
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HEXMACHINA: SELF-EVOLVING MULTI-AGENT
SYSTEM FOR CONTINUAL LEARNING OF CATAN

Anonymous authors
Paper under double-blind review

ABSTRACT

We aim to improve on the long-horizon gaps in large language model (LLM)
agents by enabling them to sustain coherent strategies in adversarial, stochastic en-
vironments. Settlers of Catan provides a challenging benchmark: strategic success
depends on balancing short- and long-term goals in the face of dice randomness,
trading, expansion, and blocking. This is difficult because prompt-centric LLM
agents (e.g., ReAct, Reflexion) must re-interpret large, evolving game states every
turn, quickly saturating context windows and failing to maintain consistent strat-
egy across episodes. We propose HexMachina, a continual learning multi-agent
system that separates environment discovery (inducing an adapter layer without
documentation) from strategy improvement (evolving a compiled player). This
architecture preserves executable artifacts, letting the LLM focus on high-level
strategy design rather than per-turn decision-making. In controlled Catanatron ex-
periments, HexMachina learns from scratch, evolving players that outperform the
strongest human-crafted baseline (AlphaBeta). Our best runs achieve a 54% win
rate against AlphaBeta, outperforming prompt-driven LLM agents and shallow
no-discovery baselines. Ablations further confirm that greater focus on pure strat-
egy improves performance. Theoretically, this shows that artifact-centric contin-
ual learning can transform LLMs from brittle per-turn deciders into stable strategy
designers, providing a reusable path toward long-horizon autonomy.

1 INTRODUCTION

Prompt-centric LLM agents and multi-agent systems are powerful, but they struggle on long-horizon
tasks: as episodes unfold, prompts saturate with state summaries and ad-hoc "memory," forcing the
model to re-interpret the environment at every step (Aghzal et al. (2025); Nayak et al. (2025); Chen
et al. (2024)). To move toward autonomous task following and long-horizon competence, an agent
should not have to relearn the interface to their environment at each inference step (Bubeck et al.
(2023); Park et al. (2023)). This has motivated experimentation with continual learning agent de-
signs that embed feedback loops and let LLMs revise their own prompts and even generate tools/-
code to improve over time (Zelikman et al. (2022)). In particular, letting an agent gather and preserve
artifacts (e.g., reusable functions and typed helpers) offloads heavy context parsing to deterministic
code so the model can focus on designing strategy, not re-describing the world.

Despite progress in continual learning, there are few benchmarks that test whether agents can refine
a coherent strategy over long horizons. Most existing domains emphasize short tasks or broad
skill discovery, offering limited insight into how well an agent can sustain and improve a single
competitive policy. Yet this ability is crucial: real-world applications often require agents not just
to explore or act locally, but to commit to strategies that hold over many steps in the presence of
uncertainty and competition. A benchmark that demands persistent strategy refinement against a
strong adversary is therefore essential for evaluating whether lifelong agents truly overcome the
long-horizon gap.

Settlers of Catan is an ideal stress test: each turn presents a large, evolving state and action space;
success depends on balancing short- and long-term rewards under stochastic resource production,
trading, expansion, and adversarial play. Using the open-source Catanatron framework (Collazo
(2025)) gives us a controlled interface to observe how a lifelong architecture impacts performance
in a domain that reliably exposes limits in long-horizon reasoning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of Catan gameplay and LLM-agent interaction. Left: Settlers of Catan –
Players take turns to gather, trade, and spend resources to build on a modular board in a stochastic,
partially observable strategy game. The objective is to reach 10 victory points by constructing
settlements, roads, and cities Catan Fusion; Catan Collector. Right: Our LLM-based framework
interacts with the Catanatron API, leveraging game state information and strategic reasoning to
decide actions. Through repeated play and self-modification, agents evolve more coherent long-
term strategies (Smashicons; murmur (a;b); Hilmy Abiyyu A.; yaicon).

We first demonstrate that traditional per-turn LLM agents (e.g., ReAct/Reflexion-style) perform
poorly against a strong human-crafted bot. Asking the model to parse the full game state and in-
dependently choose every action while attempting to "hold" a global plan proves unreliable and
inconsistent (Table 2). To address this, we separate the act of thinking from the act of playing,
drawing inspiration from the AutoGPT framework (Yang et al. (2023)) to define distinct agent roles:
Orchestrator, Analyst, Strategist, Researcher, and Coder. In this configuration, the system hypothe-
sizes a strategy, translates it into a player implementation, reviews the API to ensure correctness, and
then evaluates and improves through repeated play. While this Voyager-style (Wang et al. (2023a))
continual learner shows progress, it tends to converge on shallow heuristics that fail to capture the
depth of strategic play required in Catan (Appendix A.2). Motivated by this limitation, we introduce
a clean separation between the discovery of executable API artifacts and the refinement of strategies
built on top of them. With this split, our system, HexMachina, evolves players that consistently ex-
ecute intelligent, long-horizon strategies,outperforming traditional LLM agents, common continual
learning architectures, and even the AlphaBeta baseline.

Main Contributions. We highlight the following key contributions from our work:

• HexMachina: Self-Evolving LLM Agent Framework. An autonomous system that
learns an unknown environment without formal documentation, preserves key code/knowl-
edge as artifacts, and improves its strategy via a closed-loop process that generates and
executes code with no human intervention.

• A strong benchmark setting for continual LLM-agent learning: Settlers of Catan. An
environment that both requires long-horizon strategy and distracts naive agents with a large,
changing state/action space and delayed rewards.

• Lifelong agents beat traditional LLM agents on Catan. HexMachina outperforms
prompt-driven baselines and rivals the best human-engineered Catanatron bot (AlphaBeta)
by letting the LLM design strategy while compiled code executes it consistently.

• Empirical importance of separating discovery and improvement. We show that decou-
pling environment-artifact discovery from strategy refinement materially improves strategy
quality and game performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Focus comparison. ✓=yes, ∼=partial, ×=no. Policy evolution (broad: direct or via re-
ward/program/skill search); Artifacts (persisted executable code/skills); Induction (doc-free adapter
induction; Voyager ∼ with provided control primitives); Adversarial strategy-based (head-to-head
vs strong fixed opponent; ✓only for HexMachina).

System Environment Induction Artifacts Adversary Evolution

Voyager Minecraft ∼ ✓ × ✓
AlphaEvolve Code × ✓ × ✓
Eureka Isaac Gym × ✓ × ✓
HexMachina Catanatron ✓ ✓ ✓ ✓

2 RELATED WORKS

Game-Playing AI and Strategy Games Games have long served as benchmarks for AI research
(Gallotta et al. (2024); Costarelli et al. (2024); Nasir et al. (2024)). While significant progress has
been made in perfect-information games like Chess and Go (Schultz et al. (2024); Silver et al.
(2016)), strategic board games such as Settlers of Catan, Diplomacy ((FAIR)) or Civilization (Qi
et al. (2024)) introduce elements of expanding action spaces, partial observability, and multi-agent
interaction, posing unique challenges to an AI system (Szita et al. (2009)). Previous works ap-
proached Catan using a specialized neural network architecture to handle its mixed data types, en-
abling an RL agent to outperform traditional rule-based bots (Gendre & Kaneko (2020)). In contrast,
our approach leverages LLMs’ natural language understanding to navigate Catan’s complexities, fo-
cusing on autonomous game-play discovery and strategy refinement without relying on extensive
training data.

LLM Agents and Long-Horizon Planning LLMs reason well locally but falter at multi-step au-
tonomy: studies report low success on end-to-end plan generation, with models performing better as
advisors to external planners Valmeekam et al. (2023). Benchmarks like TravelPlanner confirm poor
pass rates even with tools and staged prompting, revealing brittleness under constraint-heavy, multi-
objective tasks Xie et al. (2024); Zheng et al. (2025); Nayak et al. (2025); Cui et al. (2025). Prompt-
centric agents (ReAct, Reflexion) still act per-turn from ever-growing text context, and multi-agent
scaffolds (CAMEL, AutoGen) coordinate via dialogue Yao et al. (2023); Shinn et al. (2023); Wei
et al. (2023); Xi et al. (2025); Li et al. (2023); Wu et al. (2023); yet in long-horizon, adversarial
domains they repeatedly re-parse large states and lack a persistent executable substrate to enforce
strategy across an episode, leaving the planning gap largely intact.

Self-Improvement and Continual Learning Agents Inference-time self-improvement spans ver-
bal reflection (Reflexion), evolutionary prompt search (PromptBreeder, PromptAgent), and code-
writing agents that iteratively refine programs (Shinn et al. (2023); Fernando et al. (2023); Wang
et al. (2023b)). Surveys systematize these inference-time strategies and the broader landscape of
LLM agents (Song et al. (2024); Dong et al. (2024)). Eureka (Ma et al. (2024)) explores program and
reward evolution, demonstrating how automated search over reinforcement learning environments
can uncover novel control strategies. AlphaEvolve (Novikov et al. (2025)) presents an evolutionary
coding agent to tackle open scientific problems and algorithm improvement. Embodied lifelong sys-
tems like Voyager show that storing executable skills (a skill library) improves persistence and reuse
across episodes, but emphasize breadth (discovering many primitives) rather than depth (refining a
single competitive policy).

Building on Voyager, Eureka, and AlphaEvolve, which respectively advance skill discovery, re-
ward/program evolution, and automated code improvement, we shift focus to a different question:
can a lifelong LLM system, operating without documentation, induce a compact adapter to an un-
known environment and persist executable artifacts in order to evolve a single competitive policy
that outperforms traditional LLM agents in adversarial play?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 BACKGROUND

Settlers of Catan as a Strategic Benchmark Settlers of Catan is a 3-4 player board game where
players collect and trade resources to build settlements and roads, racing to earn 10 victory points on
a modular island map. The game emphasizes resource management, planning, and negotiation, with
mechanics like the robber (which blocks resources) adding tactical depth. Catan is known for its
balance of luck and skill. Victory goes to the first player to reach 10 points, earned by building and
upgrading settlements into cities, buying development cards, and achieving goals like the longest
road or largest army. Each settlement is worth 1 point, each city 2, and some development cards
grant hidden points or knight bonuses. Every turn starts with a dice roll that produces resources for
players with adjacent settlements. The active player may then trade and build. If a 7 is rolled, the
robber is activated, blocking a tile and stealing a resource. Players must plan expansions, balance
upgrades, and trade strategically to manage luck. This need for adaptation and foresight makes
Catan a strong benchmark for evaluating strategic reasoning in agents.

The Catanatron Framework We use the open-source Python-based simulator Catanatron as our
evaluation environment. Designed for automated gameplay of Settlers of Catan, Catanatron offers
a programmatic interface for integrating custom agents and supports rapid simulation at scale. It
faithfully implements the game’s rules and dynamics, capturing key strategic elements such as re-
source management, trade negotiation via structured proposals, and randomness introduced by dice
rolls. Each game consists of players competing to reach ten victory points, with players interacting
through well-defined game states that include current resources, board positions, available actions,
and observable opponent statuses. Games typically span 40 to 100 turns, allowing for extended ob-
servation of agents’ long-term planning capabilities. We benchmark our LLM-driven agents against
AlphaBeta, the best-performing heuristic agent provided through the API which uses a depth-2
alpha-beta pruning algorithm with heuristic evaluation to select actions.

