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Abstract

Model ensembling is a technique to combine001
the predicted distributions of two or more mod-002
els, often leading to improved robustness and003
performance. For ensembling in text genera-004
tion, the next token’s probability distribution005
is derived from a weighted sum of the distribu-006
tions of each individual model. This requires007
the underlying models to share the same sub-008
word vocabulary, limiting the applicability of009
ensembling as many open-sourced models have010
distinct vocabularies. In research settings, ex-011
perimentation or upgrades to vocabularies may012
introduce multiple vocabulary sizes. This pa-013
per proposes an inference-time only algorithm014
that allows for ensembling models with dif-015
ferent vocabularies, without the need to learn016
additional parameters or alter the underlying017
models. Instead, the algorithm ensures that to-018
kens generated by the ensembled models agree019
in their surface form. We apply this technique020
to combinations of traditional encoder-decoder021
models and decoder-only LLMs and evaluate022
on machine translation. In addition to expand-023
ing to model pairs that were previously inca-024
pable of token-level ensembling, our algorithm025
frequently improves translation performance026
over either model individually.027

1 Introduction028

Text generation takes place as a sequence of to-029

ken predictions. At each time steps, the model,030

conditioned on some input, produces a probability031

distribution over the vocabulary. From this dis-032

tribution, the next token is selected to extend the033

hypothesis—the text generated thus far.034

Individual models may be sensitive to noise or035

lack coverage in certain domains. Model ensem-036

bling is a method to combine outputs from mul-037

tiple models, which often provides for more ro-038

bust outputs and increases in performance. The039

traditional model ensembling approach assumes a040

shared vocabulary and computes a new distribution041
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Figure 1: Agreement-Based Ensembling (ABE) enables
ensembling among models with different vocabularies.
Token generation for each beam item is constrained to
tokens with agreeing detokenized forms.

as a weighted sum of its component vocabularies: 042

p(xt) =
∑
i

λipmi(xt | x1..t−1) (1) 043

where all interpolation weights, λi, sum to 1. The 044

new ensembled distribution functions the same as 045

if it originated from a single model and the next 046

token prediction proceeds as usual. 047

In practice, most models do not share vocab- 048

ularies. When the vocabularies differ, the result- 049

ing probability distributions are no longer com- 050

parable. Then, it is no longer straightforward to 051

ensemble these outputs. To address this, we in- 052

troduce Agreement-Based Ensembling (ABE), an 053

inference-time ensembling algorithm that requires 054

no new parameters or model adaptation, but in- 055

stead works by coordinating token selection across 056

models under the notion of agreement (§ 3.1). At 057

each decoding timestep, each model produces its 058

distribution over the next token; our method effi- 059

ciently searches over their cross-product for tokens 060
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that are contextually compatible with the currently061

generated surface string (§ 3.2). When the tokens062

are different (but agreeing), the longer token con-063

strains future search (§ 3.3). This is caricatured064

in Figure 1). Our approach easily extends to other065

inference algorithms such as beam search (§ 3.4).066

Our contributions are as follows. We067

• introduce an inference-time algorithm for en-068

sembling models with different vocabularies1,069

• demonstrate the ability to ensemble across070

varying architectures (encoder-decoder,071

LLMs, or both), and072

• show improved results in machine translation073

across a range of models.074

Our code is implemented in Python using the Hug-075

gingface transformers library (Wolf et al., 2019)076

and is open-source.2077

2 Related Work078

Ensembling is a generally reliable technique for079

increasing the quality of model outputs that goes080

back at least as far as Hansen and Salamon (1990).081

Although it is more expensive, and therefore often082

prohibitive in production inference settings, it is083

useful for example in competitions or for produc-084

tion training scenarios, such as for distillation. In085

such settings, the user typically has complete con-086

trol over model training; ensembled models can be087

taken from different checkpoints (Sennrich et al.,088

2016) or from completely different training runs089

initialized from different random checkpoints, and090

therefore all have the same vocabularies. Hoang091

et al. (2024) move a step beyond this by ensem-092

bling models with divergent architectures (an MT093

system and an LLM) and across contexts longer094

than are supported by all models, but the models095

still share the same vocabulary.096

The situation becomes more difficult when the097

vocabularies are not shared. One way to address098

this is to work at the sequence level instead of the099

token level. One such approach is that of Jiang100

et al. (2023), who propose LLM-Blender. It com-101

prises a ranking function that computes pairwise102

comparisons of complete model outputs and then103

selects from among them; this approach completely104

1Our sole requirement is that models are open-vocabulary
so that they can generate any string the other model can.

