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ABSTRACT

We aim to improve on the long-horizon gaps in large language model (LLM)
agents by enabling them to sustain coherent strategies in adversarial, stochastic en-
vironments. Settlers of Catan provides a challenging benchmark: strategic success
depends on balancing short- and long-term goals in the face of dice randomness,
trading, expansion, and blocking. This is difficult because prompt-centric LLM
agents (e.g., ReAct, Reflexion) must re-interpret large, evolving game states every
turn, quickly saturating context windows and failing to maintain consistent strat-
egy across episodes. We propose HexMachina, a continual learning multi-agent
system that separates environment discovery (inducing an adapter layer without
documentation) from strategy improvement (evolving a compiled player). This
architecture preserves executable artifacts, letting the LLM focus on high-level
strategy design rather than per-turn decision-making. In controlled Catanatron ex-
periments, HexMachina learns from scratch, evolving players that outperform the
strongest human-crafted baseline (AlphaBeta). Our best runs achieve a 54% win
rate against AlphaBeta, outperforming prompt-driven LLM agents and shallow
no-discovery baselines. Ablations further confirm that greater focus on pure strat-
egy improves performance. Theoretically, this shows that artifact-centric contin-
ual learning can transform LLMs from brittle per-turn deciders into stable strategy
designers, providing a reusable path toward long-horizon autonomy.

1 INTRODUCTION

Prompt-centric LLM agents and multi-agent systems are powerful, but they struggle on long-horizon
tasks: as episodes unfold, prompts saturate with state summaries and ad-hoc "memory," forcing the
model to re-interpret the environment at every step (Aghzal et al. (2025); Nayak et al. (2025); Chen
et al. (2024)). To move toward autonomous task following and long-horizon competence, an agent
should not have to relearn the interface to their environment at each inference step (Bubeck et al.
(2023); Park et al. (2023)). This has motivated experimentation with continual learning agent de-
signs that embed feedback loops and let LLMs revise their own prompts and even generate tools/-
code to improve over time (Zelikman et al. (2022)). In particular, letting an agent gather and preserve
artifacts (e.g., reusable functions and typed helpers) offloads heavy context parsing to deterministic
code so the model can focus on designing strategy, not re-describing the world.

Despite progress in continual learning, there are few benchmarks that test whether agents can refine
a coherent strategy over long horizons. Most existing domains emphasize short tasks or broad
skill discovery, offering limited insight into how well an agent can sustain and improve a single
competitive policy. Yet this ability is crucial: real-world applications often require agents not just
to explore or act locally, but to commit to strategies that hold over many steps in the presence of
uncertainty and competition. A benchmark that demands persistent strategy refinement against a
strong adversary is therefore essential for evaluating whether lifelong agents truly overcome the
long-horizon gap.

Settlers of Catan is an ideal stress test: each turn presents a large, evolving state and action space;
success depends on balancing short- and long-term rewards under stochastic resource production,
trading, expansion, and adversarial play. Using the open-source Catanatron framework (Collazo
(2025)) gives us a controlled interface to observe how a lifelong architecture impacts performance
in a domain that reliably exposes limits in long-horizon reasoning.
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Figure 1: Overview of Catan gameplay and LLM-agent interaction. Left: Settlers of Catan –
Players take turns to gather, trade, and spend resources to build on a modular board in a stochastic,
partially observable strategy game. The objective is to reach 10 victory points by constructing
settlements, roads, and cities Catan Fusion; Catan Collector. Right: Our LLM-based framework
interacts with the Catanatron API, leveraging game state information and strategic reasoning to
decide actions. Through repeated play and self-modification, agents evolve more coherent long-
term strategies (Smashicons; murmur (a;b); Hilmy Abiyyu A.; yaicon).

We first demonstrate that traditional per-turn LLM agents (e.g., ReAct/Reflexion-style) perform
poorly against a strong human-crafted bot. Asking the model to parse the full game state and in-
dependently choose every action while attempting to "hold" a global plan proves unreliable and
inconsistent (Table 2). To address this, we separate the act of thinking from the act of playing,
drawing inspiration from the AutoGPT framework (Yang et al. (2023)) to define distinct agent roles:
Orchestrator, Analyst, Strategist, Researcher, and Coder. In this configuration, the system hypothe-
sizes a strategy, translates it into a player implementation, reviews the API to ensure correctness, and
then evaluates and improves through repeated play. While this Voyager-style (Wang et al. (2023a))
continual learner shows progress, it tends to converge on shallow heuristics that fail to capture the
depth of strategic play required in Catan (Appendix A.2). Motivated by this limitation, we introduce
a clean separation between the discovery of executable API artifacts and the refinement of strategies
built on top of them. With this split, our system, HexMachina, evolves players that consistently ex-
ecute intelligent, long-horizon strategies,outperforming traditional LLM agents, common continual
learning architectures, and even the AlphaBeta baseline.

Main Contributions. We highlight the following key contributions from our work:

• HexMachina: Self-Evolving LLM Agent Framework. An autonomous system that
learns an unknown environment without formal documentation, preserves key code/knowl-
edge as artifacts, and improves its strategy via a closed-loop process that generates and
executes code with no human intervention.

• A strong benchmark setting for continual LLM-agent learning: Settlers of Catan. An
environment that both requires long-horizon strategy and distracts naive agents with a large,
changing state/action space and delayed rewards.

• Lifelong agents beat traditional LLM agents on Catan. HexMachina outperforms
prompt-driven baselines and rivals the best human-engineered Catanatron bot (AlphaBeta)
by letting the LLM design strategy while compiled code executes it consistently.

• Empirical importance of separating discovery and improvement. We show that decou-
pling environment-artifact discovery from strategy refinement materially improves strategy
quality and game performance.
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Table 1: Focus comparison. ✓=yes, ∼=partial, ×=no. Policy evolution (broad: direct or via re-
ward/program/skill search); Artifacts (persisted executable code/skills); Induction (doc-free adapter
induction; Voyager ∼ with provided control primitives); Adversarial strategy-based (head-to-head
vs strong fixed opponent; ✓only for HexMachina).

System Environment Induction Artifacts Adversary Evolution

Voyager Minecraft ∼ ✓ × ✓
AlphaEvolve Code × ✓ × ✓
Eureka Isaac Gym × ✓ × ✓
HexMachina Catanatron ✓ ✓ ✓ ✓

2 RELATED WORKS

Game-Playing AI and Strategy Games Games have long served as benchmarks for AI research
(Gallotta et al. (2024); Costarelli et al. (2024); Nasir et al. (2024)). While significant progress has
been made in perfect-information games like Chess and Go (Schultz et al. (2024); Silver et al.
(2016)), strategic board games such as Settlers of Catan, Diplomacy ( (FAIR)) or Civilization (Qi
et al. (2024)) introduce elements of expanding action spaces, partial observability, and multi-agent
interaction, posing unique challenges to an AI system (Szita et al. (2009)). Previous works ap-
proached Catan using a specialized neural network architecture to handle its mixed data types, en-
abling an RL agent to outperform traditional rule-based bots (Gendre & Kaneko (2020)). In contrast,
our approach leverages LLMs’ natural language understanding to navigate Catan’s complexities, fo-
cusing on autonomous game-play discovery and strategy refinement without relying on extensive
training data.

LLM Agents and Long-Horizon Planning LLMs reason well locally but falter at multi-step au-
tonomy: studies report low success on end-to-end plan generation, with models performing better as
advisors to external planners Valmeekam et al. (2023). Benchmarks like TravelPlanner confirm poor
pass rates even with tools and staged prompting, revealing brittleness under constraint-heavy, multi-
objective tasks Xie et al. (2024); Zheng et al. (2025); Nayak et al. (2025); Cui et al. (2025). Prompt-
centric agents (ReAct, Reflexion) still act per-turn from ever-growing text context, and multi-agent
scaffolds (CAMEL, AutoGen) coordinate via dialogue Yao et al. (2023); Shinn et al. (2023); Wei
et al. (2023); Xi et al. (2025); Li et al. (2023); Wu et al. (2023); yet in long-horizon, adversarial
domains they repeatedly re-parse large states and lack a persistent executable substrate to enforce
strategy across an episode, leaving the planning gap largely intact.

Self-Improvement and Continual Learning Agents Inference-time self-improvement spans ver-
bal reflection (Reflexion), evolutionary prompt search (PromptBreeder, PromptAgent), and code-
writing agents that iteratively refine programs (Shinn et al. (2023); Fernando et al. (2023); Wang
et al. (2023b)). Surveys systematize these inference-time strategies and the broader landscape of
LLM agents (Song et al. (2024); Dong et al. (2024)). Eureka (Ma et al. (2024)) explores program and
reward evolution, demonstrating how automated search over reinforcement learning environments
can uncover novel control strategies. AlphaEvolve (Novikov et al. (2025)) presents an evolutionary
coding agent to tackle open scientific problems and algorithm improvement. Embodied lifelong sys-
tems like Voyager show that storing executable skills (a skill library) improves persistence and reuse
across episodes, but emphasize breadth (discovering many primitives) rather than depth (refining a
single competitive policy).

Building on Voyager, Eureka, and AlphaEvolve, which respectively advance skill discovery, re-
ward/program evolution, and automated code improvement, we shift focus to a different question:
can a lifelong LLM system, operating without documentation, induce a compact adapter to an un-
known environment and persist executable artifacts in order to evolve a single competitive policy
that outperforms traditional LLM agents in adversarial play?
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3 BACKGROUND

Settlers of Catan as a Strategic Benchmark Settlers of Catan is a 3-4 player board game where
players collect and trade resources to build settlements and roads, racing to earn 10 victory points on
a modular island map. The game emphasizes resource management, planning, and negotiation, with
mechanics like the robber (which blocks resources) adding tactical depth. Catan is known for its
balance of luck and skill. Victory goes to the first player to reach 10 points, earned by building and
upgrading settlements into cities, buying development cards, and achieving goals like the longest
road or largest army. Each settlement is worth 1 point, each city 2, and some development cards
grant hidden points or knight bonuses. Every turn starts with a dice roll that produces resources for
players with adjacent settlements. The active player may then trade and build. If a 7 is rolled, the
robber is activated, blocking a tile and stealing a resource. Players must plan expansions, balance
upgrades, and trade strategically to manage luck. This need for adaptation and foresight makes
Catan a strong benchmark for evaluating strategic reasoning in agents.