Alpha-Beta Benchmark Our primary baseline is Catanatron’s AlphaBeta agent: an alpha-beta
minimax over stochastic outcomes that computes the expected value of successor states via chance
expansion and a fast heuristic value function. Concretely, it uses a depth-2 search (default), a 20 s
decision cap, and an optional action-space pruning mode (e.g., robber and maritime-trade pruning
heuristics). At leaves, it applies a parameterized value function, and it short-circuits when only
one legal action exists. We adopt the author defaults unless otherwise noted, fixing depth = 2 for
all reported comparisons. This baseline is both strong and extremely fast, enabling thousands of
head-to-head evaluations needed by our continual-learning setup.

4 HEXMACHINA

HexMachina is an autonomous self-evolving multi-agent system that crafts a powerful Catanatron
player capable of rivaling the top human-crafted baselines. We utilized Langchain for the model
agnostic services, and Langraph for the state machine. Once launched, HexMachina begins by run-
ning a discovery phase, were it gathers information about the Catanatron API to evolve an adapters
file. After completion, it enters an improvement phase where it begins evolving a player file. Each
evolution consists of agent collaboration until the Coder writes improvements in the form of testable
code. Each phase is limited to 20 evolutions, counted by each time the Coder is called.

4.1 CAPABILITIES

Listed below are the capabilities that enable HexMachina to employ continual learning effectively:

Player Generation HexMachina incrementally codes a complete Catanatron player module dur-
ing the improvement phase. The process begins with a minimal template that simply returns the
first legal action, then evolves into increasingly sophisticated strategies as feedback accumulates.
Importantly, the generated player is not just a script of next actions but an executable policy that
can consistently carry out a long-term plan across an entire game. This design shifts the LLM’s role
from being a per-turn decider to being a strategy architect, with the Coder agent ensuring that every
idea is grounded in syntactically valid and testable code.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: HexMachina Architecture. During the discovery phase, the Orchestrator coordinates
agents to induce executable functions into the Adapter file, stabilizing access to the environment.
In the improvement phase, we found it most effective to rely on a streamlined loop of Analyst, Coder,
and Orchestrator, avoiding dilution from additional roles. Here, the Analyst diagnoses performance,
the Coder translates revisions into executable code, and the Orchestrator manages iteration. This
separation enables the system to refine FooPlayer into a consistent long-horizon strategy.

Experimentation Engine At the core of HexMachina is a deterministic experimentation harness.
This engine repeatedly pits evolving players against the strong AlphaBeta baseline under fixed seeds
and identical settings, logging outcomes, intermediate states, and decision traces. By holding the
environment constant, we can attribute changes in win rate or victory points directly to code evo-
lution, rather than stochastic noise. This repeatable evaluation cycle transforms raw self-play into
structured experimental evidence for policy improvement.

Evaluation Evaluation closes the loop: after each batch of games, HexMachina analyzes out-
comes to identify which strategic choices were beneficial and which led to failure. This feedback
is distilled into concise summaries that the Orchestrator uses to decide whether to preserve, modify,
or discard a candidate player. In practice, we found that the most effective evaluation loop did not
require every agent’s perspective; instead, a streamlined pipeline of Analyst to Coder to Orchestra-
tor yielded clearer strategic signals. Additional recommendations from other roles often diluted the
strategy, fragmenting the LLM’s ability to commit to a coherent plan.

Strategy and Discovery HexMachina supports two complementary modes. In the discovery
phase, it induces executable artifacts such as an adapters.py file that stabilizes access to the
Catanatron API without any human documentation. This ensures that later improvements build on a
reliable, reusable interface. In the improvement phase, the system searches over new tactics, revisits
prior players, and integrates insights from past runs. Together, these phases ensure that learning is
both grounded in the environment and continuously refined across evolutions.

Orchestration The orchestrator serves as the global planner, deciding when to analyze results, re-
quest new code, or revisit prior knowledge. Autonomy is enforced by a closed loop: the orchestrator
makes high-level decisions based on game outcomes, artifacts, and agent communication, then del-
egates low-level tasks to the Analyzer and Coder. This separation prevents the system from stalling
on details while still maintaining tight control over long-term strategy evolution.

Memory Finally, HexMachina maintains both game memory and semantic memory across evo-
lutions. Game memory archives past players, their code, and evaluation artifacts, enabling direct
comparisons and reuse of successful strategies. Semantic memory allows each agent to persist ex-
pertise relevant to its role, e.g., the Coder retaining knowledge of syntax patterns or the Analyst
preserving diagnostic heuristics. This dual memory system underpins continual learning: instead of
starting from scratch each evolution, the system accumulates strategic and technical knowledge that
compounds over time.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 AGENTS

Each agent in HexMachina is a specialist that can call tools (up to 5 per turn) and then yield a
single, compact message back to the main loop. Only this final message is persisted to memory,
ensuring concise, role-specific contributions. Each agent has access to a Think Tool (adapted from
Langchain’s deep research agent) to support internal reasoning and explainability. Inputs and outputs
are standardized, enabling interchangeable models and providers.

Importantly, not all agents are equally useful in every phase. In the discovery phase, the full set of
agents contributes to inducing a stable adapters.py file from scratch. However, in the improve-
ment phase, we found that the most effective configuration is a streamlined loop of Orchestrator,
Analyst, and Coder. Additional recommendations from the Strategist and Researcher often diluted
coherence, so these roles are used only during discovery or when revisiting artifacts, not for direct
strategy refinement.

Orchestrator: Global planner and orchestrator.
Inputs: Orchestrator Messages and summary of evolution
Outputs: Thoughts, system goal, next chosen agent, next agent objective
Tools: None

Coder: Turn strategies into compilable code.
Inputs: Objective from Orchestrator, adapter contents
Outputs: Executable code, summary of changes
Tools: Write/edit file

Analyst: Experimentation evaluator
Inputs: Objective from Orchestrator, summary of evolution, current player and Coder sum-
mary of changes, game artifacts, adapter contents
Outputs: Post-game diagnosis, specific analysis, adapter failure
Tools: Read local file

Researcher: Recover API/engine facts and domain tactics. Primarily active during discovery.
Inputs: Objective from Orchestrator, list of files, adapter contents
Outputs: Citations, code pointers, or concise notes with source references
Tools: Read local file, web search

Strategist: Propose concrete, testable plans. Primarily active during discovery.
Inputs: Orchestrator Objective, Evolution Summary, current player, adapter contents
Outputs: Strategy spec and evaluation
Tools: Read local file, view older experiment, web search

5 EXPERIMENT SETUP

We evaluate HexMachina in the open-source Catanatron environment under controlled 2-player, 10-
point Catan games. Each experiment consists of repeated head-to-head matches against the strongest
built-in heuristic bot, AlphaBeta. We measure both win rate and final victory points as indicators of
strategic quality. Games are deterministic given a random seed, allowing us to reproduce results and
separate genuine improvements from stochastic variance. Data was collected over 60 hours across
two machines (MacBook Pro 2019, 16GB; MacBook M1 Max 2021, 32GB).

5.1 BASELINES

Our baselines capture a spectrum of reference points, from trivial random play to a strong, hand-
engineered heuristic, allowing us to contextualize HexMachina’s performance against both naive
policies and established rule-based expertise.

Random. The simplest control agent chooses uniformly from the legal action space each turn.
While strategically meaningless, this baseline sets a lower bound for performance and highlights
how much structure even a minimal policy adds.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LLM Player. We also evaluate a Reflexion-style agent (Shinn et al. (2023)) that reformats the
game state into text and queries Claude 3.7 once per turn with a high-level goal. This baseline
reflects the "prompt-centric" paradigm: the LLM directly drives play without any compiled memory
or artifact reuse. Due to inference cost (approx. 70 queries per game), we limited this evaluation to
20 games with a model we had free access too, but it provides a critical comparison to show how
quickly context saturation and lack of persistence hinder long-horizon play.

Basic Continual Learner (HexMachina w/o discovery). To isolate the value of separating dis-
covery and improvement, we also test a single-phase continual learning setup equivalent to Hex-
Machina without the discovery phase. Here the system attempts to learn both the environment
interface and the strategy simultaneously. This resembles prior lifelong agents such as Voyager and
Eureka (Wang et al. (2023a); Ma et al. (2024)), which evolve strategies directly from raw interaction.
As shown later in Appendix A.2, these agents often converge on shallow heuristics (e.g., one-ply
VP-only evaluators), highlighting the difficulty of strategic refinement without first stabilizing the
interface.

AlphaBeta. Finally, we include Catanatron’s AlphaBeta agent, a depth-2 minimax with stochastic
expansion and heuristic evaluation. This player is fast, strong, and widely used as a benchmark;
in self-play it achieves a 50% win rate by construction. It represents the ceiling for our experi-
ments, providing a human-engineered reference against which HexMachina’s evolved players can
be meaningfully compared.

5.2 MODELS

HexMachina is model-agnostic, but in practice we deploy different LLMs for different roles to bal-
ance strength and efficiency. We test three orchestrator backends, GPT-5-mini, Claude 3.7, and
Mistral-large, to assess robustness across providers. Unless otherwise noted, GPT-5-mini is used for
the Coder, which requires reliable code synthesis, while Mistral-large is assigned to support roles
(Analyst, Strategist, and Researcher) to reduce cost and latency. This division reflects a general prin-
ciple of our framework: leverage stronger models where precision is critical (e.g., code generation)
and more efficient models where interpretive or diagnostic reasoning suffices.

6 RESULTS AND DISCUSSION

6.1 CONTINUAL LEARNING

We first examine the impact of continual learning through evolution runs of 10 steps, with each
step evaluating FooPlayer across 30 games. Figure 3 shows HexMachina steadily improving against
AlphaBeta, eventually achieving parity and surpassing baseline players. A central design choice
was the separation of discovery (API induction and artifact stabilization) from improvement (strat-
egy evolution). Our experiments confirm that this separation is critical: systems without discovery
struggled to stabilize player code, while those with discovery reliably produced executable players
that improved across evolutions.

Interestingly, we found that HexMachina performed better when the Strategist and Researcher agents
were removed, leaving only the Orchestrator, Analyst, and Coder. While the Strategist was intended
to propose concrete plans, results suggest that LLMs often formulate effective strategies in a single
shot, and passing these through multiple roles may dilute coherence. Thus, we report results using
this streamlined configuration. This insight highlights a broader implication for continual learn-
ing: modular multi-agent systems are powerful, but not all roles contribute equally, and reducing
mediation can strengthen strategic consistency.

Figure 4 provides a qualitative example of evolution in action. We observe HexMachina iteratively
proposing, coding, and refining player strategies while preserving functional artifacts. This illus-
trates how artifact-centric continual learning transforms an LLM from a per-turn decision maker
into a higher-level strategy designer with consistent policy execution.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: HexMachina Evolving to Outperform Existing Players

Figure 4: Evolution Messages Example Dialogue

6.2 PLAYER COMPARISON

To stress test the best-evolved players, we ran each configuration 10 times with 100 games per run.
Results are summarized in Table 2. HexMachina’s best model (GPT-5-mini) reached a 54.1% win
rate and 8.2 ± 0.1 victory points, matching or slightly exceeding AlphaBeta’s 51.0% win rate and 7.8
± 0.2 points. By contrast, the no-discovery baseline plateaued at much lower win rates, producing
players that often failed to generalize beyond static heuristics.