2Outputs and code available anonymously at https://
anonymous.4open.science/r/anon-abe-073B.
It will be released as Apache 2.0.

avoids the need to do any kind of token-level en- 105

sembling. Farinhas et al. (2023) generate multiple 106

translation hypotheses and then explore selecting 107

from among them using voting, minimum Bayes 108

risk, and LLM-based selection. 109

Sequence-level ensembling has limitations, and 110

the reality of disjoint vocabularies has motivated 111

prior work in token-level ensembling even across 112

different vocabularies. Existing work, however, 113

requires extra model training. Xu et al. (2024) 114

learned mappings across vocabularies that map 115

token representations into a joint space, and em- 116

ploy a variety of filtering methods for efficiency. 117

Shen et al. (2024) present a “collaborative decod- 118

ing” framework between a lead and assistant model 119

where a classifier dynamically selects which of 120

them will produce the next token at each step of 121

generation; their approach also appears to require 122

a shared vocabulary. 123

Our work is distinct in that it requires no fur- 124

ther training or parameters. Our approach manages 125

token-level ensembling across different vocabular- 126

ies by ensuring that all models in the ensemble 127

agree on the string being generated, and interleaves 128

model steps for models that fall behind. 129

3 Agreement-Based Ensembling 130

Autoregressive models produce distributions over 131

their vocabularies at each decoding time step. 132

This process generally continues until the end-of- 133

sequence token is produced or some maximum 134

length reached. Greedy decoding, beam search, 135

and sampling are all search algorithms that change 136

how the next token is selected. 137

The traditional model ensembling approach (also 138

called here interpolation-based ensembling) fits 139

nicely within any of these frameworks, but requires 140

the models to share the same vocabulary. This 141

approach simply alters the probability distribution 142

to be a weighted sum of the distributions from each 143

model. Any search algorithm proceeds as before, 144

selecting a token from this new distribution. 145

When the vocabularies differ, the distributions 146

do not match and we cannot so nicely factor the 147

probability computation from the algorithm. In 148

Agreement-Based Ensembling, each model pro- 149

duces its distribution over its own target vocabulary 150

as usual, but algorithmic changes are required to co- 151

ordinate on the selection of the next token to ensure 152

they agree on the detokenized surface string. 153

In this section, we will describe these changes. 154
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Figure 2: A global state maintains the shared detokenized string, which is determined by the local hypotheses.
Associated with each model is a flag denoting whether the model is stalled (×) or able to generate (✓). In stalled
steps (§ 3.3), only the trailing model(s) generate(s) a token, catching up with the shared string. The stalled model is
prevented from generating additional content.

At a high level, this requires maintaining a shared155

global agreement state (§ 3.1), efficiently search-156

ing the cross-product of the models’ vocabularies157

(§ 3.2), and handling the varying token lengths of158

the models’ differing vocabularies (§ 3.3). For ease159

of presentation, we will describe the algorithm us-160

ing two models in a greedy decoding setting; this161

allows us to focus on these new ideas, without the162

complexity of beam search. However, the algo-163

rithm works with any number of models, so long164

as they all have open-vocabularies, and the exten-165

sions to beam search (which we used for all our166

experiments) are straightforward.167

3.1 Agreement168

The fundamental difficulty when ensembling mod-169

els with different vocabularies is to ensure that they170

reach consensus on the shared output string, despite171

the fact that the string will have been generated via172

different tokenizations. In Agreement-Based En-173

sembling, we maintain a shared string—the global174

hypothesis—which is updated at each time step by175

the predicted tokens. It is important to store and176

compare against this string in detokenized form3177

for precise comparison. Each model separately178

maintains its own local hypothesis under its own179

tokenization, which is a substring of this global180

hypothesis. This is visualized in Figure 2.181

We define the notion of agreement. Consider a182

set of strings S. The global hypothesis, g, of this set183

is defined by (1) the shortest terminated string (ends184

with end-of-sequence token) or (2) the longest un-185

terminated sequence—whichever is satisfied first.186

A set of strings S is in agreement if and only if all187

si ∈ S are substrings of g. Note that agreement188

does not mean the models have produced the exact189

same string, only that their strings do not disagree.190

The algorithm provides a core inductive guarantee191

3We store byte-strings so byte fall-back tokenization and
non-Latin scripts to work.

that the detokenized string for every model will 192

always agree with the shared global hypothesis. 193

3.2 Efficient Search 194

At each decoding timestep, each model takes its 195

forward step from its current state and produces a 196

distribution over its vocabulary. We need to effi- 197

ciently search the intersection of their vocabular- 198

ies for extensions to the current shared hypothesis 199

that are in agreement. This space has dimensions 200

V1 × V2 and is too large to search completely. 201

We therefore apply a variant of cube pruning 202

(Chiang, 2007; Huang and Chiang, 2007) with an 203

“agreement filter” to search this space efficiently. 204

The distributions from each model are sorted, per 205

usual, and arranged into a two-dimensional grid. 206

This is depicted visually in Figure 3. Each box 207

in the grid denotes the selection of a token from 208

each vocabulary, each of which is associated with a 209

score, computed as the weighted sum of the length- 210

normalized model scores for each local hypothe- 211

sis.4 Normalization is important as model hypothe- 212

ses are not guaranteed to be the same length. 213

To enumerate these items, we maintain a heap, 214

which stores tuple items (i, j, s), where i and j in- 215

dex the candidate vocabulary items, and s records 216

their weighted score. The heap is seeded with the 217

tuple (1, 1, s) denoting the top left corner of this 218

grid, representing the most probable token exten- 219

sion from each model. We now iterate as follows: 220

1: while True do 221

2: Pop item from heap 222

3: Compute strings s1 and s2 223

4: if agrees(s1, s2) then 224

5: return item 225

6: end if 226

7: Add neighbors of item to heap 227

8: end while 228

4In all experiments, models are evenly weighted.
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Figure 3: The first 12 candidates in ABE search space
for unstalled m1, m2. Each model’s vocabulary is sorted
by score. The top left corner is pushed onto a heap
with its score, 0.58. The loop then pops from the heap,
checks for agreement, and adds unvisited neighbors onto
the heap. Numbers denote visitation order.

