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Abstract

Computing the principal component (PC) of the adjacency matrix of an undirected graph
has several applications ranging from identifying key vertices for influence maximization and
controlling diffusion processes, to discovering densely interconnected vertex subsets. However,
many networked datasets are sensitive, which necessitates private computation of the PC for
use in the aforementioned applications. Differential privacy has emerged as the gold standard
in privacy-preserving data analysis, but existing DP algorithms for private PC suffer from low
accuracy due to large noise injection or high complexity. Motivated by the large gap between
the local and global sensitivities of the PC on real-graphs, we consider instance-specific
mechanisms for privately computing the PC under edge-DP. These mechanisms guarantee
privacy for all datasets, but provide good utility on “well-behaved” datasets by injecting
smaller amounts of noise. More specifically, we consider the Propose-Test-Release (PTR)
framework. Although computationally expensive in general, we design a novel approach
for implementing a PTR variant in the same time as computation of a non-private PC,
while offering good utility. Our framework tests in a differentially-private manner whether a
given graph is “well-behaved” or not, and then tests whether its private to release a noisy
PC with small noise. As a consequence, this also leads to the first DP algorithm for the
Densest-k-subgraph problem, a key graph mining primitive. We run our method on diverse
real-world networks, with the largest having 3 million vertices, and compare its utility to a
pre-existing baseline based on the private power method (PPM). Although PTR requires a
slightly larger privacy budget, on average, it achieves a 180-fold improvement in runtime
over PPM.

1 Introduction

Background: The principal component v of a network, i.e., the eigen-vector corresponding to the largest
eigen-value of the graph adjacency matrix (and more generally, the other principal components), has been
found useful in diverse tasks in graph mining Bonacich (2007); Das et al. (2018); Le et al. (2015). The
component vi corresponding to node i, is commonly referred to as its eigen-vector centrality. This notion has
been used to identify critical nodes in many types of networks, e.g., social and biological networks Lohmann
et al. (2010); Jalili et al. (2016); Das et al. (2018). It has been shown that nodes with high eigen-vector
centrality are good solutions for influence maximization Dey et al. (2019); Maharani et al. (2014); Deng et al.
(2017). Interestingly, vaccination of high eigen-vector centrality nodes has also been found to be effective in
reducing diffusion processes Van Mieghem et al. (2011); Saha et al. (2015); Doostmohammadian et al. (2020).
More generally, eigen-vector centrality is used as a standard baseline in most analyses where a set of well
connected nodes need to be selected.

Another application of the principal component is in identifying highly interconnected subsets of vertices
in a graph, which is a fundamental problem in graph mining with wide-ranging applications spanning
bioinformatics, social network analysis, and fraud detection (see Lanciano et al. (2024) and references therein).
The densest-k-subgraph (DkS) Feige et al. (2001) corresponds to a vertex subset of pre-specified size k with
the largest (induced) edge density in a graph. The DkS problem falls within the broader class of density-based
subgraph detection techniques, which include popular measures such as the core decomposition Seidman (1983)
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and the densest subgraph problem Charikar (2000); Goldberg (1984). In contrast to these approaches, the DkS
formulation possesses the built-in feature of explicit control over the size of the selected subgraph. This is an
important advantage enjoyed by DkS, as the lack of size control causes the latter approaches to output large
subgraphs that are sparsely interconnected in real-world graphs Tsourakakis et al. (2013); Shin et al. (2016).
On the flip-side, the DkS problem is computationally intractable in then worst-case, and achieving good
approximation guarantees is provably hard under standard complexity-theoretic assumptions Manurangsi
(2017); Jones et al. (2023). Notwithstanding these negative results, the work of Papailiopoulos et al. (2014)
demonstrated that employing a low-rank approximation of the adjacency matrix based on its principal
components can work well in practice, and also provides data dependent approximation guarantees. In
particular, it was demonstrated that simply using a rank-1 approximation based on the principal component
v can provide effective approximation for DkS.

Differential privacy: In many applications such as public health, social networks, and finance, network
datasets comprise sensitive information, and re-identification and other kinds of privacy risks are serious
issues Yuan et al. (2024); Peng et al. (2012). For instance, consider a social network where the identities of
the vertices (i.e., individuals) are public, but the edges (i.e., personal contacts) are private. However, merely
concealing the link structure is insufficient to ensure privacy, as an adversary can still infer the presence or
absence of specific edges by analyzing query outputs from the dataset Jiang et al. (2021). Although several
privacy models have been proposed, Differential Privacy (DP) Dwork et al. (2014a; 2006b) has emerged as a
powerful and broadly adopted framework for developing algorithms that offer rigorous, quantifiable privacy
guarantees without making assumptions about the adversary’s knowledge or capabilities. In the context of
graphs, there are two standard notions of privacy - edge privacy, where vertices are public and edges are
private. In this case, the objective is to prevent the disclosure of the existence/non-existence of an arbitrary
edge in the input graph. On the other hand, in node privacy Kasiviswanathan et al. (2013); Blocki et al.
(2013), vertices are also private, and the goal is to protect any arbitrary vertex and its incident edges. DP
algorithms have been developed for many graph problems, ranging from clustering and community detection,
Epasto et al. (2022a); Mohamed et al. (2022); Nguyen & Vullikanti (2024), to personalized PageRank Epasto
et al. (2022b); Wei et al. (2024), and computing different kinds of graph statistics Karwa et al. (2014); Gupta
et al. (2012); Blocki et al. (2013).

There has also been work on computing principal components under edge DP Kapralov & Talwar (2013);
Chaudhuri et al. (2012); Hardt & Roth (2013); Hardt & Price (2014); Balcan et al. (2016); Gonem &
Gilad-Bachrach (2018). However, as we discuss in Section 2, prior methods either do not have adequate
accuracy, or do not scale well even to networks of moderate size. This is the main motivation of our work.
We also note that the DkS problem has not been studied under DP.

Contributions: In this paper, we develop a scalable algorithm for differentially private computation of the
principal component (PC) of the graph adjacency matrix under edge-DP. This also results in the first edge-DP
algorithm for the DkS, leveraging the non-private low-rank approximation approach of Papailiopoulos et al.
(2014). DP algorithms achieve their privacy guarantees by adding controlled amounts of noise to non-private
computations. While algorithms for privately computing PCs of (general) matrices are known, as mentioned
above, one issue is that the DP guarantees provided by these methods are based on worst-case outcomes across
all possible datasets. This can result in adding excessive noise, which has a detrimental effect on utility, since
a given dataset need not be representative of the worst-case. To address this problem, the work of Gonem
& Gilad-Bachrach (2018) developed a technique for privately computing PCs for “well-behaved” datasets
that inject smaller amounts of noise via the smooth sensitivity framework of Nissim et al. (2007). Such
instance-specific mechanisms are appealing since they are private for every dataset, but can offer improved
accuracy on “well-behaved” datasets. Our work also concerns the use of instance-specific mechanisms for
computing the PC under edge-DP, albeit we use the Propose-Test-Release (PTR) framework Dwork & Lei
(2009), since smooth sensitivity gives poor results in our context (see further below). In general, PTR is
not “user-friendly” as it involves computations which are often challenging to implement in polynomial-time.
Hence, the main contribution of our work is to develop a scalable and practical variant of PTR for private
PC. Our contributions can be further summarized below.

(1) Our approach is based on output perturbation, where the principal component (PC) of the adjacency
matrix is first computed non-privately followed by a one-shot noise addition step to provide DP. First, we
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Figure 1: Comparison of the edge-density (y-axis) versus subgraph size (x-axis) trade-off on the Orkut social
network with 3M vertices and 120M edges. PPM (blue) and PTR (red) ((ϵ0, δ0) = (1, 7e−7)) attain

performance comparable with their non-private counterpart (yellow). However, PTR is ≈ 700 times faster
than PPM. The standard Gaussian mechanism with noise calibrated to global sensitivity (purple) yields poor

results.

derive a new ℓ2 local sensitivity bound under edge DP (Theorem 1), which we then use to highlight the large
gap between the local and global sensitivities of the PC on real-world graphs. This implies that the standard
approach of calibrating noise to global sensitivity Dwork et al. (2014a) leads to poor accuracy see figure
1), motivating the application of instance-based mechanisms such as smooth sensitivity Nissim et al. (2007)
or Propose-Test-Release Dwork & Lei (2009). These mechanisms calibrate noise to local sensitivity-based
estimates to provide DP, thereby offering improved privacy-utility trade-offs. However, a key challenge is that
they are difficult to implement in practice, as they need not involve polynomial-time computations in general.

(2) We then derive a tight analysis of prior bounds on computing private PC via smooth sensitivity Gonem
& Gilad-Bachrach (2018) (developed to address the high computational complexity of Nissim et al. (2007)),
and show that these are very close to the global sensitivity value, in general (see Appendix D).

(3) Given the unsuitability of smooth sensitivity, we shift our focus to using the Propose-Test-Release (PTR)
framework Dwork & Lei (2009); Li et al. (2024). At a high level, PTR requires proposing a bound β for
the local sensitivity of the PC on the given dataset, followed by a differentially private test to see if adding
noise to the PC calibrated to β would violate privacy. However, PTR is computationally very expensive in
general, and the only prior work for implementing PTR for graph problems in polynomial time was Li et al.
(2023) for an unrelated problem of computing epidemic metrics. Our main contribution is to introduce a
computationally efficient and practical PTR variant for private PC. It features a differentially-private test to
filter out graphs which are not “well-behaved” without resulting in false positives via the Truncated Biased
Laplace (TBL) mechanism Xiao et al. (2025), followed by a second private test to compute a lower bound on
the distance to instances with local sensitivity bound of β based on a novel technique (see Theorem 2), and a
more efficient algorithm for selecting the proposed bound β (see Theorem 5 and Proposition 1). Our methods
reduce the complexity of PTR for private PC to basically the same as computation of the PC, which gives us
significant improvement in terms of running time.

We also employ the iterative private power method (PPM) of Hardt & Price (2014) as a baseline for comparison.
Through experiments on real graphs, we provide compare and contrast the efficacy of these two approaches
for two applications: (A1) privately extracting the subset with the top-k eigenscores, and (A2) private
approximate DkS. A representative example for DkS is provided in Figure 1, which depicts the edge-density
(whihc measures utility) versus size trade-off on a social network with 3 million vertices and 120 million edges.
The yellow line is the rank-1 non-private algorithm of Papailiopoulos et al. (2014), whereas the red and blue
lines depict PTR and PPM respectively. Both algorithms perform comparably to the non-private version
(PPM offers slightly better privacy and accuracy). However, PTR is 700 times faster than PPM as it’s a
one-shot noise addition mechanism.
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2 Related Work

We briefly summarize relevant related work here. We first discuss the use of nodes with high eigen-vector
centrality in different applications, and the DkS problem, and then the problems of differential privacy for
graph problems and private principal component analysis (PCA).

Eigen-vector centrality and applications: Centrality metrics are common tools used in network analysis.
The eigen-vector centrality (also referred to as eigenscore) of node i is defined as the ith component of
the principal component v of G Bonacich (2007); Das et al. (2018); Le et al. (2015); this notion has been
found very effective in a number of applications. For instance, nodes with high eigen-vector centrality have
been found to be effective for controlling diffusion processes on networks, both for maximizing influence or
information spread Dey et al. (2019); Maharani et al. (2014); Deng et al. (2017) and for controlling the spread
of epidemic processes by choosing such nodes for vaccination interventions Van Mieghem et al. (2011); Saha
et al. (2015); Doostmohammadian et al. (2020). Eigen-vector centrality has also been used in other domains
such as biological networks for identifying essential proteins and critical components Lohmann et al. (2010);
Jalili et al. (2016).