A representative no-discovery agent (Appendix A.2) highlights why this baseline performs poorly.
It carries out only a 1-ply lookahead, scoring states almost entirely on current victory points with
trivial tie-breakers such as settlements, cities, or roads. With rollouts disabled and no modeling of
stochastic production or opponent actions, it assigns identical scores to materially different choices,
leading to random tie-breaking, poor settlement placement, and ineffective robber usage. These
flaws explain its consistently weak performance in Table 2.

By contrast, the best evolved FooPlayer (Appendix A.1) demonstrates the benefits of HexMachina’s
discovery-improvement split. This agent combines phase-aware priorities (early expansion, mid-
game balance, late-game upgrades), explicit heuristics for production diversity and robber disrup-
tion, and shallow rollouts that anticipate near-term outcomes. These capabilities yield stronger
growth, better-timed upgrades, and consistent disruptive pressure on the opponent. The qualita-
tive differences map directly onto the quantitative results in Table 2, underscoring that discovery is
critical for stabilizing adapters and enabling the emergence of richer strategies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Win Rate and Victory Points for HexMachina compared to Baselines

Player Model Win Rate Victory Points

HexMachina
GPT 54.1% [51%, 57%] 8.2 ± 0.1
Mistral 49.2% [46%, 52%] 7.8 ± 0.2
Claude 38.4% [35%, 41%] 7.2 ± 0.2

LLM Player Claude 16.4% [3%, 30%] 5.2 ± 1.2

Alpha-Beta X 51.0% [48%, 54%] 7.8 ± 0.2

Random X 0.2% [0%, 0%] 2.4 ± 0.0

6.3 ABLATIONS

To isolate the importance of individual design choices, we conducted ablation studies with three
independent runs of 10 steps, each tested on 30 games. Results are shown in Table 3. Interestingly,
removing the Strategist and Researcher improved performance relative to the full system, reaffirm-
ing our earlier finding that direct orchestration leads to clearer strategy translation. Removing the
Analyst heavily impacted success as the agent is required to diagnose issues. There would often
be situations where the system failed to recognize when functions were being mis-referenced from
adapters.py without the Analyst bringing it into a failure loop. Overall, these findings back our

Table 3: Multi-Agent Architecture Ablations for HexMachina Policy Evolution

Ablation Win Rate Victory Points

All Agents 49.7% 8.0
No Analyst 0.0% 2.1

No Strategist + Researcher 54.1% 8.2

contribution statements: (1) HexMachina evolves executable strategies that rival top human-crafted
baselines; (2) artifact preservation and doc-free discovery are essential to this success; (3) LLMs are
best deployed at the level of strategy design, not per-turn play; and (4) multi-agent modularity is
powerful, but optimal performance may emerge from leaner configurations that avoid unnecessary
role handoffs.

7 CONCLUSION

Despite strong results, several limitations hindered performance from improving further. First, we
evaluated players solely with win rate and final victory points, coarse metrics that sometimes mask
subtler strengths and weaknesses. Second, the LLM occasionally hallucinated code or heuristics,
requiring additional filtering. Third, the system was expensive to run due to inference costs, restrict-
ing the number of trials. Finally, performance remained closely tied to the quality of the underlying
model, with more capable backends producing stronger players. Even with these constraints, Hex-
Machina was able to autonomously induce an API, evolve a robust player, and achieve parity with
AlphaBeta, the strongest human-crafted bot.

Looking forward, we see several avenues for advancement. Other researchers could attempt to de-
sign a more powerful multi-agent system on this benchmark or build a stronger hand-crafted player
for comparison. More broadly, HexMachina should be tested on continual learning benchmarks
beyond Catan to validate generality. Finally, the current 20-step evolution limit could be extended
with improved memory and player management, enabling longer training horizons and more sophis-
ticated strategies. Together, these extensions would push LLM agents closer to reliable long-horizon
autonomy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICAL STATEMENT

Our system executes code in a closed loop with strict safeguards: generated programs run only
within a controlled evaluation harness, preventing arbitrary system access. All experiments were
logged with fixed random seeds and configuration files, ensuring transparency and reproducibil-
ity. While we present HexMachina as an autonomous agent, we avoid anthropomorphizingâĂŤour
system is a code-evolving tool, not a sentient entity.

9 REPRODUCIBILITY STATEMENT

We release all code, experiment harnesses, and configuration files alongside this submission.
To reproduce our results, clone the repository, install dependencies, and follow the step-by-step
README instructions. Running experiments requires API keys for the tested LLMs; once pro-
vided, the system can be executed exactly as described to replicate all tables and figures.

REFERENCES

Mohamed Aghzal, Erion Plaku, and Ziyu Yao. Can large language models be good path planners?
a benchmark and investigation on spatial-temporal reasoning, 2025. URL https://arxiv.org/
abs/2310.03249.

SÃl’bastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Catan Collector. How to Identify Your Version of Catan. https://catancollector.com/
catan-links/how-to-identify-your-version-of-catan. Accessed: 2025-05-15.

Catan Fusion. 3 Royal Weddings in Catan. http://catanfusion.com/index.php/blog/
entry-3-royal-weddings-in-catan. Accessed: 2025-05-15.

Yanan Chen, Ali Pesaranghader, Tanmana Sadhu, and Dong Hoon Yi. Can we rely on llm
agents to draft long-horizon plans? let’s take travelplanner as an example. arXiv preprint
arXiv:2408.06318, 2024.

B. Collazo. Catanatron: Settlers of catan bot simulator and strong ai player. https://github.com/
bcollazo/catanatron, 2025.

Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
Wenjie Li, Joshua Clymer, and Arjun Yadav. Gamebench: Evaluating strategic reasoning abilities
of llm agents. arXiv preprint arXiv:2406.06613, 2024.

Sijia Cui, Shuai Xu, Aiyao He, Yanna Wang, and Bo Xu. Empowering llms with parameterized
skills for adversarial long-horizon planning, 2025. URL https://arxiv.org/abs/2509.13127.

Xiangjue Dong, Maria Teleki, and James Caverlee. A survey on llm inference-time self-
improvement. arXiv preprint arXiv:2412.14352, 2024.

Meta Fundamental AI Research Diplomacy Team (FAIR)âĂă, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu,
et al. Human-level play in the game of diplomacy by combining language models with strategic
reasoning. Science, 378(6624):1067–1074, 2022.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Roberto Gallotta, Graham Todd, Marvin Zammit, Sam Earle, Antonios Liapis, Julian Togelius, and
Georgios N Yannakakis. Large language models and games: A survey and roadmap. IEEE
Transactions on Games, 2024.

10

https://arxiv.org/abs/2310.03249
https://arxiv.org/abs/2310.03249
https://arxiv.org/abs/2303.12712
https://catancollector.com/catan-links/how-to-identify-your-version-of-catan
https://catancollector.com/catan-links/how-to-identify-your-version-of-catan
http://catanfusion.com/index.php/blog/entry-3-royal-weddings-in-catan
http://catanfusion.com/index.php/blog/entry-3-royal-weddings-in-catan
https://github.com/bcollazo/catanatron
https://github.com/bcollazo/catanatron
https://arxiv.org/abs/2509.13127

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Quentin Gendre and Tomoyuki Kaneko. Playing catan with cross-dimensional neural network. In
Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thai-
land, November 23–27, 2020, Proceedings, Part II 27, pp. 580–592. Springer, 2020.

Hilmy Abiyyu A. Robot icons created by Hilmy Abiyyu A. - Flaticon. https://www.flaticon.
com/free-icons/robot. Accessed: 2025-05-15.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society, 2023.
URL https://arxiv.org/abs/2303.17760.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024. URL https://arxiv.org/abs/2310.12931.

murmur. Conversation icons created by murmur - Flaticon. https://www.flaticon.com/
free-icons/conversation, a. Accessed: 2025-05-15.

murmur. Thought bubble icons created by murmur - Flaticon. https://www.flaticon.com/
free-icons/thought-bubble, b. Accessed: 2025-05-15.

Muhammad Umair Nasir, Steven James, and Julian Togelius. Gametraversalbenchmark: Evaluating
planning abilities of large language models through traversing 2d game maps. arXiv preprint
arXiv:2410.07765, 2024.

Siddharth Nayak, Adelmo Morrison Orozco, Marina Ten Have, Vittal Thirumalai, Jackson Zhang,
Darren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison, Brian
Ichter, Anuj Mahajan, and Hamsa Balakrishnan. Llamar: Long-horizon planning for multi-agent
robots in partially observable environments, 2025. URL https://arxiv.org/abs/2407.10031.

Alexander Novikov, NgÃćn VÅl’, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang,
Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Ab-
bas Mehrabian, M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex
Davies, Sebastian Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A cod-
ing agent for scientific and algorithmic discovery. Technical report, Google Deep-
Mind, 2025. URL https://colab.research.google.com/github/google-deepmind/
alphaevolve_results/blob/master/mathematical_results.ipynb. White paper.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi Wang, Bangcheng Yang, Pring Wong, Yifan
Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. Civrealm: A learning and reasoning odyssey in
civilization for decision-making agents. arXiv preprint arXiv:2401.10568, 2024.

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel
Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, et al. Mastering board games by external
and internal planning with language models. arXiv preprint arXiv:2412.12119, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
doi: 10.1038/nature16961.

Smashicons. Trade icons created by Smashicons - Flaticon. https://www.flaticon.com/
free-icons/trade. Accessed: 2025-05-15.

11

https://www.flaticon.com/free-icons/robot
https://www.flaticon.com/free-icons/robot
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2310.12931
https://www.flaticon.com/free-icons/conversation
https://www.flaticon.com/free-icons/conversation
https://www.flaticon.com/free-icons/thought-bubble
https://www.flaticon.com/free-icons/thought-bubble
https://arxiv.org/abs/2407.10031
https://colab.research.google.com/github/google-deepmind/alphaevolve_results/blob/master/mathematical_results.ipynb
https://colab.research.google.com/github/google-deepmind/alphaevolve_results/blob/master/mathematical_results.ipynb
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2303.11366
https://www.flaticon.com/free-icons/trade
https://www.flaticon.com/free-icons/trade

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. arXiv preprint
arXiv:2412.02674, 2024.

István Szita, Guillaume Chaslot, and Pieter Spronck. Monte-carlo tree search in settlers of catan. In
Advances in computer games, pp. 21–32. Springer, 2009.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kamb-
hampati. On the planning abilities of large language models (a critical investigation with a pro-
posed benchmark), 2023. URL https://arxiv.org/abs/2302.06706.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. arXiv preprint arXiv:2310.16427, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024. URL
https://arxiv.org/abs/2402.01622.

yaicon. Build icons created by yaicon - Flaticon. https://www.flaticon.com/free-icons/
build. Accessed: 2025-05-15.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions, 2023. URL https://arxiv.org/abs/2306.02224.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
Qianli Ma. Lifelong learning of large language model based agents: A roadmap, 2025. URL
https://arxiv.org/abs/2501.07278.