The Catanatron Framework We use the open-source Python-based simulator Catanatron as our
evaluation environment. Designed for automated gameplay of Settlers of Catan, Catanatron offers
a programmatic interface for integrating custom agents and supports rapid simulation at scale. It
faithfully implements the game’s rules and dynamics, capturing key strategic elements such as re-
source management, trade negotiation via structured proposals, and randomness introduced by dice
rolls. Each game consists of players competing to reach ten victory points, with players interacting
through well-defined game states that include current resources, board positions, available actions,
and observable opponent statuses. Games typically span 40 to 100 turns, allowing for extended ob-
servation of agents’ long-term planning capabilities. We benchmark our LLM-driven agents against
AlphaBeta, the best-performing heuristic agent provided through the API which uses a depth-2
alpha-beta pruning algorithm with heuristic evaluation to select actions.

Alpha-Beta Benchmark Our primary baseline is Catanatron’s AlphaBeta agent: an alpha-beta
minimax over stochastic outcomes that computes the expected value of successor states via chance
expansion and a fast heuristic value function. Concretely, it uses a depth-2 search (default), a 20 s
decision cap, and an optional action-space pruning mode (e.g., robber and maritime-trade pruning
heuristics). At leaves, it applies a parameterized value function, and it short-circuits when only
one legal action exists. We adopt the author defaults unless otherwise noted, fixing depth = 2 for
all reported comparisons. This baseline is both strong and extremely fast, enabling thousands of
head-to-head evaluations needed by our continual-learning setup.

4 HEXMACHINA

HexMachina is an autonomous self-evolving multi-agent system that crafts a powerful Catanatron
player capable of rivaling the top human-crafted baselines. We utilized Langchain for the model
agnostic services, and Langraph for the state machine. Once launched, HexMachina begins by run-
ning a discovery phase, were it gathers information about the Catanatron API to evolve an adapters
file. After completion, it enters an improvement phase where it begins evolving a player file. Each
evolution consists of agent collaboration until the Coder writes improvements in the form of testable
code. Each phase is limited to 20 evolutions, counted by each time the Coder is called.

4.1 CAPABILITIES

Listed below are the capabilities that enable HexMachina to employ continual learning effectively:

Player Generation HexMachina incrementally codes a complete Catanatron player module dur-
ing the improvement phase. The process begins with a minimal template that simply returns the
first legal action, then evolves into increasingly sophisticated strategies as feedback accumulates.
Importantly, the generated player is not just a script of next actions but an executable policy that
can consistently carry out a long-term plan across an entire game. This design shifts the LLM’s role
from being a per-turn decider to being a strategy architect, with the Coder agent ensuring that every
idea is grounded in syntactically valid and testable code.
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Figure 2: HexMachina Architecture. During the discovery phase, the Orchestrator coordinates
agents to induce executable functions into the Adapter file, stabilizing access to the environment.
In the improvement phase, we found it most effective to rely on a streamlined loop of Analyst, Coder,
and Orchestrator, avoiding dilution from additional roles. Here, the Analyst diagnoses performance,
the Coder translates revisions into executable code, and the Orchestrator manages iteration. This
separation enables the system to refine FooPlayer into a consistent long-horizon strategy.

Experimentation Engine At the core of HexMachina is a deterministic experimentation harness.
This engine repeatedly pits evolving players against the strong AlphaBeta baseline under fixed seeds
and identical settings, logging outcomes, intermediate states, and decision traces. By holding the
environment constant, we can attribute changes in win rate or victory points directly to code evo-
lution, rather than stochastic noise. This repeatable evaluation cycle transforms raw self-play into
structured experimental evidence for policy improvement.

Evaluation Evaluation closes the loop: after each batch of games, HexMachina analyzes out-
comes to identify which strategic choices were beneficial and which led to failure. This feedback
is distilled into concise summaries that the Orchestrator uses to decide whether to preserve, modify,
or discard a candidate player. In practice, we found that the most effective evaluation loop did not
require every agent’s perspective; instead, a streamlined pipeline of Analyst to Coder to Orchestra-
tor yielded clearer strategic signals. Additional recommendations from other roles often diluted the
strategy, fragmenting the LLM’s ability to commit to a coherent plan.

Strategy and Discovery HexMachina supports two complementary modes. In the discovery
phase, it induces executable artifacts such as an adapters.py file that stabilizes access to the
Catanatron API without any human documentation. This ensures that later improvements build on a
reliable, reusable interface. In the improvement phase, the system searches over new tactics, revisits
prior players, and integrates insights from past runs. Together, these phases ensure that learning is
both grounded in the environment and continuously refined across evolutions.

Orchestration The orchestrator serves as the global planner, deciding when to analyze results, re-
quest new code, or revisit prior knowledge. Autonomy is enforced by a closed loop: the orchestrator
makes high-level decisions based on game outcomes, artifacts, and agent communication, then del-
egates low-level tasks to the Analyzer and Coder. This separation prevents the system from stalling
on details while still maintaining tight control over long-term strategy evolution.

Memory Finally, HexMachina maintains both game memory and semantic memory across evo-
lutions. Game memory archives past players, their code, and evaluation artifacts, enabling direct
comparisons and reuse of successful strategies. Semantic memory allows each agent to persist ex-
pertise relevant to its role, e.g., the Coder retaining knowledge of syntax patterns or the Analyst
preserving diagnostic heuristics. This dual memory system underpins continual learning: instead of
starting from scratch each evolution, the system accumulates strategic and technical knowledge that
compounds over time.
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4.2 AGENTS

Each agent in HexMachina is a specialist that can call tools (up to 5 per turn) and then yield a
single, compact message back to the main loop. Only this final message is persisted to memory,
ensuring concise, role-specific contributions. Each agent has access to a Think Tool (adapted from
Langchain’s deep research agent) to support internal reasoning and explainability. Inputs and outputs
are standardized, enabling interchangeable models and providers.

Importantly, not all agents are equally useful in every phase. In the discovery phase, the full set of
agents contributes to inducing a stable adapters.py file from scratch. However, in the improve-
ment phase, we found that the most effective configuration is a streamlined loop of Orchestrator,
Analyst, and Coder. Additional recommendations from the Strategist and Researcher often diluted
coherence, so these roles are used only during discovery or when revisiting artifacts, not for direct
strategy refinement.

Orchestrator: Global planner and orchestrator.
Inputs: Orchestrator Messages and summary of evolution
Outputs: Thoughts, system goal, next chosen agent, next agent objective
Tools: None

Coder: Turn strategies into compilable code.
Inputs: Objective from Orchestrator, adapter contents
Outputs: Executable code, summary of changes
Tools: Write/edit file

Analyst: Experimentation evaluator
Inputs: Objective from Orchestrator, summary of evolution, current player and Coder sum-
mary of changes, game artifacts, adapter contents
Outputs: Post-game diagnosis, specific analysis, adapter failure
Tools: Read local file

Researcher: Recover API/engine facts and domain tactics. Primarily active during discovery.
Inputs: Objective from Orchestrator, list of files, adapter contents
Outputs: Citations, code pointers, or concise notes with source references
Tools: Read local file, web search

Strategist: Propose concrete, testable plans. Primarily active during discovery.
Inputs: Orchestrator Objective, Evolution Summary, current player, adapter contents
Outputs: Strategy spec and evaluation
Tools: Read local file, view older experiment, web search

5 EXPERIMENT SETUP

We evaluate HexMachina in the open-source Catanatron environment under controlled 2-player, 10-
point Catan games. Each experiment consists of repeated head-to-head matches against the strongest
built-in heuristic bot, AlphaBeta. We measure both win rate and final victory points as indicators of
strategic quality. Games are deterministic given a random seed, allowing us to reproduce results and
separate genuine improvements from stochastic variance. Data was collected over 60 hours across
two machines (MacBook Pro 2019, 16GB; MacBook M1 Max 2021, 32GB).

5.1 BASELINES

Our baselines capture a spectrum of reference points, from trivial random play to a strong, hand-
engineered heuristic, allowing us to contextualize HexMachina’s performance against both naive
policies and established rule-based expertise.

Random. The simplest control agent chooses uniformly from the legal action space each turn.
While strategically meaningless, this baseline sets a lower bound for performance and highlights
how much structure even a minimal policy adds.

6
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LLM Player. We also evaluate a Reflexion-style agent (Shinn et al. (2023)) that reformats the
game state into text and queries Claude 3.7 once per turn with a high-level goal. This baseline
reflects the "prompt-centric" paradigm: the LLM directly drives play without any compiled memory
or artifact reuse. Due to inference cost (approx. 70 queries per game), we limited this evaluation to
20 games with a model we had free access too, but it provides a critical comparison to show how
quickly context saturation and lack of persistence hinder long-horizon play.

Basic Continual Learner (HexMachina w/o discovery). To isolate the value of separating dis-
covery and improvement, we also test a single-phase continual learning setup equivalent to Hex-
Machina without the discovery phase. Here the system attempts to learn both the environment
interface and the strategy simultaneously. This resembles prior lifelong agents such as Voyager and
Eureka (Wang et al. (2023a); Ma et al. (2024)), which evolve strategies directly from raw interaction.
As shown later in Appendix A.2, these agents often converge on shallow heuristics (e.g., one-ply
VP-only evaluators), highlighting the difficulty of strategic refinement without first stabilizing the
interface.

AlphaBeta. Finally, we include Catanatron’s AlphaBeta agent, a depth-2 minimax with stochastic
expansion and heuristic evaluation. This player is fast, strong, and widely used as a benchmark;
in self-play it achieves a 50% win rate by construction. It represents the ceiling for our experi-
ments, providing a human-engineered reference against which HexMachina’s evolved players can
be meaningfully compared.

5.2 MODELS

HexMachina is model-agnostic, but in practice we deploy different LLMs for different roles to bal-
ance strength and efficiency. We test three orchestrator backends, GPT-5-mini, Claude 3.7, and
Mistral-large, to assess robustness across providers. Unless otherwise noted, GPT-5-mini is used for
the Coder, which requires reliable code synthesis, while Mistral-large is assigned to support roles
(Analyst, Strategist, and Researcher) to reduce cost and latency. This division reflects a general prin-
ciple of our framework: leverage stronger models where precision is critical (e.g., code generation)
and more efficient models where interpretive or diagnostic reasoning suffices.