The DkS problem: The DkS problem is computationally very hard, and it has been shown that an
O(n1/(log log n)c) approximation is not possible under certain complexity theoretic assumptions Manurangsi
(2017) (see other discussion on its complexity in Khot (2006); Manurangsi (2017); Bhaskara et al. (2012)).
Efficient algorithms which work well for practical instances of DkS range from low-rank approximations Pa-
pailiopoulos et al. (2014) and the convex and non-convex relaxations of Konar & Sidiropoulos (2021) and Lu
et al. (2025). We mention in passing that there are variants of DkS, such as the Densest at-least-k Subgraph
problem (DalkS), the Densest at-most-k Subgraph problem (DamkS) Andersen & Chellapilla (2009); Khuller
& Saha (2009), and the f -densest subgraph problem Kawase & Miyauchi (2018). Although these variants
impose size constraints on the extracted subgraph, these formulations do not guarantee that the entire
spectrum of densest subgraphs (i.e., of every size) can be explored.

Differential Privacy for Graphs: In the context of graph datasets, there are two standard notions of
privacy - edge privacy Blocki et al. (2013), where vertices are public and edges are private. In this case, the
objective is to prevent the disclosure of the existence/non-existence of an arbitrary edge in the input graph.
On the other hand, in node privacy Kasiviswanathan et al. (2013), vertices are also private, and the goal is to
protect any arbitrary vertex and its incident edges.

Early work on differentially private graph algorithms focused on computing basic statistics. Nissim et al.
introduced DP for graph computations, providing methods to privately release the cost of minimum spanning
trees and triangle counts using smooth sensitivity Nissim et al. (2007). Karwa et al. Karwa et al. (2014)
extended these techniques to other subgraph structures, such as k-stars and k-triangles. Hay et al. Hay et al.
(2009) explored DP mechanisms for releasing degree distributions, while Gupta et al. Gupta et al. (2012)
developed methods for privately answering cut queries. Node privacy, being more sensitive, is more challenging
to ensure. Kasiviswanathan et al. Kasiviswanathan et al. (2013) and Blocki et al. Blocki et al. (2013)
addressed this issue by developing node-DP algorithms using Lipschitz extensions for subgraph counting.

Recently, two concurrent works Farhadi et al. (2022); Nguyen & Vullikanti (2021) introduced edge DP
algorithms for computing the densest subgraph (DSG), which aims to find the subgraph that maximizes the
average induced degree Goldberg (1984). Building on the non-private greedy peeling algorithm of Charikar
(2000) for DSG, Nguyen et al. Nguyen & Vullikanti (2021) employed the exponential mechanism Dwork
et al. (2014a) to design an (ϵ, δ)-DP algorithm which can be executed in both sequential and parallel versions.
Meanwhile, Farhadi et al. Farhadi et al. (2022) applied the Prefix Sum Mechanism Chan et al. (2011) to
privatize Charikar’s greedy peeling algorithm for DSG, resulting in a pure (ϵ, 0)-DP algorithm that runs in
linear time. Most recently, the work of Dinitz et al. (2025) proposed an (ϵ, δ)-DP algorithm that is based on
using a private variant of the multiplicative weights framework Arora et al. (2012) for solving a tight linear
programming relaxation of DSG proposed in Chekuri et al. (2022). In a separate but related work, Dhulipala
et al. Dhulipala et al. (2022) develop algorithms for releasing core numbers with DP, which are generated
using a variant of the greedy peeling algorithm. At present, we are unaware of any DP algorithm for the DkS
problem.
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Private Principal Component Analysis (PCA): The topic of differentially private PCA has been
explored previously in various studies, including Chaudhuri et al. (2012); Hardt & Roth (2013); Kapralov &
Talwar (2013); Blum et al. (2005); Dwork et al. (2014b). Initially, Blum et al. (2005); Dwork et al. (2014b)
considered an general input perturbation approach for providing DP by adding random Gaussian noise to the
empirical covariance matrix constructed from the data points. However, this method requires access to the
covariance matrix, which is computationally expensive in both space and time. Although graph adjacency
matrices are not covariances (as they may not be positive semi-definite), the classic randomized response
technique of Warner Warner (1965) can be applied to generate DP adjacency matrices, with the caveat that it
can result in injection of large amount of noise, which manifests in creating dense graphs with very different
properties from the actual dataset. This can result in poor utility for node subset selection problems (see
(Farhadi et al., 2022, Appendix A)).

An alternative approach based on output perturbation that utilizes the exponential mechanism to output
principal components with (ϵ, 0)-DP was explored in Kapralov & Talwar (2013); Chaudhuri et al. (2012).
However, the theoretical analysis of this method shows that it incurs a high time complexity of O(n6) (here
n represents the dimension), which renders it impractical for application on even moderately sized datasets.
Meanwhile, the work of Hardt & Roth (2013); Hardt & Price (2014); Balcan et al. (2016) consider privatizing
power iterations for computing private subspaces with DP. This iterative approach comprises of interleaved
steps of matrix vector multiplication followed by noise injection and re-normalization to provide (ϵ, δ)-DP.
While it can perform well in practice, selecting its parameters requires some trial-and-error and its iterative
nature can result in high-complexity when applied to large datasets. Closest to our present work is the
approach of Gonem & Gilad-Bachrach (2018), which considered using the smooth sensitivity framework of
Nissim et al. (2007) to privately compute principal components via output perturbation. However, in practice,
smooth sensitivity often fails to reduce the noise sufficiently. We address this issue by designing a method to
significantly reduce the noise level in output perturbation using the propose-test-release (PTR) framework.

3 Preliminaries

Differential Privacy on Graphs: Let G denote a collection of undirected graphs on a fixed set V of
nodes. This paper focuses on the notion of edge privacy Blocki et al. (2013), where two graphs G,G′ ∈ G
are considered neighbors, denoted G ∼ G′, if they have the same vertex set and differ in exactly one edge,
meaning |E(G) − E(G′)| = 1.
Definition 1. (ϵ, δ)-Differential Privacy (DP) Dwork et al. (2014a). Let ϵ > 0 and δ ∈ [0, 1]. A randomized
algorithm A(·) : G → Rk is (ϵ, δ)-DP if:

Pr(A(G) ∈ S) ≤ exp(ϵ) Pr(A(G′) ∈ S) + δ, (1)

for any outcome S ⊆ Rk, and for any pair of neighboring datasets (G,G′) that differ in a single edge.

Function Sensitivity: Dwork et al. (2014a). Consider a function f : G → Rk. The local ℓ2 sensitivity of
f exhibited by a dataset G ∈ G is defined as LSf (G) = maxG′:G∼G′ ∥f(G) − f(G′)∥2, where the maximum
is taken over all neighboring datasets G′ which differ in one edge from G. The global ℓ2 sensitivity of f is
then GSf = maxG∈G LSf (G). If we computed the sensitivity calculations w.r.t. the ℓ1 norm instead, we
would obtain the ℓ1 local and global sensitivities of f . Adding i.i.d. Gaussian noise to f(·) with variance
appropriately calibrated to global ℓ2 sensitivity is guaranteed to satisfy (ϵ, δ)-DP Dwork et al. (2014a). By
adding Laplacian noise calibrated to global ℓ1 sensitivity, the output is guaranteed to be (ϵ, 0)-DP Dwork
et al. (2014a). An important property of DP is that applying post-processing on the output of a (ϵ, δ)-DP
mechanism does not weaken the privacy guarantee.

Private principal components: Consider an unweighted, undirected simple graph G := (V, E) with vertex
set V := {1, . . . , n} and edge set E ⊆ V ×V . The n×n symmetric adjacency matrix of G is denoted as A. The
eigen-values of A are arranged in non-increasing order of their magnitudes; i.e., we have |λ1| ≥ |λ2| ≥ · · · |λn|.
The principal eigen-gap of G is defined as GAP(G) := |λ1| − |λ2|, while the principal component v of A is
the eigen-vector associated with |λ1|. If the graph G represented by A is connected, the Perron-Frobenius
Theorem Meyer (2023) asserts that v is element-wise positive and λ1 > 0. Following our earlier notation, we
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consider the function f(G) = v, and LSv(G) = maxG′:G∼G′ ∥v − v′∥2 In this paper, we develop new techniques
for privatizing v under edge-DP, with the following two applications.

(A1) Eigen-vector centrality: For a node i, its component vi in the principal component v is referred to
as its eigen-vector centrality or eigenscore. Nodes with high eigen-vector centrality (i.e., the k-largest entries
of v) have been used in a number of applications, such as identifying influential users in social networks and
for targeted interventions for controlling epidemic processes, e.g., Maharani et al. (2014); Van Mieghem et al.
(2011); Saha et al. (2015). Here we study how to find the k-largest entries of v with edge-DP.

(A2) Densest-k-Subgraph: Consider a vertex subset S ⊆ V which induces a subgraph GS = (S, ES),
where ES = {{u, v} ∈ E | u, v ∈ S}. The edge density of the subgraph GS is defined as d(GS) = |ES |/

(|S|
2

)
,

which measures what fraction of edges in GS are connected. Note that larger values correspond to dense
quasi-cliques, with a maximum value of 1 for cliques. The Densest-k-Subgraph (DkS) problem Feige et al.
(2001) seeks to find a subset of k vertices S ⊆ V that maximizes the edge density. Formally, the problem can
be expressed as follows

d∗
k := max

x∈Xk

{
xT Ax(

k
2

) }
(2)

where Xk := {x ∈ {0, 1}n : eT x = k} represents the combinatorial selection constraints. Here, each binary
vector x ∈ {0, 1}n represents a vertex subset S ⊆ V, with xi = 1 if i ∈ S and xi = 0 otherwise.

4 Analyzing sensitivity of principal components

In order to compute the principal component of A under edge-DP , a straightforward idea is to apply the
technique of output perturbation. This can be achieved by computing the global sensitivity of v and then
applying the Gaussian mechanism to provide (ϵ, δ) DP Dwork et al. (2006a). Since output perturbation is a
one-shot noise addition scheme, it is computationally fast, as it incurs only O(n) complexity. However, the
global ℓ2 sensitivity of v is large; at most

√
2 (Gonem & Gilad-Bachrach, 2018, Theorem 5). This implies

that a large amount of noise has to be injected to achieve a target privacy requirement, which can result in a
severe degradation in utility. On the other hand, the local ℓ2 sensitivity can be substantially smaller on many
graphs. Note that adding noise calibrated to the local sensitivity is not guaranteed to be privacy preserving
Nissim et al. (2007). However, if we observe that the local ℓ2 sensitivity of v is much smaller than

√
2 on

a given graph, we can employ instance-specific noise addition schemes Nissim et al. (2007); Dwork & Lei
(2009), which provide DP by injecting noise calibrated noise to local sensitivity calculations. We demonstrate
that under a mild requirement on the spectral gap of G, the following bound on the local sensitivity can be
derived.
Theorem 1. If GAP(G) >

√
2(

√
2 + 1), then the local ℓ2 sensitivity of v under edge-DP is at most

LSv(G) ≤
2
√

v2
π(1) + v2

π(2)

GAP(G) = 2cπ

GAP(G) , (3)

where cπ =
√
v2

π(1) + v2
π(2) and vπ(1) and vπ(2) denote the largest and second-largest entries of v respectively.

Proof. Please refer to Appendix B.