A APPENDIX

A.1 HEXMACHINA’S BEST STRATEGY

import random
from typing import Iterable , List , Optional , Any , Tuple

MUST use the adapters surface to interact with the game environment
from .adapters import (

12

https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2402.01622
https://www.flaticon.com/free-icons/build
https://www.flaticon.com/free-icons/build
https://arxiv.org/abs/2306.02224
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2501.07278

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Game ,
Player ,
Color ,
copy_game ,
execute_deterministic ,
execute_spectrum ,
expand_spectrum ,
list_prunned_actions ,
prune_robber_actions ,
base_fn ,
value_production ,
get_value_fn ,

)

class FooPlayer(Player):
"""A Foo player with game -phase aware decisioning , improved sampling ,
short rollouts , and richer heuristics.

This implementation is defensive: it uses only the adapters surface
and

contains many fallbacks when attributes or adapter helpers are
missing.

Key features:
- Game -phase detection (early/mid/late) to bias settlement/road vs

city/dev -card
- Settlement & road potential heuristics to encourage early expansion
- Robber/knight evaluation to value disruption and steals
- Must -include guarantees for critical action types (settlement/road/

robber/dev)
- Rollout policy biased by phase and includes a light opponent -

response

NOTE: Many game model attribute names vary across environments. This
code

attempts multiple common attribute names and falls back to string -
based

heuristics when necessary. If the next run raises AttributeError for
an

adapters function or a specific attribute , provide the traceback so
it can

be patched to the concrete environment.
"""

Tunable constants (exposed to edit for experimentation)
MAX_SIMULATIONS = 24
PREFILTER_TOP_K = 8
ROLLOUT_DEPTH = 2
SIMULATION_BUDGET = 60
DEBUG = False

Phase thresholds (used by get_game_phase)
EARLY_TURN_THRESHOLD = 20
MID_TURN_THRESHOLD = 45

Phase multipliers matrix (explicit)
MULTS = {

"EARLY": {"settlement": 2.0, "road": 1.8, "city": 0.8, "dev": 1.2
},

"MID": {"settlement": 1.0, "road": 1.0, "city": 1.25, "dev": 1.0}
,

"LATE": {"settlement": 0.8, "road": 0.9, "city": 1.5, "dev": 1.0}
,

}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Must -include action tokens (robust , lowercase matching)
MUST_INCLUDE_TOKENS = {

"build_city",
"build_settlement",
"build_sett",
"build_road",
"buy_dev",
"buy_dev_card",
"buycard",
"play_knight",
"knight",
"move_robber",
"move_robber_action",
"robber",
"trade",
"offer_trade",

}

Robber scoring base (increased)
ROBBER_BASE_SCORE = 80.0
ROBBER_BASE_SCORE_HIGH = 80.0

Settlement target in early game
TARGET_SETTLEMENTS_EARLY = 3

Epsilon -greedy randomness to avoid predictability
EPSILON_GREEDY = 0.04

Rollout bonuses for the very first rollout step
ROLLOUT_SETTLEMENT_BONUS = 1.7
ROLLOUT_ROAD_BONUS = 1.4

Tie tolerance
TOLERANCE = 1e-6

Development card deck & EV constants
DEV_DECK = {"knight": 14, "vp": 5, "road_building": 2, "

year_of_plenty": 2, "monopoly":
2}

DEV_TOTAL = sum(DEV_DECK.values ())
EV_KNIGHT = 0.15
EV_VP = 1.0
EV_ROAD_BUILDING = 0.25
EV_YOP = 0.2
EV_MONOPOLY = 0.3
DEV_EV_SCALE = 60.0
DEV_EV_THRESHOLD = 0.25

Knight bonuses
KNIGHT_LARGEST_ARMY_BONUS = 50.0
KNIGHT_BASE = 25.0
KNIGHT_MIN_SCORE = 35.0

City/road/robber tuning (from latest analyzer guidance)
CITY_URGENCY_BONUS = 85.0
CITY_AFFORD_STRICT_ORE = 3
CITY_AFFORD_STRICT_WHEAT = 2
CITY_AFFORD_SOON_ORE = 2
CITY_AFFORD_SOON_WHEAT = 1
ROLLOUT_CITY_BONUS = 1.8
ROAD_SCORE_BOOST = 9.0
PROD_LOSS_IMPORTANCE = 70.0
HIGH_VALUE_RESOURCE_SET = {"ore","wheat","metal","grain"}
CITY_TIE_EPS = 0.02

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Forcing behavior flags and diagnostic counters
PREFILTER_FORCE_CITY_IF = True
CITY_FORCE_AFFORD_STRICT = True
DEBUG_COUNTS = False

def __init__(self , name: Optional[str] = None):
super().__init__(Color.BLUE , name)
Try to cache a base value function from adapters
try:

self._value_fn = base_fn ()
self.debug_print("FooPlayer: Using adapters.base_fn () for

evaluation")
except Exception as e:

self._value_fn = None
self.debug_print("FooPlayer: adapters.base_fn () not available

, will use heuristic.
Error:", e)

Diagnostic counters (quiet unless DEBUG)
self._diag_forced_settlement = 0
self._diag_forced_road = 0
self._diag_city_urgency_count = 0
self._diag_settle_urgency_count = 0

New counters for tuning
self.COUNTER_FORCED_CITY = 0
self.COUNTER_DEV_BUY_FORCED = 0
self.COUNTER_BUY_DEV_ACTUALLY = 0
self.COUNTER_BUILD_CITY_ACTUALLY = 0
self.COUNTER_ROBBER_ACTUALLY = 0

------------------- Debug helper -------------------
def debug_print(self , *args: Any) -> None:

if self.DEBUG:
print(*args)

------------------- Utility helpers -------------------
def _get_player_color(self) -> Color:

""" Return this player ’s color. Try common attribute names."""
if hasattr(self , "color"):

return getattr(self , "color")
if hasattr(self , "_color"):

return getattr(self , "_color")
return Color.BLUE

def _safe_action_name(self , action: Any) -> str:
""" Produce a lowercase string name for the action for robust

matching."""
try:

at = getattr(action , "action_type", None)
if at is None:

at = getattr(action , "type", None)
if at is not None:

try:
return str(at.name).lower()

except Exception:
return str(at).lower()

except Exception:
pass

try:
Some Action objects have a .name or .action_name
name = getattr(action , "name", None) or getattr(action , "

action_name", None)
if name is not None:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

return str(name).lower()
except Exception:

pass
try:

return str(action).lower()
except Exception:

return ""

------------------- Phase detection -------------------
def get_game_phase(self , game: Game , color: Optional[Color] = None) -

> str:
""" Return ’EARLY ’, ’MID ’, or ’LATE’ based on turn counters or VP

thresholds.

Order of checks:
1) turn/tick counters if available (preferred)
2) max VP among players
3) fallback to conservative MID
"""
try:

state = getattr(game , "state", game)
turn_count = (

getattr(state , "turn", None)
or getattr(state , "tick", None)
or getattr(state , "turn_count", None)
or getattr(state , "tick_count", None)

)
if isinstance(turn_count , (int , float)):

tc = int(turn_count)
if tc < self.EARLY_TURN_THRESHOLD:

return "EARLY"
if tc < self.MID_TURN_THRESHOLD:

return "MID"
return "LATE"

except Exception:
pass

Fallback: use maximum VP among players
try:

state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game , "

players", None) or []
max_vp = 0
if isinstance(players , dict):

for p in players.values ():
vp = getattr(p, "victory_points", None) or getattr(p,

"vp", None) or
0

try:
vp = int(vp)

except Exception:
vp = 0

max_vp = max(max_vp , vp)
else:

for p in players:
vp = getattr(p, "victory_points", None) or getattr(p,

"vp", None) or
0

try:
vp = int(vp)

except Exception:
vp = 0

max_vp = max(max_vp , vp)
if max_vp < 4:

return "EARLY"

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

if max_vp < 8:
return "MID"

return "LATE"
except Exception:

Conservative fallback to MID
return "MID"

------------------- Heuristic / evaluation (phase -aware)

def _heuristic_value(self , game: Game , color: Color) -> float:
"""Phase -aware heuristic including production potential and city -

upgrade progress.

Many attribute names are attempted to be robust across different
game models.

"""
Die probabilities for numbers 2..12 ignoring 7
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5 / 36

, 8: 5 / 36, 9: 4 / 36, 10:
3 / 36, 11: 2 / 36, 12: 1 /
36}

Player lookup
player_state = None
try:

state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game , "

players", None)
if isinstance(players , dict):

player_state = players.get(color) or players.get(str(
color))

elif isinstance(players , (list , tuple)):
for p in players:

if getattr(p, "color", None) == color or getattr(p, "
color", None) ==
str(color):

player_state = p
break

except Exception:
player_state = None

def _safe_get(obj , *names , default=0):
if obj is None:

return default
for name in names:

try:
val = getattr(obj , name)
if val is not None:

return val
except Exception:

try:
val = obj[name]
if val is not None:

return val
except Exception:

continue
return default

vp = _safe_get(player_state , "victory_points", "vp", default=0)
settlements = _safe_get(player_state , "settlements", "

settle_count", "
settle_locations", default=0
)

if isinstance(settlements , (list , tuple)):
settlements = len(settlements)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

cities = _safe_get(player_state , "cities", "city_count", "
city_locations", default=0)

if isinstance(cities , (list , tuple)):
cities = len(cities)

roads = _safe_get(player_state , "roads", "road_count", default=0)
if isinstance(roads , (list , tuple)):

roads = len(roads)
dev_vp = _safe_get(player_state , "dev_vp", "dev_victory_points",

default=0)

Resources summary
resources_obj = _safe_get(player_state , "resources", default=0)
resources_total = 0
resource_diversity = 0
try:

if isinstance(resources_obj , dict):
resources_total = sum(resources_obj.values ())
resource_diversity = sum(1 for v in resources_obj.values

() if v > 0)
elif isinstance(resources_obj , (list , tuple)):

resources_total = sum(resources_obj)
resource_diversity = sum(1 for v in resources_obj if v >

0)
else:

resources_total = int(resources_obj)
resource_diversity = 1 if resources_total > 0 else 0

except Exception:
resources_total = 0
resource_diversity = 0

Production potential estimation
prod_value = 0.0
try:

board = getattr(state , "board", None) or getattr(game , "board
", None)

hexes = getattr(board , "hexes", None) or getattr(board , "
tiles", None) or []

settlements_list = _safe_get(player_state , "settlements", "
settle_locations",
default=[])

if isinstance(settlements_list , (list , tuple)):
for s in settlements_list:

try:
for h in hexes:

neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if s in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod_value += die_prob[num] * 1.0
except Exception:

continue
cities_list = _safe_get(player_state , "cities", "

city_locations", default
=[])

if isinstance(cities_list , (list , tuple)):
for c in cities_list:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

try:
for h in hexes:

neighbors = getattr(h, "vertices",
None) or
getattr(h, "adjacent_vertices", None) or []
if c in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod_value += die_prob[num] * 2.0
except Exception:

continue
except Exception:

prod_value = 0.0

City upgrade progress heuristic
city_resource_val = 0.0
try:

if isinstance(resources_obj , dict):
wheat = resources_obj.get("wheat", 0) + resources_obj.get

("grain", 0)
ore = resources_obj.get("ore", 0) + resources_obj.get("

metal", 0)
city_resource_val = min(wheat , ore)

except Exception:
city_resource_val = 0.0

Phase multipliers
phase = self.get_game_phase(game , color)
mults = self.MULTS.get(phase , self.MULTS["MID"])
settlement_mul = mults["settlement"]
road_mul = mults["road"]
city_mul = mults["city"]
dev_mul = mults["dev"]

Adjust production weight by phase
prod_weight = 80.0 if phase == "EARLY" else 45.0 if phase == "MID

" else 30.0

Compose weighted sum (city reward scaled by city_mul)
score = (

float(vp) * 100.0
+ float(settlements) * 25.0 * settlement_mul
+ float(cities) * 60.0 * city_mul
+ float(roads) * 6.0 * road_mul
+ float(dev_vp) * 50.0
+ float(resources_total) * 1.0
+ float(resource_diversity) * 3.0
+ float(city_resource_val) * 5.0
+ float(prod_value) * prod_weight

)

return float(score)

def _evaluate_game_state(self , game: Game , color: Color) -> float:
""" Evaluate a single game state for the given player color.