Although we need only one valid item for our229

greedy search example, Figure 3 depicts the first230

twelve loop iterations for illustrative purposes. At231

each step, the current item is popped from the heap232

and checked for agreement. This item is checked233

to determine whether the set of proposed local hy-234

potheses are in agreement. Arrows denote “neigh-235

bor” items (the next vocabulary extension in each236

dimension), which are used to create updated tuples237

that are then added to the heap.238

The algorithm can be extended to an arbitrary239

number of ensembled models by making use of240

an n-dimensional hypercube,5 and extending the241

tuples to include n vocabulary position indices.242

3.3 Stalled steps243

Models with larger vocabularies are likely to gener-244

ate longer subwords at each timestep. This means245

that one model may be ahead of the rest and need246

to be stalled. We define stalling. Consider a set of247

models, M . The set of local hypotheses generated248

by M is S, where si was generated by mi. Recall249

that the global hypothesis is represented by g. A250

model, mi, is stalled when si = g and at least one251

other model is not stalled: ∃(mj , sj) ϶ sj ̸= g. An252

example of when a model becomes stalled is illus-253

trated in time steps t = 5 and t = 6 in Figure 2.254

Stalled steps aim to restore this imbalance by al-255

5For simplicity, we use the term hypercube, though not all
dimensions are equal.
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Figure 4: Search space when m1 is stalled. m1 has
generated tokenization while m2 has only generated
_token iz.

lowing the unstalled models to generate without the 256

stalled models in order to catch up. Conceptually, 257

stalling a model is simple We prevent the model 258

from being able to generate a token by replacing V 259

(its vocabulary) with {ϵ}—an empty transition. We 260

illustrate the reduction in search space in Figure 4. 261

Note that for each stalled model, the dimensionality 262

of the search space is effectively reduced by one. 263

3.4 Beam Search 264

Greedy decoding is a special case of beam search 265

where the beam size is 1. It is simple to extend 266

ABE to handle larger beams. The main conceptual 267

difference is that the search space includes an addi- 268

tional dimension, the beam index. For a beam size 269

of k, the search space is k × V1× V2. Similar to the 270

extension beyond two models (end of Section 3.2), 271

we add an additional index to denote which beam 272

item each vocabulary pair comes from. Then, in- 273

stead of terminating after the first valid item, we 274

iterate until we have encountered k of them. For 275

instance, three models with a beam would have a 276

4-dimensional search space of {k×V1×V2×V3}. 277

The k items become the beam at the next time step. 278

Note that neighbors of a given candidate must come 279

from the same beam item; beam number 2 cannot 280

have neighbors in beam number 3. 281

Beam lengths may be ragged due to stalling, but 282

this is handled with padding, normalization, and 283

selecting hidden states based on hypothesis length. 284

4 Experiments 285

Agreement-Based Ensembling constrains the out- 286

put of each model by the output of all models. We 287

therefore choose to evaluate against machine trans- 288

lation (MT) due to its constrained nature. We pri- 289

marily evaluate on the WMT24 test set (Kocmi 290

et al., 2024) en-de but extend to several other 291

out-of-English directions (cs, es, uk) from the 292
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same test set. For evaluation, we consider both293