Note that the numerator term in the above upper bound is at most 2
√

2∥v∥∞. We conclude that for graphs
whose eigen-gap GAP(G) exceeds

√
2(

√
2 + 1), the local ℓ2 sensitivity of the principal component v is small

when the entries of v are “spread out” in magnitude (i.e., ∥v∥∞ is small ) and the eigen-gap is large.

The value of this estimate for various real-world graph datasets is presented in Table 1, and contrasted with
the global sensitivity upper bound of

√
2. It is evident that the local sensitivity of v on real graphs can be at

least 2 orders of magnitude smaller compared to the global sensitivity estimate of
√

2. This motivates the
application of instance-specific noise-addition mechanisms for providing DP on such “good” instances, the
first of which we consider is the smooth sensitivity framework of Nissim et al. (2007). However, practical
application of this framework is challenging, as it entails computations which need not be polynomial-time.
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Table 1: Comparison between local and global sensitivity for real-world datasets.

Graph n GAP(G) LSv GSv/LSv

Facebook 4k 36.9 7e-3 202
PPI-Human 21k 70.8 4e-4 3535
soc-BlogCatalog 89k 335.9 7e-4 2035
Flickr 105k 101.3 1e-3 1414
Twitch-Gamers 168k 148.4 2e-3 539
Orkut 3M 225.4 1e-2 141

The prior work of Gonem & Gilad-Bachrach (2018) developed tractable smooth upper bounds on the smooth
sensitivity for computing principal components of general datasets; albeit not for graphs under edge-DP.
In Appendix D, we provide a rigorous analysis which shows that in our graph setting under edge-DP, the
obtained smooth upper bound is very close to the global sensitivity estimate of

√
2.

5 The Propose-Test-Release Mechanism

Since adopting the smooth sensitivity-based approach of Gonem & Gilad-Bachrach (2018) does not yield
tangible improvements over the global sensitivity, we explore the application of an alternative instance-specific
noise injection mechanism; namely, the Propose-Test-Release (PTR) framework introduced in Dwork & Lei
(2009). While PTR and smooth sensitivity share a common aim (i.e., exploiting local sensitivity to add
instance-specific noise while preserving DP), PTR is a distinct paradigm, which presents its own unique
challenges.

At a high level, the PTR framework comprises the following steps. Given an upper bound β on the local ℓ2
sensitivity LSv(G), test (in a differentially private manner) whether the current dataset is “close” to another
with high sensitivity. If so, the algorithm can refuse to yield a response; otherwise, it can release a private
principal component with a small amount of noise (scaled to β). The main difficulty in implementing PTR
lies in the “test” component, which requires computing the Hamming distance to the nearest dataset G′ whose
local sensitivity LSv(G′) exceeds β. Computing such a sensitivity-1 statistic requires solving the following
problem

γ(G) =:
{

min
G′

d(G, G′) s.to LSv(G′) ≥ β

}
, (4)

which is difficult in general. In a recent breakthrough, it was shown in Li et al. (2024) that the PTR framework
can still be successfully applied if γ(G) is replaced by any non-negative, sensitivity-1 statistic ϕ(G) that is a
global lower bound on γ(G); i.e., we have

γ(G) ≥ ϕ(G) ≥ 0, ∀ G. (5)

This results in the following modified PTR framework; first introduced in Li et al. (2024).

1. Propose an upper bound β on the local ℓ2 sensitivity LSv(G).
2. Compute lower bound ϕ(G) on the distance γ(G) defined in problem equation 4.

3. Release ϕ̂(G) := ϕ(G) + Lap
(

1
ϵ1

)
.

4. If ϕ̂(G) ≤ ln(1/δ)
ϵ1

, return no response.

5. If ϕ̂(G) ≥ ln(1/δ)
ϵ1

, return v + N
(
0, σ2 · In

)
, where σ2 = 2β2 log(2/δ)/ϵ22

The upshot is that if we can find a suitable surrogate function ϕ(·) which satisfies equation 5, and is simpler
to compute compared to solving equation 4 for γ(·), then we can apply the framework successfully. It is
important to note that β need not be private for the correctness of the above technique to go through. The
work of Li et al. (2024) shows that the output of the modified-PTR algorithm is (ϵ1 + ϵ2, δ)-DP. However, it
does not provide a general recipe for computing such requisite surrogates. Hence, a major contribution of
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f(G) f̃(G)

Z̃ ∼ TBLM

G

φ(G) = 0 φ̂(G)

No

> 0 ?

GSφ

Yes

≥ GSφ ln(1/δ)
ε1

?
(eqn. 17)

v vptr

Release

(w.p. ≥ 1 − δp

2 )

g ∼ Gauss

Z ∼ Lap

≥ GSφ ln(1/δ)
ε1

?

No response

φ̂(G)
φ(G)

(eqn. 19)
β

(w.p. ≥ 1 − δ )Yes

No

No

Yes

Phase I

Phase II

Phase II

Phase III

Figure 2: Flow diagram of the proposed PTR algorithm 1. Input: Undirected graph G. Under edge-DP, the
edges are private but the identities of the vertices are public. The algorithm proceeds in 3 phases, starting
from bottom left. Phase I : The truncated biased Laplace mechanism (TBLM) is used to privatize the
spectral threshold function f(G) := GAP(G) − t, where the threshold t := 2(

√
2 + 1). The output f̃(G) is then

used to test if G lies in the large-gap or small-gap regime. Phase II : Depending on the outcome of Phase I,
the distance to instability ϕ(G) is computed and privatized via the Laplace mechanism to obtain ϕ̂(G). Phase
III : The output ϕ̂(G) is compared against a threshold to decide privately whether the noisy principal
component vptr should be released or not.

our work lies in constructing a suitable ϕ(·) for the given problem. Below, we provide an overview of our
approach (see Figure 2 for a flow-diagram).

Overview of Algorithm 1: At a high level, our algorithm privately releases the principal component of a
graph using a one-shot output perturbation scheme, while avoiding the excessive noise required by worst-case
global sensitivity bounds. The main idea is to test whether the input graph is sufficiently distant from other
instances with high local sensitivity in a differentially private manner, and to use local sensitivity-based
calculations to release a noisy eigenvector only if this test succeeds. Concretely, the algorithm can be broken
down into three phases, as illustrated in Figure 2:
Phase I : A private gap test is carried out to determine whether the graph lies in a “well-behaved” regime
with sufficiently large spectral gap.
Phase II : Depending on the outcome of Phase I, a follow-up distance-to-instability test is performed to
check whether the graph is far from instances with large local sensitivity. If the gap test fails, (i.e., the
algorithm determines that the graph lies in the small-gap regime), then it treats the graph as unstable, with
0 distance to instability. On the other hand, if the gap test succeeds, the algorithm performs a conservative,
but tractable test to lower bound the true distance to unstable instances.
Phase III : A private check is performed via the Laplace mechanism to determine whether the computed
distance exceeds a fixed threshold. If the test fails, the algorithm does not release a response w.h.p.
Otherwise, it releases a private estimate of the principal component by adding Gaussian noise calibrated to a
data-dependent sensitivity bound.

Next, we formalize the main ideas underpinning our approach.

• Construction of ϕ(·): Our goal is to construct a surrogate ϕ(·) which satisfies equation 5 for every graph
G. For this task, we consider two regimes: (a) a regime where the eigen-gap of G is “large enough” and (b) a
complementary regime where the eigen-gap is “small”. We consider each regime separately, and make these

8
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notions concrete. First, we show that for case (a), the local ℓ2 sensitivity of v on G′ can be appropriately
upper bounded in “simple” terms. Formally, we have the following claim.
Theorem 2. Assume that the following two conditions hold:

(A1) GAP(G) > 2(
√

2 + 1), (A2) d(G,G′) <
(

1 − 1√
2

)
· GAP(G).

Then, the local ℓ2 sensitivity of v on G′ can be upper bounded by

LSv(G′) ≤ θ(G′) := 2
GAP(G) − d(G, G′) ·

[
2d(G, G′)
GAP(G) + cπ

]
. (6)

Proof. Please refer to Appendix C.

Consequently, we can replace LSv(G′) in equation 4 with the upper bound θ(G′). Doing so yields the problem

ϕ(G) := min d(G, G′)
s.t. θ(G′) ≥ β

(7)

Since θ(G′) upper bounds LSv(G′), replacing LSv(G′) ≥ β with θ(G′) ≥ β enlarges the feasible set of
equation 4. Hence, it follows that that equation 7 is a relaxation of equation 4, whose solution ϕ(G) yields a
lower bound on the true PTR distance γ(G), as desired. Furthermore, by design, ϕ(G) is non-negative and
has ℓ1 sensitivity equal to 1. Hence, ϕ(G) is a suitable candidate for implementing the PTR framework, as it
guarantees that equation 5 is satisfied for all graphs for which GAP(G) > 2(

√
2 + 1), which corresponds to

the “sufficiently large” gap regime.

Next, we consider the complementary the small gap regime (b), where GAP(G) ≤ 2(
√

2 + 1). Devising a
suitable surrogate that obeys equation 5 is more challenging compared to the previous case, since even the
local sensitivity bound of Theorem 1 need not apply here. Hence, our goal is to make the algorithm reject
such “unfavorable” datasets w.h.p. To this end, we devise a surrogate for γ(G) which outputs 0 for such
datasets. Clearly, such a surrogate satisfies equation 5. A valid choice is the following optimization problem

min d(G, G′)
s.t. θ(G′) ≥ 0.

(8)

Compared to equation 7, the proposed bound β is replaced by 0 in the RHS of the constraint. Regarding the
above problem, we have the following claim.
Lemma 1. For every graph G, the optimal value of problem 8 is 0.

Proof. See Appendix E.

We would like to use equation 8 in PTR only for graphs belonging in the small gap regime GAP(G) ≤ 2(
√

2+1).
For other “well-behaved” graphs whose gap exceeds the aforementioned threshold, we would like to employ
the surrogate equation 7. For this task, we can combine problems equation 7 and equation 8 into the single
optimization problem

ϕ(G) := min d(G, G′)
s.t. θ(G′) ≥ β · u(GAP(G) − t),

(9)

where t := 2(
√

2 + 1) is the gap threshold, and u(.) is the indicator function u(x) := 1{x>0}. In the large gap
regime, problem 9 reduces to 7. Otherwise, it boils down to 8, with value 0. In Appendix H we show that for
graphs whose spectral gap is below the threshold t = 2(

√
2 + 1), the PTR algorithm is designed to return

No Response with probability at least 1 − δ, as intended. An issue is that instantiating equation 9 first
requires checking whether the gap of G exceeds the threshold t or not, which need not be privacy-preserving.
Our proposed solution is to first privatize the function f(G) := GAP(G) − t and then employ it in equation 9.
Next, we describe how to perform such an operation.

