix G).

Then, the normalized directional score D(i) is defined in (1), where pdir(i) = fd(∇θi; û, κ̂) is the
approximated vMF distribution.

To relax the computational constraint, we select k-dominant sub-dimensions, denoted by the set
K = arg max

K⊂N,|K|=k

∑
j∈K

(∑
i |∇θj |i

)
, where ∇θj corresponds to the gradient of the j-th dimension.

5

Under review as a conference paper at ICLR 2022

4.2 DE-BIASING USING GRADIENT-BASED SCORES

Balanced batch selection. By the definitions of the scores, the sample in the majority set M (or
the minority set m) must have a higher (or smaller) M(i) and D(i), respectively. Each sample must
interact inversely with the two scores to treat the samples in the minority set m similarly to the
samples in the majority set. To do so, we design aggregated score S(i) based on the harmonic mean,
and sampling probability ps(i) as follows:

S(i) =

(
λ

M(i)
+

1

D(i)

)−1

, ps(i) =
C
S(i)

,

where λ is the balancing hyperparameter to emphasize a specific score between M(i) and D(i), and
C is the normalization constant defined as C = mini S(i), which makes ps(i) = 1 for the smallest
S(i) sample. From the harmonic-mean, S(i) has a higher value when one of the scores is high.

Algorithm 1 Uniform Sampler
1: Sampling prob. ps, Batch size k
2: while |B| < k do
3: i ∼ U(1, N), p ∼ U(0, 1)
4: if p ≤ ps(i) then; B = B ∪ i
5: end if
6: end while

To construct a balanced mini-batch, our algorithm use a rejection-
sampling-based uniform sampler, Algorithm 1. Each sample i
is rejected with a probability 1 − ps(i), which implies that the
rejection is proportionally to the scores. From the property of
rejection sampling, such a sampler generates uniform batches.

Algorithm 2 De-biasing using the uniform sampler
1: D, λ, q, lr η, T , k, aug. alg. A(·), sampling alg S(·)
2: /** STEP 1: Train fθb **/
3: for t=1,2,...,T do
4: Draw a mini-batch (X,Y) = {(x, y)}ki=1 from D
5: Update θb ← θb − η

|D|∇θ
∑

(X,Y) LGCE(x, y; q)

6: end for
7: /** STEP 2: Calculate ps(i) **/
8: Calculate ps(i) for all i ∈ D
9: /** STEP 3: Train fθd **/

10: for R do t=1,2,...,T
11: Draw a mini-batch {(x, y)}ki=1 from the Alg. 1: S(ps(i))
12: Update θd ← θd − η

|D|∇θ
∑

(X,Y) LCE(A(x), y)

13: end for

Gradient-based de-biasing. The ultimate de-
biasing algorithm consists of three steps. First,
the biased model fθb is trained on the raw data
samples with GCE loss (Zhang & Sabuncu,
2018; Nam et al., 2020). The GCE loss con-
trolled by q guides the biased model to ignore
the minority samples in the training set. Then,
all raw samples are input into the biased model
to compute ps(i). The last step is to train the de-
biased model fθd using a balanced mini-batch
sampler. This sampler generates balanced mini-
batch based on the sampling probability ps(i).
We use the typical image data augmentation method A(·) (e.g., rotate, resize) to avoid over-fitting.

5 DE-NOISING A SMALL PORTION OF THE NOISY LABELS

w/o 1% 5% 10%

Ac
cu

ra
cy

0

50

100

Algorithm
Vanilla ReBias LfF REPAIR Ours

|m|/|D| = 1%

Figure 5: Acc. drops. Figure 6: Entropy vs Loss.

Why is noisy label a problem for de-biasing algorithms? All de-biasing algorithms work by
emphasizing rare samples. For example, the proposed method operates by reconstructing mini-
batches in proportion to the rarity. However, when a small portion of incorrectly labeled samples,
called noisy labels, is in the training set, the de-biasing algorithms accentuate the noise labels due to
their mechanism of enlarging the influence of the rare samples. Therefore, as presented in Figure 5,
all de-biasing algorithms suffer a performance decline.

Distinguishing minority and noisy labels via compensated loss. Recent de-noising methods (Yu
et al., 2019; Yi & Wu, 2019; Li et al., 2019; Kim et al., 2021b) have mainly focused on ignor-
ing unusual sample, which may be noisy labels. However, by comparing de-noising mechanism
with (Kim et al., 2021b), previous de-noising algorithms also ignores minority samples which
must be highlighted not discarded, see Appendix I for details. Therefore, we design a module to
delete noisylabels in which the minority samples are preserved. To do so, we observe the loss
statistics of the minority samples and noisy labels under various Colored MNIST settings with

6

Under review as a conference paper at ICLR 2022

(|m|/|D|, noisy label ratio) = (0.01, 0.1) and (0.1, 0.1) (see Appendix B.3). As depicted in Figure 6,
noisy labels have a higher loss than clean labels, regardless of whether the sample is in the majority
or the minority set. The trained model that ignores rare samples, outputs the correct results, whereas
the given label for calculating the loss value is incorrect.

However, the loss of the clean minority samples increases, owing to the rarity. To compensate, we
suggest the compensated loss L̄i, reducing the influence of the rarity, and the splitting criteria to
distinguish between the clean samples and noisy labels:

Dclean =
{

(xi, yi)|L̄i < δ
}
, Dnoise =

{
(xi, yi)|L̄i ≥ δ

}
, where L̄i =

LCE(xi, yi; θ̂n)

H(fθ(xi))
. (2)

Note that H(fθ(xi)) represents the softmax entropy of sample xi, and δ =∑
i≤N L̄i/

∑
i≤N H(fθ(xi)). In Figure 6, the black lines represent the threshold δ, and the

lower part of this line represents Dclean, whereas the upper part represents Dnoise, respectively. Other
discrimination results are depicted in Appendix E.

Algorithm 3 De-noising & De-biasing
1: Train network fθn with CE loss LCE
2: Split Dclean and Dnoise based on (2)
3: De-biasing using Dclean

De-noising module. We design a de-noising module that is
applicable in front of all prior de-biasing algorithms from the
proposed criteria. As presented in Algorithm 3, this module
comprises three simple steps. First, a noise model parameterized
by θ̂n is trained on the raw biased and noisy training sets. Then, we split Dclean and Dnoise according
to the criteria (2). After splitting, we run the de-biasing algorithm using Dclean.

6 EXPERIMENTS

We evaluated the proposed model for two types of benchmarks: synthetically generated bias (referred
as controlled biased benchmarks) and raw bias (real-world biased benchmarks). We compared the
results with the officially available recent de-biasing methods, RUBi (Cadene et al., 2019), Learned-
MixinH (Clark et al., 2019), ReBias (Bahng et al., 2020), AFLite (Le Bras et al., 2020), LfF (Nam
et al., 2020), REPAIR (Li & Vasconcelos, 2019) and the vanilla model. Each baseline was reproduced
using the official codes for each algorithm (see Appendix C). Moreover, we optimized all algorithms
based on the 10% of the biased training set. For the experiments, three types of convolutional neural
networks were used with various regularization methods (batch normalization (Ioffe & Szegedy,
2015), dropout (Srivastava et al., 2014), and weight decaying (Moody & Hanson)). We report the
detailed settings in Appendix A.1. In addition, we determined the test under flipped labels in MNIST
variants with various noise ratios of 10%, 5%, and 0% to verify the side effects from noisy labels and
check the protecting performance of the de-noising module (see Appendix A).

6.1 BENCHMARKS

6.1.1 CONTROLLED BIASED BENCHMARKS

Figure 7: Examples of MNIST variants (Left: CM, Right: WM). Figure 8: Cartoon.

To precisely examine the de-biasing performance, we generated controlled biased benchmarks using
well-known data: MNIST (LeCun et al., 2010) and Cartoon (Royer et al., 2020). Various bias ratios,
|M |/|D| ∈ {0.995, 0.99, 0.95}, were used for all the controlled tests. All benchmarks were divided
into a biased training set Dtr, biased validation set Dval (10% of Dtr), and test set Dte comprising
the majority M and minority m (see Appendix B.1 for detailed data construction rules.)