Prefer adapters.base_fn () if available (cached in self._value_fn)
. If available , combine

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

it with the heuristic for stability. We keep phase multipliers
inside the heuristic so

they influence the final blended value.
"""
heuristic = self._heuristic_value(game , color)
if self._value_fn is not None:

try:
vf_val = float(self._value_fn(game , color))
return 0.85 * vf_val + 0.15 * heuristic

except Exception as e:
self.debug_print("FooPlayer: value_fn failed during

evaluate_game_state ,
falling back to

heuristic. Error:",
e)

return float(heuristic)

------------------- Cheap scoring & potentials -------------------
def _get_player_state(self , game: Game , color: Color) -> Any:

""" Return the player_state object from the game state (best -
effort)."""

try:
state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game , "

players", None)
if isinstance(players , dict):

return players.get(color) or players.get(str(color))
elif isinstance(players , (list , tuple)):

for p in players:
if getattr(p, "color", None) == color or getattr(p, "

color", None) ==
str(color):

return p
except Exception:

return None
return None

def settlement_potential(self , action: Any , game: Game , color: Color)
-> float:

""" Estimate benefit of a settlement action: new resource types
and production.

Best -effort: try to parse adjacent hexes from action or fallback
to string heuristics.

"""
bonus = 0.0
try:

name = self._safe_action_name(action)
Quick check: if action indicates a settlement , give base
if any(tok in name for tok in ("build_settlement", "

build_sett", "settle")):
bonus += 5.0

Try to parse a vertex index from the action string
digits = [int(tok) for tok in name.split() if tok.isdigit ()]
vertex = digits[0] if digits else None

state = getattr(game , "state", game)
board = getattr(state , "board", None) or getattr(game , "board

", None)
hexes = getattr(board , "hexes", None) or getattr(board , "

tiles", None) or []

Player ’s current resource types
player_state = self._get_player_state(game , color)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

player_types = set()
try:

settlements_list = getattr(player_state , "settlements",
None) or getattr(
player_state , "
settle_locations",
None) or []

if isinstance(settlements_list , (list , tuple)):
for s in settlements_list:

for h in hexes:
neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if s in neighbors:

rtype = getattr(h, "resource",
None) or getattr(h, "type",
None)
if rtype is not None:

player_types.add(str(rtype).lower())
except Exception:

player_types = set()

Adjacent resources for proposed vertex
adj_resources = set()
prod_sum = 0.0
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5

/ 36, 8: 5 / 36, 9: 4 /
36, 10: 3 / 36, 11: 2 /
36, 12: 1 / 36}

if vertex is not None:
for h in hexes:

try:
neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if vertex in neighbors:

rtype = getattr(h, "resource",
None) or getattr(h, "type",
None)
if rtype is not None:

adj_resources.add(str(rtype).lower())
num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod_sum += die_prob[num]
except Exception:

continue
New types
new_types = adj_resources - player_types
bonus += float(len(new_types)) * 12.0
bonus += float(prod_sum) * 8.0

except Exception:
pass

return float(bonus)

def road_connection_potential(self , action: Any , game: Game , color:
Color) -> float:

""" Estimate if a road action helps expansion. Best -effort using
indices."""

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

bonus = 0.0
try:

name = self._safe_action_name(action)
try to extract numbers from action name
digits = [int(tok) for tok in name.split() if tok.isdigit ()]
player ’s settlement/city vertices
player_state = self._get_player_state(game , color)
player_nodes = set()
try:

settles = getattr(player_state , "settlements", None) or
getattr(player_state
, "settle_locations"
, None) or []

cities = getattr(player_state , "cities", None) or getattr
(player_state , "
city_locations",
None) or []

if isinstance(settles , (list , tuple)):
player_nodes.update(settles)

if isinstance(cities , (list , tuple)):
player_nodes.update(cities)

except Exception:
player_nodes = set()

if digits:
if any digit matches a player node , give higher bonus
if any(d in player_nodes for d in digits):

bonus += 6.0
else:

bonus += 3.0
else:

fallback string heuristics
if "build_road" in name or ("road" in name and "build" in

name):
bonus += 2.0

except Exception:
pass

return float(bonus)

def evaluate_buy_dev_card(self , action: Any , game: Game , color: Color
) -> bool:

""" Decide whether buying a dev card is currently a good idea (
best -effort)."""

try:
player_state = self._get_player_state(game , color)
resources = getattr(player_state , "resources", None)
if isinstance(resources , dict):

ore = resources.get("ore", 0) + resources.get("metal", 0)
wheat = resources.get("wheat", 0) + resources.get("grain"

, 0)
others = sum(v for k, v in resources.items() if k not in

("ore", "metal", "
wheat", "grain"))

if have ore+wheat+another , prefer dev card; or if no
settlement/road/city
affordable

if ore >= 1 and wheat >= 1 and others >= 1:
return True

fallback: if early game and we have some resources but
no settlement
potential , allow dev
buy

phase = self.get_game_phase(game , color)
if phase == "EARLY" and (ore + wheat + others) >= 3:

return True

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

except Exception:
pass

return False

def dev_card_ev_estimate(self , game: Game , color: Color) -> float:
""" Estimate expected VP-equivalent value of buying a development

card.

Uses static DEV_DECK and EV_* constants and scales by opponent
pressure and army gaps.

Returns a small VP-equivalent number (e.g., ~0.3-0.6 when
favorable).

"""
try:

base_ev = 0.0
composition -based base EV
base_ev += (self.DEV_DECK.get("knight", 0) / self.DEV_TOTAL)

* self.EV_KNIGHT
base_ev += (self.DEV_DECK.get("vp", 0) / self.DEV_TOTAL) *

self.EV_VP
base_ev += (self.DEV_DECK.get("road_building", 0) / self.

DEV_TOTAL) * self.
EV_ROAD_BUILDING

base_ev += (self.DEV_DECK.get("year_of_plenty", 0) / self.
DEV_TOTAL) * self.EV_YOP

base_ev += (self.DEV_DECK.get("monopoly", 0) / self.DEV_TOTAL
) * self.EV_MONOPOLY

Scale factors: opponents production pressure and army
proximity

Compute opponents ’ max production (best -effort)
state = getattr(game , "state", game)
board = getattr(state , "board", None) or getattr(game , "board

", None)
hexes = getattr(board , "hexes", None) or getattr(board , "

tiles", None) or []

opponents = []
players = getattr(state , "players", None) or getattr(game , "

players", None) or []
my_color = color
if isinstance(players , dict):

for k, p in players.items():
if k == my_color or getattr(p, "color", None) ==

my_color:
continue

opponents.append(p)
else:

for p in players:
if getattr(p, "color", None) == my_color:

continue
opponents.append(p)

compute simple production score for each opponent
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5

/ 36, 8: 5 / 36, 9: 4 /
36, 10: 3 / 36, 11: 2 /
36, 12: 1 / 36}

max_opp_prod = 0.0
for opp in opponents:

prod = 0.0
opp_settles = getattr(opp , "settlements", None) or

getattr(opp , "
settle_locations",
None) or []

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

opp_cities = getattr(opp , "cities", None) or getattr(opp ,
"city_locations",

None) or []
try:

for s in opp_settles:
for h in hexes:

neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if s in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod += die_prob[num]
for c in opp_cities:

for h in hexes:
neighbors = getattr(h, "vertices",
None) or getattr(h, "adjacent_vertices",
None) or []
if c in neighbors:

num = getattr(h, "roll",
None) or getattr(h, "number",
None) or getattr(h, "value",
None)
try:

num = int(num)
except Exception:

num = None
if num in die_prob:

prod += 2.0 * die_prob[num]
except Exception:

pass
max_opp_prod = max(max_opp_prod , prod)

army gap factor
my_state = self._get_player_state(game , color)
my_army = getattr(my_state , "army", None) or getattr(my_state

, "army_size", None) or
getattr(my_state , "
knights_played", None)
or 0

try:
my_army = int(my_army)

except Exception:
my_army = 0

max_other_army = 0
try:

if isinstance(players , dict):
for k, p in players.items():

if k == my_color or getattr(p, "color", None) ==
my_color:

continue
oa = getattr(p, "army", None) or
getattr(p, "army_size", None) or
getattr(p, "knights_played",
None) or 0
try:

oa = int(oa)
except Exception:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

oa = 0
max_other_army = max(max_other_army , oa)

else:
for p in players:

if getattr(p, "color", None) == my_color:
continue

oa = getattr(p, "army", None) or
getattr(p, "army_size", None) or
getattr(p, "knights_played", None) or 0
try:

oa = int(oa)
except Exception:

oa = 0
max_other_army = max(max_other_army , oa)

except Exception:
max_other_army = 0

army_gap = max(0, max_other_army - my_army)

scale base_ev conservatively
scale = 1.0
if max_opp_prod > 0.25: # opponent has strong production

scale += 0.25
if army_gap >= 1:

scale += 0.15 * army_gap

final_ev = base_ev * scale
return float(final_ev)

except Exception:
fallback conservative
return 0.25

def build_urgency(self , game: Game , color: Color) -> Tuple[float ,
float , float]:

""" Return (city_bonus , settlement_bonus , road_bonus) depending on
resources and phase."""

city_bonus = 0.0
settlement_bonus = 0.0
road_bonus = 0.0
try:

player_state = self._get_player_state(game , color)
resources = getattr(player_state , "resources", None) or {}
if not isinstance(resources , dict):

try to coerce
try:

total = sum(resources)
resources = {"res": total}

except Exception:
resources = {}

simple can_afford_city_soon heuristic
ore = resources.get("ore", 0) + resources.get("metal", 0)
wheat = resources.get("wheat", 0) + resources.get("grain", 0)
settlements_list = getattr(player_state , "settlements", None)

or getattr(player_state
, "settle_locations",
None) or []

settlements_owned = len(settlements_list) if isinstance(
settlements_list , (list ,
tuple)) else 0

phase = self.get_game_phase(game , color)
If mid/late and can afford city soon , large city urgency
if phase in ("MID", "LATE") and ore >= 2 and wheat >= 1:

city_bonus += 40.0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

self._diag_city_urgency_count += 1
If early and lacking settlements target , encourage

settlements strongly
if phase == "EARLY" and settlements_owned < self.