9
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• Privatizing f(G) via the Truncated Biased Laplace Mechanism (TBLM): In order to privatize
f(G), we first need to compute the global ℓ1 sensitivity of f(·) under edge-DP. A calculation reveals that

GSf = max
G∼G′

|f(G) − f(G′)| = max
G∼G′

|GAP(G) − GAP(G′)| ≤ 1. (10)

Hence, it suffices to add Laplacian noise Z ∼ Lap(0, 1/ϵ0) to f(G) to guarantee (ϵ0, 0)-DP Dwork et al. (2014a).
Denote the noisy output f̃(G) := f(G) + Z. However, the standard Laplace mechanism adds two-sided
symmetric noise to f(G), which can result in the outcome that f(G) ≤ 0, but f̃(G) > 0. This give rise to
undesirable false-positives where we incorrectly employ the surrogate equation 7 instead of equation 8. To
prevent such an occurrence, we apply the truncated biased Laplace mechanism (TBLM) Xiao et al. (2025),
which adds one-sided noise to provide (ϵ0, δ0)-DP. Formally, given parameters µ > 0, λ > 0, and R > 0, the
density of TBL noise is given by

Pr(Z = z) = exp(−|z − µ|/λ)
Zµ,λ,R

1{0≤z≤R}, (11)

where 1{0≤z≤R} is the indicator function of the interval [0, R], and Zµ,λ,R = Pr(0 ≤ z ≤ R) is the normalization
parameter. Note that the samples from the TBL distribution are guaranteed to be positive and bounded.
Furthermore, generating such samples can be accomplished efficiently (see Appendix F).
Fact 1. (Xiao et al., 2025, Lemma 1) Let the scale parameter λ = 1/ϵ0, the range parameter R = 2µ and the
mean parameter is at least µ ≥ 1 + 1

ϵ0
log

(
1

2δ0
(1 − e−µϵ0)

)
. Then, adding such (µ, λ,R) TBL noise to a

1-sensitivity function provides (ϵ0, δ0)-DP.

Stated differently, for a given pair (µ, ϵ0), the smallest achievable δ0 is given by

δ0 ≥ 1
2 e

−(µ−1)ϵ0
(
1 − e−µϵ0

)
. (12)

It is evident that for a fixed ϵ0, larger values of µ allow smaller values of δ0 to be chosen. Let Z̃ ≥ 0 be drawn
from a (µ, λ,R) TBL distribution. We propose to privatize f(G) via f̃(G) = f(G) − Z̃. If the parameters of
the TBL distribution are chosen according to Fact 1, then f̃(·) is (ϵ0, δ0)-DP.

• Analyzing the sensitivity of ϕ(·): After privatizing f(G), we finally consider the optimization problem

ϕ(G) = min d(G,G′)
s.t. θ(G′) ≥ β · u(f̃(G)),

(13)

In order to perform PTR with ϕ(·), we need to compute its ℓ1-sensitivity under edge-DP. Let GSϕ denote the
global sensitivity of ϕ(·). In our framework, it turns out that GSϕ can be larger than 1, unlike the modified
PTR framework of Li et al. (2024). This is showcased by the following result.
Lemma 2. The ℓ1 global sensitivity of ϕ(·) satisfies

GSϕ =
{
S1 := 2 + (2 −

√
2)µ, −1 < f̃(G) < 1,

S2 := 1, otherwise.
(14)

Proof. Please refer to Appendix G.

After having described the construction of ϕ(·) and analyzing its sensitivity, we are ready to establish the
privacy properties of the PTR algorithm.
Theorem 3. For every graph G, the PTR algorithm is (ϵ0 + ϵ1 + ϵ2, δ0 + δ) differentially-private, where δ0 is
computed based on equation 12.

Proof. Please refer to Appendix H.

10
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Taking a step back, its worthwhile to contrast our modified PTR algorithm with that of Li et al. (2024).
Although we adopt the same idea as Li et al. (2024), the main difference is that we need to perform an extra
differentially private check to test if the given dataset lies in the large graph regime or not. If the latter case
arises, the algorithm will stop w.p. 1 − δ. The second difference is that the sensitivity of ϕ(·) depends on the
parameter µ used in the TBL, which is a consequence of the fact that the proposed bound used in problem
equation 9 depends on the outcome of u(f̃(G)). These modifications necessitate a larger privacy budget
compared to the PTR algorithm proposed in Li et al. (2024). Next, we turn to the practical considerations of
selecting β and evaluating ϕ.

• Valid choices of β: Selecting the parameter β is a key component of implementing PTR. The following
theorem specifies the range of β values that are valid for the PTR algorithm.
Theorem 4. For any choice of β ∈ (βl, βu), the statistic ϕ(·) can be computed according to equation 17,
where the lower and upper limits are given by

βl :=
2
√

v2
π(1) + v2

π(2)

GAP(G) , βu := 2
√

2
GAP(G)

[
2 −

√
2 +

√
v2

π(1) + v2
π(2)

]
. (15)

Proof. Please refer to Appendix I.

• Computing ϕ(·): Given a β ∈ (βl, βu), the tractability of the PTR framework hinges on our ability to
solve problem 7 in an efficient manner in order to compute ϕ(·). By construction, the problem asks to find
the smallest value of d(G,G′) such that the inequality

2
GAP(G) − d(G, G′) ·

[
2d(G, G′)
GAP(G) +

√
v2

π(1) + v2
π(2)

]
≥ β (16)

is valid. Observe that for a given value of β, all the involved parameters can be readily computed from G.
Furthermore, the fact that θ(G′) (i.e., the LHS of the above inequality) is monotonically increasing with
d(G,G′), facilitates simple solution. In fact, for a given β, the statistic ϕ(·) can be computed in closed form
according to the formula

ϕ(G) =


β · GAP2(G) − 2GAP(G)

√
v2

π(1) + v2
π(2)

4 + β · GAP(G)

 . (17)

• Policy for selecting β : Finally, we need to have a policy for selecting a suitable β ∈ (βl, βu). From
equation 17, it is evident that ϕ(G) increases monotonically with β ∈ (βl, βu). Hence, for a fixed set of privacy
parameters (ϵ1, δ), larger values of β correspond to higher likelihood of the noisy statistic ϕ̂(G) exceeding
the threshold (GSϕ ln(1/δ))/ϵ1, which in turn increases the odds of the PTR algorithm yielding a response.
However, larger values of β also lead to increased noise injection in the release step of PTR. Hence, a suitable
β should strike the “sweet spot” between minimizing noise injection and maximizing the odds of a successful
response. Next, we demonstrate how the choice of β impacts these two conflicting objectives.

For a given β, the PTR algorithm succeeds if the value of the noisy statistic ϕ̂(G) exceeds the threshold
(GSϕ ln(1/δ))/ϵ1, which implies that the algorithm responds with an output according to step 5. Hence, the
success probability of PTR corresponds to the event Prob(ϕ̂(G) ≥ (GSϕ log(1/δ))/ϵ1), where the randomness
is w.r.t. the Laplace random variable Lap(0, 1/ϵ1). We now reveal how the success probability is affected by
the choice of β. To this end, it will be convenient to express ϕ as ϕ(G) = ⌈τ(G)⌉ where τ(G) is the fraction
in equation 17. Note that by design, we have ⌊τ(G)⌋ + 1 ≥ ϕ(G) ≥ τ(G). Since τ(.) increases monotonically
with β, increasing τ(.) also increases ϕ(·), which in turn, directly influences the outcome of the threshold test.
Next, we demonstrate that controlling the value of τ(.) through β is sufficient to derive lower bounds on the
success probability of PTR.
Theorem 5. Let ϕ(G) = ⌈τ(G)⌉ where τ(G) is the fraction in equation 17. If β is selected to satisfy

τ(G) = (p + GSϕ) · log(1/δ)
ϵ1

, ∀ p ∈ (0, 1], (18)

11
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then the success probability of PTR is at least 1 − δp

2 .

Proof. Please refer to Appendix J.

Intuitively, the smaller the value of p, the closer the value of ϕ(·) is to the threshold (GSϕ log(1/δ))/ϵ1), and
hence the lower the probability of success. This is captured by the above theorem, which shows that as p
decreases, the success probability diminishes at the rate 1 −O(δ(p−1)). As p → 1, the lower bound on the
success probability shrinks to 1/2.

The value of β which satisfies equation 18 is given by

β = 2
GAP(G) ·

[2(p+GSϕ) log(1/δ)/ϵ1 + GAP(G)
√
v2

π(1) + v2
π(2)

GAP(G) − (p+GSϕ) log(1/δ)/ϵ1

]
(19)

We can obtain the following insights from the above formula. First, fixing all parameters in equation 19 except
p, we see that β diminishes as p is reduced. We conclude that smaller values of p result in the injection of
smaller amounts of noise, but this comes at the expense of reduced odds of the algorithm succeeding. Hence,
the parameter p directly controls the trade-off between noise-injection levels and the success probability.
Second, fixing all parameters except the graph dependent quantities GAP(G) and

√
v2

π(1) + v2
π(2), we observe

that β = O

(√
v2

π(1)+v2
π(2)

GAP(G)

)
, which implies that graphs with a large spectral gap and small spread in the

energy of the entries of v are amenable to smaller levels of noise injection. In Appendix K, we show that the
family of expander graphs Hoory et al. (2006), which mimic several properties of social networks Malliaros &
Megalooikonomou (2011), fulfill both conditions.

We conclude with a final sanity check to ensure that β computed according to equation 19 lies in the interval
(βl, βu).
Proposition 1. For a fixed graph with spectral gap GAP(G), and parameters ϵ1, δ, p, the condition

log(1/δ)
ϵ1

< (1 − 1/
√

2) GAP(G)
(p+GSϕ) =⇒ β ∈ (βl, βu).

Proof. Please refer to Appendix L.

The final proposed solution to approximate DkS via PTR is presented in Algorithm 1. Note that the steps
of the algorithm are in closed-form, and hence it can be executed extremely quickly.

6 The Private Power Method

We consider the Private Power Method (PPM) of Hardt & Price (2014) as a baseline for computing private
principal components under edge-DP. In essence, PPM is a “noisy” variant of the classic (non-private)
power method which computes the principal component of a matrix in an iterative fashion. Executing
each step entails performing a matrix-vector multiplication, followed by normalization. In Hardt & Price
(2014), this algorithm is made DP by adding Gaussian noise to each matrix-vector multiplication, followed by
normalization. By calibrating the variance of the Gaussian noise added in each iteration to the ℓ2-sensitivity
of matrix-vector multiplication, the final iterate of PPM (after a pre-determined number of iterations have
been carried out) can be shown to satisfy (ϵ, δ)-DP. Hence, in contrast to PTR, PPM is not a one-shot noise
addition scheme. Furthermore, its output set is a singleton - a noisy principal component satisfying (ϵ, δ)-DP,
which can reflect a smaller privacy budget compared to PTR. The privacy model considered in Hardt & Price
(2014) defines a pair of matrices A and A′ to be neighboring if they differ in one entry by at-most 1. As
per the authors of Hardt & Price (2014), this is most meaningful when the entries of the data matrix A lie
in [0, 1]. Note that when A and A′ correspond to a pair of neighboring adjacency matrices, this naturally
coincides with the notion of edge-DP for undirected graphs.

12
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Algorithm 1: PPC via PTR (A, p, ϵ0, ϵ1, ϵ2, δ)
Input: Symmetric A ∈ Rn×n, p, v, µ, privacy parameters ϵ0, ϵ1, ϵ2, δ > 0.
Output: Private PC vptr.
Compute δ0 based on equation 12.
Compute β based on equation 19.
// Phase I: Private gap test: check whether the graph is well-behaved
Sample z ∼ TBL(µ, λ = 1, R = 2µ).
Compute f̃(G) = f(G) − z.
if f̃(G) ≥ 0 then

Compute ϕ(G) based on equation 17.
else

ϕ(G) = 0.
end
// Phase II: Private distance computation
if −1 < f̃(G) < 1 then

Set GSϕ = 2 + (2 −
√

2)µ.
else

Set GSϕ = 1.
end

Compute ϕ̂(G) = ϕ(G) + Lap
(

GSϕ

ϵ1

)
.