MNIST Variants. The MNIST dataset comprises a grayscale digit data with a handwritten style.
We injected two different biases, color and different objects (specifically, Fashion MNIST (Xiao
et al., 2017)), which are colored MNIST (CM) and watermarked MNIST (WM), respectively. This
main task is classifying the shape of the digit without examining the biased attribute color of the

7

Under review as a conference paper at ICLR 2022

Bias ratio 99.5% 99% 95%

Test type Val. Dval MajorM Minorm Val. Dval MajorM Minorm Val. Dval MajorM Minorm

Colored MNIST
Vanilla 99.49± 0.01 99.97± 0.05 26.58± 1.36 99.37± 0.05 99.97± 0.05 51.97± 0.84 99.46± 0.07 99.87± 0.05 90.92± 0.40

LearnedMixinH 99.61± 0.07 99.93± 0.09 39.65± 2.84 99.53± 0.01 99.87± 0.05 65.28± 2.31 99.48± 0.06 99.80± 0.08 91.67± 0.61

RUBi 99.48± 0.01 99.93± 0.09 29.36± 1.17 99.43± 0.02 99.90± 0.08 56.97± 1.87 99.56± 0.01 99.90± 0.00 92.09± 1.11

LfF 98.35± 0.17 98.05± 0.17 58.36± 3.25 95.75± 2.25 95.56± 2.72 81.42± 3.98 99.15± 0.05 99.21± 0.08 96.55± 0.26

ReBias 99.48± 0.02 99.90± 0.08 26.26± 1.60 99.47± 0.05 99.87± 0.05 60.00± 0.82 99.51± 0.06 99.87± 0.05 88.41± 0.42

AFLite 98.39± 0.77 98.78± 0.68 29.59± 1.80 98.97± 0.16 99.27± 0.26 57.04± 1.41 99.04± 0.02 99.37± 0.19 89.77± 0.56

REPAIR 99.65± 0.05 99.93± 0.09 42.14± 2.75 99.52± 0.03 99.83± 0.05 70.31± 2.42 99.51± 0.01 99.87± 0.05 91.39± 1.08

Ours 99.13± 0.07 99.07± 0.17 96.50± 0.33 98.91± 0.05 99.24± 0.19 97.76± 0.36 98.93± 0.19 99.37± 0.33 97.42± 0.28

Watermarked MNIST
Vanilla 98.70± 0.37 99.37± 0.17 51.72± 1.52 98.80± 0.24 99.40± 0.14 58.02± 1.44 98.73± 0.17 99.40± 0.24 80.56± 1.18

LearnedMixinH 99.27± 0.05 99.80± 0.00 65.95± 0.32 99.17± 0.25 99.74± 0.05 77.32± 0.92 99.50± 0.16 99.77± 0.05 85.35± 1.24

RUBi 98.80± 0.29 99.34± 0.20 52.53± 1.28 98.43± 0.17 99.67± 0.12 62.32± 1.22 98.53± 0.17 99.30± 0.14 83.22± 0.85

LfF 98.60± 0.64 98.74± 0.31 47.26± 2.05 97.40± 0.73 97.88± 0.65 54.02± 5.46 98.17± 0.19 98.44± 0.23 83.19± 0.75

ReBias 98.93± 0.17 99.44± 0.05 48.82± 4.72 98.53± 0.47 99.34± 0.09 54.98± 0.61 98.83± 0.05 99.54± 0.20 80.62± 1.89

AFLite 98.40± 0.37 99.01± 0.37 64.80± 3.95 98.67± 0.25 99.21± 0.16 75.37± 2.16 98.60± 0.45 99.01± 0.08 90.05± 1.61

REPAIR 99.23± 0.12 99.57± 0.05 55.46± 2.33 98.67± 0.37 99.57± 0.12 60.75± 2.37 98.83± 0.21 99.50± 0.08 83.19± 3.34

Ours 99.53± 0.05 99.70± 0.08 85.99± 2.05 99.10± 0.36 99.67± 0.20 91.98± 1.37 99.03± 0.26 99.30± 0.16 96.19± 0.11

Cartoon
Vanilla 99.80± 0.04 99.99± 0.02 46.44± 1.92 99.42± 0.11 99.99± 0.02 56.25± 4.64 99.14± 0.23 99.95± 0.05 78.26± 2.93

LearnedMixinH 99.90± 0.02 99.99± 0.02 60.93± 1.81 99.58± 0.18 99.87± 0.15 73.88± 3.35 99.57± 0.07 99.99± 0.02 88.48± 0.84

RUBi 99.72± 0.07 99.82± 0.16 43.88± 1.65 98.97± 0.57 99.71± 0.33 52.61± 0.99 98.27± 0.63 99.57± 0.48 70.11± 3.28

LfF 99.72± 0.04 99.99± 0.02 45.42± 3.08 99.44± 0.07 99.91± 0.10 55.17± 2.90 99.14± 0.18 99.81± 0.18 81.02± 3.01

ReBias 99.79± 0.03 100.0± 0.00 55.47± 3.00 99.58± 0.03 100.0± 0.00 66.71± 0.48 99.10± 0.77 99.47± 0.72 87.56± 2.15

AFLite 99.38± 0.06 99.36± 0.46 51.49± 1.52 98.96± 0.47 99.54± 0.34 55.77± 0.53 98.28± 0.17 99.70± 0.17 72.17± 1.99

REPAIR 99.87± 0.37 100.0± 0.00 47.59± 2.41 99.47± 0.02 100.0± 0.00 55.41± 1.94 99.16± 0.24 99.94± 0.09 80.34± 3.47

Ours 99.01± 0.46 98.62± 0.63 80.22± 5.17 99.06± 0.55 98.96± 0.42 83.28± 6.14 98.54± 0.62 98.29± 0.60 94.23± 1.35

Table 1: Average test accuracy and standard deviation (three runs) on experiments with the MNIST
variants under various bias ratios. The best accuracy is indicated by bolded for each case.
digit or Fashion MNIST objects. As an example of the CM, class 0 is divided into major and minor
sets colored in red and the others. Similarly, in WM, the major set of class 1 contains trouser,
whereas the minor set contains other objects as watermarks at the top-left corner. Examples are
depicted in Figure 7.

Cartoon. A Cartoon (CT) (Royer et al., 2020) is an avatar image with 18 corresponding attributes
(e.g., hair style). We select two of them, hair color and face color, for the target and
biased attributes. To create a bias, the major set is whose two attributes are bonded was subsampled.
For example, in Figure 8, the face color of blond hair is black, except for a few.

6.1.2 REAL-WORLD BIASED BENCHMARKS

We used three well-known biased benchmarks to determine the de-biasing performance on com-
plex benchmarks: Biased Action Recognition (BAR), CelebA, and ImageNet/ImageNet-A (see
Appendix B.2 for details).

Biased Action Recognition. Biased action recognition (Bahng et al., 2020; Nam et al., 2020) is a
motion classification set with a background bias. For example, in the class climbing, major and
Minor samples have rockwall and ice cliff backgrounds, respectively.

CelebA. (Nam et al., 2020; Liu et al., 2015) CelebA has facial images with 40 binary attributes.
Among these, we used heavy makeup and gender attributes for target and biased attributes. In
the heavy makeup class, major is the female attribute, whereas male is the minority attribute.

ImageNet/ImageNet-A. ImageNet (Deng et al., 2009) is a well-known image classification dataset.
However, (Hendrycks et al., 2019) claimed, a model trained on the ImageNet data easily fails to
classify unusual backgrounds. This is because ImageNet has a biased background (e.g., almost
all Frog images are considered in the swamp, which means major sample). As a de-biasing
performance evaluation benchmark, we used ImageNet for training and to test ImageNet-A images
with unusual backgrounds.

6.2 EVALUATION

Controlled benchmarks without noisy labels. The accuracy values of two major and minor sets
are reported in Table 1. In particular, we first examined the accuracy of the vanilla algorithm, the
ultimate baseline. Overall, the vanilla algorithm achieved nearly 100% accuracy for the major case,
the vanilla failed to infer with an accuracy similar to that of the major case.