6 RESULTS AND DISCUSSION

6.1 CONTINUAL LEARNING

We first examine the impact of continual learning through evolution runs of 10 steps, with each
step evaluating FooPlayer across 30 games. Figure 3 shows HexMachina steadily improving against
AlphaBeta, eventually achieving parity and surpassing baseline players. A central design choice
was the separation of discovery (API induction and artifact stabilization) from improvement (strat-
egy evolution). Our experiments confirm that this separation is critical: systems without discovery
struggled to stabilize player code, while those with discovery reliably produced executable players
that improved across evolutions.

Interestingly, we found that HexMachina performed better when the Strategist and Researcher agents
were removed, leaving only the Orchestrator, Analyst, and Coder. While the Strategist was intended
to propose concrete plans, results suggest that LLMs often formulate effective strategies in a single
shot, and passing these through multiple roles may dilute coherence. Thus, we report results using
this streamlined configuration. This insight highlights a broader implication for continual learn-
ing: modular multi-agent systems are powerful, but not all roles contribute equally, and reducing
mediation can strengthen strategic consistency.

Figure 4 provides a qualitative example of evolution in action. We observe HexMachina iteratively
proposing, coding, and refining player strategies while preserving functional artifacts. This illus-
trates how artifact-centric continual learning transforms an LLM from a per-turn decision maker
into a higher-level strategy designer with consistent policy execution.

7
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Figure 3: HexMachina Evolving to Outperform Existing Players

Figure 4: Evolution Messages Example Dialogue

6.2 PLAYER COMPARISON

To stress test the best-evolved players, we ran each configuration 10 times with 100 games per run.
Results are summarized in Table 2. HexMachina’s best model (GPT-5-mini) reached a 54.1% win
rate and 8.2 ± 0.1 victory points, matching or slightly exceeding AlphaBeta’s 51.0% win rate and 7.8
± 0.2 points. By contrast, the no-discovery baseline plateaued at much lower win rates, producing
players that often failed to generalize beyond static heuristics.

A representative no-discovery agent (Appendix A.2) highlights why this baseline performs poorly.
It carries out only a 1-ply lookahead, scoring states almost entirely on current victory points with
trivial tie-breakers such as settlements, cities, or roads. With rollouts disabled and no modeling of
stochastic production or opponent actions, it assigns identical scores to materially different choices,
leading to random tie-breaking, poor settlement placement, and ineffective robber usage. These
flaws explain its consistently weak performance in Table 2.

By contrast, the best evolved FooPlayer (Appendix A.1) demonstrates the benefits of HexMachina’s
discovery-improvement split. This agent combines phase-aware priorities (early expansion, mid-
game balance, late-game upgrades), explicit heuristics for production diversity and robber disrup-
tion, and shallow rollouts that anticipate near-term outcomes. These capabilities yield stronger
growth, better-timed upgrades, and consistent disruptive pressure on the opponent. The qualita-
tive differences map directly onto the quantitative results in Table 2, underscoring that discovery is
critical for stabilizing adapters and enabling the emergence of richer strategies.
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Table 2: Win Rate and Victory Points for HexMachina compared to Baselines

Player Model Win Rate Victory Points

HexMachina
GPT 54.1% [51%, 57%] 8.2 ± 0.1
Mistral 49.2% [46%, 52%] 7.8 ± 0.2
Claude 38.4% [35%, 41%] 7.2 ± 0.2

LLM Player Claude 16.4% [3%, 30%] 5.2 ± 1.2

Alpha-Beta X 51.0% [48%, 54%] 7.8 ± 0.2

Random X 0.2% [0%, 0%] 2.4 ± 0.0

6.3 ABLATIONS

To isolate the importance of individual design choices, we conducted ablation studies with three
independent runs of 10 steps, each tested on 30 games. Results are shown in Table 3. Interestingly,
removing the Strategist and Researcher improved performance relative to the full system, reaffirm-
ing our earlier finding that direct orchestration leads to clearer strategy translation. Removing the
Analyst heavily impacted success as the agent is required to diagnose issues. There would often
be situations where the system failed to recognize when functions were being mis-referenced from
adapters.py without the Analyst bringing it into a failure loop. Overall, these findings back our

Table 3: Multi-Agent Architecture Ablations for HexMachina Policy Evolution

Ablation Win Rate Victory Points

All Agents 49.7% 8.0
No Analyst 0.0% 2.1

No Strategist + Researcher 54.1% 8.2

contribution statements: (1) HexMachina evolves executable strategies that rival top human-crafted
baselines; (2) artifact preservation and doc-free discovery are essential to this success; (3) LLMs are
best deployed at the level of strategy design, not per-turn play; and (4) multi-agent modularity is
powerful, but optimal performance may emerge from leaner configurations that avoid unnecessary
role handoffs.

7 CONCLUSION

Despite strong results, several limitations hindered performance from improving further. First, we
evaluated players solely with win rate and final victory points, coarse metrics that sometimes mask
subtler strengths and weaknesses. Second, the LLM occasionally hallucinated code or heuristics,
requiring additional filtering. Third, the system was expensive to run due to inference costs, restrict-
ing the number of trials. Finally, performance remained closely tied to the quality of the underlying
model, with more capable backends producing stronger players. Even with these constraints, Hex-
Machina was able to autonomously induce an API, evolve a robust player, and achieve parity with
AlphaBeta, the strongest human-crafted bot.

Looking forward, we see several avenues for advancement. Other researchers could attempt to de-
sign a more powerful multi-agent system on this benchmark or build a stronger hand-crafted player
for comparison. More broadly, HexMachina should be tested on continual learning benchmarks
beyond Catan to validate generality. Finally, the current 20-step evolution limit could be extended
with improved memory and player management, enabling longer training horizons and more sophis-
ticated strategies. Together, these extensions would push LLM agents closer to reliable long-horizon
autonomy.

9
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8 ETHICAL STATEMENT

Our system executes code in a closed loop with strict safeguards: generated programs run only
within a controlled evaluation harness, preventing arbitrary system access. All experiments were
logged with fixed random seeds and configuration files, ensuring transparency and reproducibil-
ity. While we present HexMachina as an autonomous agent, we avoid anthropomorphizingâĂŤour
system is a code-evolving tool, not a sentient entity.

9 REPRODUCIBILITY STATEMENT

We release all code, experiment harnesses, and configuration files alongside this submission.
To reproduce our results, clone the repository, install dependencies, and follow the step-by-step
README instructions. Running experiments requires API keys for the tested LLMs; once pro-
vided, the system can be executed exactly as described to replicate all tables and figures.
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A APPENDIX

A.1 HEXMACHINA’S BEST STRATEGY

import random
from typing import Iterable , List , Optional , Any , Tuple

# MUST use the adapters surface to interact with the game environment
from .adapters import (
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Game ,
Player ,
Color ,
copy_game ,
execute_deterministic ,
execute_spectrum ,
expand_spectrum ,
list_prunned_actions ,
prune_robber_actions ,
base_fn ,
value_production ,
get_value_fn ,

)

class FooPlayer(Player):
"""A Foo player with game -phase aware decisioning , improved sampling ,
short rollouts , and richer heuristics.

This implementation is defensive: it uses only the adapters surface
and

contains many fallbacks when attributes or adapter helpers are
missing.

Key features:
- Game -phase detection (early/mid/late) to bias settlement/road vs

city/dev -card
- Settlement & road potential heuristics to encourage early expansion
- Robber/knight evaluation to value disruption and steals
- Must -include guarantees for critical action types (settlement/road/

robber/dev)
- Rollout policy biased by phase and includes a light opponent -

response

NOTE: Many game model attribute names vary across environments. This
code

attempts multiple common attribute names and falls back to string -
based

heuristics when necessary. If the next run raises AttributeError for
an

adapters function or a specific attribute , provide the traceback so
it can

be patched to the concrete environment.
"""

# Tunable constants (exposed to edit for experimentation)
MAX_SIMULATIONS = 24
PREFILTER_TOP_K = 8
ROLLOUT_DEPTH = 2
SIMULATION_BUDGET = 60
DEBUG = False

# Phase thresholds (used by get_game_phase)
EARLY_TURN_THRESHOLD = 20
MID_TURN_THRESHOLD = 45

# Phase multipliers matrix (explicit)
MULTS = {

"EARLY": {"settlement": 2.0, "road": 1.8, "city": 0.8, "dev": 1.2
},

"MID": {"settlement": 1.0, "road": 1.0, "city": 1.25, "dev": 1.0}
,

"LATE": {"settlement": 0.8, "road": 0.9, "city": 1.5, "dev": 1.0}
,

}
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# Must -include action tokens (robust , lowercase matching)
MUST_INCLUDE_TOKENS = {

"build_city",
"build_settlement",
"build_sett",
"build_road",
"buy_dev",
"buy_dev_card",
"buycard",
"play_knight",
"knight",
"move_robber",
"move_robber_action",
"robber",
"trade",
"offer_trade",

}

# Robber scoring base (increased)
ROBBER_BASE_SCORE = 80.0
ROBBER_BASE_SCORE_HIGH = 80.0

# Settlement target in early game
TARGET_SETTLEMENTS_EARLY = 3

# Epsilon -greedy randomness to avoid predictability
EPSILON_GREEDY = 0.04

# Rollout bonuses for the very first rollout step
ROLLOUT_SETTLEMENT_BONUS = 1.7
ROLLOUT_ROAD_BONUS = 1.4

# Tie tolerance
TOLERANCE = 1e-6

# Development card deck & EV constants
DEV_DECK = {"knight": 14, "vp": 5, "road_building": 2, "

year_of_plenty": 2, "monopoly":
2}

DEV_TOTAL = sum(DEV_DECK.values ())
EV_KNIGHT = 0.15
EV_VP = 1.0
EV_ROAD_BUILDING = 0.25
EV_YOP = 0.2
EV_MONOPOLY = 0.3
DEV_EV_SCALE = 60.0
DEV_EV_THRESHOLD = 0.25