// Phase III: Private release via output perturbation

if ϕ̂(G) ≥ GSϕ ln(1/δ)
ϵ1

then

Compute vptr = v + N
(

0,
2β2 log(2/δ)

ϵ2
2

· In

)
.

Return: vptr = vptr
∥vptr∥2

.
else

Return: No Response.
end

The complete algorithm is described in Algorithm 2. According to (Hardt & Price, 2014, Theorem 1.3), after
L = O

(
λ1 log n
GAP(G)

)
iterations, the output vL of PPM satisfies (ϵ, δ)-DP and with probability at least 9/10, it

holds that

∥(I − vLvT
L)v∥2 ≤ O

(
σ · maxℓ∈[L] ∥vL∥∞ ·

√
n logL

GAP(G)

)
. (20)

In terms of computational complexity, each step of PPM requires computing a sparse matrix-vector mul-
tiplication, which incurs O(m) complexity, followed by noise addition and re-normalization, which incurs
an additional O(n) time. Hence, each step has complexity order O(n+m). After L iterations, the overall
complexity is O((n+m)L). If L is chosen according to (Hardt & Price, 2014, Theorem 1.3), this results in
complexity of order O((λ1(n+m) logn)/GAP(G)).

Algorithm 2: PPC via PPM (A, L, ϵ, δ)
Input: Symmetric A ∈ Rn×n, no. of iterations L, privacy parameters ϵ, δ > 0.
Output: Private PC vppm.
Initialize: Let v0 be a random unit direction and set σ = ϵ−1

√
4L log (1/δ).

for ℓ = 1 to L do
Generate gℓ ∼ N (0, ∥vℓ−1∥2

∞σ2) ∈ Rn

Compute wℓ = Avℓ−1 + gℓ

Normalize vℓ = wℓ/∥wℓ∥2
end
Return: vppm = vL

13
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7 Applications

Let vpriv denote a (ϵ, δ) edge-DP estimate of v. In this section, we explain how vpriv can be utilized for the
following applications.

• (A1) Private top-k eigenscore subset extraction: In the non-private scenario, computing the subset
with the k largest eigenscores is equivalent to solving the problem

xk = arg max
x∈Xk

vT x, (21)

since v is element-wise non-negative. The solution is given by the support of the k-largest entries of v, and
can be accomplished in O(n log k) time. In the private setting, vpriv need not be element-wise non-negative in
general. Hence, in this case, we solve the problem

x̂k = arg max
x∈Xk

|vT
privx| (22)

Note that the post-processing property of DP implies that x̂k also obeys (ϵ, δ)-DP. In order to solve the above
problem, define the pair of candidate solutions

x(1)
k = arg max

x∈Xk

vT
privx; x(2)

k = arg min
x∈Xk

vT
privx (23)

Note that x(1)
k and x(2)

k correspond to the support of the k-largest and k-smallest entries of vpriv respectively.
Between these two candidates, the one which attains the larger objective value corresponds to the solution of
equation 22; i.e., we have

x̂k = arg max
i∈{1,2}

|vT
privx(i)

k |. (24)

Thus, the post-processing step remains computationally efficient, as it only requires examining an additional
candidate solution compared to its non-private counterpart 21.

• (A2) Private DkS: Problem equation 2 is NP-hard and difficult to approximate Manurangsi (2017);
Jones et al. (2023). As a result, we resort to the low-rank approximation scheme of Papailiopoulos et al.
(2014), which uses the principal component v to approximate DkS. The best rank-one approximation of the
adjacency matrix A is denoted as Â := λ1vvT . Applying the rank-one approximation of A to the objective
function of problem equation 2 is equivalent to solving the problem xk = maxx∈Xk

vT x, which is the same as
problem 21, and be solved in O(n log k) time. The work of Papailiopoulos et al. (2014) showed that such a
subset of nodes constitute dense subgraphs in real-datasets, and provide a data-dependent approximation
guarantee for DkS (see Appendix M).

In the private setting, we now solve the following rank-1 approximation problem

x̂k = arg max
x∈Xk

|vT
privx| (25)

to obtain the final output x̂k. Since vpriv may not be element-wise non-negative, as argued previously, it
suffices to examine the top-k and bottom-k support of vpriv, and then output the candidate that achieves a
larger objective value.

8 Experimental Results

Here, we test the efficacy of the proposed DP algorithms on real graph datasets in terms of their privacy-utility
trade-off for applications (A1) and (A2) and their runtime.

8.1 Setup

• Datasets: Table 2 provides a summary of the datasets, which were sourced from standard repositories
Kunegis (2013); Jure (2014). All experiments were performed in Python on a Linux work-station with 132GB
RAM and an Intel i7 processor. We used the following settings.
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Table 2: Summary of network statistics: the number of vertices (n), the number of edges (m), the eigen-gap,
and the network type.

Graph n m Eigen-gap Network Type
Facebook 4K 88K 36.9 Social
PPI-Human 21K 342K 70.8 Biological
soc-BlogCatalog 89K 2.1M 335.9 Social
Flickr 106K 2.32M 101.3 Image relationship
Twitch-Gamers 168K 6.8M 148.4 Social
Orkut 3.07M 117.19M 225.4 Social

Table 3: Execution time to privatize the PC.

Graph PPM (ms) PTR (ms) Speedup
Facebook 13.6 0.07 194

PPI-Human 58.6 0.32 183
soc-BlogCatalog 283 1.64 172

Flickr 587 1.83 320
Twitch-Gamers 7781 2.25 3458

Orkut 29660 43.14 688

(1) PTR: For the TBLM, we set (ϵ0, δ0) = (1, 7e−7) and µ = 3t ≈ 14.48. We also set the other privacy
budget parameters as (ϵ1 = ϵ2 = ϵ = 3), while we set δ = log(m)/m, where m is the number of edges in each
graph. We set the lower bound on the success probability of obtaining a response in Algorithm 1 to be 0.95,
and then, based on Theorem 5, set p = 1 − (1/ log10(δ)).

Handling No responses: A potential issue with PTR mechanisms is the frequency of returning No
Response. In our framework, this can happen due to (a): the dataset not clearing the private gap test in
phase I or (b): the dataset clearing the gap test but failing the threshold test for release in Phase III. For the
latter case, Theorem 5 provides an explicit lower bound on the success probability, which allows end-users
to directly control the probability of successful private release via specification of the parameter p. In all
experiments, the datasets we used successfully cleared the gap test, and we selected p so that the probability
of release is at least 0.95. We empirically observed that PTR returns a valid output in the vast majority of
trial runs across all datasets (see Table 4). For general datasets, if a “no response” is obtained, one could
repeat the PTR mechanism (since it is very fast) or increase the lower bound on the success probability to
improve the odds of a response. However, this also increases β and results in addition of greater levels of
noise to the principal component. In the event that the mechanism repeatedly returns “no response”, then
one could fall back to using PPM.

(2) PPM: We set (ϵ = 3) and the parameter δ was fixed to be (δ = log(m)/m) across all datasets. An open
question with practical implementation of PPM is how to select the number of iterations L, which has to be
specified beforehand. The main issue is that (Hardt & Price, 2014, Theorem 1.3) only provides the order
of iterations required to achieve a certain utility bound, which scales like O(λ1 log n

GAP(G) )). We experimentally
observed that simply setting L = λ1 log n

GAP(G) provides good empirical performance across the different datasets.
Performing more iterations typically degraded the performance of the algorithm, in addition to also increasing
the run-time complexity.

Further results for a more detailed investigation of the proposed solutions across different values of the privacy
parameters can be found in Appendix N.
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Facebook PPI-Human soc-BlogCatalog Flickr Twitch-Gamers Orkut
98% 99.6% 98.6% 96.9% 99.6% 98.5%

Table 4: Empirical success rates of the PTR algorithm across different datasets with
(ϵ0, δ0) = (1, 7 × 10−7), ϵ1 = ϵ2 = 3, δ = log(m)/m, (m): the number of edges.

Figure 3: Results for private top-k eigenscore subset detection. Jaccard similarity (y-axis) vs. subset size k
(x-axis): PTR (red) (ϵ0, δ0) = (1, 7 × 10−7), ϵ1 = ϵ2 = 3, δ1 = log(m)/m, PPM (blue) ϵ = 3, δ = log(m)/m,

non-private (yellow), (m): the number of edges.

8.2 Results

• Timing: As shown in Table 3, PTR significantly outperforms PPM in terms of execution time required to
output a private PC. We obtain at least a 170-fold speedup across all datasets, and on the Twitch-Gamers
dataset we obtain a 3500-fold speedup. This is because the steps of the PTR algorithm can be computed
in closed form, and it adds noise once, which makes it fast. On the other hand, PPM incurs O(n + m)
complexity with every iteration, which makes the overall algorithm slower. These results underscore the
practical benefits of our PTR algorithm. Given that the original PTR algorithm Dwork & Lei (2009) is not
known to be polynomial-time, our modifications and insightful parameter selection come together to result in
a fast algorithm.

• (A1) Private Top-k eigenscore subset extraction: In order to measure utility, for each private subset
extracted via Algorithms 1 and 2, we compute its Jaccard similarity with the non-private subset. The
results for the 4 datasets with the largest eigen-gaps are depicted in Figure 3. Each sub-figure plots the
Jaccard similarity versus subset size k for both private algorithms on a specific dataset (averaged across 200
Monte-Carlo trials). For these datasets, the two algorithms offer comparable utility under a modest privacy
budget - in fact, the private top-k subsets exhibit high similarity with their non-private counterpart. PTR
incurs a larger overall privacy budget compared to PPM (roughly twice more in terms of the ϵ parameter) to
attain the same utility. This can be attributed to the fact that PTR outputs 3 noisy parameters privately,
whereas PPM only outputs only one. As explained before, from a utility-time complexity perspective, PTR
performs better in general.

• (A2) Private DkS: The empirical performance of Algorithms 1 and 2 across different datasets is depicted in
Figure 4. Each sub-figure plots the edge-density versus size curve obtained using the two different algorithms.
As a baseline, we consider the non-private algorithm as described in Papailiopoulos et al. (2014). In addition,
we also include an upper bound for the edge density of the DkS (See appendix M). To generate each plot,
we executed Algorithm 1 and and Algorithm 2 for 100 different realizations, with each private PC used to
generate a different edge density-size curve. For each subgraph size k, we depict the average edge density
attained by each method across all realizations, within one standard deviation (vertical lines). From Figure
4, it is evident that both PTR and PPM output subgraphs whose edge-density closely matches that of
the non-private solution, again for a modest privacy budget of ϵ ≥ 3. Again, PTR is faster in extracting
highly-quality private dense subsets, at the expense of a larger privacy budget.

Based on our findings, we conclude that both PTR and PPM offer good utility in the applications considered
compared to the non-private baselines. The advantage of PTR is its transparent parameter selection and its
computational efficiency, allowing it to scale to large networks much more easily, at the cost of a slightly
higher privacy budget.
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Figure 4: Results for private DkS. Edge density (y-axis) vs. subgraph size k (x-axis): PTR (red)
(ϵ0, δ0) = (1, 7 × 10−7), PPM (blue), non-private (yellow), and the upper bound on the maximum attainable

edge density (black). (m): the number of edges. Higher densities are better.