8

Under review as a conference paper at ICLR 2022

Bias ratio / Noise ratio 99% / 0% 99% / 5% 99% / 10%

De-noising Without de-noising With de-noising Without de-noising With de-noising Without de-noising With de-noising

Test type MajorM Minorm MajorM Minorm MajorM Minorm MajorM Minorm MajorM Minorm MajorM Minorm

Colored MNIST
Vanilla 99.97± 0.05 51.97± 0.84 98.94± 1.36 29.16± 0.11 99.90± 0.00 28.72± 0.95 99.97± 0.06 39.87± 1.69 100.0± 0.00 26.16± 2.67 100.0± 0.00 30.62± 2.57

LfF 95.56± 2.72 81.42± 3.98 94.65± 6.74 82.27± 11.2 7.96± 1.88 15.54± 5.43 99.77± 0.12 70.45± 2.78 0.00± 0.00 13.18± 3.29 99.68± 0.20 55.04± 7.16

ReBias 99.87± 0.05 60.00± 0.82 100.0± 0.00 47.28± 0.48 99.90± 0.00 30.57± 3.04 99.93± 0.06 40.21± 1.22 100.0± 0.00 20.85± 4.06 100.0± 0.00 31.41± 0.90

REPAIR 99.83± 0.05 70.31± 2.42 99.36± 0.07 51.75± 0.96 99.90± 0.00 22.48± 3.20 99.97± 0.06 45.64± 0.36 99.78± 0.37 11.94± 1.43 100.0± 0.00 34.43± 0.70

Ours 99.24± 0.19 97.76± 0.36 99.76± 0.06 91.44± 5.35 80.60± 0.00 87.50± 0.74 99.47± 0.20 86.40± 4.70 86.44± 3.16 82.13± 4.87 99.78± 0.06 74.46± 3.87

Watermarked MNIST
Vanilla 99.40± 0.14 58.02± 1.44 99.25± 0.23 47.17± 1.13 99.34± 0.06 56.10± 2.50 99.48± 0.14 52.98± 1.36 99.61± 0.10 53.42± 0.70 99.58± 0.05 53.59± 0.85

LfF 97.88± 0.65 54.02± 5.46 99.35± 0.33 44.84± 5.73 16.08± 1.83 15.17± 0.34 98.98± 0.30 53.56± 1.31 10.54± 0.64 10.42± 0.55 99.20± 0.14 53.97± 3.45

ReBias 99.34± 0.09 54.98± 0.61 99.30± 0.30 47.21± 1.39 99.28± 0.06 57.39± 0.78 99.28± 0.25 53.91± 1.03 99.48± 0.11 52.80± 2.21 99.55± 0.25 52.96± 3.01

REPAIR 99.57± 0.12 60.75± 2.37 99.45± 0.08 51.80± 0.32 99.48± 0.06 61.81± 1.89 99.64± 0.23 58.36± 3.46 99.52± 0.10 58.57± 3.13 99.64± 0.06 58.21± 1.03

Ours 99.67± 0.20 91.98± 1.37 99.75± 0.07 64.66± 7.09 52.37± 2.56 45.54± 3.18 99.77± 0.15 77.09± 0.18 28.48± 7.47 26.11± 11.2 99.81± 0.10 79.05± 3.04

Table 2: Average test accuracy and standard deviation (three runs) on experiments with the MNIST
variants under a 1% bias ratio and {0%, 5%, 10%} noisy labels. The best accuracy is reported in
bolded for the minority case.

De-biasing algorithms correctly classified the major case, similar to the vanilla case. However, for
the minor case, these algorithms obtained higher accuracy values than that of the vanilla results (at
most 31.78% ↑). Despite these de-biasing performances, they have a higher gap between major and
minor cases (at least 36.69% under a 99.5% bias ratio). In contrast, the proposed method obtained the
highest accuracy value for the minor case (at most 69.92% ↑) compared to the vanilla results. These
results were obtained from the hyperparameter tuning with a biased validation set. In appendex D,
we report the oracle results obtained with the optimal hyperparameters, which were tuned by using
the majority-minority split validation set.

Controlled benchmarks with noisy labels. In Table 2, almost all algorithms failed to improve
the minority accuracy, when labels are flipped, compared to the 0% noisy label case. For example,
the proposed model’s average performance declined from 98.50% to 84.05%, and the majority
performance declined from 99.24% to 80.60% for the CM case with 5% noisy labels. However,
these performance decrements were recovered from the de-noising module for all cases. For the
5% noise CM case, all cases obtained close to 100% accuracy for the majority case and improved
the performance for the minority case. Among all methods, the proposed gradient-based method
obtained 92.94% on average of the majority and minority test sets for the 5% noise of CM case, and
improved by 7.83% in performance from the state-of-the-art algorithm, LfF at 85.11%. Moreover,
we checked from the 0% noise case that the adverse effect of the de-noising module on de-biasing is
−3.9% (99.50%→ 95.60%) on CM case for the proposed method.

Benchmarks BAR IN/IN-A CelebA

Vanilla 58.08± 0.01 34.55± 0.01 82.36± 1.02

LfF 57.35± 0.02 36.31± 0.01 81.13± 0.69

REPAIR 60.61± 0.00 35.46± 0.01 83.01± 0.62

Ours 63.14± 0.01 37.42± 0.01 86.01± 0.49

Table 3: Test accuracy of real-world
benchmarks averaged under three runs.
The best one is reported in bold font.

Real-world benchmarks. In Table 3, we report that
real-world benchmarks can be biased by observing the
lousy performance of the vanilla algorithm for all cases.
The BAR case indicates that the proposed method gained
the best performance on average among classes (a 5.06%
increase from the vanilla algorithm and 2.53% increase
from the second-best accuracy). As listed in other columns,
the proposed method has helped improve vanilla by 3.64%
and 2.87% for the CelebA and ImageNet/ImageNet-A cases, respectively. It also outperforms other
methods by up to 1.11% and 3.00%, respectively. A detailed analysis is provided in Appendix F.

Analysis. We report the detailed various studies in Appendix H.

7 CONCLUSION

We presented a novel de-biased method by generating a mini-batch so that the trained model does not
have prejudice in the inference. The proposed sampling metric is based on the gradient of each sample,
which is mainly correlated with its familiarity. Through extensive experiments using various biased
datasets, we demonstrated the effectiveness of the proposed method in several cases. Furthermore, we
proposed a de-noising module that is easily applicable to all de-biasing algorithms and protects from
the side effects of noisy labels. We hope this study proposed exploration to understand the feature
bias problem, especially for resampling-based approaches and gradient-based data valuation areas of
machine learning.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Mohsan Alvi, Andrew Zisserman, and Christoffer Nellåker. Turning a blind eye: Explicit removal
of biases and variation from deep neural network embeddings. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 0–0, 2018.

Jing An, Lexing Ying, and Yuhua Zhu. Why resampling outperforms reweighting for correcting
sampling bias with stochastic gradients. In International Conference on Learning Representations,
2020.

Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased
representations with biased representations. In International Conference on Machine Learning, pp.
528–539. PMLR, 2020.

Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, Suvrit Sra, and Greg Ridgeway. Clustering on
the unit hypersphere using von mises-fisher distributions. Journal of Machine Learning Research,
6(9), 2005.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal
biases for visual question answering. In Advances in Neural Information Processing Systems, pp.
839–850, 2019.

Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, and Tengyu Ma. Heteroskedas-
tic and imbalanced deep learning with adaptive regularization. In International Conference on
Learning Representations, 2020.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 4069–4082, 2019.

Luke Darlow, Stanisław Jastrzębski, and Amos Storkey. Latent adversarial debiasing: Mitigating
collider bias in deep neural networks. arXiv preprint arXiv:2011.11486, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on Learning Representations, 2018.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Ankit Goyal, Kaiyu Yang, Dawei Yang, and Jia Deng. Rel3d: A minimally contrastive benchmark for
grounding spatial relations in 3d. Advances in Neural Information Processing Systems, 33, 2020.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. arXiv preprint arXiv:1907.07174, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37, pp. 448–456, 2015.

10

Under review as a conference paper at ICLR 2022

Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not to learn:
Training deep neural networks with biased data. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 9012–9020, 2019.

Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap: Removing dataset bias with bias-tailored
swapping augmentation. arXiv preprint arXiv:2108.10008, 2021a.

Taehyeon Kim, Jongwoo Ko, Sangwook Cho, Jinhwan Choi, and Se-Young Yun. Fine samples for
learning with noisy labels. arXiv preprint arXiv:2102.11628, 2021b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters, Ashish
Sabharwal, and Yejin Choi. Adversarial filters of dataset biases. In International Conference on
Machine Learning, pp. 1078–1088. PMLR, 2020.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Cheolhyung Lee, Kyunghyun Cho, and Wanmo Kang. Directional analysis of stochastic gradient
descent via von mises-fisher distributions in deep learning. In Thirty-second Conference on Neural
Information Processing Systems. Neural Information Processing Systems (NIPS) Foundation,
2018.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique
for generalization in deep reinforcement learning. In International Conference on Learning
Representations, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 6391–6401, 2018a.

Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In International Conference on Learning Representations, 2019.

Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9572–9581,
2019.

Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition without representa-
tion bias. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 513–528,
2018b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Daniel McDuff, Shuang Ma, Yale Song, and Ashish Kapoor. Characterizing bias in classifiers using
generative models. In Advances in Neural Information Processing Systems, pp. 5404–5415, 2019.

John Moody and Stephen Hanson. A simple weight decay can improve generalization.

Jun Hyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
De-biasing classifier from biased classifier. In 34th Conference on Neural Information Processing
Systems (NeurIPS) 2020. Neural Information Processing Systems, 2020.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
noisy labels. Advances in neural information processing systems, 26:1196–1204, 2013.

Vikram V Ramaswamy, Sunnie SY Kim, and Olga Russakovsky. Fair attribute classification through
latent space de-biasing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9301–9310, 2021.

11

Under review as a conference paper at ICLR 2022

Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole,
and Kevin Murphy. Xgan: Unsupervised image-to-image translation for many-to-many mappings.
In Domain Adaptation for Visual Understanding, pp. 33–49. Springer, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Robik Shrestha, Kushal Kafle, and Christopher Kanan. An investigation of critical issues in bias
mitigation techniques. arXiv preprint arXiv:2104.00170, 2021.

Krishna Kumar Singh, Dhruv Mahajan, Kristen Grauman, Yong Jae Lee, Matt Feiszli, and Deepti
Ghadiyaram. Don’t judge an object by its context: Learning to overcome contextual bias. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11070–11078, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentangling
deep representations for bias correction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13508–13517, 2021.

Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the simplicity
bias: Training a diverse set of models discovers solutions with superior ood generalization. arXiv
preprint arXiv:2105.05612, 2021.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pp. 1521–1528.
IEEE, 2011.

Haohan Wang, Zexue He, Zachary C Lipton, and Eric P Xing. Learning robust representations by
projecting superficial statistics out. In International Conference on Learning Representations,
2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7017–7025, 2019.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In International Conference on Machine
Learning, pp. 7164–7173. PMLR, 2019.

Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In 32nd Conference on Neural Information Processing Systems (NeurIPS), 2018.

12

Under review as a conference paper at ICLR 2022

A EXPERIMENT DETAILS

A.1 BASIC SETTINGS

4	
×
	4
	×
8

Co
nv

2	
×
2

po
ol

4	
×
	4
	×
	3
2

Co
nv

2	
×
2

po
ol

4	
×
	4
	×
	6
4

Co
nv

Av
g

po
ol

Simple ConvNet -1

(a) Simple ConvNet-1

6	
×
	6
	×
	8

Co
nv

2	
×
2

po
ol

Av
g

po
ol

6	
×
	6
	×
	1
6

Co
nv

2	
×
2

po
ol

6	
×
	6
	×
	1
6

Co
nv

2	
×
2

po
ol

5	
×
	5
	×
	1
6

Co
nv

2	
×
2

po
ol

5	
×
	5
	×
	3
2

Co
nv

2	
×
2

po
ol

4	
×
	4
	×
	3
2

Co
nv

Simple ConvNet -2

(b) Simple ConvNet-2

Figure 9: Simple convolutional networks for the variants of the MNIST task and Cartoon data.

Network architecture. We use three types of convolutional neural networks (CNNs) (see Figure 9
for two of them and the other is ResNet-18 (He et al., 2016)) for all benchmarks. For MNIST
variants, three convolution layers with filter size 4 and average pooling with size 2 are used (see
Simple ConvNet-1). For Cartoon, 5 convolution layers with filter size [6, 6, 5, 5, 4] for each
layer with average pooling size 2 are used (see Simple ConvNet-2). The real-world benchmarks
are tested under pre-trained ResNet-18 provided by Pytorch torchvision, without freezing
feature extractor. We apply batch normalization (Ioffe & Szegedy, 2015), dropout (Srivastava et al.,
2014) for regularization, and utilize SGD optimizer with momentum and weight decay (Moody &
Hanson).

Parameters Colored MNIST Watermarked MNIST Cartoon Biased Action Recognition CelebA ImageNet/ImageNet-A

Network Type Simple ConvNet-1 Simple ConvNet-1 Simple ConvNet-2 Pretrained ResNet-18 Pretrained ResNet-18 Pretrained ResNet-18
Learning rate 0.01 0.01 0.002 0.001 0.001 0.001

LR decay 0.001 0.001 0.001 0.1 0.1 0.1
LR decay epoch [0.2,0.4,0.6,0.8] [0.2,0.4,0.6,0.8] [0.2,0.4,0.6,0.8] [0.4,0.6,0.8] [0.4,0.8] [0.2,0.4,0.6,0.8]

Momentum 0.8 0.8 0.9 0.3 0.3 0.3
Weight decay 0.001 0.001 0.001 5e-4 0.1 0.3
Batch size 256 256 256 64 64 64

Epochs 100 100 100 100 50 100
GCE parameter q 0.7 0.7 0.7 0.7 0.7 0.7
Dimension size K 100 100 100 500 500 500

Table 4: Hyperparameters for each task

Hyperparameters. The hyperparameters that we used are summarized in Table 4. We share basic hy-
perparameters (including Network Type, Learning rate, Learning rate decay,
Learning rate decay epoch, Momentum, Weight decay, and Batch size
and Number of Epoch) for all algorithms. Precisely, for the proposed method, we set GCE
parameter q and Dimension size K for our method, as in Table 4.

Validation. We optimize hyperparameters using a validation set of 10% of the training set and
unseen at the training phase. Reported our results are obtained from the hyperparameters which
shows a small loss for the validation set.

Data augmentation. Image data augmentation operations have been used frequently to improve gen-
eralization performance. We utilize three operations: RandomResizedCrop with scale (0.9, 1.1),
ColorJitter with 0.05 hue and 0.05 saturation, and RandomRotation with (−10, 10) degree
using NEAREST filling criterion. These augmentation operations are from transforms module in
torchvision.

A.2 TEST SETTINGS IN SECTION 3, 4, AND 5

Ratio of minority samples analysis. To analyze the correlation between |m|/|D| and accuracy
statistics, we generated a bias training set based on CM data generation in Appendix B.1. This tests
are conducted on the experiment with difficulty 0.0001.

Gradient property test To test our intuitions about gradients, we utilize part of CM data (includes
class 0 and 1) with a bias ratio of 99.5% and difficulty 0.0001. Finally, we draw red arrows using the

13

Under review as a conference paper at ICLR 2022

lowest point and center point. This center point is the convergence point, and other points are random
permuted loss values. All loss landscape figures are plotted by following (Li et al., 2018a).

B BENCHMARKS

B.1 CONTROLLED BIASED BENCHMARKS

MNIST Variants. MNIST variants are modified data from gray-scaled hand-written digit MNIST
images (LeCun et al., 2010). To inject biased attributes into the MNIST, we use two different
attributes: color and object.

• Colored MNIST (CM) has been frequently used as a benchmark due to their simplicity (Kim
et al., 2019; Bahng et al., 2020; Nam et al., 2020). The target of this benchmark is classifying
the target attributes (shape of digits) not the biased attributes (color of digits). To make biased
training set, all images are colored after up-scaling dimension from gray R28×28 to 3D
RGBR28×28×3. Uniformly sampled 3-dimensional 10 colors Cc = {Rc, Gc, Bc}9c=0 are
allocated to each class c. The samples in class c of set M are colored by their allocated color
Cc. The other samples are colored with the color vector Cc′ 6=c where c′ 6= c is uniformly
sampled. Furthermore, to deviate correlation between the target and biased attributes,
color for each sample (xi, yi) is deviated using 3-dimensional Gaussian distribution Ci =
N (Cyi , αI). This deviation is controlled by the difficulty parameter α ∈ {0.0001, 0.0005}.

• Watermarked MNIST (WM) has a different type of bias. The target of this benchmark is
the same with generic MNIST, classifying hand-written digits, while the unintended object
(Fashion MNIST (Xiao et al., 2017) data) is located as a biased attributes. To locate Fashion
MNIST, all images from MNIST are size-up scaled fromR28×28 toR56×56. Set M and m
includes samples (xi, yi) where image xi is made with digit image xtarget and fashion object
xbias whose label indices follow yi = ytarget = ybias and yi = ytarget 6= ybias, respectively. To
make deviation, we put images from δ pixels far from top and bottom of the canvas. δ is
sampled from uniform distribution δ ∼ U(0, α). We test two cases, α ∈ {8, 16}.