COMET (Rei et al., 2022) and BLEU (Papineni294

et al., 2002). We computed COMET scores with295

with pymarian6 (Gowda et al., 2024), and BLEU296

scores with sacrebleu7 (Post, 2018).297

We examine ensembling within and between dif-298

ferent classes of models:299

• Custom MT. We train our own encoder-300

decoder models on the same pool of data with301

different vocabulary sizes.302

• Public MT. Large-scale, multilingual,303

publicly-available MT models.304

• LLMs. Decoder-only LLMs with demon-305

strated capabilities in MT.306

4.1 Models307

For preliminary experiments, we start by ensem-308

bling models that we trained. This allows us to309

have control over the vocabulary while also guaran-310

teeing the models are reasonably similar and will311

frequently agree during generation. We then ex-312

tend to off-the-shelf models, covering both encoder-313

decoder and decoder-only architectures.314

Custom MT We train transformer base mod-315

els using Marian (Junczys-Dowmunt et al., 2018)316

on approximately 600m lines of filtered English–317

German data downloaded using mtdata (Gowda318

et al., 2021) (details in Appendix A). We per-319

form standard data filtering to include dedupli-320

cation, language identifiation, length ratios, and321

margin-scoring. We train four unigram-based322

sentencepiece tokenization models (Kudo,323

2018; Kudo and Richardson, 2018) with sizes of 8k,324

16k, 32k, and 64k. Using these four tokenizers, we325

train four associated machine translation models.326

Each model is a standard transformer base model327

(Vaswani et al., 2023) with 6/6 layers, embeddings328

size 1024, and hidden sizes of 8192. The entire con-329

figuration can be found in Table 6 in the Appendix.330

The data is randomly shuffled for infinite streaming331

via sotastream (Post et al., 2023), so we use332

logical epochs (1b tokens) rather than exact passes333

over the training set. We train for 25 logical epochs334

on one 24GB Titan RTX. In our experiments, we335

use various checkpoints of these models.8336

6Version v1.12.31, wmt22-comet-da model
7Version 2.5.1, standard params.
8Namely epochs {1, 5, 10, 15, 20, 25}

Public MT In addition to custom models that 337

only support English and German, we also consider 338

two widely used multilingual MT models, M2M 339

(Fan et al., 2020) and NLLB (Team et al., 2022) 340

in multiple size and distillation variants. The for- 341

mer covers 100 languages with a 128k multilingual 342

vocabulary, while the latter covers 202 languages 343

with a 256k multilingual vocabulary. The hugging- 344

face repository ids for all off-the-shelf models are 345

listed in Table 7 in the Appendix. 346

LLMs We consider TOWER (Alves et al., 2024) 347

and LLaMa 3.x (Grattafiori et al., 2024). TOWER is 348

an LLM specifically fine-tuned for the task of trans- 349

lation whereas LLaMa is general purpose. LLaMa 350

models use a vocab of 128k while TOWER uses 32k. 351

TOWER was finetuned with the following prompt: 352

Translate the following text from English into Ger-
man. \n English: {source sentence} \n German:

For LLaMa models, we use both 0-shot prompts 353

and 3-shot prompts derived from the WMT24 base- 354

line evaluation scripts.9 Exact verbiage of prompts 355

can be found in Table 8 in the Appendix. LLMs 356

differ in architecture from the previous settings as 357

they lack an encoder. This further illustrates that 358

ABE is architecture-agnostic. 359

We note that ensembling two large LLMs with 360

3-shot prompts requires an additional memory foot- 361

print. These experiments were run on a single 362

80GB A100 though can be managed with approxi- 363

mately 48GB. 364

4.2 Baselines 365

To compare the results of our ensembling, we have 366

two baseline generation algorithms. The first is 367

vanilla translation: using the model as intended. 368

For the MT models, this is only passing the source 369

input (with some language id tags for the multilin- 370

gual models) to the huggingface generate func- 371

tion. For TOWER and LLaMa, we use the hugging- 372

face pipeline function with the aforementioned 373

prompts (explicitly listed in Table 8). 374

We additionally consider linear interpolation as 375

an ensembling baseline. In this traditional setting, 376

two models’ output distributions can only be inter- 377

polated when they are over the same event space 378

(i.e., have the same vocabulary). We therefore only 379

run this baseline over our custom MT models, mak- 380

ing use of different checkpoints along the training 381

trajectories of the different models. 382

9https://github.com/wmt-conference/
wmt-collect-translations
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Figure 5: ∆COMET results on our custom English–German models using Agreement-Based Ensembling.
∆COMET is the improvement of ensembling two models via ABE over the best individual model. Labeling
indicates vocab size followed by epoch checkpoint. All results on en-de WMT24.

For both baselines and Agreement-Based Ensem-383

bling, we use a beam size of 5 for all models. We384

generate with a maximum length of 256 tokens.10385

5 Results386

We demonstrate the effectiveness of our ensem-387

bling algorithm by comparing the sequences gen-388

erated by ABE over the performance of the best389

individual model. Given two models mi, mj , the390

translations produced by either model alone are391

Ti and Tj , respectively. The translations produced392

by ensembling these two models with ABE are393

denoted as ABEi,j . We define the delta as:394

∆S = S(ABEi,j)− max(S(Ti),S(Tj)) (2)395

where S may refer to BLEU or COMET scores.396

5.1 Custom MT Models397

In Figure 5, we display the ∆COMET scores across398

various combinations of custom MT models. We399

provide the ∆BLEU for all custom models in400

Appendix Figure A. We see consistent positive401

improvements across many checkpoints. In Fig-402

ure 5(a) and Figure 5(b), we ensemble the smallest403

and largest custom MT models with vocabulary404

sizes of 8k and 64k, respectively, across various405

checkpoints. Further, we successfully do token-406

level ensembling of models with differing vocabu-407

laries (Figure 5(c))—a previously impossible task.408

A persistent trend we find is that under-fitted409

models (e.g., Ep. 1) do not ensemble well. This is410

evidenced by negative ∆COMET scores across the411

10If a model is stalled at this length, there is no agreed
hypothesis and we return an empty string.

first row. In all other combinations, we see improve- 412

ment, thus demonstrating the power of ensembling 413

via ABE over using individual models. 414

We also seek to demonstrate that these en- 415

sembling results are at least as good as a naive 416

interpolation-based ensembling baseline. In order 417

to do this, we compare the relative improvement us- 418

ing interpolation-based ensembling to the improve- 419

ment gained from ABE. Note that this restricts the 420

setting in which we can ensemble as the vocabular- 421

ies must match. In Table 1, we display the relative 422

∆BLEU improvements and see that ABE is often a 423

bigger improvement in these models. 424

BLEU ∆Interpolation ∆ABE

27.7 0.16 1.07

Table 1: All scores are averages across all experiments.
We report the average BLEU across models. For all
model pairs we report the average improvement in
BLEU over the score of m1 or m2 individually when
using Interpolation or ABE.