9 Conclusions

In this paper, we considered the problem of privately computing the principal component of the graph
adjacency matrix under edge-DP. For this task, we employed the technique of output perturbation. Motivated
by the large gap between the local and global sensitivity on real-world datasets, we employed the Propose-Test-
Release (PTR) framework. Owing to its instance specific nature, PTR can offer good utility on well-behaved
datasets by injecting small amounts of noise to provide DP. However, it is computationally expensive. To
overcome this challenge, we develop a new practical and powerful PTR framework which obviates the
computational complexity issues inherent in the standard framework, while facilitating simple selection of the
algorithm parameters. As a consequence, our PTR algorithm also results in the first DP algorithm for the
densest-k-subgraph (DkS) problem, a key graph mining primitive. We test our approach on real-world graphs,
and demonstrate that it can attain performance comparable to the non-private solution while adhering to
a modest privacy budget. Compared to an iterative baseline based on the private power method (PPM),
PTR requires a slightly larger privacy budget, but is more than two orders of magnitude faster on average.
DP techniques need to be scalable to larger datasets, for privacy practices and guarantees to become more
commonplace. Our paper makes advances towards this goal.
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A Supporting Lemmata

A.1 The Davis-Kahan-sinΘ Theorem

Consider the n × n symmetric matrix M∗ with eigen-decomposition M∗ =
∑n

i=1 λ
∗
i u∗

i u∗T
i , where |λ∗

1| ≥
|λ∗

2| ≥ · · · ≥ |λ∗
n| denote the eigen-values of M∗ sorted in descending order and {u∗

i }i∈[n] are the corresponding
eigen-vectors. Let M be a n× n symmetric matrix obtained by perturbing M; i.e., we have

M = M∗ + E. (26)

In an analogous manner, the eigen-decomposition of M is defined as M =
∑n

i=1 λiuiuT
i . Let U = [u1, · · · ,ur]

and U∗ = [u∗
1, · · · ,u∗

r ] denote the principal-r eigen-spaces associated with M and M∗ respectively. The
distance between the principal eigen-spaces U and U∗ can be defined as

dist(U,U∗) := min
Q∈Or×r

∥UQ − U∗∥2,
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where Or×r denotes the set of r × r rotation matrices. The classic result of Davis-Kahan Davis & Kahan
(1970) provides eigen-space perturbation bounds in terms of the strength of the perturbation E and the
eigen-gap of M∗. While there are many variations of this result Stewart (1990), we utilize one variant which
will prove particularly useful in our context (Chen et al., 2021, Corollary 2.8).

Theorem 6. If the perturbation satisfies ∥E∥2 ≤ (1 − 1/
√

2)(|λ∗
r | − |λ∗

r+1|), then the distance between the
principal eigen-spaces U and U∗ obeys

dist(U,U∗) ≤ 2∥EU∗∥2

|λ∗
r | − |λ∗

r+1|
. (27)

In particular, when r = 1, we obtain the following bound on the distance between the principal components
of M and M∗ as a corollary.

Corollary 1. Under the conditions of Theorem 6, the distance between the principal components u1 and u∗
1

is bounded by

dist(u1,u∗
1) ≤ 2∥Eu∗

1∥2

|λ∗
1| − |λ∗

2|
(28)

B Proof of Theorem 1

Consider a pair of neighboring graphs G,G′ and let A,A′ denote their adjacency matrices respectively. Under
edge-DP, we can view A′ as a perturbation of A; i.e., we have

A′ = A + E, (29)

where E models the affect of adding/deleting an edge in G. Such an action can be formally expressed as

E =
{

eieT
j + ejeT

i , i ̸= j, (i, j) /∈ E
−(eieT

j + ejeT
i ), i ̸= j, (i, j) ∈ E

(30)

where ei denotes the ith canonical basis vector. When (i, j) /∈ E , the perturbation E models an edge addition
to G, whereas for (i, j) ∈ E , E models an edge deletion. Note that by construction, E is a sparse matrix with
a pair of symmetric non-zero entries Eij = Eji = ±1, and satisfies ∥E∥2 = 1. We denote the set of all such
possible perturbations E obtained by edge addition/removal as P.

Let v and v′ denote the principal components of A and A′ respectively. Since A and A′ have non-negative
entries, the Perron-Frobenius theorem implies that v and v′ are also element-wise non-negative. Hence, the
distance between them can be expressed as

dist(v,v′) = min
α∈{−1,+1}

∥v − αv′∥2 = ∥v − v′∥2 (31)

We will invoke the Davis-Kahan perturbation bound stated in Corollary 1 in order to upper bound the local
ℓ2 sensitivity of v. This is valid provided the perturbation E defined in equation 30 satisfies

∥E∥2 ≤ (1 − 1/
√

2)(|λ∗
1| − |λ∗

2|)

⇔ |λ∗
1| − |λ∗

2| ≥ ∥E∥2

1 − 1/
√

2

⇔ GAP(G) ≥ 1
1 − 1/

√
2

=
√

2√
2 − 1

(32)
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Hence, for graphs whose eigen-gap exceeds
√

2/(
√

2−1), we can estimate the local sensitivity via the following
chain of inequalities.

LSv(G) = max
G′:G∼G′

∥v − v′∥2

≤ max
E∈P

2∥Ev∥2

|λ1| − |λ2|

= max
i∈V,j∈V,

i ̸=j

{2
√
v2

i + v2
j

GAP(G)

}

≤ 2cπ

GAP(G)

(33)

where in the final step, vπ(1) and vπ(2) are the largest and second-largest elements of v, respectively. The first
inequality follows from Corollary 1, the second equality is a consequence of the structured sparsity exhibited
by E, and the final inequality follows since

√
v2

π(1) + v2
π(2) ≥

√
v2

i + v2
j ,∀ i ∈ V,∀ j ∈ V, i ̸= j.

C Proof of Theorem 2

Let v′ and v′′ denote the principal components of the adjacency matrices A′ and A′′ associated with G′ and
a neighboring dataset G′′, respectively; i,e, we have A′′ = A′ + E′, where E′ models the addition/removal of
an edge. Applying the Davis-Kahan-sin Θ Theorem, we obtain

LS(G′) = max
G′′∼G′

∥v′ − v′′∥2 ≤ 2 maxE′∈P ∥E′v′∥2

GAP(G′) . (34)

We have implicitly made the assumption that GAP(G′) > ∥E′∥2
1−1/

√
2 = 1

1−1/
√

2 , since ∥E′∥2 = 1. Later, we will
show that this assumption is satisfied under conditions (A1) and (A2).

To establish the desired result, we individually upper and lower bound the numerator and denominator terms
of the above bound on LS(G′). First, consider the numerator term. Then, we have

max
E′∈P

∥E′v′∥2 = max
E′∈P

∥E′(v′ − v + v)∥2

≤ max
E′∈P

∥E′(v′ − v)∥2 + max
E′∈P

∥E′v∥2

≤ ∥v′ − v∥2 · max
E′∈P

∥E′∥2 + max
E′∈E

∥E′v∥2

≤ ∥v′ − v∥2 +
√
v2

π(1) + v2
π(2)

= dist(v′,v) +
√
v2

π(1) + v2
π(2)

(35)

Viewing A′ as a perturbation of A, we can apply the sin Θ theorem of Davis-Kahan to bound dist(v′,v) in
terms of v and GAP(G). Let E = A′ − A denote the perturbation that transforms A to A′. Note that we
have ∥E∥2 ≤ d(G,G′). Applying the sin Θ theorem then yields

dist(v′,v) ≤ 2∥Ev∥2

GAP(G) ≤ 2∥E∥2∥v∥2

GAP(G) ≤ 2d(G,G′)
GAP(G) , (36)

provided ∥E∥2 < (1 − 1/
√

2) · GAP(G). Since ∥E∥2 ≤ d(G,G′), this condition is satisfied if d(G,G′) <
(1 − 1/

√
2) · GAP(G), which is assumption (A1). Combining equation 35 and equation 36, we obtain

max
E′∈P

∥E′v′∥2 ≤ 2d(G,G′)
GAP(G) +

√
v2

π(1) + v2
π(2), (37)

provided the condition listed in assumption (a1) holds.

Next, consider the denominator term of equation 34. To obtain a lower bound, the following lemma will
prove useful.
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Lemma 3. (Gonem & Gilad-Bachrach, 2018, Lemma 11) Let G and G′ be a pair of graphs with d(G,G′) = k,
and suppose GAP(G) > 0. Then

max{GAP(G) − k, 0} ≤ GAP(G′) ≤ GAP(G) + k. (38)

If we wish to apply the non-trivial version of the lower bound on GAP(G′), then we require d(G,G′) < GAP(G).
Note that under assumption (A1), this condition is already satisfied. Hence, we obtain

GAP(G′) ≥ GAP(G) − d(G,G′). (39)

On combining equation 37 and equation 39, we obtain the upper bound

2 maxE′∈P ∥E′v′∥2

GAP(G′) ≤ 2
GAP(G) − d(G,G′) ·

[
2d(G,G′)
GAP(G) +

√
v2

π(1) + v2
π(2)

]
(40)

It only remains to chain the above inequality with equation 34. However, the inequalities equation 34 and
equation 40 were derived under different assumptions, and a little care must be taken to ensure that they
hold simultaneously. Note that equation 34 requires that GAP(G′) >

√
2/(

√
2 − 1). If assumption (A1) is

satisfied, we know that the lower bound equation 39 applies. Hence, if GAP(G) − d(G,G′) >
√

2/(
√

2 − 1), it
implies that GAP(G′) >

√
2/(

√
2 − 1). It remains to work out what is the minimum value of GAP(G) required

so that (A1) and GAP(G) − d(G,G′) >
√

2/(
√

2 − 1) are both valid. Under (A1), we have

GAP(G) − d(G,G′) > GAP(G).(1/
√

2) (41)

If GAP(G).(1/
√

2) >
√

2/(
√

2 − 1), it implies the desired condition GAP(G) − d(G,G′) >
√

2/(
√

2 − 1). The
former condition is satisfied by GAP(G) > 2/(

√
2 − 1), which is assumption (A2).

To conclude, under assumptions (A1) and (A2), we are free to chain together the inequalities equation 34
and equation 40. Doing so yields the claimed bound

LS(G′) ≤ 2
GAP(G) − d(G,G′) ·

[
2d(G,G′)
GAP(G) +

√
v2

π(1) + v2
π(2)

]
.

This concludes the proof.

D The difficulty with smooth sensitivity

Smooth sensitivity Nissim et al. (2007) is a framework for obtaining DP guarantees while relying on local
sensitivity based quantities to calibrate the level of injected noise, as opposed to using the global sensitivity.
To be specific, the smooth sensitivity, for a graph dataset G is defined as

Sβ
f (G) := max

G′

{
LSf (G′) · exp(−βd(G, G′))

}
. (42)

Here, f : G → Rn denotes the target function to be privatized, β > 0 is a parameter, and d(G,G′) denotes the
Hamming distance between G and G′. By adding i.i.d. Gaussian noise to f that is calibrated to Sβ

f (G), it
can be shown that the resulting output satisfies DP (with β reflecting the desired privacy parameters (ϵ, δ)).
The smooth sensitivity value Sβ

f (G) can be viewed as the tightest upper bound on the local sensitivity that
provides DP. However, the catch is that solving the optimization problem equation 42 is non-trivial in general,
which renders practical application of the smooth sensitivity framework challenging. The prior work of Gonem
& Gilad-Bachrach (2018) employed the smooth sensitivity framework for computing principal components
of general datasets; albeit not for graphs under edge-DP. Using the local sensitivity estimate in (Gonem &
Gilad-Bachrach, 2018, Theorem 5), the authors developed tractable smooth upper bounds on Sβ

f (G), which
can then be used to provide DP. However, successfully adapting this approach to our present context presents
several difficulties. In D, we provide a rigorous analysis which shows that under mild conditions, the obtained
smooth upper bound is very close to the global sensitivity estimate of

√
2.
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In this section, we illustrate the difficulties associated with adopting the smooth sensitivity framework of
Gonem & Gilad-Bachrach (2018); Nissim et al. (2007) for computing principal components of G under edge
DP.