# Knight bonuses
KNIGHT_LARGEST_ARMY_BONUS = 50.0
KNIGHT_BASE = 25.0
KNIGHT_MIN_SCORE = 35.0

# City/road/robber tuning (from latest analyzer guidance)
CITY_URGENCY_BONUS = 85.0
CITY_AFFORD_STRICT_ORE = 3
CITY_AFFORD_STRICT_WHEAT = 2
CITY_AFFORD_SOON_ORE = 2
CITY_AFFORD_SOON_WHEAT = 1
ROLLOUT_CITY_BONUS = 1.8
ROAD_SCORE_BOOST = 9.0
PROD_LOSS_IMPORTANCE = 70.0
HIGH_VALUE_RESOURCE_SET = {"ore","wheat","metal","grain"}
CITY_TIE_EPS = 0.02
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# Forcing behavior flags and diagnostic counters
PREFILTER_FORCE_CITY_IF = True
CITY_FORCE_AFFORD_STRICT = True
DEBUG_COUNTS = False

def __init__(self , name: Optional[str] = None):
super().__init__(Color.BLUE , name)
# Try to cache a base value function from adapters
try:

self._value_fn = base_fn ()
self.debug_print("FooPlayer: Using adapters.base_fn () for

evaluation")
except Exception as e:

self._value_fn = None
self.debug_print("FooPlayer: adapters.base_fn () not available

, will use heuristic.
Error:", e)

# Diagnostic counters (quiet unless DEBUG)
self._diag_forced_settlement = 0
self._diag_forced_road = 0
self._diag_city_urgency_count = 0
self._diag_settle_urgency_count = 0

# New counters for tuning
self.COUNTER_FORCED_CITY = 0
self.COUNTER_DEV_BUY_FORCED = 0
self.COUNTER_BUY_DEV_ACTUALLY = 0
self.COUNTER_BUILD_CITY_ACTUALLY = 0
self.COUNTER_ROBBER_ACTUALLY = 0

# ------------------- Debug helper -------------------
def debug_print(self , *args: Any) -> None:

if self.DEBUG:
print(*args)

# ------------------- Utility helpers -------------------
def _get_player_color(self) -> Color:

""" Return this player ’s color. Try common attribute names."""
if hasattr(self , "color"):

return getattr(self , "color")
if hasattr(self , "_color"):

return getattr(self , "_color")
return Color.BLUE

def _safe_action_name(self , action: Any) -> str:
""" Produce a lowercase string name for the action for robust

matching."""
try:

at = getattr(action , "action_type", None)
if at is None:

at = getattr(action , "type", None)
if at is not None:

try:
return str(at.name).lower()

except Exception:
return str(at).lower()

except Exception:
pass

try:
# Some Action objects have a .name or .action_name
name = getattr(action , "name", None) or getattr(action , "

action_name", None)
if name is not None:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

return str(name).lower()
except Exception:

pass
try:

return str(action).lower()
except Exception:

return ""

# ------------------- Phase detection -------------------
def get_game_phase(self , game: Game , color: Optional[Color] = None) -

> str:
""" Return ’EARLY ’, ’MID ’, or ’LATE’ based on turn counters or VP

thresholds.

Order of checks:
1) turn/tick counters if available (preferred)
2) max VP among players
3) fallback to conservative MID
"""
try:

state = getattr(game , "state", game)
turn_count = (

getattr(state , "turn", None)
or getattr(state , "tick", None)
or getattr(state , "turn_count", None)
or getattr(state , "tick_count", None)

)
if isinstance(turn_count , (int , float)):

tc = int(turn_count)
if tc < self.EARLY_TURN_THRESHOLD:

return "EARLY"
if tc < self.MID_TURN_THRESHOLD:

return "MID"
return "LATE"

except Exception:
pass

# Fallback: use maximum VP among players
try:

state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game , "

players", None) or []
max_vp = 0
if isinstance(players , dict):

for p in players.values ():
vp = getattr(p, "victory_points", None) or getattr(p,

"vp", None) or
0

try:
vp = int(vp)

except Exception:
vp = 0

max_vp = max(max_vp , vp)
else:

for p in players:
vp = getattr(p, "victory_points", None) or getattr(p,

"vp", None) or
0

try:
vp = int(vp)

except Exception:
vp = 0

max_vp = max(max_vp , vp)
if max_vp < 4:

return "EARLY"

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

if max_vp < 8:
return "MID"

return "LATE"
except Exception:

# Conservative fallback to MID
return "MID"

# ------------------- Heuristic / evaluation (phase -aware)
-------------------

def _heuristic_value(self , game: Game , color: Color) -> float:
"""Phase -aware heuristic including production potential and city -

upgrade progress.

Many attribute names are attempted to be robust across different
game models.

"""
# Die probabilities for numbers 2..12 ignoring 7
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5 / 36

, 8: 5 / 36, 9: 4 / 36, 10:
3 / 36, 11: 2 / 36, 12: 1 /
36}

# Player lookup
player_state = None
try:

state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game , "

players", None)
if isinstance(players , dict):

player_state = players.get(color) or players.get(str(
color))

elif isinstance(players , (list , tuple)):
for p in players:

if getattr(p, "color", None) == color or getattr(p, "
color", None) ==
str(color):

player_state = p
break

except Exception:
player_state = None

def _safe_get(obj , *names , default=0):
if obj is None:

return default
for name in names:

try:
val = getattr(obj , name)
if val is not None:

return val
except Exception:

try:
val = obj[name]
if val is not None:

return val
except Exception:

continue
return default

vp = _safe_get(player_state , "victory_points", "vp", default=0)
settlements = _safe_get(player_state , "settlements", "

settle_count", "
settle_locations", default=0
)

if isinstance(settlements , (list , tuple)):
settlements = len(settlements)
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cities = _safe_get(player_state , "cities", "city_count", "
city_locations", default=0)

if isinstance(cities , (list , tuple)):
cities = len(cities)

roads = _safe_get(player_state , "roads", "road_count", default=0)
if isinstance(roads , (list , tuple)):

roads = len(roads)
dev_vp = _safe_get(player_state , "dev_vp", "dev_victory_points",

default=0)

# Resources summary
resources_obj = _safe_get(player_state , "resources", default=0)
resources_total = 0
resource_diversity = 0
try:

if isinstance(resources_obj , dict):
resources_total = sum(resources_obj.values ())
resource_diversity = sum(1 for v in resources_obj.values

() if v > 0)
elif isinstance(resources_obj , (list , tuple)):

resources_total = sum(resources_obj)
resource_diversity = sum(1 for v in resources_obj if v >

0)
else:

resources_total = int(resources_obj)
resource_diversity = 1 if resources_total > 0 else 0

except Exception:
resources_total = 0
resource_diversity = 0

# Production potential estimation
prod_value = 0.0
try:

board = getattr(state , "board", None) or getattr(game , "board
", None)

hexes = getattr(board , "hexes", None) or getattr(board , "
tiles", None) or []

settlements_list = _safe_get(player_state , "settlements", "
settle_locations",
default=[])

if isinstance(settlements_list , (list , tuple)):
for s in settlements_list:

try:
for h in hexes:

neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if s in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod_value += die_prob[num] * 1.0
except Exception:

continue
cities_list = _safe_get(player_state , "cities", "

city_locations", default
=[])

if isinstance(cities_list , (list , tuple)):
for c in cities_list:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

try:
for h in hexes:

neighbors = getattr(h, "vertices",
None) or
getattr(h, "adjacent_vertices", None) or []
if c in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod_value += die_prob[num] * 2.0
except Exception:

continue
except Exception:

prod_value = 0.0

# City upgrade progress heuristic
city_resource_val = 0.0
try:

if isinstance(resources_obj , dict):
wheat = resources_obj.get("wheat", 0) + resources_obj.get

("grain", 0)
ore = resources_obj.get("ore", 0) + resources_obj.get("

metal", 0)
city_resource_val = min(wheat , ore)

except Exception:
city_resource_val = 0.0

# Phase multipliers
phase = self.get_game_phase(game , color)
mults = self.MULTS.get(phase , self.MULTS["MID"])
settlement_mul = mults["settlement"]
road_mul = mults["road"]
city_mul = mults["city"]
dev_mul = mults["dev"]

# Adjust production weight by phase
prod_weight = 80.0 if phase == "EARLY" else 45.0 if phase == "MID

" else 30.0

# Compose weighted sum (city reward scaled by city_mul)
score = (

float(vp) * 100.0
+ float(settlements) * 25.0 * settlement_mul
+ float(cities) * 60.0 * city_mul
+ float(roads) * 6.0 * road_mul
+ float(dev_vp) * 50.0
+ float(resources_total) * 1.0
+ float(resource_diversity) * 3.0
+ float(city_resource_val) * 5.0
+ float(prod_value) * prod_weight

)

return float(score)

def _evaluate_game_state(self , game: Game , color: Color) -> float:
""" Evaluate a single game state for the given player color.

Prefer adapters.base_fn () if available (cached in self._value_fn)
. If available , combine
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it with the heuristic for stability. We keep phase multipliers
inside the heuristic so

they influence the final blended value.
"""
heuristic = self._heuristic_value(game , color)
if self._value_fn is not None:

try:
vf_val = float(self._value_fn(game , color))
return 0.85 * vf_val + 0.15 * heuristic

except Exception as e:
self.debug_print("FooPlayer: value_fn failed during

evaluate_game_state ,
falling back to

heuristic. Error:",
e)

return float(heuristic)

# ------------------- Cheap scoring & potentials -------------------
def _get_player_state(self , game: Game , color: Color) -> Any:

""" Return the player_state object from the game state (best -
effort)."""

try:
state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game , "

players", None)
if isinstance(players , dict):

return players.get(color) or players.get(str(color))
elif isinstance(players , (list , tuple)):

for p in players:
if getattr(p, "color", None) == color or getattr(p, "

color", None) ==
str(color):

return p
except Exception:

return None
return None

def settlement_potential(self , action: Any , game: Game , color: Color)
-> float:

""" Estimate benefit of a settlement action: new resource types
and production.

Best -effort: try to parse adjacent hexes from action or fallback
to string heuristics.