Cartoon. Cartoon data composed of synthetically generated face image samples which have
18 attributes (e.g., hair color, face color) with multiple labels (e.g., hair color =
{1, ..., 10}). Among 18 attributes, we choose hair color and face color attributes as the
target attributes and the biased attributes. For simplicity, the size of each label is reduced from 9
to 4 and 10 to 4 by mapping 2 classes (similar colors) into 1 class, (e.g., original classes 1, 2 are
mapped to the new class 1). We make set M whose new target class and biased attributes following
ctarget = cbias. Also, set m are sampled among images following ctarget 6= cbias.

B.2 REAL-WORLD BIASED BENCHMARKS

Biased Action Recognition. Biased action recognition data has 1, 941 motion images for training
with 6-motions {Climbing, Diving, Fishing, Racing, Throwing, Vaulting}
on various types of backgrounds (e.g., (Climbing, Rockwall)). The images in this benchmark
include the frequent background of that action as a biased attributes for set M and rare backgrounds
for set m (e.g., (Climbing, Rockwall) for M and (Climbing, Ice cliff) for m).
This benchmark is originated from (Bahng et al., 2020; Nam et al., 2020; Kim et al., 2021a).

CelebA. CelebA has 202, 599 face images with 40 binary attributes from 10, 177 identities. Among
40 attributes, we select two attributes (HeavyMakeup,Male) for target and biased attributes. The
size of training subsets M and m are 130, 410, and 32, 360, respectively. Remains are used for
evaluation. Splitting training and evaluation sets follow (Liu et al., 2015). This task reflects that a
real-world benchmark is easy to be biased in some specific attributes, unintendedly. This benchmark
is originated from (Nam et al., 2020).

ImageNet/ImageNet-A. ImageNet data has 1, 000 classes, and we utilize a subset of ImageNet,
which has 9 super-classes for scalability (Bahng et al., 2020). Also, we evaluate using ImageNet-
A (Hendrycks et al., 2019), which gathers the failure cases of ImageNet from web. As described
in (Bahng et al., 2020; Hendrycks et al., 2019) dataset, “frequent background can be a biased

14

Under review as a conference paper at ICLR 2022

attributes.” For example, frogs in the swamp have a higher proportion than other backgrounds
(e.g., underwater). It indirectly represents that a de-biased model trained under ImageNet has better
de-biasing performance when it has higher accuracy on ImageNet-A samples.

B.3 NOISY LABELS

We inject 10% noise labels into the basic configuration conducted in Section 5. Noise labels are
uniform randomly flipped by following rules. At first, we randomly sampled a set of noise label
candidates regardless of whether the source of the data samples are majority set or minority set. Flip
the labelyi → ŷi uniform randomly, so that the label is not equal to the ground truth ŷi 6= yi. Three
noise label ratios, {90%, 95%, 1%0%}, were used. In order to train noised model fθ̂n , we utilize
cross-entropy loss (not generalized cross-entropy loss). Also, to avoid over-fitting, we utilize three
data augmentation operations: RandomResizedCrop, ColorJitter, and Random Rotation which are
parameterized by (0.9, 1.1), (0.05, 0.05) and (−10, 10), respectively.

C BASELINES

Vanilla As an ultimate baseline, which means without de-biasing module, we train a network called
vanilla. As summarized before, we utilize frequently used regularization techniques and simple data
augmentation operations (jitter, crop, and rotation).

LearnedMixinH (Clark et al., 2019) LearnedMixinH was proposed by Clark et al for VQA task.
This method of de-biasing is composed of biased (on the question) and unbiased (on both the image
and the question) networks. We generate a biased network in our experiment by simply training
on the biased data set. This is based on the argument in LfF (Nam et al., 2020), which states that
biased models learn biased information first, because it is easier to learn than the target attribute.
The biased model outputs two values: its softmax output and a bias prediction value for each given
sample. Ultimately, the de-biased model trained under the cross-entropy loss with regularizer of two
above values from the biased model. We implement this algorithm by inheriting the authors’ official
code and unofficial code made by the authors (Bahng et al., 2020).

RUBi (Cadene et al., 2019) Similar with LearnedMixinH, RUBi also targets to solve VQA tasks.
We also utilize the argument from LfF (Nam et al., 2020), to train the biased network. Instead using
two values of the biased model, the authors of this paper utilized sigmoid outputs of the biased
model and give weights to the de-biased model’s output, when calculating the cross-entropy loss.
This weighting mechanism gives weighted punishements by followings. The biased model outputs
highly and lower biased sigmoid output when major and minor samples are given. By multiplying
sigmoid values to the softmax output of the de-biased model, the de-biased model suffers higher loss
from the minor samples. We implement this method using the authors official code and unofficial
code from (Bahng et al., 2020).

ReBias (Bahng et al., 2020) ReBias is a bi-level optimization-based de-biasing algorithm proposed
by Bahng et al. ReBias trains the biased and de-biased model simultaneously. The de-biased
model updated its cross-entropy loss and additional regularizer using Hilbert-Schmidt Independence
Criterion (HSIC). Here, the biased model is composed of large convolutional filters to capture the bias
information better, but we ignore this for a fair comparison with same network. We utilize official
code from the authors.

LfF (Nam et al., 2020) The main module of this algorithm is two-fold: (i) The biased model trained
on Generalized cross-entropy (GCE), which highlights the major samples. (ii) The de-biased model
trained on the weighted loss where weight is computed by the cross-entropy outputs from each. From
GCE, the cross entropy loss loss of the minor samples increases. We utilize official code from
authors.

AFLite (Le Bras et al., 2020) AFLite is another type of resampling approach. AFLite trains the
biased model multiple times and selects samples whose accuracy is low. At the de-biasing phase, the
de-biased model is trainend on the sub-sampled new training set. Because authors offer the official
code for a synthetic data, we manually reproduce their idea.

15

Under review as a conference paper at ICLR 2022

REPAIR (Li & Vasconcelos, 2019) REPAIR is a re-sampling-based de-biasing algorithm proposed
by Li et al. REPAIR reconfigure the training set based on the weight parameter w obtained by the
adversarial training. As a first step, the biased model and the adversary are trained simultaneously.
The adversary computes per sample weight w so that the biased model gets a larger value for the
minorities. REPAIR utilized w to reconstruct the repaired training set. The authors proposed four
types of re-configuring methods with given parameter k: REPAIR-T (Thresholding, sampling above
k), REPAIR-R (Ranking, Sampling top-k%), REPAIR-PR (Per-class Ranking), REPAIR-S (Sampling,
reject with probability 1 − w). We utilize REPAIR-S among these variants to fairly compare our
sampling mechanism (without hyperparameter k case). We implement REPAIR using the official code
from the authors. Additionally, note that we obtained w by training the classifier at the adversarial
training phase without using biased information, such as RGB values in the case of CM, where as the
official code used the biased information. This is enabled by the LfF (Nam et al., 2020) argument,
which state that the network is biased toward a biased attribute that is easier to learn than the target.

D RESULT: CONTROLLED BIASED BENCHMARKS (ORACLE VALIDATION)

These results are obtained from the tuned hyperparameters, which are optimized by using the labels
related to the biased attributes b . As we can see, the proposed method obtains the best performance in
terms of the average accuracy of majority and minority cases. Moreover, other works also successfully
improves their results. However, it is difficult to obtain a validation set which is discriminated between
majority and minority samples. Therefore, we can conclude that the proposed method obtains when
we can access to the discriminated dataset between majority and minority cases, which is difficult in
practice.