Following Nissim et al. (2007), for a graph G, the β-smooth sensitivity of the principal component v with
smoothness parameter β > 0 can be defined as

Sβ
v (G) = max

t∈{0,1,··· ,(n
2)}

{
e−βt · γ(t)

v (G)
}
, (43)

where
γ(t)

v (G) := max
G′:d(G,G′)=t

LSv(G′) (44)

is the local ℓ2-sensitivity of v at Hamming distance t from G.

Since computing Sβ
v (G) exactly can prove to be challenging, we adopt the approach of Gonem & Gilad-

Bachrach (2018) to obtain smooth upper bounds on its value. To this end, the following result of (Nissim
et al., 2007, Claim 3.2) is useful.
Lemma 4. For an admissible t0 ∈ {0, 1, · · · ,

(
n
2
)
}, let

Ŝβ
v (G) := max

(
max

t∈{0,··· ,t0−1}
{e−βt · γ(t)

v (G)}, GSv · e−βt0

)
, (45)

where GSv denotes the global ℓ2-sensitivity of v. Then, Ŝβ
v (G) is a β-smooth upper bound.

In order to compute the above smooth upper bound, we will utilize the local ℓ2-sensitivity estimate of v
derived in Theorem 1, which is valid for all graphs with a spectral gap of at least ν :=

√
2/(

√
2 − 1). The

main idea is now to modify the proof technique of Gonem & Gilad-Bachrach (2018) so that this condition
can be incorporated. To this end, define the following “gap-restricted” analogue of equation 44.

γ̂(t)
v (G) := max

G′:d(G,G′)=t,
GAP(G′)>ν

LSv(G′). (46)

Note that in general, we have γ̂(t)(G) ≤ γ(t)(G). However, from the lower bound in Lemma 2, we know that
for t < GAP(G) − ν, we have GAP(G′) > ν. We conclude that

γ(t)
v (G) = γ̂(t)

v (G),∀ t < GAP(G) − ν (47)

Next, we invoke Theorem 2, which asserts that

LS(G′) ≤ 2
GAP(G) − t

·
[

2t
GAP(G) +

√
v2

π(1) + v2
π(2)

]
(48)

subject to the conditions t < (1 − 1/
√

2) · GAP(G) := GAP(G)/ν and GAP(G) > 2√
2−1 :=

√
2ν. Furthermore,

a little calculation reveals that the assumption

GAP(G) >
√

2ν =⇒ GAP(G)
ν

< GAP(G) − ν, (49)

which will prove useful. In particular, from equation 47 and equation 49, we obtain that for graphs with
spectral gap at least

√
2ν

γ(t)
v (G) = γ̂(t)

v (G),∀ t ≤ GAP(G)
ν

. (50)

We are now free to use equation 48 to upper bound γ
(t)
v (G). Doing so yields

γ(t)
v (G) ≤ 2

GAP(G) − t
·
[

2t
GAP(G) +

√
v2

π(1) + v2
π(2)

]
,

≤ 2
GAP(G) − t

·
[

2
ν

+
√
u2

π(1) + u2
π(2)

]
,

≤ 2
√

2
GAP(G)

[
2
ν

+
√
v2

π(1) + v2
π(2)

]
,∀ t < GAP(G)

ν
.

(51)
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We are now ready to apply Lemma 4. Let t0 = GAP(G)
ν . Then, we have

e−βt · γ(t)
v (G) ≤ γ(t)

v (G) ≤ 2
√

2
GAP(G)

[
2
ν

+
√
v2

π(1) + v2
π(2)

]
,∀ t < t0 (52)

This yields the following smooth sensitivity bound for the principal component of graphs with eigen-gap
larger than 2ν.

Ŝβ
v (G) = max

{
2
√

2
GAP(G)

[
2
ν

+
√
v2

π(1) + v2
π(2)

]
,
√

2e−β
GAP(G)

ν

}
(53)

Let us examine the obtained smooth upper bound. In order to apply this bound to obtain approximate
(ϵ, δ)-DP via the Gaussian mechanism, (Nissim et al., 2007, Lemma 2.7) asserts that

β = ϵ

4(n+ ln(2/δ)) . (54)

This reveals the primary drawback - namely the dependence of β on the dimension n. Since β = O(ϵ/n)
(discounting δ for the moment), for even moderately sized graphs on n vertices, the value of β can be very
small (i.e., ≪ 1) for reasonable choices of privacy parameters (ϵ, δ). We conclude that the smooth upper
bound

Ŝβ
v (G) =

√
2 exp

(
−O

(
ϵGAP(G)

n

))
≈

√
2
(

1 −O

(
ϵGAP(G)

n

)) (55)

where the approximation in the last step holds when n ≫ ϵGAP(G). For the datasets considered in this paper,
we observed that computing the smooth upper bound with the same privacy budget allotted to PTR yields
values close to

√
2, which is the global sensitivity value.

E Proof of Lemma 1

The function θ(G′) is monotonically increasing in d(G,G′) for all feasible datasets G′ for which θ(G′) ≥ 0.
Hence, the minimum is attained by selecting G = G′, from which it follows that ψ(G) = 0.

F Sampling noise from the TBL distribution

Let F be the CDF of the untruncated Laplace(µ, λ):

F (x) =


1
2 e

(x−µ)/λ, x ≤ µ,

1 − 1
2 e

−(x−µ)/λ, x > µ.

Truncating to [0, R] means conditioning on that interval. The truncated CDF G is

G(x) = Pr[X ≤ x | 0 ≤ X ≤ R] = F (x) − F (0)
F (R) − F (0) (x ∈ [0, R]).

Hence the inverse truncated CDF is

G−1(u) = F−1(F (0) + u [F (R) − F (0)]
)

(u ∈ (0, 1)).

Sampling algorithm:

1. Draw u ∼ Unif(0, 1), set u′ = F (0) + u [F (R) − F (0)].
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2. Invert the untruncated Laplace CDF at u′:

X =
{
µL + λL ln

(
2u′), u′ ≤ 1

2 ,

µL − λL ln
(
2(1 − u′)

)
, u′ > 1

2 .

Note the branch test must be against u′ (the untruncated CDF value), not u, unless the truncation is
symmetric (R = 2µ), in which special case the branch also happens at u = 1/2.

Closed forms for F (0) and F (R). For µ > 0 and R ≥ µ,

F (0) = 1
2e

−µ/λ, F (R) = 1 − 1
2e

−(R−µ)/λ,

so the truncated interval mass is Zµ,λ,R = F (R) − F (0) = 1 − 1
2e

−(R−µ)/λ − 1
2e

−µ/λ, and R = 2µ we get
Zµ,λ,R = 1 − e−µ/λ.

G Proof of Lemma 2

Contrary to the standard PTR and modified PTR Li et al. (2024), here GSϕ is not necessarily equal to 1.

To compute the global sensitivity of ϕ(G), it is essential to account for the step preceding this part of the
algorithm. In the previous stage, we obtained the private function f̃(G), whose value directly influences
the computation of ϕ(G). Since f̃(G) is produced in an earlier step, we can treat it as a constant when
analyzing the global sensitivity of ϕ(G). In other words, the value of f̃(G) is regarded as prior knowledge in
the sensitivity analysis of ϕ(G).

Let G ∼ G′′ be a pair of neighboring instances. Then, for a fixed draw of Z̃ = z, we consider the following
two cases.

Case 1: u(f̃(G)) = u(f̃(G′′)). The value equals either 0 or 1. In the case of the former, from Lemma 1, we
obtain ϕ(G) = ϕ(G′′) = 0, and the sensitivity is 0. Otherwise, the sensitivity is 1 by a standard argument.

Case 2: u(f̃(G)) ̸= u(f̃(G′′)). Suppose that u(f̃(G)) = 0 but u(f̃(G′′)) = 1. Then, we have ϕ(G) = 0 and
ϕ(G′′) ≥ 0. Hence, the sensitivity of ϕ is ϕ(G′′). In order to determine how large this quantity can be, we use
the following facts: (1) f̃(G) ≤ 0 and f̃(G′′) > 0, and (2) |GAP(G) − GAP(G′′)| ≤ 1. From the first fact, we
obtain GAP(G) ≤ t+ z, whereas the second fact together with GAP(G′′) > t+ z yield the boundary condition
GAP(G) > t+ z− 1. Hence, this condition arises when the gap of G lies in the interval (t+ z− 1, t+ z], which
is equivalent to f̃(G) ∈ (−1, 0]. Since GAP(G′′) > t+ z > t, G′′ lies in the large gap regime and thus from
[Theorem 2, (A2)], it holds that

ϕ(G′′) <
(

1 − 1√
2

)
·GAP(G′′) ≤

(
1 − 1√

2

)
·(GAP(G)+1) ≤

(
1 − 1√

2

)
·(t+z+1) ≤

(
1 − 1√

2

)
·(t+2µ+1)

(56)
where in the final inequality, we have used the fact that z ∈ [0, 2µ].

Now consider the opposite case when u(f̃(G)) = 1 but u(f̃(G′′)) = 0. Then, ϕ(G) ≥ 0 and ϕ(G′′) = 0. Hence,
the sensitivity is determined by how large ϕ(G) can be. To upper-bound this quantity, we proceed as before.
Since f̃(G) > 0, we obtain GAP(G) > t + z. Meanwhile, from f̃(G′′) ≤ 0 and the fact that the gap has
sensitivity 1, we obtain the boundary condition GAP(G) ≤ t+ z + 1. Hence, this scenario arises when the gap
of G lies in the interval (t+ z, t+ z + 1], which is equivalent to f̃(G) ∈ (0, 1]. Since G lies in the large gap
regime, from [Theorem 2, (A2)], we obtain

ϕ(G) <
(

1 − 1√
2

)
· GAP(G) ≤

(
1 − 1√

2

)
· (t+ z + 1) ≤

(
1 − 1√

2

)
· (t+ 2µ+ 1) (57)

All in all, to determine the sensitivity of ϕ(G), we first check whether −1 ≤ f̃(G) ≤ 1. If this condition holds,
then GSϕ = (1 − 1√

2 )(t+ 2µ+ 1). Otherwise, GSϕ = 1.
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H Proof of Theorem 3

The key step is to establish that the computation of ϕ̂(G) is private for all for graphs. Note that ϕ̂(G) can be
viewed as the output of an adaptive composition mechanism. The first mechanism is the TBLM for privatizing
f(G), whose output f̃(G) is (ϵ0, δ0)-DP, as established by Fact 1. Furthermore, f̃(G) is then applied as an
input to problem 13, whose solution ϕ(G) is then privatized via the standard Laplace mechanism. In order to
invoke adaptive composition, we need to show that conditioned on the input f̃(G), ϕ̂(G) is DP. To this end,
note that if one replaces the private output of TBLM f̃(G) with its non-private counterpart f(G) in Lemma
2, then the scale parameters S1, S2 in equation 14 correspond to the local sensitivity of ϕ(·). Clearly, adding
Laplacian noise scaled to these parameters is not guaranteed to preserve edge-DP. However, if we select the
scale parameter GSϕ on the basis of f̃(G), as in equation 13, then we have that

GSϕ = S1 · 1{−1<f̃(G)<1} + S2 · 1{f̃(G)≤−1}∪{f̃(G)≥1} (58)

By the post-processing property of DP, it follows that GSϕ is also (ϵ0, δ0) edge-DP. Hence, using GSϕ in the
Laplace mechanism to privatize ϕ(·) is guaranteed to be (ϵ0, 0)-DP. Direct application of adaptive composition
then guarantees that the total privacy budget needed to privatize ϕ(·) is (ϵ0 + ϵ1, δ0). We are now ready to
state the privacy of the overall algorithm.