"""
bonus = 0.0
try:

name = self._safe_action_name(action)
# Quick check: if action indicates a settlement , give base
if any(tok in name for tok in ("build_settlement", "

build_sett", "settle")):
bonus += 5.0

# Try to parse a vertex index from the action string
digits = [int(tok) for tok in name.split() if tok.isdigit ()]
vertex = digits[0] if digits else None

state = getattr(game , "state", game)
board = getattr(state , "board", None) or getattr(game , "board

", None)
hexes = getattr(board , "hexes", None) or getattr(board , "

tiles", None) or []

# Player ’s current resource types
player_state = self._get_player_state(game , color)
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player_types = set()
try:

settlements_list = getattr(player_state , "settlements",
None) or getattr(
player_state , "
settle_locations",
None) or []

if isinstance(settlements_list , (list , tuple)):
for s in settlements_list:

for h in hexes:
neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if s in neighbors:

rtype = getattr(h, "resource",
None) or getattr(h, "type",
None)
if rtype is not None:

player_types.add(str(rtype).lower())
except Exception:

player_types = set()

# Adjacent resources for proposed vertex
adj_resources = set()
prod_sum = 0.0
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5

/ 36, 8: 5 / 36, 9: 4 /
36, 10: 3 / 36, 11: 2 /
36, 12: 1 / 36}

if vertex is not None:
for h in hexes:

try:
neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if vertex in neighbors:

rtype = getattr(h, "resource",
None) or getattr(h, "type",
None)
if rtype is not None:

adj_resources.add(str(rtype).lower())
num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod_sum += die_prob[num]
except Exception:

continue
# New types
new_types = adj_resources - player_types
bonus += float(len(new_types)) * 12.0
bonus += float(prod_sum) * 8.0

except Exception:
pass

return float(bonus)

def road_connection_potential(self , action: Any , game: Game , color:
Color) -> float:

""" Estimate if a road action helps expansion. Best -effort using
indices."""
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bonus = 0.0
try:

name = self._safe_action_name(action)
# try to extract numbers from action name
digits = [int(tok) for tok in name.split() if tok.isdigit ()]
# player ’s settlement/city vertices
player_state = self._get_player_state(game , color)
player_nodes = set()
try:

settles = getattr(player_state , "settlements", None) or
getattr(player_state
, "settle_locations"
, None) or []

cities = getattr(player_state , "cities", None) or getattr
(player_state , "
city_locations",
None) or []

if isinstance(settles , (list , tuple)):
player_nodes.update(settles)

if isinstance(cities , (list , tuple)):
player_nodes.update(cities)

except Exception:
player_nodes = set()

if digits:
# if any digit matches a player node , give higher bonus
if any(d in player_nodes for d in digits):

bonus += 6.0
else:

bonus += 3.0
else:

# fallback string heuristics
if "build_road" in name or ("road" in name and "build" in

name):
bonus += 2.0

except Exception:
pass

return float(bonus)

def evaluate_buy_dev_card(self , action: Any , game: Game , color: Color
) -> bool:

""" Decide whether buying a dev card is currently a good idea (
best -effort)."""

try:
player_state = self._get_player_state(game , color)
resources = getattr(player_state , "resources", None)
if isinstance(resources , dict):

ore = resources.get("ore", 0) + resources.get("metal", 0)
wheat = resources.get("wheat", 0) + resources.get("grain"

, 0)
others = sum(v for k, v in resources.items() if k not in

("ore", "metal", "
wheat", "grain"))

# if have ore+wheat+another , prefer dev card; or if no
settlement/road/city
affordable

if ore >= 1 and wheat >= 1 and others >= 1:
return True

# fallback: if early game and we have some resources but
no settlement
potential , allow dev
buy

phase = self.get_game_phase(game , color)
if phase == "EARLY" and (ore + wheat + others) >= 3:

return True
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except Exception:
pass

return False

def dev_card_ev_estimate(self , game: Game , color: Color) -> float:
""" Estimate expected VP-equivalent value of buying a development

card.

Uses static DEV_DECK and EV_* constants and scales by opponent
pressure and army gaps.

Returns a small VP-equivalent number (e.g., ~0.3-0.6 when
favorable).

"""
try:

base_ev = 0.0
# composition -based base EV
base_ev += (self.DEV_DECK.get("knight", 0) / self.DEV_TOTAL)

* self.EV_KNIGHT
base_ev += (self.DEV_DECK.get("vp", 0) / self.DEV_TOTAL) *

self.EV_VP
base_ev += (self.DEV_DECK.get("road_building", 0) / self.

DEV_TOTAL) * self.
EV_ROAD_BUILDING

base_ev += (self.DEV_DECK.get("year_of_plenty", 0) / self.
DEV_TOTAL) * self.EV_YOP

base_ev += (self.DEV_DECK.get("monopoly", 0) / self.DEV_TOTAL
) * self.EV_MONOPOLY

# Scale factors: opponents production pressure and army
proximity

# Compute opponents ’ max production (best -effort)
state = getattr(game , "state", game)
board = getattr(state , "board", None) or getattr(game , "board

", None)
hexes = getattr(board , "hexes", None) or getattr(board , "

tiles", None) or []

opponents = []
players = getattr(state , "players", None) or getattr(game , "

players", None) or []
my_color = color
if isinstance(players , dict):

for k, p in players.items():
if k == my_color or getattr(p, "color", None) ==

my_color:
continue

opponents.append(p)
else:

for p in players:
if getattr(p, "color", None) == my_color:

continue
opponents.append(p)

# compute simple production score for each opponent
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5

/ 36, 8: 5 / 36, 9: 4 /
36, 10: 3 / 36, 11: 2 /
36, 12: 1 / 36}

max_opp_prod = 0.0
for opp in opponents:

prod = 0.0
opp_settles = getattr(opp , "settlements", None) or

getattr(opp , "
settle_locations",
None) or []
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opp_cities = getattr(opp , "cities", None) or getattr(opp ,
"city_locations",

None) or []
try:

for s in opp_settles:
for h in hexes:

neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if s in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod += die_prob[num]
for c in opp_cities:

for h in hexes:
neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if c in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod += 2.0 * die_prob[num]
except Exception:

pass
max_opp_prod = max(max_opp_prod , prod)

# army gap factor
my_state = self._get_player_state(game , color)
my_army = getattr(my_state , "army", None) or getattr(my_state

, "army_size", None) or
getattr(my_state , "
knights_played", None)
or 0

try:
my_army = int(my_army)

except Exception:
my_army = 0

max_other_army = 0
try:

if isinstance(players , dict):
for k, p in players.items():

if k == my_color or getattr(p, "color", None) ==
my_color:

continue
oa = getattr(p, "army", None) or
getattr(p, "army_size", None) or
getattr(p, "knights_played",
None) or 0
try:

oa = int(oa)
except Exception:
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oa = 0
max_other_army = max(max_other_army , oa)

else:
for p in players:

if getattr(p, "color", None) == my_color:
continue

oa = getattr(p, "army", None) or
getattr(p, "army_size", None) or
getattr(p, "knights_played", None) or 0
try:

oa = int(oa)
except Exception:

oa = 0
max_other_army = max(max_other_army , oa)

except Exception:
max_other_army = 0

army_gap = max(0, max_other_army - my_army)

# scale base_ev conservatively
scale = 1.0
if max_opp_prod > 0.25: # opponent has strong production

scale += 0.25
if army_gap >= 1:

scale += 0.15 * army_gap

final_ev = base_ev * scale
return float(final_ev)

except Exception:
# fallback conservative
return 0.25

def build_urgency(self , game: Game , color: Color) -> Tuple[float ,
float , float]:

""" Return (city_bonus , settlement_bonus , road_bonus) depending on
resources and phase."""

city_bonus = 0.0
settlement_bonus = 0.0
road_bonus = 0.0
try:

player_state = self._get_player_state(game , color)
resources = getattr(player_state , "resources", None) or {}
if not isinstance(resources , dict):

# try to coerce
try:

total = sum(resources)
resources = {"res": total}

except Exception:
resources = {}

# simple can_afford_city_soon heuristic
ore = resources.get("ore", 0) + resources.get("metal", 0)
wheat = resources.get("wheat", 0) + resources.get("grain", 0)
settlements_list = getattr(player_state , "settlements", None)

or getattr(player_state
, "settle_locations",
None) or []

settlements_owned = len(settlements_list) if isinstance(
settlements_list , (list ,
tuple)) else 0

phase = self.get_game_phase(game , color)
# If mid/late and can afford city soon , large city urgency
if phase in ("MID", "LATE") and ore >= 2 and wheat >= 1:

city_bonus += 40.0
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self._diag_city_urgency_count += 1
# If early and lacking settlements target , encourage

settlements strongly
if phase == "EARLY" and settlements_owned < self.

TARGET_SETTLEMENTS_EARLY
:

settlement_bonus += 35.0
self._diag_settle_urgency_count += 1

# Road potential: give moderate constant bonus
road_bonus += 10.0

except Exception:
pass

return city_bonus , settlement_bonus , road_bonus

def cheap_pre_score(self , action: Any , game: Game , color: Color) ->
float:

"""Cheap , fast scoring used to prioritize actions for simulation
(phase -aware)."""

s = 0.0
name = self._safe_action_name(action)

phase = self.get_game_phase(game , color)
mults = self.MULTS.get(phase , self.MULTS["MID"])
settlement_mul = mults["settlement"]
road_mul = mults["road"]
city_mul = mults["city"]
dev_mul = mults["dev"]

# urgency bonuses
city_urgency , sett_urgency , road_urgency = self.build_urgency(

game , color)

# Reward direct VP gains but adjust city bias early
if any(tok in name for tok in ("build_city",)):

base_city = max(50.0, 100.0 * city_mul - 15.0)
# penalize city if early and still below settlement target
try:

player_state = self._get_player_state(game , color)
settles = getattr(player_state , "settlements", None) or

getattr(player_state
, "settle_locations"
, None) or []

curr_settlements = len(settles) if isinstance(settles , (
list , tuple)) else 0

if phase == "EARLY" and curr_settlements <
self.TARGET_SETTLEMENTS_EARLY:

base_city *= 0.6
except Exception:

pass
s += base_city + city_urgency

if any(tok in name for tok in ("build_settlement", "build_sett"))
:

s += 90.0 * settlement_mul
# add settlement potential (resource diversity / production)
s += self.settlement_potential(action , game , color) * (1.0 if

phase != "EARLY" else
settlement_mul)

s += sett_urgency

if "buy_dev" in name or "buycard" in name or "buy_dev_card" in
name:

# compute EV estimate
dev_ev = self.dev_card_ev_estimate(game , color)
s += dev_ev * self.DEV_EV_SCALE
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# slightly reduced base bias to favor cities when urgent
if self.evaluate_buy_dev_card(action , game , color):

s += 8.0 * dev_mul
try:

if dev_ev >= self.DEV_EV_THRESHOLD:
s += 2.0

except Exception:
pass

if "build_road" in name or ("road" in name and "build" in name):
s += 20.0 * road_mul
s += self.road_connection_potential(action , game , color) * (1

.0 if phase != "EARLY"
else road_mul)

s += road_urgency

if "knight" in name or "play_knight" in name:
# raise baseline and include army/steal bonuses
s += 70.0
s += self.evaluate_play_knight(action , game , color)

if "robber" in name or "move_robber" in name:
s += 50.0
s += self.evaluate_robber_action(action , game , color)

if "trade" in name or "offer_trade" in name:
s += 10.0

# Encourage hitting settlement target early
try:

player_state = self._get_player_state(game , color)
curr_settlements = 0
settles = getattr(player_state , "settlements", None) or

getattr(player_state , "
settle_locations", None)
or []

if isinstance(settles , (list , tuple)):
curr_settlements = len(settles)

if phase == "EARLY" and curr_settlements < self.
TARGET_SETTLEMENTS_EARLY
and any(tok in name for
tok in ("

build_settlement", "
build_sett")):

s += 30.0
except Exception:

pass

# small settlement/road potentials for other actions
if not any(tok in name for tok in ("build_settlement", "

build_sett")):
s += self.settlement_potential(action , game , color) * 0.1

if not any(tok in name for tok in ("build_road",)):
s += self.road_connection_potential(action , game , color) * 0.