Bias ratio 99.5% 99% 98% 95%

Test type Major Minor Major Minor Major Minor Major Minor

Difficulty : 0.0001

Vanilla 99.97± 0.05 29.22± 1.87 99.93± 0.09 56.09± 2.19 99.87± 0.09 72.92± 2.54 99.90± 0.00 89.60± 0.51

LearnedMixinH (Clark et al., 2019) 99.93± 0.09 36.27± 2.79 100.0± 0.00 60.20± 4.29 96.77± 4.50 74.63± 1.08 96.44± 4.96 88.64± 3.95

RUBi (Cadene et al., 2019) 99.97± 0.05 31.66± 1.12 99.90± 0.08 57.23± 2.49 99.90± 0.08 77.77± 0.80 99.87± 0.05 89.99± 0.44

LfF (Nam et al., 2020) 99.63± 0.48 56.00± 3.72 97.43± 0.12 84.05± 2.14 95.05± 0.44 92.23± 1.04 98.03± 0.25 95.29± 0.49

REPAIR (Li & Vasconcelos, 2019) 99.77± 0.17 64.97± 0.30 99.90± 0.08 79.12± 0.35 99.71± 0.08 87.74± 0.63 99.77± 0.05 92.96± 0.21

Ours 99.06± 0.24 97.22± 0.19 99.19± 0.12 98.19± 0.16 98.74± 0.14 98.57± 0.19 99.16± 0.18 98.58± 0.05

Difficulty : 0.0005

Vanilla 99.97± 0.05 28.90± 1.39 99.93± 0.09 55.85± 2.30 99.87± 0.09 73.16± 2.42 99.90± 0.00 89.52± 0.71

LearnedMixinH (Clark et al., 2019) 99.93± 0.09 36.42± 2.70 100.0± 0.00 60.44± 4.30 96.77± 4.50 74.47± 1.24 96.48± 4.98 88.71± 3.99

RUBi (Cadene et al., 2019) 99.97± 0.05 31.90± 1.27 99.90± 0.08 57.21± 2.48 99.90± 0.08 77.78± 0.95 99.87± 0.05 89.90± 0.44

LfF (Nam et al., 2020) 98.63± 0.48 56.00± 3.70 97.46± 0.14 84.03± 2.12 95.02± 0.45 92.24± 1.00 98.00± 0.24 95.29± 0.51

REPAIR (Li & Vasconcelos, 2019) 99.77± 0.17 65.10± 0.31 99.93± 0.09 79.06± 0.44 99.68± 0.12 87.81± 0.56 99.84± 0.05 92.96± 0.16

Ours 99.15± 0.18 97.23± 0.21 98.99± 0.05 98.21± 0.15 98.64± 0.27 98.58± 0.11 99.06± 0.12 98.56± 0.04

Table 5: Average test accuracy and standard deviation (3 independent runs) on experiments with
Colored MNIST data under various bias ratio. The best accuracy on average of Major and
Minor test is reported in bold font.

Bias ratio 99.5% 99% 98% 95%

Test type Major Minor Major Minor Major Minor Major Minor

Difficulty : 8

Vanilla 98.99± 0.20 47.52± 1.45 99.15± 0.30 53.74± 0.59 99.19± 0.25 66.77± 0.44 99.55± 0.09 79.34± 2.90

LearnedMixinH (Clark et al., 2019) 99.48± 0.09 68.49± 1.73 99.41± 0.14 74.50± 1.07 99.71± 0.08 84.02± 1.70 99.81± 0.14 91.90± 0.49

RUBi (Cadene et al., 2019) 99.48± 0.14 52.79± 2.55 99.06± 0.30 56.91± 1.18 99.10± 0.25 64.31± 2.16 99.48± 0.20 81.56± 1.32

LfF (Nam et al., 2020) 99.22± 0.58 49.03± 2.11 98.47± 0.05 56.13± 4.00 98.61± 0.23 67.21± 2.19 98.65± 0.36 86.43± 1.27

REPAIR (Li & Vasconcelos, 2019) 98.96± 0.09 70.75± 2.01 98.93± 0.08 77.02± 1.19 99.39± 0.12 83.94± 1.29 99.68± 0.09 91.30± 0.28

Ours 99.35± 0.23 83.10± 1.35 99.45± 0.20 91.09± 1.96 98.87± 0.12 93.70± 0.53 99.39± 0.25 96.16± 0.33

Difficulty : 16

Vanilla 99.09± 0.33 48.18± 1.08 99.09± 0.12 54.15± 1.02 99.16± 0.25 65.61± 0.56 99.61± 0.08 79.16± 1.95

LearnedMixinH (Clark et al., 2019) 99.41± 0.16 69.80± 1.39 99.84± 0.05 73.13± 1.11 99.77± 0.16 85.17± 1.00 99.65± 0.16 92.25± 0.59

RUBi (Cadene et al., 2019) 99.15± 0.12 51.89± 0.63 98.99± 0.18 54.94± 1.16 99.35± 0.12 65.99± 0.94 99.10± 0.28 81.68± 0.19

LfF (Nam et al., 2020) 98.37± 0.46 50.40± 3.20 98.47± 0.39 56.97± 1.89 98.45± 0.36 66.56± 2.79 97.84± 0.32 85.18± 0.92

REPAIR (Li & Vasconcelos, 2019) 99.02± 0.08 70.76± 1.83 99.02± 0.24 75.89± 1.37 99.10± 0.41 84.29± 0.74 99.52± 0.24 88.71± 2.50

Ours 99.54± 0.12 84.07± 1.79 98.86± 0.30 90.46± 0.81 99.26± 0.16 94.25± 1.04 99.16± 0.40 96.14± 0.37

Table 6: Average test accuracy and standard deviation (3 independent runs) on experiments with
Watermarked MNIST data under various bias ratio. The best accuracy on average of Major
and Minor test is reported in bold font.

16

Under review as a conference paper at ICLR 2022

Bias ratio 99.5% 99% 98% 95%

Test type Major Minor Major Minor Major Minor Major Minor

Vanilla 100.0± 0.00 33.82± 2.70 99.97± 0.02 54.55± 5.04 99.76± 0.26 72.45± 2.72 99.84± 0.21 90.31± 1.35

LearnedMixinH (Clark et al., 2019) 100.0± 0.00 33.82± 2.70 99.96± 0.00 48.80± 0.00 99.92± 0.00 70.27± 0.00 99.58± 0.00 88.14± 0.00

RUBi (Cadene et al., 2019) 100.0± 0.00 22.51± 7.67 99.99± 0.02 46.76± 7.24 99.87± 0.13 68.54± 2.14 99.91± 0.06 87.01± 0.55

LfF (Nam et al., 2020) 90.56± 7.89 56.85± 2.43 81.77± 5.17 76.97± 4.34 78.84± 7.39 77.23± 2.92 85.93± 5.49 80.02± 3.68

REPAIR (Li & Vasconcelos, 2019) 99.95± 0.02 60.36± 7.97 99.95± 0.02 80.06± 4.51 99.96± 0.03 88.74± 2.58 99.90± 0.05 94.08± 1.31

Ours 97.94± 1.31 92.53± 2.66 98.33± 0.16 93.75± 1.25 96.95± 1.78 92.57± 2.69 98.61± 0.79 95.24± 0.93

Table 7: Average test accuracy and standard deviation (3 independent runs) on experiments with
Cartoon data under various bias ratio. The best accuracy on average of Major and Minor test
is reported in bold font.

E SPLITTING PERFORMANCE OF DE-NOISING MODULE

Discriminativeness power of the de-noising module between majority and minority cases on various
noisy label ratio and bias ratio |m|/|D|. As we can see for all cases, our de-noising module with
compensated loss criterion can distinguish the minority samples and noisy labels. In addition, when
there is no noisy cases, (0% cases) the proposed de-noising module lose some valuable clean minority
samples. All cases are run with difficulty parameter 0.0001 and 8 for CM and WM cases, respectively.

(a) Noise 10%, Bias 90% (b) Noise 10%, Bias 95% (c) Noise 10%, Bias 99%

(d) Noise 1%, Bias 90% (e) Noise 0%, Bias 99.5%

Figure 10: De-noising module and threshold plots for various conditions. Data= CM,
Noise={0%, 1%, 10%} and Bias={99.5%, 1%, 5%, 10%}.

F REAL-WORLD BENCHMARK: DETAIL ACCURACY

As in all cases, the proposed method obtains the best performance on average of all cases, e.g., CelebA
on average of majority and minority cases. Also, our BAR results fails to obtain state-of-the-art
performance in some classes, but get the best on average of all classes.

Benchmark CelebA

Type Major Minor Avg.

Vanilla 93.16± 0.75 71.56± 2.41 82.36± 1.02

LfF 92.60± 0.58 69.67± 1.88 81.13± 0.69

REPAIR 92.54± 0.52 73.48± 1.75 83.01± 0.62

Ours 88.18± 0.83 83.83± 1.74 86.01± 0.49

Table 8: Test accuracy of real-world
benchmarks averaged under three runs.
The best accuracy is reported in bold
font.

17

Under review as a conference paper at ICLR 2022

(a) Noise 10%, Bias 90% (b) Noise 10%, Bias 95% (c) Noise 10%, Bias 99%

(d) Noise 1%, Bias 90% (e) Noise 0%, Bias 99.5%

Figure 11: De-noising module and threshold plots for various conditions. Data= WM,
Noise={0%, 1%, 10%} and Bias={99.5%, 1%, 5%, 10%}.

Benchmark IN/IN-A

Type Avg.