TARGET_SETTLEMENTS_EARLY
:

settlement_bonus += 35.0
self._diag_settle_urgency_count += 1

Road potential: give moderate constant bonus
road_bonus += 10.0

except Exception:
pass

return city_bonus , settlement_bonus , road_bonus

def cheap_pre_score(self , action: Any , game: Game , color: Color) ->
float:

"""Cheap , fast scoring used to prioritize actions for simulation
(phase -aware)."""

s = 0.0
name = self._safe_action_name(action)

phase = self.get_game_phase(game , color)
mults = self.MULTS.get(phase , self.MULTS["MID"])
settlement_mul = mults["settlement"]
road_mul = mults["road"]
city_mul = mults["city"]
dev_mul = mults["dev"]

urgency bonuses
city_urgency , sett_urgency , road_urgency = self.build_urgency(

game , color)

Reward direct VP gains but adjust city bias early
if any(tok in name for tok in ("build_city",)):

base_city = max(50.0, 100.0 * city_mul - 15.0)
penalize city if early and still below settlement target
try:

player_state = self._get_player_state(game , color)
settles = getattr(player_state , "settlements", None) or

getattr(player_state
, "settle_locations"
, None) or []

curr_settlements = len(settles) if isinstance(settles , (
list , tuple)) else 0

if phase == "EARLY" and curr_settlements <
self.TARGET_SETTLEMENTS_EARLY:

base_city *= 0.6
except Exception:

pass
s += base_city + city_urgency

if any(tok in name for tok in ("build_settlement", "build_sett"))
:

s += 90.0 * settlement_mul
add settlement potential (resource diversity / production)
s += self.settlement_potential(action , game , color) * (1.0 if

phase != "EARLY" else
settlement_mul)

s += sett_urgency

if "buy_dev" in name or "buycard" in name or "buy_dev_card" in
name:

compute EV estimate
dev_ev = self.dev_card_ev_estimate(game , color)
s += dev_ev * self.DEV_EV_SCALE

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

slightly reduced base bias to favor cities when urgent
if self.evaluate_buy_dev_card(action , game , color):

s += 8.0 * dev_mul
try:

if dev_ev >= self.DEV_EV_THRESHOLD:
s += 2.0

except Exception:
pass

if "build_road" in name or ("road" in name and "build" in name):
s += 20.0 * road_mul
s += self.road_connection_potential(action , game , color) * (1

.0 if phase != "EARLY"
else road_mul)

s += road_urgency

if "knight" in name or "play_knight" in name:
raise baseline and include army/steal bonuses
s += 70.0
s += self.evaluate_play_knight(action , game , color)

if "robber" in name or "move_robber" in name:
s += 50.0
s += self.evaluate_robber_action(action , game , color)

if "trade" in name or "offer_trade" in name:
s += 10.0

Encourage hitting settlement target early
try:

player_state = self._get_player_state(game , color)
curr_settlements = 0
settles = getattr(player_state , "settlements", None) or

getattr(player_state , "
settle_locations", None)
or []

if isinstance(settles , (list , tuple)):
curr_settlements = len(settles)

if phase == "EARLY" and curr_settlements < self.
TARGET_SETTLEMENTS_EARLY
and any(tok in name for
tok in ("

build_settlement", "
build_sett")):

s += 30.0
except Exception:

pass

small settlement/road potentials for other actions
if not any(tok in name for tok in ("build_settlement", "

build_sett")):
s += self.settlement_potential(action , game , color) * 0.1

if not any(tok in name for tok in ("build_road",)):
s += self.road_connection_potential(action , game , color) * 0.

1

Minor random tie -break
s += random.random () * 1e-3
return s

------------------- Prefilter actions (phase -aware guarantees)

def prefilter_actions(self , actions: List[Any], game: Game , color:
Color) -> List[Any]:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

""" Return a bounded list of candidate actions to evaluate
thoroughly.

Guarantees inclusion of must -include tokens and early -game
settlement/road actions.

"""
if not actions:

return []

all_actions = list(actions)
phase = self.get_game_phase(game , color)

musts = []
others = []
found_settlement = None
found_road = None
for a in all_actions:

name = self._safe_action_name(a)
if any(tok in name for tok in self.MUST_INCLUDE_TOKENS):

if a not in musts:
musts.append(a)

else:
others.append(a)

if found_settlement is None and any(tok in name for tok in ("
build_settlement", "
build_sett", "settle")):

found_settlement = a
if found_road is None and any(tok in name for tok in ("

build_road", "road")):
found_road = a

Phase -based forced includes: ensure at least one settlement and
one road action if present

in EARLY
if phase == "EARLY":

if found_settlement is not None and found_settlement not in
musts:

musts.append(found_settlement)
self._diag_forced_settlement += 1

if found_road is not None and found_road not in musts:
musts.append(found_road)
self._diag_forced_road += 1

Include recommended dev -card buys if conservative and EV
threshold met

for a in all_actions:
name = self._safe_action_name(a)
if any(tok in name for tok in ("buy_dev", "buycard", "

buy_dev_card")):
try:

if self.evaluate_buy_dev_card(a, game , color):
dev_ev = self.dev_card_ev_estimate(game , color)
if dev_ev >= self.DEV_EV_THRESHOLD and a not in

musts:
include only if dev EV merits it
musts.append(a)

except Exception:
pass

Ensure robber/knight actions are present
for a in all_actions:

name = self._safe_action_name(a)
if any(tok in name for tok in ("robber", "move_robber", "

knight", "play_knight"))
:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

if a not in musts:
musts.append(a)

Score and pick top -K from others
scored = [(self.cheap_pre_score(a, game , color), a) for a in

others]
scored.sort(key=lambda x: x[0], reverse=True)
top_k = [a for (_s, a) in scored[: self.PREFILTER_TOP_K]]

Combine unique musts + top_k preserving order
candidates = []
for a in musts + top_k:

if a not in candidates:
candidates.append(a)

Fill up with random remaining samples until MAX_SIMULATIONS
remaining = [a for a in all_actions if a not in candidates]
random.shuffle(remaining)
while len(candidates) < min(len(all_actions), self.

MAX_SIMULATIONS) and
remaining:

candidates.append(remaining.pop())

if not candidates and all_actions:
candidates = random.sample(all_actions , min(len(all_actions),

self.MAX_SIMULATIONS))

self.debug_print(f"FooPlayer: Prefilter selected {len(candidates)
} candidates (musts={len(
musts)}, phase={phase})")

if self.DEBUG and phase == "EARLY":
self.debug_print(f" Forced includes: settlement={’yes’ if

found_settlement else ’
no’}, road={’yes’ if
found_road else ’no’}")

return candidates

------------------- Playable actions extraction -------------------
def get_playable_actions_from_game(self , game: Game) -> List[Any]:

"""Try adapters.list_prunned_actions first , then common game
attributes."""

try:
acts = list_prunned_actions(game)
if acts:

return acts
except Exception as e:

self.debug_print("FooPlayer: list_prunned_actions unavailable
or failed. Error:", e)

try:
if hasattr(game , "get_playable_actions"):

return list(game.get_playable_actions ())
except Exception:

pass
try:

if hasattr(game , "playable_actions"):
return list(getattr(game , "playable_actions"))

except Exception:
pass

try:
state = getattr(game , "state", None)
if state is not None and hasattr(state , "playable_actions"):

return list(getattr(state , "playable_actions"))
except Exception:

pass

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

return []

------------------- Robber / Knight evaluation -------------------
def evaluate_robber_action(self , action: Any , game: Game , color:

Color) -> float:
""" Estimate the value of moving the robber (best -effort).

If the action does not specify a target hex , evaluate all hexes
and prefer the

one that maximizes opponent production loss.
"""
score = 0.0
try:

Base preference to include robber moves (use HIGH base for
aggressive play)

score += self.ROBBER_BASE_SCORE_HIGH
name = self._safe_action_name(action)
Try to parse a target hex id
digits = [int(tok) for tok in name.split() if tok.isdigit ()]
target = digits[0] if digits else None

Die probabilities
die_prob = {2: 1 / 36, 3: 2 / 36, 4: 3 / 36, 5: 4 / 36, 6: 5

/ 36, 8: 5 / 36, 9: 4 /
36, 10: 3 / 36, 11: 2 /
36, 12: 1 / 36}

state = getattr(game , "state", game)
board = getattr(state , "board", None) or getattr(game , "board

", None)
hexes = getattr(board , "hexes", None) or getattr(board , "

tiles", None) or []

Map hex identifier to object (best -effort: use index or id)
hex_map = {}
for idx , h in enumerate(hexes):

try:
hid = getattr(h, "id", None) or getattr(h, "index",

None) or idx
except Exception:

hid = idx
try:

key = int(hid) if isinstance(hid , int) or (isinstance
(hid , str) and
hid.isdigit ())
else idx

except Exception:
key = idx

hex_map[key] = h

Determine best target if none specified
targets_to_consider = [target] if target in hex_map else list

(hex_map.keys())

Compute production loss on opponents per candidate target
opponents = []
players = getattr(state , "players", None) or getattr(game , "

players", None) or []
my_color = color
if isinstance(players , dict):

for k, p in players.items():
if k == my_color or getattr(p, "color", None) ==

my_color:
continue

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

opponents.append(p)
else:

for p in players:
if getattr(p, "color", None) == my_color:

continue
opponents.append(p)

best_loss = 0.0
best_steal = 0.0
best_hex = None
resource_value = {"ore": 3.0, "metal": 3.0, "wheat": 3.0, "

grain": 3.0, "brick": 2.
0, "lumber": 2.0, "wood"
: 2.0, "sheep": 2.0}

for t in targets_to_consider:
try:

if t not in hex_map:
continue

h = hex_map[t]
num = getattr(h, "roll", None) or getattr(h, "number"

, None) or
getattr(h, "
value", None)

try:
num = int(num)

except Exception:
num = None

prob = die_prob.get(num , 0)
total_prod_loss = 0.0
steal_expected = 0.0
for opp in opponents:

opp_settles = getattr(opp ,
"settlements", None) or getattr(opp ,
"settle_locations", None) or []
opp_cities = getattr(opp , "cities",
None) or getattr(opp , "city_locations",
None) or []
mult = 0.0
try:

for s in opp_settles:
neighbors = getattr(h,
"vertices", None) or getattr(h,
"adjacent_vertices", None) or []
if s in neighbors:

mult += 1.0
for c in opp_cities:

neighbors = getattr(h,
"vertices", None) or getattr(h,
"adjacent_vertices", None) or []
if c in neighbors:

mult += 2.0
except Exception:

continue
total_prod_loss += prob * mult
Estimate steal expected
try:

opp_resources = getattr(opp ,
"resources", None) or {}
if isinstance(opp_resources , dict)
and opp_resources:

total_res =
sum(opp_resources.values ())
if total_res > 0:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

avg_val =
sum(resource_value.get(r,
1.5) * (opp_resources.get(r,
0) / total_res) for r in
opp_resources)
steal_expected += avg_val *
0.5

except Exception:
pass

choose best
if total_prod_loss > best_loss or (abs(

total_prod_loss
- best_loss) <
1e-9 and
steal_expected >
best_steal):

best_loss = total_prod_loss
best_steal = steal_expected
best_hex = t

except Exception:
continue

Aggressive scaling per latest tuning
score += best_loss * self.PROD_LOSS_IMPORTANCE
score += best_steal * 30.0
Extra bonus if multiple opponent cities affected
try:

if best_hex in hex_map:
h = hex_map[best_hex]
city_count = 0
for opp in opponents:

for c in getattr(opp , "cities", []) or
getattr(opp , "city_locations", []) or []:

neighbors = getattr(h, "vertices",
None) or getattr(h,
"adjacent_vertices", None) or []
if c in neighbors:

city_count += 1
if city_count > 0:

score += 20.0 * city_count
except Exception:

pass

If steal estimated is very significant , add
decisive bonus
if best_steal > 2.0:

score += 30.0

Debug
if self.DEBUG and best_hex is not None:

self.debug_print(f"FooPlayer: evaluate_robber_action
best_hex={best_hex}
prod_loss={best_loss
:.3f} steal_ev={
best_steal :.2f}")

except Exception:
pass

return float(score)

def evaluate_play_knight(self , action: Any , game: Game , color: Color)
-> float:

""" Estimate the value of playing a knight (best -effort)."""
score = float(self.KNIGHT_BASE)
try:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

name = self._safe_action_name(action)
if "steal" in name or "rob" in name:

score += 10.0

army progress
player_state = self._get_player_state(game , color)
army = getattr(player_state , "army", None) or getattr(

player_state , "army_size
", None) or getattr(
player_state , "
knights_played", None)
or 0

try:
army = int(army)

except Exception:
army = 0

detect largest army threshold
largest_threshold = 3
try:

state = getattr(game , "state", game)
players = getattr(state , "players", None) or getattr(game

, "players", None)
or []

max_other = 0
if isinstance(players , dict):

for k, p in players.items():
if getattr(p, "color", None) == color or k ==

color:
continue

other_army = getattr(p, "army", None) or getattr(
p, "
army_size",
None) or
getattr(p, "
knights_played
", None) or
0

try:
other_army = int(other_army)

except Exception:
other_army = 0

max_other = max(max_other , other_army)
else:

for p in players:
if getattr(p, "color", None) == color:

continue
other_army = getattr(p, "army", None) or getattr(

p, "
army_size",
None) or
getattr(p, "
knights_played
", None) or
0

try:
other_army = int(other_army)

except Exception:
other_army = 0

max_other = max(max_other , other_army)
largest_threshold = max(3, max_other + 1)

except Exception:
largest_threshold = 3

if army + 1 >= largest_threshold:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

score += self.KNIGHT_LARGEST_ARMY_BONUS
else:

score += 20.0

Debug
if self.DEBUG:

self.debug_print(f"FooPlayer: evaluate_play_knight army={
army} target={
largest_threshold}
score={score}")

except Exception:
pass

return float(score)

------------------- Helper: determine active player color

def _get_active_player_color(self , game: Game) -> Optional[Color]:
"""Best -effort to detect which Color is to move in the given game

state."""
try:

state = getattr(game , "state", game)
cp = getattr(state , "current_player", None) or getattr(state ,

"active_player", None)
or getattr(state , "
turn_color", None)

if cp is None:
cp = getattr(game , "current_player", None)

cp might be index , player object , or Color
if isinstance(cp, Color):

return cp
if isinstance(cp, int):

players = getattr(state , "players", None) or getattr(game
, "players", None)
or []

try:
if isinstance(players , (list , tuple)) and 0 <= cp <

len(players):
return getattr(players[cp], "color", None)

except Exception:
pass

If cp is a player object
if hasattr(cp, "color"):

return getattr(cp, "color")

Fallback: pick first player in players whose color != our
color

players = getattr(state , "players", None) or getattr(game , "
players", None) or []

my_color = self._get_player_color ()
if isinstance(players , dict):

for k, p in players.items():
try:

c = getattr(p, "color", None) or k
if c != my_color:

return c
except Exception:

continue
else:

for p in players:
try:

c = getattr(p, "color", None)
if c != my_color:

return c
except Exception:

continue

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

except Exception:
pass

return None

------------------- Rollout logic with opponent -response

def rollout_value(self , game: Game , color: Color , depth: int , initial
: bool = True) -> float:

""" Short greedy rollout with phase bias and light opponent -
response.

initial: True for the first step of rollout so we can bias toward
expansion early.

"""
try:

if depth <= 0:
return self._evaluate_game_state(game , color)

actions = self.get_playable_actions_from_game(game)
if not actions:

return self._evaluate_game_state(game , color)

phase = self.get_game_phase(game , color)

def score_for_rollout(a, g, c, is_initial):
base = self.cheap_pre_score(a, g, c)
if is_initial and phase == "EARLY":

name = self._safe_action_name(a)
if any(tok in name for tok in ("build_settlement", "

build_sett", "
settle")):

base *= self.ROLLOUT_SETTLEMENT_BONUS
if any(tok in name for tok in ("build_road", "road"))

:
base *= self.ROLLOUT_ROAD_BONUS

return base

sorted_actions = sorted(actions , key=lambda a:
score_for_rollout(a,
game , color , initial),
reverse=True)

Try top actions to simulate
for a in sorted_actions[:6]:

branches = []
try:

branches = execute_deterministic(game , a)
except Exception:

try:
branches = execute_spectrum(game , a)

except Exception:
branches = []

if not branches:
continue

pick the most probable branch
next_game = max(branches , key=lambda bp: float(bp[1]))[0]

Light opponent -response: if opponent to move next ,
simulate their
greedy action once

opp_color = self._get_active_player_color(next_game)
my_color = color
if opp_color is not None and opp_color != my_color and

depth >= 2:
try:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

opp_actions = self.get_playable_actions_from_game
(next_game)

if opp_actions:
filter out robber/knight for
opponent response unless all are
robber/knight
non_disrupt = [oa for oa in
opp_actions if not any(tok in
self._safe_action_name(oa) for tok
in ("knight", "robber",
"move_robber"))]
candidate_ops = non_disrupt if
non_disrupt else opp_actions
pick opponent best action by
cheap_pre_score from their
perspective
best_opp = max(candidate_ops ,
key=lambda oa:
self.cheap_pre_score(oa, next_game ,
opp_color))
simulate opponent action
deterministically if possible
opp_branches = []
try:

opp_branches =
execute_deterministic(next_game ,
best_opp)

except Exception:
try:

opp_branches =
execute_spectrum(next_game ,
best_opp)

except Exception:
opp_branches = []

if opp_branches:
next_game = max(opp_branches ,
key=lambda bp: float(bp[1]))[0]

except Exception:
pass

return self.rollout_value(next_game , color ,
depth - 1, initial=False)

fallback: try any action that simulates
for a in sorted_actions[:10]:

branches = []
try:

branches = execute_deterministic(game , a)
except Exception:

try:
branches = execute_spectrum(game , a)

except Exception:
branches = []

if branches:
next_game = max(branches , key=lambda bp:
float(bp[1]))[0]
return self.rollout_value(next_game , color ,
depth - 1, initial=False)

return self._evaluate_game_state(game , color)
except Exception as e:

self.debug_print("FooPlayer: rollout_value exception , falling
back to

evaluate_game_state.
Error:", e)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

return self._evaluate_game_state(game , color)

------------------- Evaluate action expectation (enhanced)

def _evaluate_action_expectation(self , game: Game , action: Any ,
per_action_branch_limit: int = 8
) -> float:

""" Compute expected value of taking ‘action ‘ in ‘game ‘ for this
player.

Uses execute_spectrum when available then adds a rollout estimate
for depth -1.

"""
color = self._get_player_color ()

Quick boosts for robber/knight/dev before heavy sim
name = self._safe_action_name(action)
preboost = 0.0
try:

if any(tok in name for tok in ("move_robber", "robber")):
preboost += self.evaluate_robber_action(action , game ,

color)
if any(tok in name for tok in ("knight", "play_knight")):

preboost += self.evaluate_play_knight(action , game , color
)

if any(tok in name for tok in ("buy_dev", "buycard", "
buy_dev_card")):

try:
dev_ev = self.dev_card_ev_estimate(game , color)
preboost += dev_ev * self.DEV_EV_SCALE

except Exception:
fallback small preboost
preboost += 20.0

except Exception:
preboost += 0.0

branches = None
try:

branches = execute_spectrum(game , action)
if not branches:

raise RuntimeError("execute_spectrum returned no branches
")

except Exception as e_s:
self.debug_print("FooPlayer: execute_spectrum failed or

unavailable for action;
trying deterministic.
Error:", e_s)

try:
branches = execute_deterministic(game , action)
if not branches:

raise RuntimeError("execute_deterministic returned no
outcomes")

except Exception as e_d:
self.debug_print("FooPlayer: Both execute_spectrum and

execute_deterministic
failed for action.

Errors:", e_s , e_d)
return float("-inf")

Limit branches to keep runtime bounded
if len(branches) > per_action_branch_limit:

branches = sorted(branches , key=lambda bp: float(bp[1]),
reverse=True)[:
per_action_branch_limit]

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

expected = 0.0
total_prob = 0.0
rollout_depth = max(0, self.ROLLOUT_DEPTH - 1)
for (out_game , prob) in branches:

try:
For buy_dev actions , if the branch encodes a known draw

outcome , we could
refine.

In absence of explicit draw info , rely on
dev_ev_estimate as a
conservative proxy.

immediate = self._evaluate_game_state(out_game , color)
rollout_est = self.rollout_value(out_game , color ,

rollout_depth ,
initial=True)

branch_val = 0.6 * immediate + 0.4 * rollout_est
except Exception as e:

self.debug_print("FooPlayer: evaluation failed for branch
, using heuristic.
Error:", e)

branch_val = self._heuristic_value(out_game , color)
expected += float(prob) * float(branch_val)
total_prob += float(prob)

if total_prob > 0:
expected = expected / total_prob

expected += preboost
return float(expected)

------------------- Main decision function -------------------
def decide(self , game: Game , playable_actions: Iterable) -> Optional[

object]:
""" Choose an action from playable_actions using phase -aware

sampling + rollouts."""
try:

playable_actions = list(playable_actions)
if not playable_actions:

self.debug_print("FooPlayer: No playable actions
available , returning
None")

return None

color = self._get_player_color ()
phase = self.get_game_phase(game , color)

Prefilter candidate actions
candidates = self.prefilter_actions(playable_actions , game ,

color)

Cap to MAX_SIMULATIONS
if len(candidates) > self.MAX_SIMULATIONS:

candidates = candidates[: self.MAX_SIMULATIONS]

if not candidates:
candidates = random.sample(playable_actions ,
min(len(playable_actions), self.MAX_SIMULATIONS))

Distribute simulation budget adaptively
per_action_budget = max(1, self.SIMULATION_BUDGET //
max(1, len(candidates)))

best_score = float("-inf")
best_actions: List[Any] = []
scores_debug: List[Tuple[float , Any]] = []

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

for a in candidates:
try:

score =
self._evaluate_action_expectation(game , a,
per_action_branch_limit=per_action_budget)

except Exception as e:
self.debug_print("FooPlayer: Exception
during action evaluation , skipping action.
Error:", e)
score = float("-inf")

scores_debug.append ((score , a))

if score > best_score + self.TOLERANCE:
best_score = score
best_actions = [a]

elif abs(score - best_score) <= self.TOLERANCE:
best_actions.append(a)

If no action had a finite score , fallback to first playable
action

if not best_actions:
self.debug_print("FooPlayer: All evaluations failed ,

defaulting to first
playable action")

return playable_actions[0]