5.2 Public MT Models 425

Our custom models are well-suited for ABE, since 426

they were trained on the same data and potentially 427

have related vocabulary distributions even when 428

their vocabularies differ. We next consider mod- 429

els over which we have less control. As large 430

multilingual models, M2M and NLLB are quite 431

different from our custom ones. In Figure 6, we 432

display ∆BLEU. ABE creates positive improve- 433

ments though not across all combinations as seen 434

in Custom MT. 435

We see an improvement when ensembling our 436

largest custom model (64k) with larger multilin- 437
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largest custom model (bilingual) and publicly available
multilingual models.

gual MT models. We suspect the smaller multilin-438

gual model (M2M 418M) performs less well than a439

bilingual model or a larger multilingual model, and440

these negative trends may be further examples of441

underfit models. The ∆COMET scores (displayed442

in the Figure 10) with ABE are more negative than443

their BLEU equivalents. This may indicate that444

ABE may do better at surfacing particular n-grams445

but may affect other aspects such as fluency that446

COMET or other neural metrics may penalize.447

5.3 Off-the-Shelf LLMs448

We demonstrate the flexible nature of the algorithm449

by extending our ensembling results to distinct450

architectures—encoder-decoder with decoder-only451

LLMs. In Figure 7, we display ∆BLEU improve-452

ments. In this section, we only display 3-shot exper-453

iments with LLaMa but a more comprehensive re-454

sults table is available in Figure 9 in the Appendix.455

To
we
r 7
B

LL
aM
a 1
B

LL
aM
a 3
B

LL
aM
a 8
B

64k (Ep. 25)

M2M 1.2B

NLLB 3.3B

Tower 7B

2.7 -2.1 0.4 2.7

0.7 -2.3 0.1 2.5

2.1 -4.2 -1.5 1.1

-3.8 -1.2 1.4

Figure 7: ∆BLEU of ensembling various encoder-
decoder models with LLMs using ABE.

We still see consistent positive gains from en-456

sembling models—particularly when ensembling457

the bilingual models with the larger multilingual 458

models. One crucial trend we notice is that poorer 459

performing models, such as the smaller instances 460

of M2M or LLaMa get consistent negative re- 461

sults. This indicates that poorer performing models 462

will only deteriorate the performance of the better 463

model which is also typical of other ensembling 464

approaches. However, we see improvements when 465

ensembling across architectures: +2.7 BLEU when 466

ensembling a small bilingual model with Tower or 467

LLaMa. We further see improvements when ensem- 468

bling two LLMs (+1.4 with Tower and LLaMa8b). 469

As before, we observe more negative results when 470

using COMET (Figure 10 in Appendix). 471

5.4 Additional languages 472

We additionally study the ensembling of these mod- 473

els with ABE by comparing the performance in 474

other languages (cs, es, uk). We compare NLLB, 475

Tower, and LLaMa and display the results in Ta- 476

ble 2. Similar to before, we notice mixed perfor- 477

mance across model pairs and target languages. We 478

suspect this is due to underlying model differences. 479

m1 m2 ABE ∆

NLLB + Tower
cs 26.8 14.1 24.0 -2.8
es 43.2 41.0 44.4 +1.2
uk 26.3 6.1 24.1 -2.2

NLLB + LLaMa
cs 26.8 19.6 25.3 -1.5
es 43.2 37.1 42.7 -0.5
uk 26.3 20.3 26.2 -0.1

Tower + LLaMa
cs 14.1 19.6 21.7 +2.1
es 41.0 37.1 42.0 +1.0
uk 6.1 20.3 22.4 +2.1

Table 2: BLEU scores for different ensembling pairs
and their individual models. m1 and m2 denote the in-
dividual model score while ABE denotes the ensembled
score. ∆ is the difference between ABE and the higher
of m1 and m2. The model versions are M2M 1.2B,
NLLB 3.3B, Tower v0.2 7B, LLaMa 3.1 8B 3-shot.