Depending on the value of f̃(G), the following outcomes are possible.

Case 1: f̃(G) ≤ 0 : The proposed bound in problem 13 is 0, and ϕ(G) = 0. From Lemma 2, ϕ̂(G) ∼
Lap(GSϕ/ϵ1). By properties of the Laplace distribution, the probability that ϕ̂(G) ≤ (GSϕ ln(1/δ))/ϵ1
in the test stage of PTR is at least 1 − δ, and the algorithm refuses to yield a response for such a
dataset. Otherwise, with probability at most δ, the algorithm is not private. We conclude that the
output of the test stage of the algorithm is (0, δ)-DP. From basic composition, the overall privacy
offered by the algorithm totals (ϵ0 + ϵ1, δ0 + δ).

Case 2: f̃(G) > 0 : The proposed bound in problem 13 is β. The remainder of the analysis is broken down
into two further two sub-cases which depend on β. First, let β < LSv(G). Then γ(G) = 0, which
implies that ϕ(G) = 0, since γ(G) ≥ ϕ(G) ≥ 0. By the same argument as the previous case, the
probability that ϕ̂(G) ≤ (GSϕ ln(1/δ))/ϵ1 and the algorithm stops is at least 1 − δ. Hence the overall
privacy privacy totals (ϵ0 + ϵ1, δ0 + δ). In the other sub-case, β ≥ LSv(G), and the overall output is
(ϵ0 + ϵ1 + ϵ2, δ0 + δ) DP, being the composition of a and a (ϵ2, δ)-DP Gaussian mechanism.

I Proof of Theorem 4

Selecting the parameter β is a key component of implementing PTR. First, we specify an interval of values of
β which will be considered. We start from verifying the following condition; namely, whether for a given
value of β, the solution of problem equation 16 satisfies ϕ(G) < (1 − 1/

√
2) · GAP(G), as this assumption is

required in 2 to establish that θ(G′) is a valid upper bound on LS(G′). As we show next, ensuring that this
condition is met translates into a maximum allowable value of β.

Since θ(G) is monotonically increasing with d(G,G′), the largest value of β which can be satisfied occurs when
d(G,G′) = (1 − 1/

√
2) · GAP(G) − 1. From equation 16, this corresponds to the following upper bound on β.

βu := 2
√

2
GAP(G)

[
2 −

√
2 +

√
v2

π(1) + v2
π(2)

]
(59)

By the same principle, the largest value of β for which d(G,G′) = 0 in problem equation 16 occurs for

βl :=
2
√

v2
π(1) + v2

π(2)

GAP(G) , (60)

which corresponds to the upper bound on the local ℓ2 sensitivity of v on G. Hence, for any choice of
β ∈ (βl, βu), the statistic ϕ(·) can be computed according to equation 17.
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J Proof of Theorem 5

We will utilize the following fact regarding the Laplace distribution. Fact 1: Let Z ∼ Lap(0, b). Then,

Prob(|Z| ≥ tb) = exp(−t). (61)

In particular, if b = GSϕ/ϵ and t = c · log(1/δ) (where c > 0), then

Prob(|Z| ≥ c · log(1/δ)/ϵ) = δc.

In the PTR algorithm, after computing ϕ(·) in step 2, we add noise Z ∼ Lap(0, GSϕ/ϵ1) to obtain the noisy
statistic ϕ̂(G) = ϕ(G) + Z. Thereafter, we test whether ϕ̂ exceeds the threshold GSϕ log(1/δ)/ϵ1 to yield a
response. Since ϕ(G) ≥ τ(G), the probability of a successful response is at least

Prob(ϕ̂(G) ≥ GSϕ log(1/δ)/ϵ1) = Prob(Z ≥ GSϕ log(1/δ)/ϵ1 − ϕ(G))
≥ Prob(Z ≥ GSϕ log(1/δ)/ϵ1 − τ(G)).

(62)

Suppose we adjust β so that

τ(G) = (p+GSϕ) · log(1/δ)/ϵ,∀ p ∈ (0, 1]. (63)

Then, the success probability of obtaining a response is at least

Prob(ϕ̂(G) ≥ GSϕ log(1/δ)/ϵ1) ≥ Prob(Z ≥ GSϕ log(1/δ)/ϵ1 − τ(G))
= Prob(Z ≥ p log(1/δ)/ϵ1)
= 1 − Prob(Z ≤ −p log(1/δ)/ϵ1)

= 1 − exp(−p log(1/δ))
2

= 1 − δp

2 ,

(64)

where in the second-last step we have invoked Fact 1 and utilized the fact that the distribution of Z is
symmetric about the origin.

K Expander graphs

From equation equation 19, it can be seen that for a fixed privacy budget and other algorithm parameters,
the proposed bound β behaves like

β ≈ O

(√
v2

π(1) + v2
π(2)

GAP(G)

)
,

where vπ(1), vπ(2) are the two largest entries of the eigen-vector v. This is in line with the local sensitivity
bound derived in Theorem 1. Hence, β being small depends on (1) the gap being large, and (2) the “energy
spread” in the entries of v being small.

We now show that there exists a family of graphs for which both conditions are fulfilled - specifically, the
class of expander graphs Hoory et al. (2006). Following the terminology of Hoory et al. (2006), we designate
a graph G as being an (n, d, α)-expander if it fulfills the following conditions.

C1: G has n vertices.

C2: Every vertex has degree d, i.e., G is d-regular.

C3: The second largest eigen-value of the adjacency matrix (in magnitude) is |λ2| ≤ αd, where α ∈ (0, 1),
and 1 − α represents the expansion coefficient. Hence, smaller values of α correspond to higher
expansion.
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For such a family of graphs, the following facts are known.

F1: The principal eigen-vector v = 1√
n

1n.

F2: The largest eigen-value of the adjacency matrix of G is λ1 = d.

F3: For fixed d, as n → ∞ it holds that |λ2| ≥ 2
√
d− 1 − on(1)

From these facts, we obtain that (a): v2
π(1) = v2

π(2) = 1/n, i.e., the entries of v are uniformly spread out in
terms of energy. In addition, (b): the spectral gap GAP(G) = λ1 − |λ2| satisfies

d(1 − α) ≤ GAP(G) ≤ d− 2
√
d− 1 + on(1)

Hence, the main figure of merit
√

v2
π(1)+v2

π(2)
GAP(G) can be sandwiched as

√
2

√
n[2

√
d− 1 + on(1)]

≤

√
v2

π(1) + v2
π(2)

GAP(G) ≤
√

2√
nd(1 − α)

(65)

Suppose that d(1 − α) exceeds the threshold t - a quick calculation reveals that d ≥ 12 is sufficient for every
admissible α ∈ (0, 1). As a consequence, GAP(G) ≥ t. Then, for a large n and a fixed d, β = Θ(1/

√
n) and

the algorithm will release outputs with a small level of noise. Although real-world graphs do not conform
precisely to such a model, empirical studies reveal that they can possess good expansion properties Malliaros
& Megalooikonomou (2011), which makes them a good candidate for our PTR algorithm.

L Proof of Proposition 1

Recall the value of β employed in equation 19

β = 2
GAP(G) ·

[2(p+GSϕ) · log(1/δ)/ϵ1 + GAP(G)
√
v2

π(1) + v2
π(2)

GAP(G) − (p+GSϕ) · log(1/δ)/ϵ1

]
. (66)

In order to reduce the burden of notation, we refer to the following terms in short-hand.

a : = GAP(G)

b : =
√
v2

π(1) + v2
π(2)

η := (1 +GSϕ/p) log(1/δ)/ϵ1

(67)

Then, β, βl, βu can be compactly expressed as

β = 2
a

·
[

2pη + ab

a− pη

]
,

βl = 2b
a
,

βu = 2
√

2
a

· (2 −
√

2 + b),

(68)

respectively.

In order to verify for what choices of problem parameters a, b, η, p the value of β lies in the interval (βl, βu),
we consider two cases.

• Case 1: β > βl. This condition is equivalent to

2
a

·
[

2pη + ab

a− pη

]
>

2b
a

⇔2pη + ab > b(a− pη)
⇔(2 + b)pη > 0,

(69)
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which is always satisfied provided
a− pη > 0 ⇔ η <

a

p
. (70)

Note that this corresponds to the necessary condition

(p+GSϕ) log(1/δ)/ϵ1 < GAP(G) (71)

for β being positive.

• Case 2: β < βu. This condition is equivalent to

2
a

·
[

2pη + ab

a− pη

]
<

2
√

2
a

· (2 −
√

2 + b)

⇔2pη + ab

a− pη
<

√
2(2 −

√
2 + b)

⇔2pη + ab < (2(
√

2 − 1) +
√

2b)(a− pη)
⇔ηp(2 + 2(

√
2 − 1) +

√
2b) < (2(

√
2 − 1) + (

√
2 − 1)b)a

⇔η <
(2(

√
2 − 1) + (

√
2 − 1)b)a

p(2
√

2 +
√

2b)

⇔η <
(
√

2 − 1)(2 + b)a
p
√

2(2 + b)

⇔η <

(
1 − 1√

2

)
a

p
,

(72)

which is the condition

log(1/δ)
ϵ1

<

(
1 − 1√

2

)
GAP(G)

(p+GSϕ) <
(

1 − 1√
2

)
GAP(G), (73)

which exactly corresponds to the assumption (A2) in Theorem 2. This completes the proof.

M Upper bound of Non-private solution

In terms of the quality of the approximate solution, the following result is known.
Proposition 2 (Adapted from Papailiopoulos et al. (2014)). For any unweighted graph G, the optimal size-k
edge density is no more than

d∗
k ≤ min

{
1

k(k − 1) x̂⊤
k Âx̂k + 1

k − 1 |λ2|, 1
k − 1 |λ1|, 1

}
. (74)

N Additional Experimental Results

In this section, additional results for each of the proposed algorithms are provided individually. The
performance of algorithm 1 for DkS and top-k eigenscore subset extraction is evaluated in Figure 5 and
Figure 7 on real-world datasets for different privacy budgets. Similarly, the performance of algorithm 2 is
depicted in Figure 6 and Figure 8.
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Figure 5: Edge density versus subgraph size (k) for Algorithm 1 under (ϵ0, δ0) = (1, 7 × 10−7) and varying
ϵ1 = ϵ2 = ϵ/2 values across real-world datasets. The privacy parameter is set to δ = log(m)/m, where m

denotes the number of edges in each network.

Figure 6: Edge density versus subgraph size (k) for Algorithm 2 across real-world datasets under varying ϵ
values with δ = log(m)/m.
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Figure 7: Jaccard similarity versus subset size (k) for Algorithm 1 under (ϵ0, δ0) = (1, 7 × 10−7) and varying
ϵ1 = ϵ2 = ϵ values across real-world datasets. The privacy parameter is set to δ = log(m)/m, where m

denotes the number of edges in each network.

Figure 8: Jaccard similarity versus subset size (k) for Algorithm 2 under varying ϵ values with δ = log(m)/m
across real-world datasets.
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