Epsilon -greedy randomness to reduce predictability
chosen: Any
scores_debug.sort(key=lambda x: x[0], reverse=True)
if random.random () < self.EPSILON_GREEDY and len(scores_debug

) >= 2:
pick from top -3 weighted by score (or fewer if not

available)
top_k = scores_debug[: min(3, len(scores_debug))]
weights = [max(0.0, s - top_k[-1][0] + 1e-6) for (s, a)

in top_k]
total_w = sum(weights)
if total_w > 0:

r = random.random () * total_w
cum = 0.0
for w, (_s, a) in zip(weights , top_k):

cum += w
if r <= cum:

chosen = a
break

else:
chosen = top_k[0][1]

else:
chosen = scores_debug[0][1]

if self.DEBUG:
self.debug_print(f"FooPlayer: EPSILON pick
triggered , chosen alternate action {chosen}")

return chosen

If tie , break ties preferring
settlement/road/resource diversity improvements
if len(best_actions) > 1:

tie_metrics = []
for a in best_actions:

try:
metric = 0.0
metric += self.settlement_potential(a,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

game , color)
metric +=
self.road_connection_potential(a, game ,
color)
small production proxy via heuristic
metric += 0.01 *
self._heuristic_value(game , color)
tie_metrics.append ((metric , a))

except Exception:
tie_metrics.append ((0.0, a))

tie_metrics.sort(key=lambda x: x[0],
reverse=True)
pick the top metric actions (could still be
multiple)
top_metric = tie_metrics[0][0]
filtered = [a for (m, a) in tie_metrics if abs(m
- top_metric) <= self.TOLERANCE]
if filtered:

chosen = random.choice(filtered)
else:

chosen = random.choice(best_actions)
else:

chosen = best_actions[0]

Debug logging: phase and top candidates
if self.DEBUG:

self.debug_print(f"FooPlayer: Phase={phase},
SettlementsTarget=
{self.TARGET_SETTLEMENTS_EARLY}")
topn = scores_debug[:3]
self.debug_print("FooPlayer: Top candidates:")
for sc, act in topn:

self.debug_print(f" score={sc:.2f} action=
{act}")

self.debug_print(f"FooPlayer: Chosen action {chosen}
with expected score {best_score}")
return chosen

except Exception as e:
Protect against unexpected errors
print("FooPlayer: Unexpected error in decide (),
defaulting to first playable action. Error:", e)
try:

return list(playable_actions)[0]
except Exception:

return None

A.2 HEXMACHINA (NO DISCOVERY) SHALLOW STRATEGY

import random
import statistics
from .adapters import (

Game , Player , Color
)

Hyperparameters for this player. Tweak across evolutions.
K_ROLLOUTS = 0 # rollouts disabled in this adapter -limited

implementation
MAX_ROLLOUT_DEPTH = 10 # not used currently; kept for future use
MAX_ACTIONS_TO_EVALUATE = 12
DEBUG = True

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

class FooPlayer(Player):
"""A stronger FooPlayer that performs a 1-ply lookahead and evaluates
the immediate successor state using a robust , defensive static

evaluator.

Notes on integration with adapters.py:
- We only use the thin adapter surface exported above (Game , Player ,

Color).
- We call game.copy() to create hypothetical states and game.execute(

action)
to apply actions to those copies. We avoid calling any non -exported
adapter helpers so this file remains compatible with the framework.

Limitations and rationale:
- The adapters surface available in this environment does not

explicitly
expose helper functions for enumerating playable actions from an
arbitrary game object (those are provided to decide () by the

harness).
Because of this we cannot reliably perform multi -step random

rollouts
(we cannot ask the engine for "playable_actions" inside the player

for
subsequent turns). Attempting to call hypothetical internal APIs

would
risk using non -portable / unsupported functions.

- To still fix the key flaw (always pick the first action) we
implement a

1-ply lookahead over a sampled set of candidate actions and
evaluate the

successor state with a robust static value function that inspects
the

game.state. This is a significant upgrade over the previous
behavior

and provides a solid foundation for future rollout -based evolution.
"""

def __init__(self , name=None):
super().__init__(Color.BLUE , name)

def decide(self , game , playable_actions):
""" Choose an action from playable_actions.

Strategy implemented:
- If there are many playable actions , randomly sample up to

MAX_ACTIONS_TO_EVALUATE actions to limit computation.
- For each candidate action , copy the game , execute the action on

the
copy , and evaluate the resulting state with _evaluate_state ().

- Choose the action with the highest evaluation. Break ties
randomly.

The evaluation is defensive: it attempts multiple common access
patterns to extract victory points and common counts (settlements

,
cities , roads). If extraction fails , the evaluator falls back to

0.

Args:
game (Game): complete game state. read -only. Use game.copy()

to
create hypothetical states.

playable_actions (Iterable[Action]): legal options for this
turn.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Returns:
action: chosen element of playable_actions , or None if no

options.
"""
Defensive: if no actions available , return None
if not playable_actions:

if DEBUG:
print(’FooPlayer.decide: no playable_actions -> returning

None’)
return None

Convert playable_actions to a list so we can sample and index
try:

actions = list(playable_actions)
except Exception:

If iterable cannot be converted , fall back to returning
first

if DEBUG:
print(’FooPlayer.decide: playable_actions not list -like;

defaulting to first’
)

try:
return playable_actions[0]

except Exception:
return None

Sample candidate actions if there are too many
if len(actions) > MAX_ACTIONS_TO_EVALUATE:

candidates = random.sample(actions , MAX_ACTIONS_TO_EVALUATE)
if DEBUG:

print(f’FooPlayer.decide: sampled {len(candidates)} of {
len(actions)}
actions to evaluate ’
)

else:
candidates = actions
if DEBUG:

print(f’FooPlayer.decide: evaluating all {len(candidates)
} actions ’)

Evaluate each candidate action by applying it to a copy of the
game

scores = [] # list of (action , score)
for i, action in enumerate(candidates):

try:
Copy the game to avoid mutating the original
new_game = game.copy()

Apply the candidate action on the copied game.
The standard Game API exposes execute(action) to apply

an action.
We try both .execute and .apply for defensive

compatibility.
executed = False
try:

new_game.execute(action)
executed = True

except Exception:
Some versions may expose a differently named method

.
try:

new_game.apply(action)
executed = True

except Exception:
executed = False

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

if not executed:
If we couldn ’t apply the action on the copy , mark

it as
very poor and continue.
if DEBUG:

print(f’FooPlayer.decide: failed to execute
candidate
action {i};
marking
score -inf’)

scores.append ((action , float(’-inf’)))
continue

Evaluate the successor state
score = self._evaluate_state(new_game)
scores.append ((action , score))
if DEBUG:

print(f’FooPlayer.decide: action #{i} -> score {score
}’)

except Exception as e:
Catch -all: do not let the player crash the harness.

Penalize
the action and continue evaluating others.
if DEBUG:

print(f’FooPlayer.decide: exception while evaluating
action #{i}: {e}
! Marking -inf’)

scores.append ((action , float(’-inf’)))

Choose the best action. If all are -inf or evaluation failed ,
fall back

to the original first -action policy.
if not scores:

if DEBUG:
print(’FooPlayer.decide: no scores produced -> defaulting

to first action ’)
return actions[0]

Compute the maximum score
max_score = max(score for (_, score) in scores)
Filter all actions that have the max score (handle ties)
best_candidates = [a for (a, s) in scores if s == max_score]

if not best_candidates or max_score == float(’-inf’):
All evaluations failed; fallback
if DEBUG:

print(’FooPlayer.decide: all evaluations failed ->
defaulting to first
action ’)

return actions[0]

chosen = random.choice(best_candidates)
if DEBUG:

try:
Try to pretty -print a small summary for debugging
print(f’FooPlayer.decide: selected action -> {repr(chosen

)} with score {
max_score}’)

except Exception:
print(’FooPlayer.decide: selected an action (repr failed)

’)

return chosen

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

def _evaluate_state(self , game):
""" Static evaluation of a game state from this player ’s

perspective.

The evaluator attempts multiple common access patterns to extract
victory points and simple progress indicators (settlements ,

cities ,
roads). The returned score is primarily the victory points (

higher is
better). Secondary counts are used as small tiebreakers.

This function is defensive to avoid attribute errors across
different

engine versions.

Returns:
float: heuristic score for the state (larger is better)

"""
color = self.color
vp = None
settlements = None
cities = None
roads = None

Try a number of plausible attribute access patterns. Use try/
except

blocks liberally because different engine versions expose
different

structures.
try:

players = game.state.players
except Exception:

players = None

Attempt to access player state by Color key
player_state = None
if players is not None:

try:
player_state = players[color]

except Exception:
Maybe players is a list keyed by integer colors
try:

idx = int(color)
player_state = players[idx]

except Exception:
player_state = None

Extract victory points with common attribute names
if player_state is not None:

for attr in (’victory_points ’, ’victoryPoints ’, ’vp’, ’points
’):

try:
val = getattr(player_state , attr)
If it’s a callable (method), call it
if callable(val):

val = val()
vp = int(val)
break

except Exception:
vp = None

Try dictionary -style if attributes failed
if vp is None:

try:

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

if isinstance(player_state , dict):
for key in (’victory_points ’, ’vp’, ’points ’):

if key in player_state:
vp = int(player_state[key])
break

except Exception:
vp = None

Extract simple asset counts to break ties
for attr in (’settlements ’, ’settle_count ’, ’settlement_count

’, ’settles ’):
try:

val = getattr(player_state , attr)
if callable(val):

val = val()
settlements = int(val)
break

except Exception:
settlements = None

for attr in (’cities ’, ’city_count ’):
try:

val = getattr(player_state , attr)
if callable(val):

val = val()
cities = int(val)
break

except Exception:
cities = None

for attr in (’roads’, ’road_count ’):
try:

val = getattr(player_state , attr)
if callable(val):

val = val()
roads = int(val)
break

except Exception:
roads = None

Fallbacks if extraction failed: try to compute from visible
board pieces

(e.g., lengths of lists). This is optional and best -effort.
if vp is None and players is not None:

try:
If player_state contains lists of pieces , inspect

lengths
if isinstance(player_state , dict):

Look for settlement/city lists
s = None
for key in (’settlements ’, ’settle_list ’):

if key in player_state and isinstance(
player_state
[key], (list
, tuple)):

s = len(player_state[key])
break

if s is not None:
settlements = settlements or s

We intentionally do not try to derive vp from the board
in a

brittle way; leave vp as None and fall back to 0.
except Exception:

pass

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Final fallback: if we couldn ’t determine vp, set to 0
if vp is None:

vp = 0

Build a composite score. Main contributor is victory points.
Add

small weighted bonuses for settlements/cities/roads if
available.

score = float(vp)
if settlements is not None:

score += 0.01 * float(settlements)
if cities is not None:

score += 0.02 * float(cities)
if roads is not None:

score += 0.005 * float(roads)

return score

46

	Introduction
	Related Works
	Background
	HexMachina
	Capabilities
	Agents

	Experiment Setup
	Baselines
	Models

	Results and Discussion
	Continual Learning
	Player Comparison
	Ablations

	Conclusion
	Ethical Statement
	Reproducibility Statement
	Appendix
	HexMachina's Best Strategy
	HexMachina (No Discovery) Shallow Strategy