Vanilla 34.55± 0.01

LfF 36.31± 0.01

REPAIR 35.46± 0.01

Ours 37.42± 0.01

Table 9: Test accu-
racy of real-world bench-
marks averaged under
three runs. The best accu-
racy is reported in bold
font.

Benchmark Biased action recognition

Type Climbing Diving Fishing Racing Throwing Vaulting Avg.

Vanilla 67.62± 4.67 29.98± 3.14 66.67± 1.94 80.30± 2.70 35.29± 1.66 69.72± 5.00 58.08± 0.01

LfF 68.57± 3.56 32.91± 5.19 61.11± 2.97 78.28± 2.92 32.94± 2.88 70.48± 1.57 57.35± 0.02

REPAIR 66.98± 1.62 38.36± 5.41 70.63± 1.12 80.81± 0.94 37.65± 0.96 71.25± 3.43 60.61± 0.00

Ours 71.43± 0.78 45.91± 0.51 72.22± 2.97 79.80± 2.17 42.35± 0.00 68.70± 3.30 63.14± 0.01

Table 10: Test accuracy of real-world benchmarks averaged under three runs. The best accuracy is
reported in bold font in each column.

G VON MISES-FISHER DISTRIBUTION FOR GRADIENTS

The von Mises-Fisher (vMF) distribution is a probability distribution on the hypersphere Sd−1 ⊂ Rd.
The probability density function of the vMF distribution for the unit vector v is given by:

fd(v;u, κ) = Cd(κ)e(κu>v),

where κ and u are called concentration parameter and mean direction, respectively. The normalization
constant Cd(κ) is equal to Cd(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
, where It denotes the modified Bessel function

of the first kind at order t.

As in (Banerjee et al., 2005), whenN samples from the vMF distribution are given as vi, the maximum
likelihood estimates solutions û and κ̂ can be obtained from û =

∑N
i=1 vi

‖
∑N

i=1 vi‖
and κ̂ ≈ r(d−r2)

1−r2 , where

r =
‖
∑N

i=1 vi‖
N .

18

Under review as a conference paper at ICLR 2022

To interpret gradient vectors as vMF distribution, given vectors have to be unit vectors: ∇θi = ∇θi
‖∇θi‖ .

Therefore, the approximated vMF distribution of the gradients can be obtained as follows:

fd(∇θi; û, κ̂) where û =

∑N
i=1∇θi

‖
∑N
i=1∇θi‖

, κ̂ ≈ r̄(d− r̄2)

(1− r̄2)
, and r̄ =

‖
∑N
i=1∇θi‖
N

.

H ANALYSIS

We conducted a few studies to analyze our method: hyperparameter sensitivity, (target,bias)-pairwise
accuracy, pairwise sampling probability, ablation study on λ, adjusting objective results based on our
metric, class activation map, unbiased case result, training time, results on naive metrics, and impact
of GCE. Controlled benchmarks were used for analysis.

90

95

100
Validation

(a) Validation
80

85

90

95

100
Majority

(b) Majority
0

50

100
Minority

(c) Minority

Vanilla
Mixin
RUBi
LfF
Repair
ReBias
AFLite
Ours

Figure 12: Hyperparameter sensitivity. We train models on CM with diffculty 0.0001 under learning
rate η ∈ {0.005, 0.01, 0.02} and epoch e ∈ {50, 100}.

Hyperparameter sensitivity. In Figure 12, accuracy results of the models trained on the various
learning rate η ∈ {0.005, 0.01, 0.02} and epochs e ∈ {50, 100} were depicted. It shows that the
prediction performance of all algorithms has higher accuracies on biased validation sets and majority
set for various learning rates and epochs. However, in minority case 12(c), ours have a less sensitive
result on minority cases by seeing error bar’s length.

1.0 0.6 0.3 0.1 0.7 0.6 0 0.7 0.1 0.5
0.5 1.0 0.1 1.0 0.3 0.1 0.8 0.5 0.2 0.
0.1 0 1.0 0.1 0.8 0.1 0 0 0. 0.
0.2 0.9 0 1.0 0.2 0.1 1.0 0.1 0 0
0.7 0.1 0.9 0.4 1.0 0.3 0. 0.4 0.7 0
0.6 0.8 0.3 0 0.7 1.0 0.5 0.8 0 0.
0.1 0.6 0.3 1.0 0.4 0.2 1.0 0.9 0.4 0.1
0.1 0.2 0.1 0.1 0.3 0.5 0.9 1.0 0.2 0
0.1 0. 0.1 0.1 0.2 0 0. 0.1 1.0 0
0.5 0 0 0 0 0. 0 0 0 1.0

La
be

l I
nd

ex

Color Index

Augment

(a) Vanilla

1.0 0.9 0.8 0.7 0.9 0.7 0.1 0.7 0 0.4
0.9 1.0 0.3 1.0 0.7 0.5 0.9 0.7 0. 0.1
0.9 0.7 1.0 0.6 1.0 0.6 0.1 0.4 0.4 0
0.9 1.0 0.2 1.0 0.7 0.4 1.0 0.7 0. 0
0.9 0.9 0.9 0.7 1.0 0.6 0 0.6 0.1 0
1.0 1.0 0.6 0.2 0.8 1.0 0.6 0.9 0 0
0.8 0.9 0.5 1.0 0.7 0.3 1.0 0.9 0.4 0
0.9 0.9 0.8 0.8 0.9 0.8 1.0 1.0 0.8 0
0.6 0.6 0.7 0.6 0.8 0.3 0.7 0.6 1.0 0
0.9 0. 0.4 0. 0 0 0 0 0 1.0

La
be

l I
nd

ex

Color Index

LfF

(b) LfF

1.0 0.8 0.6 0.8 0.8 0.8 0.4 0.8 0.4 0.8
0.7 1.0 0.3 1.0 0.8 0.7 1.0 0.7 0.5 0.6
0.9 0.8 1.0 0.6 1.0 0.8 0.8 0.4 0.6 0.6
0.7 1.0 0.4 1.0 0.8 0.7 1.0 0.6 0.3 0.5
0.9 0.8 1.0 0.8 1.0 0.8 0.7 0.8 0.7 0.2
0.8 0.9 0.7 0.3 0.7 1.0 0.5 0.9 0.1 0.5
0.6 1.0 0.8 1.0 0.8 0.7 1.0 0.9 0.8 0.6
0.7 0.9 0.4 0.3 0.7 0.9 1.0 1.0 0.8 0.
0.6 0.6 0.7 0.6 0.8 0.6 0.7 0.7 1.0 0.4
0.8 0.5 0.6 0.1 0. 0.1 0.2 0.2 0 1.0

La
be

l I
nd

ex

Color Index

REPAIR

(c) REPAIR

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 0.9 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 0.9 0.9 1.0 1.0 0.9 0.9 1.0

La
be

l I
nd

ex

Color Index

Ours

(d) Ours

Figure 13: Accuracy on each (color, label)-pair. Red color corresponds to bad accuracy, while blue
color denotes higher accuracy.

(Target, Bias)-pairwise accuracy. In Figure 13, pairwise accuracy matrices were plotted using
various de-biasing methods. This represents the prediction result of 10 Major (diagonal) and 90
Minor pairs. First, vanilla fails to infer Minor pairs, but it infers Major accurately. Similar to vanilla,
other algorithms, including ours, achieve almost accurate results for the Major pairs. On the other
hand, based on the perspective of minority, other algorithms fail to infer. Among the de-biasing
methods, our method has been approximately 100% accurate for almost all the pairs.

Pairwise sampling probability. To understand the previous pairwise result, we checked the sam-
pling probability of our method. In Figure 14, each subfigure indicates pairwise sampling probability
for all the metrics: pM (i) = 1/M(i)∑

i(1/M(i)) , pD(i) = 1/D(i)∑
i(1/D(i)) , and ps(i) = 1/S(i). In Figure 14(a),

the raw case is highly bonded between the shape and color (see diagonal). In pM (i) and pD(i) cases,
both are well mixed compared to without case. In Figure 14(d), ps(i) has the most uniformized
sampling probability. Red and yellow indicators denote complementary effect of both scores.