Tower and LLaMa, which have been a consis- 480

tently successful ensembling pair, see improve- 481

ments in all three of these languages. We further 482

note that according to their respective documenta- 483

tion, neither model supports cs or uk,11 but we 484

see improvements in both using ABE. 485

6 Analysis 486

We seek to answer why our ensembling is success- 487

ful in some scenarios, though not all. We provide 488

11There was likely substantial amounts of these languages
in the pretraining data.
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both a quantitative and qualitative study.489

6.1 Model Preferences490

One effect we wish to disentangle is whether this491

algorithm is an improvement on the search space492

or on the modeling. As previously mentioned,493

interpolation-based ensembling only affects the in-494

termediate token probabilities (a modeling change)495

and makes no changes to the search procedure.496

ABE does a bit of both by severely altering the497

search and mildly altering the modeling (scoring498

by the weighted sum of two models instead of one).499

To answer this question, we seek to quantify the500

preferences of each translation under each model.501

Given m1, m2 and the associated translations T1,502

T2. We can ensemble these models with ABE to503

generate ABEm1,m2 . We then determine the rank-504

ing of these three translations under each modeling505

scheme—m1 and m2—by comparing the models’506

likelihoods of each translation. In Table 3, we see507

that models that ensemble well together (top, cus-508

tom models) also consistently rank the ABE output509

as the most likely. They also agree on the most510

likely output 86% of the time. Conversely, we511

see more mixed preference with M2M and NLLB512

(∆BLEU=-0.2) suggesting that ABE cannot over-513

come underlying modeling disagreements. This514

indicates our method is more effectively exploring515

the search space when models agree.

T1 T2 ABE Same %

8k+64k m1 102 106 2207 86.0
m2 198 223 2028

M2M+NLLB m1 1002 1012 1092 54.5
m2 840 809 1096

Table 3: Preference. Top: m1 and m2 are our bilingual
8k and 64k models (+∆ under ABE). Bottom: m1 and
m2 are M2M1.2B and NLLB3.3B (-∆ with ABE). Ti

shows counts when outputs of mi were ranked highest
(or tied). ABE shows counts when the outputs of the
ensemble were ranked highest. “Same %” designates
when models had the same ranking.

516

6.2 Constraining Hallucinations517

Standard (same-vocabulary) ensembling can have a518

normalizing effect on models, for example helping519

increase their robustness to noise. Upon examining520

outputs, we found a recuring trend that ABE also521

helps prevent models that have begun to hallucinate.522

An example is shown in Table 4. Here, noisy inputs523

that are included by design in the WMT24 test sets524

occasionally trip up individual models, including525

Llama-3.2 (3B-Instruct-3-SHOT). Using ABE on 526

all pairs of these models yields the correct output. 527

source lfg $sqqq

16k lfg $sqqq {m} {m} {m} {m} {m} . . .
64k lfg $qqqq$qqqqqqqqqqqqqqqqqqq. . .

Llama Es scheint, dass das ursprüngliche
Textstück fehlt oder nicht verfügbar
ist. Die gegebene Zeichenkombina-
tion "lfg $sqqq" ist nicht...

ABE lfg $sqqq

Table 4: (Truncated) examples of individual models
hallucinating or becoming overly verbose on noisy input,
but in different ways. Any ABE pairing of these models
produces the correct output.

7 Conclusion 528

We have presented an algorithm that enables token- 529

level ensembling of models with distinct vocabular- 530

ies. In contrast to prior relevant work, our approach 531

requires no learned mappings of token representa- 532

tions (Xu et al., 2024) or other model fine-tuning. 533

Instead, we run models in parallel, using a classi- 534

cal approach from parsing and statistical machine 535

translation to efficiently select tokens whose sur- 536

face representation all models agree on. 537

We believe the algorithm itself is an interesting 538

contribution to the literature, since it enables (and 539

makes easy) a task that was previously impossible. 540

Traditional ensembling is a technique that intro- 541

duces improvements in some, but not all, settings. 542

It is therefore interesting that our approach also (a) 543

produces gains in a variety of machine translation 544

settings and (b) also often improves over standard 545

ensembling. Our analysis shows how this variant 546

of ensembling seems to help address search errors 547

in the underlying models, since those models often 548

prefer (as measured by likelihood) the ensembled 549

results to their own selections. 550

Machine translation was a natural task for this 551

approach. For one, ensembling is often used to 552

produce higher-quality distilled results. Second, 553

the translation task helps constraint the generative 554

output to a subset of tokens that meaningful cap- 555

ture the source semantics. Our agreement-based 556

approach might falter in less constrained tasks. The 557

implementation is conceptually simple and factored 558

and allows for easy experimentation with different 559

methods for agreement-based search. We therefore 560

view this as a fruitful topic for future research. 561
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Limitations and Ethics562

We note a few limitations with our work. The563

first is our focus on one task, machine translation.564

Machine translation is heavily conditioned on the565

input, and the accepted translation set is relatively566

small compared to other tasks. Though this ap-567

proach works on Large Language Models, it may568

not easily extend to other more diverse tasks such569

as summarization.570

We also acknowledge that machine translation571

is still a generation task, and is prone to the typ-572

ical generation pitfalls of hallucinations, or erro-573

neous translations—particularly when using LLMs.574

Overly relying on error-prone automated transla-575

tion without a human review can have unintended576

consequences when used as a means of distributing577

information.578

The authors also acknowledge the assistance of579

LLMs in the work in this paper—in particular using580

AI agents like CoPilot and ChatGPT to write code581

and edit plots.582
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A Appendix862