1

# Minor random tie -break
s += random.random () * 1e-3
return s

# ------------------- Prefilter actions (phase -aware guarantees)
-------------------

def prefilter_actions(self , actions: List[Any], game: Game , color:
Color) -> List[Any]:
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""" Return a bounded list of candidate actions to evaluate
thoroughly.

Guarantees inclusion of must -include tokens and early -game
settlement/road actions.

"""
if not actions:

return []

all_actions = list(actions)
phase = self.get_game_phase(game , color)

musts = []
others = []
found_settlement = None
found_road = None
for a in all_actions:

name = self._safe_action_name(a)
if any(tok in name for tok in self.MUST_INCLUDE_TOKENS):

if a not in musts:
musts.append(a)

else:
others.append(a)

if found_settlement is None and any(tok in name for tok in ("
build_settlement", "
build_sett", "settle")):

found_settlement = a
if found_road is None and any(tok in name for tok in ("

build_road", "road")):
found_road = a

# Phase -based forced includes: ensure at least one settlement and
one road action if present

in EARLY
if phase == "EARLY":

if found_settlement is not None and found_settlement not in
musts:

musts.append(found_settlement)
self._diag_forced_settlement += 1

if found_road is not None and found_road not in musts:
musts.append(found_road)
self._diag_forced_road += 1

# Include recommended dev -card buys if conservative and EV
threshold met

for a in all_actions:
name = self._safe_action_name(a)
if any(tok in name for tok in ("buy_dev", "buycard", "

buy_dev_card")):
try:

if self.evaluate_buy_dev_card(a, game , color):
dev_ev = self.dev_card_ev_estimate(game , color)
if dev_ev >= self.DEV_EV_THRESHOLD and a not in

musts:
# include only if dev EV merits it
musts.append(a)

except Exception:
pass

# Ensure robber/knight actions are present
for a in all_actions:

name = self._safe_action_name(a)
if any(tok in name for tok in ("robber", "move_robber", "

knight", "play_knight"))
:
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if a not in musts:
musts.append(a)

# Score and pick top -K from others
scored = [(self.cheap_pre_score(a, game , color), a) for a in

others]
scored.sort(key=lambda x: x[0], reverse=True)
top_k = [a for (_s, a) in scored[: self.PREFILTER_TOP_K]]

# Combine unique musts + top_k preserving order
candidates = []
for a in musts + top_k:

if a not in candidates:
candidates.append(a)

# Fill up with random remaining samples until MAX_SIMULATIONS
remaining = [a for a in all_actions if a not in candidates]
random.shuffle(remaining)
while len(candidates) < min(len(all_actions), self.

MAX_SIMULATIONS) and
remaining:

candidates.append(remaining.pop())

if not candidates and all_actions:
candidates = random.sample(all_actions , min(len(all_actions),

self.MAX_SIMULATIONS))

self.debug_print(f"FooPlayer: Prefilter selected {len(candidates)
} candidates (musts={len(
musts)}, phase={phase})")

if self.DEBUG and phase == "EARLY":
self.debug_print(f" Forced includes: settlement={’yes’ if

found_settlement else ’
no’}, road={’yes’ if
found_road else ’no’}")

return candidates

# ------------------- Playable actions extraction -------------------
def get_playable_actions_from_game(self , game: Game) -> List[Any]:

"""Try adapters.list_prunned_actions first , then common game
attributes."""

try:
acts = list_prunned_actions(game)
if acts:

return acts
except Exception as e:

self.debug_print("FooPlayer: list_prunned_actions unavailable
or failed. Error:", e)

try:
if hasattr(game , "get_playable_actions"):

return list(game.get_playable_actions ())
except Exception:

pass
try:

if hasattr(game , "playable_actions"):
return list(getattr(game , "playable_actions"))

except Exception:
pass

try:
state = getattr(game , "state", None)
if state is not None and hasattr(state , "playable_actions"):

return list(getattr(state , "playable_actions"))
except Exception:

pass
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return []

# ------------------- Robber / Knight evaluation -------------------
def evaluate_robber_action(self , action: Any , game: Game , color:

Color) -> float:
""" Estimate the value of moving the robber (best -effort).

If the action does not specify a target hex , evaluate all hexes
and prefer the

one that maximizes opponent production loss.
"""
score = 0.0
try:

# Base preference to include robber moves (use HIGH base for
aggressive play)

score += self.ROBBER_BASE_SCORE_HIGH
name = self._safe_action_name(action)
# Try to parse a target hex id
digits = [int(tok) for tok in name.split() if tok.isdigit ()]
target = digits[0] if digits else None

# Die probabilities
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5

/ 36, 8: 5 / 36, 9: 4 /
36, 10: 3 / 36, 11: 2 /
36, 12: 1 / 36}

state = getattr(game , "state", game)
board = getattr(state , "board", None) or getattr(game , "board

", None)
hexes = getattr(board , "hexes", None) or getattr(board , "

tiles", None) or []

# Map hex identifier to object (best -effort: use index or id)
hex_map = {}
for idx , h in enumerate(hexes):

try:
hid = getattr(h, "id", None) or getattr(h, "index",

None) or idx
except Exception:

hid = idx
try:

key = int(hid) if isinstance(hid , int) or (isinstance
(hid , str) and
hid.isdigit ())
else idx

except Exception:
key = idx

hex_map[key] = h

# Determine best target if none specified
targets_to_consider = [target] if target in hex_map else list

(hex_map.keys())

# Compute production loss on opponents per candidate target
opponents = []
players = getattr(state , "players", None) or getattr(game , "

players", None) or []
my_color = color
if isinstance(players , dict):

for k, p in players.items():
if k == my_color or getattr(p, "color", None) ==

my_color:
continue
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opponents.append(p)
else:

for p in players:
if getattr(p, "color", None) == my_color:

continue
opponents.append(p)

best_loss = 0.0
best_steal = 0.0
best_hex = None
resource_value = {"ore": 3.0, "metal": 3.0, "wheat": 3.0, "

grain": 3.0, "brick": 2.
0, "lumber": 2.0, "wood"
: 2.0, "sheep": 2.0}

for t in targets_to_consider:
try:

if t not in hex_map:
continue

h = hex_map[t]
num = getattr(h, "roll", None) or getattr(h, "number"

, None) or
getattr(h, "
value", None)

try:
num = int(num)

except Exception:
num = None

prob = die_prob.get(num , 0)
total_prod_loss = 0.0
steal_expected = 0.0
for opp in opponents:

opp_settles = getattr(opp ,
"settlements", None) or getattr(opp ,
"settle_locations", None) or []
opp_cities = getattr(opp , "cities",
None) or getattr(opp , "city_locations",
None) or []
mult = 0.0
try:

for s in opp_settles:
neighbors = getattr(h,
"vertices", None) or getattr(h,
"adjacent_vertices", None) or []
if s in neighbors:

mult += 1.0
for c in opp_cities:

neighbors = getattr(h,
"vertices", None) or getattr(h,
"adjacent_vertices", None) or []
if c in neighbors:

mult += 2.0
except Exception:

continue
total_prod_loss += prob * mult
# Estimate steal expected
try:

opp_resources = getattr(opp ,
"resources", None) or {}
if isinstance(opp_resources , dict)
and opp_resources:

total_res =
sum(opp_resources.values ())
if total_res > 0:
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avg_val =
sum(resource_value.get(r,
1.5) * (opp_resources.get(r,
0) / total_res) for r in
opp_resources)
steal_expected += avg_val *
0.5

except Exception:
pass

# choose best
if total_prod_loss > best_loss or (abs(

total_prod_loss
- best_loss) <
1e-9 and
steal_expected >
best_steal):

best_loss = total_prod_loss
best_steal = steal_expected
best_hex = t

except Exception:
continue

# Aggressive scaling per latest tuning
score += best_loss * self.PROD_LOSS_IMPORTANCE
score += best_steal * 30.0
# Extra bonus if multiple opponent cities affected
try:

if best_hex in hex_map:
h = hex_map[best_hex]
city_count = 0
for opp in opponents:

for c in getattr(opp , "cities", []) or
getattr(opp , "city_locations", []) or []:

neighbors = getattr(h, "vertices",
None) or getattr(h,
"adjacent_vertices", None) or []
if c in neighbors:

city_count += 1
if city_count > 0:

score += 20.0 * city_count
except Exception:

pass

# If steal estimated is very significant , add
decisive bonus
if best_steal > 2.0:

score += 30.0

# Debug
if self.DEBUG and best_hex is not None:

self.debug_print(f"FooPlayer: evaluate_robber_action
best_hex={best_hex}
prod_loss={best_loss
:.3f} steal_ev={
best_steal :.2f}")

except Exception:
pass

return float(score)

def evaluate_play_knight(self , action: Any , game: Game , color: Color)
-> float:

""" Estimate the value of playing a knight (best -effort)."""
score = float(self.KNIGHT_BASE)
try:
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name = self._safe_action_name(action)
if "steal" in name or "rob" in name:

score += 10.0

# army progress
player_state = self._get_player_state(game , color)
army = getattr(player_state , "army", None) or getattr(

player_state , "army_size
", None) or getattr(
player_state , "
knights_played", None)
or 0

try:
army = int(army)

except Exception:
army = 0

# detect largest army threshold
largest_threshold = 3
try:

state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game

, "players", None)
or []

max_other = 0
if isinstance(players , dict):

for k, p in players.items():
if getattr(p, "color", None) == color or k ==

color:
continue

other_army = getattr(p, "army", None) or getattr(
p, "
army_size",
None) or
getattr(p, "
knights_played
", None) or
0

try:
other_army = int(other_army)

except Exception:
other_army = 0

max_other = max(max_other , other_army)
else:

for p in players:
if getattr(p, "color", None) == color:

continue
other_army = getattr(p, "army", None) or getattr(

p, "
army_size",
None) or
getattr(p, "
knights_played
", None) or
0

try:
other_army = int(other_army)

except Exception:
other_army = 0

max_other = max(max_other , other_army)
largest_threshold = max(3, max_other + 1)

except Exception:
largest_threshold = 3

if army + 1 >= largest_threshold:
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score += self.KNIGHT_LARGEST_ARMY_BONUS
else:

score += 20.0

# Debug
if self.DEBUG:

self.debug_print(f"FooPlayer: evaluate_play_knight army={
army} target={
largest_threshold}
score={score}")

except Exception:
pass

return float(score)

# ------------------- Helper: determine active player color
-------------------

def _get_active_player_color(self , game: Game) -> Optional[Color]:
"""Best -effort to detect which Color is to move in the given game

state."""
try:

state = getattr(game , "state", game)
cp = getattr(state , "current_player", None) or getattr(state ,

"active_player", None)
or getattr(state , "
turn_color", None)

if cp is None:
cp = getattr(game , "current_player", None)

# cp might be index , player object , or Color
if isinstance(cp, Color):

return cp
if isinstance(cp, int):

players = getattr(state , "players", None) or getattr(game
, "players", None)
or []

try:
if isinstance(players , (list , tuple)) and 0 <= cp <

len(players):
return getattr(players[cp], "color", None)

except Exception:
pass

# If cp is a player object
if hasattr(cp, "color"):

return getattr(cp, "color")

# Fallback: pick first player in players whose color != our
color

players = getattr(state , "players", None) or getattr(game , "
players", None) or []

my_color = self._get_player_color ()
if isinstance(players , dict):

for k, p in players.items():
try:

c = getattr(p, "color", None) or k
if c != my_color:

return c
except Exception:

continue
else:

for p in players:
try:

c = getattr(p, "color", None)
if c != my_color:

return c
except Exception:

continue
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except Exception:
pass

return None

# ------------------- Rollout logic with opponent -response
-------------------

def rollout_value(self , game: Game , color: Color , depth: int , initial
: bool = True) -> float:

""" Short greedy rollout with phase bias and light opponent -
response.

initial: True for the first step of rollout so we can bias toward
expansion early.

"""
try:

if depth <= 0:
return self._evaluate_game_state(game , color)

actions = self.get_playable_actions_from_game(game)
if not actions:

return self._evaluate_game_state(game , color)

phase = self.get_game_phase(game , color)

def score_for_rollout(a, g, c, is_initial):
base = self.cheap_pre_score(a, g, c)
if is_initial and phase == "EARLY":

name = self._safe_action_name(a)
if any(tok in name for tok in ("build_settlement", "

build_sett", "
settle")):

base *= self.ROLLOUT_SETTLEMENT_BONUS
if any(tok in name for tok in ("build_road", "road"))

:
base *= self.ROLLOUT_ROAD_BONUS

return base

sorted_actions = sorted(actions , key=lambda a:
score_for_rollout(a,
game , color , initial),
reverse=True)

# Try top actions to simulate
for a in sorted_actions[:6]:

branches = []
try:

branches = execute_deterministic(game , a)
except Exception:

try:
branches = execute_spectrum(game , a)

except Exception:
branches = []

if not branches:
continue

# pick the most probable branch
next_game = max(branches , key=lambda bp: float(bp[1]))[0]

# Light opponent -response: if opponent to move next ,
simulate their
greedy action once

opp_color = self._get_active_player_color(next_game)
my_color = color
if opp_color is not None and opp_color != my_color and

depth >= 2:
try:
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opp_actions = self.get_playable_actions_from_game
(next_game)

if opp_actions:
# filter out robber/knight for
opponent response unless all are
robber/knight
non_disrupt = [oa for oa in
opp_actions if not any(tok in
self._safe_action_name(oa) for tok
in ("knight", "robber",
"move_robber"))]
candidate_ops = non_disrupt if
non_disrupt else opp_actions
# pick opponent best action by
cheap_pre_score from their
perspective
best_opp = max(candidate_ops ,
key=lambda oa:
self.cheap_pre_score(oa, next_game ,
opp_color))
# simulate opponent action
deterministically if possible
opp_branches = []
try:

opp_branches =
execute_deterministic(next_game ,
best_opp)

except Exception:
try:

opp_branches =
execute_spectrum(next_game ,
best_opp)

except Exception:
opp_branches = []

if opp_branches:
next_game = max(opp_branches ,
key=lambda bp: float(bp[1]))[0]

except Exception:
pass

return self.rollout_value(next_game , color ,
depth - 1, initial=False)

# fallback: try any action that simulates
for a in sorted_actions[:10]:

branches = []
try:

branches = execute_deterministic(game , a)
except Exception:

try:
branches = execute_spectrum(game , a)

except Exception:
branches = []

if branches:
next_game = max(branches , key=lambda bp:
float(bp[1]))[0]
return self.rollout_value(next_game , color ,
depth - 1, initial=False)

return self._evaluate_game_state(game , color)
except Exception as e:

self.debug_print("FooPlayer: rollout_value exception , falling
back to

evaluate_game_state.
Error:", e)
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return self._evaluate_game_state(game , color)

# ------------------- Evaluate action expectation (enhanced)
-------------------

def _evaluate_action_expectation(self , game: Game , action: Any ,
per_action_branch_limit: int = 8
) -> float:

""" Compute expected value of taking ‘action ‘ in ‘game ‘ for this
player.

Uses execute_spectrum when available then adds a rollout estimate
for depth -1.

"""
color = self._get_player_color ()

# Quick boosts for robber/knight/dev before heavy sim
name = self._safe_action_name(action)
preboost = 0.0
try:

if any(tok in name for tok in ("move_robber", "robber")):
preboost += self.evaluate_robber_action(action , game ,

color)
if any(tok in name for tok in ("knight", "play_knight")):

preboost += self.evaluate_play_knight(action , game , color
)

if any(tok in name for tok in ("buy_dev", "buycard", "
buy_dev_card")):

try:
dev_ev = self.dev_card_ev_estimate(game , color)
preboost += dev_ev * self.DEV_EV_SCALE

except Exception:
# fallback small preboost
preboost += 20.0

except Exception:
preboost += 0.0

branches = None
try:

branches = execute_spectrum(game , action)
if not branches:

raise RuntimeError("execute_spectrum returned no branches
")

except Exception as e_s:
self.debug_print("FooPlayer: execute_spectrum failed or

unavailable for action;
trying deterministic.
Error:", e_s)

try:
branches = execute_deterministic(game , action)
if not branches:

raise RuntimeError("execute_deterministic returned no
outcomes")

except Exception as e_d:
self.debug_print("FooPlayer: Both execute_spectrum and

execute_deterministic
failed for action.

Errors:", e_s , e_d)
return float("-inf")

# Limit branches to keep runtime bounded
if len(branches) > per_action_branch_limit:

branches = sorted(branches , key=lambda bp: float(bp[1]),
reverse=True)[:
per_action_branch_limit]
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expected = 0.0
total_prob = 0.0
rollout_depth = max(0, self.ROLLOUT_DEPTH - 1)
for (out_game , prob) in branches:

try:
# For buy_dev actions , if the branch encodes a known draw

outcome , we could
refine.

# In absence of explicit draw info , rely on
dev_ev_estimate as a
conservative proxy.

immediate = self._evaluate_game_state(out_game , color)
rollout_est = self.rollout_value(out_game , color ,

rollout_depth ,
initial=True)

branch_val = 0.6 * immediate + 0.4 * rollout_est
except Exception as e:

self.debug_print("FooPlayer: evaluation failed for branch
, using heuristic.
Error:", e)

branch_val = self._heuristic_value(out_game , color)
expected += float(prob) * float(branch_val)
total_prob += float(prob)

if total_prob > 0:
expected = expected / total_prob

expected += preboost
return float(expected)

# ------------------- Main decision function -------------------
def decide(self , game: Game , playable_actions: Iterable) -> Optional[

object]:
""" Choose an action from playable_actions using phase -aware

sampling + rollouts."""
try:

playable_actions = list(playable_actions)
if not playable_actions:

self.debug_print("FooPlayer: No playable actions
available , returning
None")

return None

color = self._get_player_color ()
phase = self.get_game_phase(game , color)

# Prefilter candidate actions
candidates = self.prefilter_actions(playable_actions , game ,

color)

# Cap to MAX_SIMULATIONS
if len(candidates) > self.MAX_SIMULATIONS:

candidates = candidates[: self.MAX_SIMULATIONS]

if not candidates:
candidates = random.sample(playable_actions ,
min(len(playable_actions), self.MAX_SIMULATIONS))

# Distribute simulation budget adaptively
per_action_budget = max(1, self.SIMULATION_BUDGET //
max(1, len(candidates)))

best_score = float("-inf")
best_actions: List[Any] = []
scores_debug: List[Tuple[float , Any]] = []
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for a in candidates:
try:

score =
self._evaluate_action_expectation(game , a,
per_action_branch_limit=per_action_budget)

except Exception as e:
self.debug_print("FooPlayer: Exception
during action evaluation , skipping action.
Error:", e)
score = float("-inf")

scores_debug.append ((score , a))

if score > best_score + self.TOLERANCE:
best_score = score
best_actions = [a]

elif abs(score - best_score) <= self.TOLERANCE:
best_actions.append(a)

# If no action had a finite score , fallback to first playable
action

if not best_actions:
self.debug_print("FooPlayer: All evaluations failed ,

defaulting to first
playable action")

return playable_actions[0]

# Epsilon -greedy randomness to reduce predictability
chosen: Any
scores_debug.sort(key=lambda x: x[0], reverse=True)
if random.random () < self.EPSILON_GREEDY and len(scores_debug