λ 0 1
Acc. 97.46 / 97.41 97.97 / 97.10
λ 10 100

Acc. 97.97 / 96.99 97.16 / 95.64

Table 11: Ablation study on λ

Ablation study on λ. In the definition of the score S(i), we set the
hyperparameter λ to make balance between source scores M(i) and
D(i). In order to confirm the effect of λ, the experimental results

19

Under review as a conference paper at ICLR 2022

La
be

l I
nd

ex

Color Index

(a) w/o, 99.5%

La
be

l I
nd

ex

Color Index

𝒑𝑴 𝒊 > 𝒑𝑫(𝒊)

(b) pM (i), 99.5%

La
be

l I
nd

ex

Color Index

𝒑𝑴 𝒊 < 𝒑𝑫(𝒊)

(c) pD(i), 99.5%

La
be

l I
nd

ex

Color Index

(d) pA(i), 99.5%

Figure 14: Pairwise sampling probability under colored MNIST with 0.0001 difficulty. Blue color
indicates higher sampling probability.

are reported from various values of λ = {0, 1, 10, 100} on CM with
99% bias without noise. As in Table 11, there is no remarkable per-
formance difference depending on the λ, so it could be observed that it is robust to the hyperparameter
λ.

Benchmark C. M. W. M.

Type Avg. Avg.

Vanilla 64.56 73.26
LfF 77.82 74.13

REPAIR 82.37 84.86

Ours† 95.33 86.67
Ours 98.14 91.23

Adjusting objective vs Resampling. As an ablation study, we clari-
fied the power of our gradient-based metric by reporting the results of
adjusting objective leveraged by our ps(i). We conducted tests under
two controlled biased benchmarks, colored MNIST and watermarked
MNIST with difficulty 0.0001 and 8. ps(i), normalized by the mean
value, ps(i)∑N

i ps(i)/N
, is used for the weights. Our gradient-based score

outperforms others in the adjusting objective (dagger mark †) and resam-
pling cases. Compared with our gradient-based ways, the adjusting objective methods achieve lower
performance. This implies that, as argued in (An et al., 2020), the adjusting objective-based approach
suffers from training sensitivity.

(a) Vanilla, M (b) LfF, M (c) Repair, M(d) Ours, M (e) Vanilla, m (f) LfF, m (g) Repair, m(h) Ours, m

Figure 15: Plots of class activation map (CAM) for each method of same inputs, sampled from the
Major (M) and Minor (m) sets.

Algorithm Accuracy
Vanilla 50.80

LfF 85.04
ReBias 51.49

REPAIR 53.28
Ours 95.44

Table 12: Random color test
results on CM

What de-biased model learn. The main goal of de-biasing algo-
rithms is to make the de-biased model not learn the biased feature. To
check whether the biased models satisfy this goal, we evaluate two
tests: (1) random color test for CM, and (2) CAM for WM.

We construct test dataset by uniformly randomly sample colors for all
samples RGB ∼ U(0, 1)3. As in Table 12, the result of ours show that
it outputs based on the shape whether the training set is biased or not.

Additionally, we conduct CAM test for WM dataset. CAM (Selvaraju
et al., 2017) has been used as a tool to explain “where a model is
focusing on?” In Figure 15, we state the CAM results for watermarked MNIST samples obtained
from the Major (Left) and Minor (Right) sets. In the top row (for Major), our model better ignores
the biased object (fashion object) than the other methods. Even for Minor, only our model determines
the target digit, while the rest focuses on the biased object (Ankle boots).

Benchmark 10% (Unbiased) 70% 80% 90%

Test type M m M m M m M m

Vanilla 99.71 98.60 99.81 97.96 100.0 95.92 99.21 99.29
LfF 100.0 97.85 99.61 98.67 99.81 98.21 99.21 99.15

ReBias 99.90 98.47 99.81 97.90 99.90 96.37 99.31 99.24
REPAIR 99.71 98.72 99.81 98.17 100.0 97.08 99.70 99.31

Ours 98.45 97.38 99.22 98.40 99.71 98.04 98.42 98.09

Table 13: Unbiased Colored MNIST ac-
curacy results.

Unbiased / Rarely biased case. To analyze the gen-
eral side effect of additional modules, performance degra-
dation, we check the accuracy of unbiased (especially,
10% = 1/(# of classes) biased case) and rarely biased
(70%, 80%, 90%) cases, under MNIST variants with dif-
ficulties of 0.0001. As listed in the table, all models have
similar accuracy to the vanilla case. This means that, re-

20

Under review as a conference paper at ICLR 2022

gardless of whether the training set is biased, all models, including ours, do not suffer from severe
side effects. It shows that our algorithm can be applied without performance loss. In short, our
algorithm needs not to utilize human knowledge about bias in the training set, an on/off knowledge.

Vanilla RUBi Mixin
12’ 26" 26’ 13" 29’ 22"

LfF REPAIR Ours
27’ 15" 53’ 08" 38’ 00"

Table 14: Training time

Training Time. To see the drawbacks of training time for de-biasing, we
measure the training time of 6 related works on WM case. As in Table 14,
the proposed model spends ×1.45 time compared to RUBi which is the
fastest de-biasing method, while ×0.72 faster than the other re-sampling
algorithm, REPAIR.

99.27 / 96.92 99.83 / 11.00 99.87 / 38.31 99.87 / 10.27

0

0.002

0.004

0.006

0.008

0.010

0.012

Gradient Softmax Logit Loss

Sampling probability
Other metrics. This study shows other metrics-based
resampling results, (e.g., softmax response, loss, and logit
value), based on sampling probability. These results show
empirical justification of our gradient-based scores for
de-biasing. All scores are defined to make the minority
samples (unfamiliar samples) have a higher sampling prob-
ability. Each score is defined as follows:

Ssoftmax(i) =
1− S(f(xi, yi))∑
j(1− S(f(xj , yj)))

, Slogit(i) =
m− f(xi, yi)∑
j(m− (f(xj , yj))

, Sloss(i) =
L(xi, yi)∑
j L(xj , yj)

,

where S(·) is softmax response and m = maxk∈D(f(xk, yk)). As depicted in Figure H, our gradient-
based approach has the highest performance on the average accuracy of majority and minority results.
Moreover, the gradient method has a short error bar than the others, which works reasonably (softmax
and loss case).

Vanilla RUBi
98.84 / 94.78 98.84 / 94.66

REPAIR Ours
98.84 / 95.56 98.55 / 96.30
Table 15: |m|/|D| = 0.7

Impact of GCE. We checked the proposed method without GCE
(trained with CE loss) under 99.5% WM case. The proposed method
w/o GCE achieved (M /m) 99.15% / 81.72%, which outperforms the
others, while lower than the proposed method without GCE case
(99.35% / 83.10%).

I DE-NOISING

Clean/Major Clean/Minor Noisy/Major Noisy/Minor
Before denoising 50586 568 2820 26

FINE 47455 12 0 0
Ours 50577 331 1 4

Table 16: Comparison between the state-of-the-art noisy
label algorithm and the proposed de-noising module in terms
of the number of preserved samples after cleansing.

In recent noisy label cases, there
have been two major trends: (1) con-
structing robust objective functions
or regularizers (Cao et al., 2020; Yi
& Wu, 2019), and (2) cleaning the
noisy data (Li et al., 2019; Kim et al.,
2021b). Those strategies are mostly
used to reduce the influence of rare
samples, such as out-of-cluster samples in (Kim et al., 2021a). However, in the case of dataset bias
problem, minority samples can be omitted when rare samples are discarded, resulting in de-biasing
algorithms’ performance degrading. As a result, erasing noisy label samples while maintaining
minority samples is crucial in the dataset bias problem with noisy labels to preserve the de-biasing
performance. Table 16 shows the number of preserved samples after cleansing steps. We compare
the proposed de-noising module to the state-of-the-art method, FINE. It cutting-out noisy labels by
using eigenvectors. As shown in Table 16, while the proposed de-noising module does not perfectly
eliminate noisy samples, it does preserve clean minority samples, whereas FINE does not.

21

	Introduction
	Related Work
	bias problem for training a classifier
	Unintendedly biased training
	When does this problem happen and intensify?

	De-biasing using per-sample Gradient Information
	Per-sample Gradient-Based Scores
	De-biasing using Gradient-based scores

	De-noising a small portion of the noisy labels
	Experiments
	Benchmarks
	Controlled Biased Benchmarks
	Real-World Biased Benchmarks

	Evaluation

	Conclusion
	Experiment Details
	Basic settings
	Test settings in Section 3, 4, and 5

	Benchmarks
	Controlled Biased benchmarks
	Real-world biased benchmarks
	Noisy labels

	Baselines
	Result: Controlled Biased benchmarks (Oracle validation)
	Splitting performance of de-noising module
	Real-world benchmark: Detail accuracy
	von Mises-Fisher distribution for gradients
	Analysis
	De-noising