Below we describe each step of our filtering863

pipeline:864

1. Remove items when equal to source and target865

pair in our validation set.866

2. Remove lines without both source and target.867

3. Remove lines where langid (Lui and Baldwin,868

2012) on source is < 0.5 for English and on869

target is < 0.5 for German.870

4. Remove lines when more than half of the line871

is punctuation.872

5. Remove lines that have too many characters873

with frequencies outside of the expected lan-874

guage set (Fan et al., 2020).12875

6. LASER based Margin-scoring (Artetxe and876

Schwenk, 2019) (done in 2.5M line chunks877

for computation).878

7. Deduplicate all training data.879

12https://github.com/facebookresearch/
fairseq/blob/main/examples/m2m_100/
README.md
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Data Name Filtered Size Paper (if applicable)
ELRC 6.5M
ELRA 66k
EU (dcep, eac, ecdc) 1.8M
Wikimatrix 5.6M Schwenk et al. (2021a)
WikiTitles 2.9M
TedTalks 166k
Bible 35k
OPUS Books 43k Tiedemann (2012)
CC-Aligned 12M El-Kishky et al. (2020)
CC-Matrix 244M Schwenk et al. (2021b)
DGT 4M
European Central Book (ECB) 83k
ELITR 232k
EMEA 233k
EU Bookshop 5.1M
EU Const. 4k
Europarl (v3,7,8,10) 6.3M Koehn (2005)
EuroPat (v1-3) 47M Heafield et al. (2022)
Global Voices 174k Nguyen and Daumé III (2019)
JRC 457k Steinberger et al. (2006)
KDE/GNome 110k Hätty et al. (2017)
MultiUN 118k Chen and Eisele (2012)
MultiCCAligned 60M
MultiParaCrawl 70M
News Commentary (v9,14,16) 937k
OPUS Train 580k Tiedemann (2012)
ParaCrawl (v9) 242M Esplà et al. (2019)
PHP 7k
QED 400k
Tanzil 476k
Tatoeba 1.8M Tiedemann (2020)
TED (2013) 403k Cettolo et al. (2013)
XLEnt 1.4M El-Kishky et al. (2021)
Tilde 4.8M Rozis and Skadin, š (2017)
StatMT 13 (CommonCrawl) 1.8M
Deduplicated 618M

Table 5: We aggregate most English–German bitext listed on mtdata (available at https://github.com/
thammegowda/mtdata). The above is the filtered text sizes.
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Algorithm 1 Agreement-Based Decoding Using Beam Search (One Time-Step)
1 """
2 scores is a BEAM_SIZE x MODEL_NUMBER x VOCABULARY_SIZE list.
3 Section 3.2: scores are sorted so we can enumerate as shown in Figure 2
4 Section 3.3: if models are stalled, we only consider epsilon transitions
5 """
6 scores = [[model.step(j) for model in models] for j in range(beam_size)]
7 scores = [torch.sort(beam_score) for beam_score in scores]
8 scores = mask_stalled_beams(scores)
9

10 class State:
11 def __init__(self, beam_index, grid_indices, token_id, score):
12 # set values ...
13 def find_neighbors(self):
14 # enumerate neighbors ...
15 def score(self):
16 # score is the weighted sum of model's beam scores
17

18 # now we search the cross-product of vocabulary items
19 next_beam = []
20 heap = heap()
21 for j in range(beam_size):
22 """
23 We seed (0 index for all model) our heap to search our grid (Figure 2).
24 For stalled models, this is the epsilon transition
25 The token_ids is the list of tokens belonging to each model's vocabulary
26 The token_scores is the associated score of these tokens
27 """
28 token_ids = [scores[j][i].idx[0] for i in range(len(models))]
29 token_scores = [scores[j][i].value[0] for i in range(len(models))]
30 state = State(
31 beam_index = j,
32 grid_indices = [0 for _ in models],
33 token_ids = token_ids,
34 token_scores = token_scores)
35 heap.push(state)
36

37 # now we expand the search space until we find beam_size agreeing extensions
38 while len(next_beam) < beam_size:
39 item = heap.pop()
40

41 # Each model has a local hypothesis (specific to internal state)
42 local_hypotheses = [model.extend_beam(item) for model in models]
43

44 # global hypothesis will define agreement
45 global_hypothesis = determine_global(local_hypothesis)
46

47 if agreement(local_hypotheses, global_hypothesis):
48 next_beam.append(item)
49

50 for neighbor in find_neighbors(item):
51 heap.push(neighbor)
52

53 return next_beam
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Figure 8: BLEU results on our custom English–German models using Agreement-Based Ensembling. These charts
show the ∆ BLEU improvement of ensembling two models via ABE over the best individual model. Labeling
indicates vocab size followed by epoch checkpoint.
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Figure 9: The ∆ BLEU scores for all model pairs.
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Figure 10: The ∆ COMET scores for all model pairs.