) >= 2:
# pick from top -3 weighted by score (or fewer if not

available)
top_k = scores_debug[: min(3, len(scores_debug))]
weights = [max(0.0, s - top_k[-1][0] + 1e-6) for (s, a)

in top_k]
total_w = sum(weights)
if total_w > 0:

r = random.random () * total_w
cum = 0.0
for w, (_s, a) in zip(weights , top_k):

cum += w
if r <= cum:

chosen = a
break

else:
chosen = top_k[0][1]

else:
chosen = scores_debug[0][1]

if self.DEBUG:
self.debug_print(f"FooPlayer: EPSILON pick
triggered , chosen alternate action {chosen}")

return chosen

# If tie , break ties preferring
settlement/road/resource diversity improvements
if len(best_actions) > 1:

tie_metrics = []
for a in best_actions:

try:
metric = 0.0
metric += self.settlement_potential(a,
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game , color)
metric +=
self.road_connection_potential(a, game ,
color)
# small production proxy via heuristic
metric += 0.01 *
self._heuristic_value(game , color)
tie_metrics.append ((metric , a))

except Exception:
tie_metrics.append ((0.0, a))

tie_metrics.sort(key=lambda x: x[0],
reverse=True)
# pick the top metric actions (could still be
multiple)
top_metric = tie_metrics[0][0]
filtered = [a for (m, a) in tie_metrics if abs(m
- top_metric) <= self.TOLERANCE]
if filtered:

chosen = random.choice(filtered)
else:

chosen = random.choice(best_actions)
else:

chosen = best_actions[0]

# Debug logging: phase and top candidates
if self.DEBUG:

self.debug_print(f"FooPlayer: Phase={phase},
SettlementsTarget=
{self.TARGET_SETTLEMENTS_EARLY}")
topn = scores_debug[:3]
self.debug_print("FooPlayer: Top candidates:")
for sc, act in topn:

self.debug_print(f" score={sc:.2f} action=
{act}")

self.debug_print(f"FooPlayer: Chosen action {chosen}
with expected score {best_score}")
return chosen

except Exception as e:
# Protect against unexpected errors
print("FooPlayer: Unexpected error in decide (),
defaulting to first playable action. Error:", e)
try:

return list(playable_actions)[0]
except Exception:

return None

A.2 HEXMACHINA (NO DISCOVERY) SHALLOW STRATEGY

import random
import statistics
from .adapters import (

Game , Player , Color
)

# Hyperparameters for this player. Tweak across evolutions.
K_ROLLOUTS = 0 # rollouts disabled in this adapter -limited

implementation
MAX_ROLLOUT_DEPTH = 10 # not used currently; kept for future use
MAX_ACTIONS_TO_EVALUATE = 12
DEBUG = True
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class FooPlayer(Player):
"""A stronger FooPlayer that performs a 1-ply lookahead and evaluates
the immediate successor state using a robust , defensive static

evaluator.

Notes on integration with adapters.py:
- We only use the thin adapter surface exported above (Game , Player ,

Color).
- We call game.copy() to create hypothetical states and game.execute(

action)
to apply actions to those copies. We avoid calling any non -exported
adapter helpers so this file remains compatible with the framework.

Limitations and rationale:
- The adapters surface available in this environment does not

explicitly
expose helper functions for enumerating playable actions from an
arbitrary game object (those are provided to decide () by the

harness).
Because of this we cannot reliably perform multi -step random

rollouts
(we cannot ask the engine for "playable_actions" inside the player

for
subsequent turns). Attempting to call hypothetical internal APIs

would
risk using non -portable / unsupported functions.

- To still fix the key flaw (always pick the first action) we
implement a

1-ply lookahead over a sampled set of candidate actions and
evaluate the

successor state with a robust static value function that inspects
the

game.state. This is a significant upgrade over the previous
behavior

and provides a solid foundation for future rollout -based evolution.
"""

def __init__(self , name=None):
super().__init__(Color.BLUE , name)

def decide(self , game , playable_actions):
""" Choose an action from playable_actions.

Strategy implemented:
- If there are many playable actions , randomly sample up to

MAX_ACTIONS_TO_EVALUATE actions to limit computation.
- For each candidate action , copy the game , execute the action on

the
copy , and evaluate the resulting state with _evaluate_state ().

- Choose the action with the highest evaluation. Break ties
randomly.

The evaluation is defensive: it attempts multiple common access
patterns to extract victory points and common counts (settlements

,
cities , roads). If extraction fails , the evaluator falls back to

0.

Args:
game (Game): complete game state. read -only. Use game.copy()

to
create hypothetical states.

playable_actions (Iterable[Action ]): legal options for this
turn.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Returns:
action: chosen element of playable_actions , or None if no

options.
"""
# Defensive: if no actions available , return None
if not playable_actions:

if DEBUG:
print(’FooPlayer.decide: no playable_actions -> returning

None’)
return None

# Convert playable_actions to a list so we can sample and index
try:

actions = list(playable_actions)
except Exception:

# If iterable cannot be converted , fall back to returning
first

if DEBUG:
print(’FooPlayer.decide: playable_actions not list -like;

defaulting to first’
)

try:
return playable_actions[0]

except Exception:
return None

# Sample candidate actions if there are too many
if len(actions) > MAX_ACTIONS_TO_EVALUATE:

candidates = random.sample(actions , MAX_ACTIONS_TO_EVALUATE)
if DEBUG:

print(f’FooPlayer.decide: sampled {len(candidates)} of {
len(actions)}
actions to evaluate ’
)

else:
candidates = actions
if DEBUG:

print(f’FooPlayer.decide: evaluating all {len(candidates)
} actions ’)

# Evaluate each candidate action by applying it to a copy of the
game

scores = [] # list of (action , score)
for i, action in enumerate(candidates):

try:
# Copy the game to avoid mutating the original
new_game = game.copy()

# Apply the candidate action on the copied game.
# The standard Game API exposes execute(action) to apply

an action.
# We try both .execute and .apply for defensive

compatibility.
executed = False
try:

new_game.execute(action)
executed = True

except Exception:
# Some versions may expose a differently named method

.
try:

new_game.apply(action)
executed = True

except Exception:
executed = False
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if not executed:
# If we couldn ’t apply the action on the copy , mark

it as
# very poor and continue.
if DEBUG:

print(f’FooPlayer.decide: failed to execute
candidate
action {i};
marking
score -inf’)

scores.append ((action , float(’-inf’)))
continue

# Evaluate the successor state
score = self._evaluate_state(new_game)
scores.append ((action , score))
if DEBUG:

print(f’FooPlayer.decide: action #{i} -> score {score
}’)

except Exception as e:
# Catch -all: do not let the player crash the harness.

Penalize
# the action and continue evaluating others.
if DEBUG:

print(f’FooPlayer.decide: exception while evaluating
action #{i}: {e}
! Marking -inf’)

scores.append ((action , float(’-inf’)))

# Choose the best action. If all are -inf or evaluation failed ,
fall back

# to the original first -action policy.
if not scores:

if DEBUG:
print(’FooPlayer.decide: no scores produced -> defaulting

to first action ’)
return actions[0]

# Compute the maximum score
max_score = max(score for (_, score) in scores)
# Filter all actions that have the max score (handle ties)
best_candidates = [a for (a, s) in scores if s == max_score]

if not best_candidates or max_score == float(’-inf’):
# All evaluations failed; fallback
if DEBUG:

print(’FooPlayer.decide: all evaluations failed ->
defaulting to first
action ’)

return actions[0]

chosen = random.choice(best_candidates)
if DEBUG:

try:
# Try to pretty -print a small summary for debugging
print(f’FooPlayer.decide: selected action -> {repr(chosen

)} with score {
max_score}’)

except Exception:
print(’FooPlayer.decide: selected an action (repr failed)

’)

return chosen
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def _evaluate_state(self , game):
""" Static evaluation of a game state from this player ’s

perspective.

The evaluator attempts multiple common access patterns to extract
victory points and simple progress indicators (settlements ,

cities ,
roads). The returned score is primarily the victory points (

higher is
better). Secondary counts are used as small tiebreakers.

This function is defensive to avoid attribute errors across
different

engine versions.

Returns:
float: heuristic score for the state (larger is better)

"""
color = self.color
vp = None
settlements = None
cities = None
roads = None

# Try a number of plausible attribute access patterns. Use try/
except

# blocks liberally because different engine versions expose
different

# structures.
try:

players = game.state.players
except Exception:

players = None

# Attempt to access player state by Color key
player_state = None
if players is not None:

try:
player_state = players[color]

except Exception:
# Maybe players is a list keyed by integer colors
try:

idx = int(color)
player_state = players[idx]

except Exception:
player_state = None

# Extract victory points with common attribute names
if player_state is not None:

for attr in (’victory_points ’, ’victoryPoints ’, ’vp’, ’points
’):

try:
val = getattr(player_state , attr)
# If it’s a callable (method), call it
if callable(val):

val = val()
vp = int(val)
break

except Exception:
vp = None

# Try dictionary -style if attributes failed
if vp is None:

try:
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if isinstance(player_state , dict):
for key in (’victory_points ’, ’vp’, ’points ’):

if key in player_state:
vp = int(player_state[key])
break

except Exception:
vp = None

# Extract simple asset counts to break ties
for attr in (’settlements ’, ’settle_count ’, ’settlement_count

’, ’settles ’):
try:

val = getattr(player_state , attr)
if callable(val):

val = val()
settlements = int(val)
break

except Exception:
settlements = None

for attr in (’cities ’, ’city_count ’):
try:

val = getattr(player_state , attr)
if callable(val):

val = val()
cities = int(val)
break

except Exception:
cities = None

for attr in (’roads’, ’road_count ’):
try:

val = getattr(player_state , attr)
if callable(val):

val = val()
roads = int(val)
break

except Exception:
roads = None

# Fallbacks if extraction failed: try to compute from visible
board pieces

# (e.g., lengths of lists). This is optional and best -effort.
if vp is None and players is not None:

try:
# If player_state contains lists of pieces , inspect

lengths
if isinstance(player_state , dict):

# Look for settlement/city lists
s = None
for key in (’settlements ’, ’settle_list ’):

if key in player_state and isinstance(
player_state
[key], (list
, tuple)):

s = len(player_state[key])
break

if s is not None:
settlements = settlements or s

# We intentionally do not try to derive vp from the board
in a

# brittle way; leave vp as None and fall back to 0.
except Exception:

pass
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# Final fallback: if we couldn ’t determine vp, set to 0
if vp is None:

vp = 0

# Build a composite score. Main contributor is victory points.
Add

# small weighted bonuses for settlements/cities/roads if
available.

score = float(vp)
if settlements is not None:

score += 0.01 * float(settlements)
if cities is not None:

score += 0.02 * float(cities)
if roads is not None:

score += 0.005 * float(roads)

return score
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