17



Hyper-Parameter Value
label smoothing 0.1
learning rate 0.0005
lr warmup 4000
lr decay inv sqrt 4000
mini batch warmup 4000
mini batch 1000
mini batch words 500000
max length 256
mini batch fit true
early stopping 40
logical epoch 1Gt
shuffle batches
fp16 false
tied embeddings true
tied embeddings all true
dim emb 1024
enc depth 6
dec depth 6
transformer dim ffn 8192
transformer decoder dim ffn 8192
transformer depth scaling true
lemma dim emb 0
transformer ffn activation relu
transformer-heads 8
transformer dropout 0.1
transformer dropout attention 0
transformer dropout ffn 0.1

Table 6: The above enumerate the Marian hyperparame-
ters used for all of our custom models.
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Model Type Repo ID m Size V Size Languages License

LLM

meta-llama/
Llama-3.1-8B-
Instruct

8B 128k de,es LLaMa3

meta-llama/
Llama-3.2-1B-
Instruct

1B 128k de, es LLaMa3

meta-llama/
Llama-3.2-3B-
Instruct

3B 128k de, es LLaMa3

Unbabel/
TowerInstruct-7B-v0.2

7B 32k de, es CC-BY-NC-4.0, LLaMa2

Unbabel/
TowerInstruct-
Mistral-7B-v0.2

7B 32k de, es CC-BY-NC-4.0, LLaMa2

Public MT

facebook/m2m100_1.2B 1.2B 128k de, es, cs, uk MIT
facebook/m2m100_418M 418M 128k de, es, cs, uk MIT
facebook/
nllb-200-1.3B

1.3B 256k de, es, cs, uk CC-BY-NC

facebook/
nllb-200-3.3B

3.3B 256k de, es, cs, uk CC-BY-NC

facebook/nllb-200-
distilled-1.3B

1.3B 256k de, es, cs, uk CC-BY-NC

Facebook/nllb-200-
distilled-600M

600M 256k de, es, cs, uk CC-BY-NC

Table 7: Huggingface Repo Ids for our publicly available models. LLaMa3 license refers to https://
www.llama.com/llama3/license/. LLaMa2 refers to https://ai.meta.com/llama/license/.
Tower also states the LLaMa license as it uses the LLaMa 2 pretraining weights. Language set only covers those
addressed in this paper.
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Shot Prompt
0 [

{"role": "system", "content": "Cutting Knowledge Date: December
2023\nToday Date: 26 Jul 2024"}
{"role": "user", "content": "Translate the following segment into XX.
Do not add any additional content. Do not add parentheticals. Only
provide the translation. The English segment:"}
]

3 The example translations are identical to the WMT24 evaluation scripts specific to the target language. The
examples can be found at https://github.com/wmt-conference/
wmt-collect-translations/tree/main/few_shots. Each example is put in the same format.
Language names exchanged when necessary:

[
{"role": "user", "content": "Translate the following text from
English into German. The English Segment: example source}
{"role": "assistant", "content": "{example translation}"}
]

Table 8: LLaMa prompting messages.
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B Sampling880

One common use case with autoregressive mod-881

els is sampling. As with other search procedures,882

standard ensembling works transparently with sam-883

pling. As a procedure, sampling is easy to imple-884

ment with ABE. Instead of searching over the grid,885

we sample from each model consecutively (skip-886

ping over stalled models). The vocabulary which887

we sample from is renormalized to only allow for888

agreeing tokens.889

We experimented with adding sampling to890

Agreement-Based Ensembling but found that it891

did not work well. We hypothesize the instabil-892

ity of sampling with this method stems in some893

part from the underlying idea that most tokenizers894

denote whitespace as leading (designating word895

beginnings) and not as trailing (designating word896

endings). This idea has been shown to have inter-897

esting effects on probability distributions (Oh and898

Schuler, 2024).899

As an illustrative example, consider the follow-900

ing German indefinite articles: “ein” and “eine.”901

The key difference being that “eine” is feminine.902

Both of these words are short and fundamental to903

the German vocabulary, so it is almost guaranteed904

that both words in their full form are in the model905

vocabulary. We further suspect that models with906

both of these words in their vocabulary have never907

seen “eine” tokenized as “_ein” + “e” in their train-908

ing data.909

Now consider our previously stated sampling910

procedure. Assume from m1, we sample “_Eine.”911

When conditioned on this decision, we are likely to912

see both “_Ein“ and “_Eine” holding most of the913

probability mass of m2. Let’s assume we sample914

“_Ein” from m2. Since the local hypothesis of m1915

(“_Eine”) and the local hypothesis of m2 (“_Ein”)916

are in agreement, this is a valid state to be in. How-917

ever, when we next sample from m2 to catch up918

to m1 it is not going to have a high probability on919

“e” because it has never seen “Eine” tokenized that920

way during training.921

We understand that m1 has implicitly decided to922

generate the entire word “Ein”, but it was unable923

to convey that it was also modeling the end of that924

word due to the tokenization scheme.925

Now consider a word-ending tokenization926

scheme. Now, m1 samples “Eine_” signifying that927

it is done with this word. When we constrain the928

output of m2 on this hypothesis, “Ein_” is not go-929

ing to be sampled because it does not agree. In930

order to get into the same predicament, it would 931

need to place high probability on “Ein”, specifi- 932

cally not ending the word which is unlikely if both 933

models wish to generate some version of the word 934

“a.” 935
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